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ABSTRACT

To optimize the flow of traffic in IP networks, operators do
traffic engineering (TE), i.e., tune routing-protocol parame-
ters in response to traffic demands. TE in IP networks typ-
ically involves configuring static link weights and splitting
traffic between the resulting shortest-paths via the Equal-
Cost-MultiPath (ECMP) mechanism. Unfortunately, ECMP
is a notoriously cumbersome and indirect means for optimiz-
ing traffic flow, often leading to poor network performance.
Also, obtaining accurate knowledge of traffic demands as the
input to TE is elusive, and traffic conditions can be highly
variable, further complicating TE. We leverage recently pro-
posed schemes for increasing ECMP’s expressiveness via
carefully disseminated bogus information ("lies") to design
COYOTE, a readily deployable TE scheme for robust and
efficient network utilization. COYOTE leverages new algo-
rithmic ideas to configure (static) traffic splitting ratios that
are optimized with respect to all (even adversarially chosen)
traffic scenarios within the operator’s "uncertainty bounds".
Our experimental analyses show that COYOTE significantly
outperforms today’s prevalent TE schemes in a manner that
is robust to traffic uncertainty and variation. We discuss ex-
periments with a prototype implementation of COYOTE.

1. INTRODUCTION

To adapt the routing of traffic to the demands network op-
erators do traffic engineering (TE), i.e., tune routing-protocol
parameters so as to influence how traffic flows in their net-
works [1-3]. Today’s prevalent scheme for TE within an or-
ganizational IP network is based on configuring static link-
weights into shortest-path protocols such as OSPF [4] and
splitting traffic between the resulting shortest-paths via ECMP
[5]. Traditional TE with ECMP significantly constrains both
route-computation and traffic splitting between multiple paths
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in two crucial ways: (1) traffic from a source to a destina-
tion in the network can only flow along the shortest paths
between them (for the given configuration of link weights),
and (2) traffic splitting between multiple paths (if multiple
shortest paths exist) can only be done in very specific man-
ners (see Section 2.1 for an illustration).

ECMP’s lack of expressiveness makes traffic engineering
with ECMP a notoriously hard task that often results in poor
performance. Indeed, not only does ECMP’s inflexibility
imply that traffic flow might be arbitrarily far from the global
optimum [6], but even choosing “good” link weights for TE
with ECMP is infeasible in general [7]. Beyond ECMP’s
deficiencies, today’s dominant TE schemes also suffer from
other predicaments, e.g., obtaining an accurate view of traf-
fic demands so as to optimize TE is elusive, as most net-
works lack the appropriate measurement infrastructure. Also,
traffic can be highly variable and routing configurations that
are good with respect to one traffic scenario can be bad with
respect to another. We thus seek a TE scheme that is back-
wards compatible with legacy routing infrastructure (i.e., OSPF
and ECMP), yet robustly achieves high performance even
under uncertain or variable traffic conditions.

Introducing COYOTE: optimized, OSPF/ECMP-compatible

TE. We leverage recently introduced approaches for enrich-
ing ECMP’s expressiveness without changing router hard-
ware/software to design COYOTE (COmpatible Yet Opti-
mized TE). Recent studies show that by injecting “lies” into
OSPF-ECMP (specifically, information about fake links and
nodes), OSPF and ECMP can support much richer traffic
flow configurations [8,9]. We exploit these developments
to explore how OSPF-ECMP routing can be extended to
achieve consistently high performance even under great un-
certainty about the traffic conditions and high variability of
traffic. To accomplish this, COYOTE relies on new algo-
rithmic ideas to configure (static) traffic splitting ratios at
routers/switches that are optimized with respect to all (even

adversarially chosen) traffic scenarios within operator-specified

“uncertainty bounds”.

We view COYOTE as an important additional step in the
recent exploration of how SDN-like functionality can be ac-
complished without changing today’s networking infrastruc-
ture (see [8,9]). Our experimentation with COYOTE on real
network topologies shows that COYOTE indeed consistently
and robustly achieves good performance even with very lim-
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ited (in fact, sometimes even no) knowledge about the traffic
demands and, in particular, exhibits significantly better per-
formance than (optimized) traditional TE with ECMP. Our
experiments with a prototype implementation of COYOTE
also demonstrate its performance benefits. We briefly dis-
cuss below the algorithmic challenges facing the design of
COYOTE and how these are tackled.

New algorithmic framework: destination-based oblivi-
ous routing. A rich body of literature in algorithmic theory
investigates “(traffic-demands-)oblivious routing” [10-12],
i.e., how to compute provably good routing configurations
with limited (possibly even no) knowledge of the traffic de-
mands. Past studies [11, 13] show that, even though lacking
accurate information about the traffic demands, demands-

oblivious routing algorithms yield remarkably close-to-optimal
performance on real-world networks. Unfortunately, the above-

mentioned algorithms involve forwarding packets based on
both source and destination and are so inherently incompati-
ble with destination-based routing via OSPF-ECMP. In addi-
tion, realizing these schemes in practice entails either exces-
sive use of (e.g., MPLS) tunneling/tagging in traditional IP
networks [11, 14], or the ubiquitous deployment of per-flow
routing software-defined networking infrastructure [15].

Our design of COYOTE relies on a novel algorithmic frame-

work for demands-oblivious IP routing. We initiate the study
of optimizing oblivious routing under the restriction that for-
warding is destination-based. In light of the recent progress
on enhancing OSPF-ECMP’s expressiveness, we view the
algorithmic investigation of destination-based oblivious rout-
ing as an important and timely research agenda. We take the
first steps in this direction. Our first result establishes that, in
contrast to unconstrained oblivious routing, computing the
optimal destination-based oblivious routing configuration is
computationally intractable. We show how, via the decom-
position of this problem into sub-problems that are easier to
address with todays mathematical toolkit, and by leveraging
prior research, good routing configurations can be generated.
We regard our algorithmic results along these lines as a first,
yet promising, step en route to better TE in IP networks,
and leave the reader with many interesting open questions in
Section 6.

2. COYOTE: OVERVIEW AND DESIGN

We next motivate COYOTE through a simple example,
present the algorithmic challenges facing COYOTE’s design,
and explain how these are tackled.

2.1 Motivating Example

Consider the toy example in Fig. 1a. Two network users,
s1 and s9, wish to send traffic to target ¢. Suppose that each
user is expected to send between 0 and 2 units of flow and
each link is of capacity 1. Suppose also that the network
operator is oblivious to the actual traffic demands or, al-
ternatively, that traffic is variable and user demands might
drastically change over time. The operator aims to provide
robustly good network performance, and thus has an am-
bitious goal: configuring OSPF-ECMP routing parameters

Figure 1: A sample network: (a) topology with unit capacity
links; (b) per-destination ECMP routing (oblivious perfor-
mance ratio 3/2); (c) COYOTE (oblivious performance ratio
4/3); and (d) COYOTE implementation with a fake node in-
serted at s1 for realizing the required splitting ratio.

so as to minimize link over-subscription across all possible
combinations of traffic demands within the above-specified
uncertainty bounds.

Consider first the traditional practice of splitting traffic
equally amongst the next-hops on shortest-paths to the des-
tination (i.e., traditional TE with ECMP, see Fig. 1b), where
the shortest path DAG towards ¢ is depicted by dashed ar-
rows labelled with the resulting flow splitting ratios. Ob-
serve that if the actual traffic demands are 2 and O for s; and
So, respectively, routing as in Fig. 1b would result in link
(over-)utilization that is 3/2 higher than that of the optimal
routing of these specific demands (which can send all traffic
without exceeding any link capacity). Specifically, routing
as in Fig. 1b would result in 3/2 units of traffic traversing link
(v, ), whereas the total flow could be optimally routed with-
out at all exceeding the link capacities by equally splitting it
between paths (s1 s t) and (s; v t). One can actually show
that this is, in fact, the best guarantee achievable for this net-
work via traditional TE with ECMP, i.e., for any choice of
link weights, equal splitting of traffic between shortest paths
would result in link utilization that is 3/2 higher than optimal
for some possible traffic scenario. Can we do better?

We show that this is indeed possible if more flexible traf-
fic splitting than that of traditional TE with ECMP is possi-
ble. One can prove that for any traffic demands of the users,
per-destination routing as in Fig. 1c results in a maximum
link utilization at most 4/3 times that of the optimal rout-
ing !. We explain later how COYOTE realizes such uneven
per-destination load balancing without any modification to
legacy OSPF-ECMP.

'In fact, even the routing configuration in Fig. 1c is not op-
timal in this respect. Indeed, COYOTE’s optimization tech-
niques, discussed in Section 2.3, yield configurations with
better guarantees (see [16]).
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Figure 2: COYOTE architecture.

2.2 Challenges

Realizing hop-by-hop destination-based traffic engineer-
ing boils down to computing, for each destination, (1) a Di-
rected Acyclic Graph (DAG) rooted in that destination (so as
to guarantee loop-free packet forwarding) along which traf-
fic is to be forwarded, and (2) the splitting of traffic within
each DAG (c.f., Fig. 1c). Thus, the optimization problem
that underlies COYOTE is the following: compute per-des-
tination DAGs and traffic splitting ratios so as to minimize
the worst-case link utilization (also referred to as congestion
in TE literature [1, 2]) across all possible traffic scenarios
(within the operator-specified uncertainty bounds). Our first
(and negative) result shows that this is, in fact, intractable.
The proof is omitted due to space constraints and is avail-
able in [16].

THEOREM 1. Given a capacitated network graph G =
(V, E) and a set D of possible traffic demands between nodes,
computing the optimal combination of DAGs and traffic split-
ting ratios with respect to minimizing the worst-case link uti-
lization is NP-hard.

Hence, efficiently computing the optimal selection of DAGs
and in-DAG traffic splitting ratios is beyond reach. We next
describe how COYOTE’s design addresses this challenge.
COYOTE’s flow-computation decomposes the task of com-
puting destination-based oblivious routing configurations into
two sub-problems, and tackles each independently. First,
COYOTE applies a simple heuristic to compute destination-
oriented DAGs. Then, COYOTE optimizes in-DAG traf-
fic splitting ratios through a combination of optimization
techniques, including iterative geometric programming. We
show in Section 3 that COYOTE's routing algorithm empir-
ically exhibits good network performance.

2.3 COYOTE Design

Figure 2 presents an overview of the COYOTE architec-
ture. COYOTE gets as input the (capacitated) network topol-
ogy and the so-called “uncertainty bounds”, i.e., for every
two nodes (routers) in the network, ¢ and j, a real-valued
interval [d;’;i”,d;’}”], capturing the operator’s uncertainty
about the traffic demand from ¢ to j or, alternatively, the
potential variability of traffic. COYOTE then uses this in-
formation first to compute a forwarding DAG rooted in each
destination node, and then to optimize traffic splitting ratios
within each DAG. Lastly, the outcome of this computation
is converted into OSPF configuration by injecting “lies” into
routers. We next elaborate on each of these components.

Computing DAGs. Theorem 1 implies that computing DAGs
so as to support optimal routing (through the appropriate
in-DAG traffic splitting) is intractable. In COYOTE, DAGs
rooted in different destinations are not coupled in any way,

allowing network operators to specify any set of DAGs. We
show in Section 3, however, that COYOTE significantly out-
performs TE with ECMP even when the underlying DAGs
are selected with the following simple heuristic: (1) com-
pute, for each destination, the shortest-path DAG rooted in
that destination when the link weights are the inverse capaci-
ties, and then (2) augment each DAG with additional links by
orienting each link that does not appear in the shortest-path
DAG towards the incident node that is closer to the destina-
tion, breaking ties lexicographically (suppose that the nodes
are numbered). Revisiting our running example in Fig.1a,
observe that while the shortest-path DAG rooted at ¢ does
not contain link (s2,v) if all links have the same weight, the
augmented forwarding DAGs will also utilize this link (in
some direction).

Computing traffic splitting ratios for each DAG. The sec-
ond fundamental building block of COYOTE is an algorithm
that receives as input a set of per-destination DAGs and op-
timizes traffic splitting within these DAGs, with the objec-
tive of minimizing the worst-case congestion (link utiliza-
tion) over a given set of possible traffic demands. Whether
this problem can be solved optimally in a computationally-
efficient manner remains an open question (see Section 6.
This seems impossible within the familiar mathematical toolset
of TE, namely, integer and linear programming. We found
that a different approach is, however, feasible: casting the
optimization problem as a geometric program (in fact, a mixed
linear-geometric program [17]).

Stating COYOTE’s traffic splitting optimization as a ge-
ometric program is not straightforward and involves care-
ful application of various techniques (convex programming,
monomial approximations, LP duality). We provide an intu-
itive exposition of some of these ideas below using the run-
ning example in Fig. 1 (more details in in [16]).

Again, s; and s, send traffic to ¢, let the DAG for ¢ be as
in Fig. lc, and suppose that the capacity on links (s1, s2),
(s1,v), and (s2,v) is infinite (that is, arbitrarily large) and
on (se,t) and (v, t) is 1. We are given a set of possible traf-
fic demands {ds, ,ds, } for the two users and our goal is to
find the traffic splitting ratios ¢ so that the worst-case link
utilization across all demands is minimized. A simplified
mathematical program for this problem would take the fol-
lowing form (see explanations below):

min o (D

dsl ¢(513 52)¢(527 t) + d82¢(527 t)
capacity(sa, t)

d51 (1 - ¢(817 SQ)d)(SQ» t)) + dsz (1 - ¢(827 t))
capacity(v, t)

<a Vdsl , d32 2

<«
N ©))
Vds, , ds,

The objective is to minimize «, which represents worst-
case link utilization, i.e., the load (flow divided by capac-
ity) on the most utilized link across all the admissible traffic
demands. Each variable ¢(z,y) denotes the fraction of the
incoming flow at vertex x that is routed on link (z, y). Con-
straints (2) and (3) force o to be at least the value of the
link utilization of links (s, ¢) and (s1, s2), respectively. For



the sake of simplicity, we do not show the link utilization
constraints for the remaining links.  Now, consider con-
straint (2) for link (sg, t). Observe that from user s the frac-
tion of traffic sent through (ss,¢) equals the fraction of s;’s
traffic through (s1, s2) (i.e., ¢(s1, $2)) times the fraction sent
through (s2,t) by s2 (i.e., ¢(s2,t)). The fraction of s5’s traf-
fic through (s2,t) is simply ¢(s2,t). Accordingly the total
flow on (s2,t) equals dg, - P(s1, 82) - d(sa,t) +ds, - D(s2,1).
Hence, the link utilization of (so,t) is this expression di-
vided by the capacity of (s2,t), and the corresponding con-
straint (2) requires that this utilization be at most « for all de-
mands d;, , ds,. Constraint (3) states the same for link (v, t),
where the fraction of traffic sent by s1 (s2) to ¢ through (v, t)
is equal to 1 minus the fraction of flow sent from s; (s9) to ¢
through (ss,t).

Two difficulties with these constraints immediately arise:
one is that it is universally quantified over an entire set of
traffic demands, possibly of infinite cardinality, and the other
is that it involves a product of unknowns, namely, ¢(s1, $2) -
@(s2,t), and such products do not fit into the framework of
standard linear and integer programming. For a discrete de-
mand set we can handle the first problem by stating (2) and
(3) for each individual demand. Otherwise (if the set of de-
mands is of infinite size) the elegant dualization technique
from [11] can be used. To handle the second issue, however,
we need a small trick from geometric programming [17]. Let
ds, =1 and ds, = 1 and consider constraint (2):

B(s2,t) + B(s1,52) - P(s2,t) < o .

Now, substitute for new variables, 5(31, s2) = log &(s1, $2)

and ¢(s,t) = log ¢(sa,t), and take the logarithm of both
sides:

log (eg(‘ngt) + efz(“"hsz)-"-a(x"‘%t)) <loga .

This constraint is now a logarithm of a sum of exponen-
tials of linear functions and so is convex, opening the door
to using standard convex programming. Our implementa-
tion uses a convex program based on the above ideas and
others delicate techniques to compute the traffic splitting ra-
tios. The reader is referred to our technical report for a
detailed explanation [16].

Translation to OSPF-ECMP configuration. As explained
above, using OSPF and ECMP for TE constrains the flow
of traffic in two significant ways: (1) traffic only flows on
shortest-paths (induced from operator specified link weights),
and (2) traffic is split equally between multiple next-hops
on shortest-paths to a destination. Recent studies show how
OSPF-ECMP’s expressiveness can be significantly enhanced
by effectively deceiving routers. Specifically, Fibbing [8, 9]
shows how any set of per-destination forwarding DAGs can
be realized by introducing fake nodes and virtual links into
an underlying link-state routing protocol, thus overcoming
the first limitation of ECMP. [18] shows how ECMP’s equal
load balancing can be extended to much more nuanced traffic
splitting by setting up virtual links alongside existing physi-
cal ones, thus relaxing the second of these limitations.

We revisit our running example to show how COYOTE
exploits these techniques. Consider Fig. 1d. Inserting a fake
advertisement at s; into the OSPF link-state database can
“deceive” s; into believing that, besides its available shortest
paths via s, and v , destination ¢ is also available via a third,
“virtual” forwarding path. The forwarding adjacency in the
fake advertisement is mapped to ss, so that out of s1’s three
next-hops to ¢ node so will appear rwice while v only appears
once. Consequently, the traffic is effectively split between s
and v in a ratio %3 to /3. Beyond changing how traffic is split
within a given shortest-path DAG, as illustrated in Fig. 1d,
fake nodes/links can be injected into OSPF so to as change
the forwarding DAGs themselves at the per-IP-destination-
prefix granularity, as shown in [9]. COYOTE leverages the
techniques in [9] and in [18] to carefully craft “lies” so as to
generate the desired per-destination forwarding DAGs and
approximate the optimal traffic splitting ratios with ECMP.
Section 3 that highly optimized TE is achievable even with
the introduction of few virtual nodes and links.

3. EVALUATION

We experimentally evaluate COYOTE in order to quan-
tify its performance benefits and its robustness to traffic un-
certainty and variation. Importantly, our focus is solely on
destination-based TE schemes (i.e., TE schemes that can be
realized via today’s IP routing). We show below that COY-
OTE provides significantly better performance than ECMP
even when completely oblivious to the traffic demands. Also,
COYOTE’s increased path diversity does not come at the
cost of long paths: the paths computed by COYOTE are
on average only a factor of 1.1 longer than ECMP’s. We
also discuss experiments with a prototype implementation
of COYOTE.

While the reader might think that COYOTE's performance
benefits over traditional TE with ECMP are merely a byprod-
uct of its greater flexibility in selecting DAGs and in traf-
fic splitting, our results show that this intuition is, in fact,
false. Specifically, we show that, similarly to unconstrained
(i.e., source and destination based) oblivious routing [11],
even the optimal routing with respect to estimated traffic de-
mands, which can unevenly split traffic, fares much worse
than COYOTE if the actual traffic demands are not very
“close” to the estimated demands. Hence, COYOTE’s good
performance should be attributed not only to its expressive-
ness but also, in large part, to its built-in algorithms for op-
timizing performance in the presence of uncertainty, as dis-
cussed in Section 2.3.

3.1 Simulation Framework

We use the set of 16 backbone Internet topologies from
the Internet Topology Zoo (ITZ) archive [19] to assess the
performance of COYOTE and ECMP. When available, we
use the link capacities provided by ITZ. Otherwise, we set
the link capacities to be inversely-proportional to the ITZ-
provided ECMP weights (in accordance with the Cisco-recom-
mended default OSPF link configuration [20]). When nei-
ther ECMP link weights nor capacities are available we use
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unit capacities and link weights. We evaluate COYOTE against

ECMP using two simple DAG-construction heuristics: (1)
constructing augmented shortest-path DAGs as explained in
Section 2 with the link weights provided in the ITZ archive,
and (2) optimizing the link weights using the local greedy
algorithm of Altin et al [12]. In both cases, we augment the
shortest path DAGs as explained in Section 2.

To compute COYOTE’s in-DAG traffic splitting ratios (see
Section 2), we use AMPL [21] as the problem formulation
language and MOSEK [22], a non-linear convex optimiza-
tion solver. The running time with our current single-threaded
proof-of-concept implementation ranges from few minutes
(for small networks) to few days (for large networks).

While we are currently working on improving the running
times, we would like to point out that the computation of
the in-DAG traffic splitting ratios needs only be performed
once or on a daily/weekly-base, as routing in COYOTE is
not dynamically adjusted, and that routing configurations for
failure scenarios (e.g., every single link/node failure) can be
precomputed.

We measure performance in terms of the worst-case link
utilization (referred to as “congestion” in TE literature [1,
2]),1.e., the (p)erformance of (multicommodity) flow of traffic
f

1

[ is max; -, where f(I) is the flow traversing link / and ¢;

is link [’s capacity.

3.2 Network Performance

We compare COYOTE to ECMP for both DAG-construction

heuristics described above and for two types of base traffic
demands: (1) gravity [23], where the amount of flow sent
from router ¢ to router j is proportional to the product of
4’s total outgoing capacity and j’s total outgoing capacity,
and (2) bimodal [24], where a small fraction of all pairs
of routers exchange large quantities of traffic, and the other
pairs send small flows.

We first present our results with respect to the ITZ [19]
link weights and an ideal version of COYOTE capable of
arbitrarily fine-grained traffic splitting. We then show that

Figure 7: Approximation. i
Figure 8: Average stretch.

a close approximation of the optimal splitting ratios can be
obtained with the introduction of a limited number of addi-
tional virtual links. Fig. 3 and Fig. 4 describe our results for
two networks (Geant and Digex, respectively), the gravity
model, and augmented shortest path DAGs based on the ITZ
link weights. The x-axis represents the “uncertainty mar-
gin”: let d; ; be the amount of flow from router ¢ to router
J in the base traffic demands (namely, gravity), a margin of
uncertainty of  means that the actual flow from ¢ to j can
be any value between d;j and z - d; ;. We increase the un-
certainty margin in increments of 0.5 from 1 (no uncertainty
whatsoever) to 3 (fairly high uncertainty). The y-axis spec-
ifies how far the computed solution is from the demands-
aware optimum within the same DAGs.

We plot four lines, corresponding to the performance of
four different protocols: (1) traditional TE with ECMP, (2)
the optimal demands-aware routing for the base gravity model
(with no uncertainty), which can be obtained with linear pro-
gramming techniques [25], (3) COYOTE (oblivious) with
traffic splitting optimized with respect to all possible traf-
fic demands (i.e., assuming nothing about the demands), (4)
COYOTE (partial-knowledge) optimized with respect to the
traffic demands within the uncertainty margin. Observe that
both variants of COYOTE provide significantly better per-
formance than TE with ECMP and, more surprisingly, both
COYOTE and (sometimes) ECMP outperform the optimal
base routing, whose performance quickly degrades even with
little demands uncertainty. Our results thus show that COY-
OTE’s built-in robustness to traffic uncertainty, in the form
of optimization under specified uncertainty margins, indeed
leads to superior performance in the face of inaccurate knowl-
edge about the traffic demands or, alternatively, variable traf-
fic conditions.

We observe the same trends when the base traffic demands
are sampled from the bimodal model, as shown in Fig. 5.

We now discuss our results with respect to our second
DAG-construction heuristic, which is based on the heuristic
of Altin et al. [12] for oblivious ECMP routing configura-




tion. Specifically, [12] presents a heuristic that starts from
the link weights provided by the ITZ dataset, and applies a
local-search heuristic that greedily changes one link weight
if this change improves the worst-case ECMP link utilization
across all the admissible traffic demands. We use the output
of this procedure as the ECMP configuration and augment
it with additional links to obtain COYOTE’s per destination
DAGs, as explained in Section 2. Fig. 6 presents a compari-
son of COYOTE and ECMP using the bimodal model as the
base traffic demands. We use the above heuristic to com-
pute, for each uncertainty margin in the range 1 — 5, increas-
ing in 0.5 increments, the (traditional) ECMP configuration
and COYOTE DAGs with respect to the bimodal-based traf-
fic demands. We then compare the worst-case link utiliza-
tion of the two, again, normalized by the demands-aware
optimum within the same (augmented) DAGs. We note that
ECMP is, on average, almost 80% times further away from
the optimum than COYOTE.

Approximating the optimal traffic splitting. We evalu-
ated above COYOTE under the assumption that arbitrarily
fine-grained traffic splitting is achievable, yet in practice,
the resolution of traffic splitting is derived from the num-
ber of virtual links introduced. Clearly, an excessive num-
ber of virtual links should be avoided for at least two rea-
sons: (a) each virtual next-hop is installed into the finite-
sized Forwarding Information Base (FIB), and (b) injecting
additional information into OSPF comes at the cost of ad-
ditional computational overhead. Our results, illustrated in
Fig. 7 for AS 1755 network’s topology (all other topologies
exhibit the same trend), show that even with just 3 additional
virtual links per router interface, COYOTE achieves a 50%
improvement over traditional TE with ECMP. We observe
that with 10 virtual links the computed routing configuration
closely approximates the ideal solution.

Average path lengths. COYOTE augments the shortest path
DAG with additional links so as to better utilize the network.
Consequently, traffic can potentially traverse longer paths.
We show, however, that COYOTE’s increased path redun-
dancy does not come at the expense of long paths. Specif-
ically, the average stretch (increase in length) of the paths
in COYOTE is typically bounded within a 10% factor with
respect to the OSPF/ECMP paths. Fig. 8 plots the average
stretch across all pairs for a margin of 2.5. Similar results are
obtained for all different margins between 1 to 5. Observe
that the DAGs computed by COYOTE rely on shortest-path
computation with respect to the link weights, whereas the
stretch is measured in terms of the number of hops. Thus,
it is possible for the stretch to be less than 1, as is the case,
e.g., for BBNPlanet.

4. PROTOTYPE IMPLEMENTATION

We implemented and experimented with a prototype of
the COYOTE architecture, as described in Section 2. Our

prototype extends the Fibbing controller code, written in Python

and provided by Vissicchio et al. [9], and uses the code of
Nemeth et al. from [18] for approximating the splitting ra-
tios. We plan to make our code public in the near future.
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Figure 9: Mininet topology (a) and packet drop rate (b).

We next illustrate the benefits of COYOTE over traditional
TE, as reflected by an evaluation of our prototype via the
mininet [26] network emulator.

Consider the example in Fig 9a: a target node ¢ advertises
two IP prefixes t1 and to and two sources, s; and s3, gen-
erate traffic destined for these IP prefixes. As in traditional
TE with ECMP, the network operator must use the same for-
warding DAG for each destination, this forces either s; or s
to route all of its traffic only on the direct path to the desti-
nation. Thus, three forwarding DAGs are possible: (1) both
s1 and s5 route all traffic on their direct paths to ¢ (TE1), (2)
s1 equally splits its traffic between ¢ and so, and s, forwards
all traffic on its direct link to ¢ (TE2), and (3) same as the
previous option, but s; and sy swap roles (TE3).

We evaluate these three TE configurations in mininet with
links of bandwidth 1Mbps. We measure the cumulative packet
drop rate towards two IP destinations, ¢; and ¢o, for three 15-
seconds-long traffic scenarios, where traffic is UDP gener-
ated with iper £3 and units are in Mbps: (s1—t1, Sa—1t2) =
(0,2), (s1—t1,82—t2) = (1,1), (51 —t1, 82 —t2) = (2,0).

Fig 9b plots the results of this experiment for each of the
TE schemes, described above (excluding TE3, which is sym-
metric to TE2). The x-axis is time (in seconds) and the y-axis
is the measured packet loss rate, i.e., the ratio of traffic re-
ceived to traffic sent (observe that sent traffic is 30 megabits
in all scenarios). During the first 15 seconds the experiment
emulates the first traffic scenario described above, in the next
15 seconds the second traffic scenario is emulated, and in the
last 15 seconds the third scenario is emulated.

Observe that each of the TE schemes (TE1-3) achievable
via traditional TE with ECMP leads to a significant packet-
drop rate (25%-50%) in at least one of traffic scenarios. COY-
OTE, in contrast, leverages its superior expressiveness to
generate different DAGs for each IP prefix destination, as
follows: traffic to for destination ¢; is evenly split at node
s1 and traffic to destination 5 is evenly split at s. This is
accomplished by injecting a lie to s, so as to attracts half of
its traffic to ¢s to the (s, s1) link. Consequently, as seen in
Fig 9b, the rate of dropped packets is significantly reduced.

S. RELATED WORK

TE with ECMP. TE with ECMP is today’s prevalent ap-
proach to TE (see surveys in [1,2]). Consequently, this has
been the subject of extensive research and, in particular, se-
lecting good link weights for ECMP TE has received much
attention [6,7,12,27-30]. To handle uncertainty about traf-



fic demands and variation in traffic, past studies also exam-
ined the optimization of ECMP configuration with respect
to multiple expected traffic demands [6,30,31], or even with
no knowledge of the traffic demands [11]. Unfortunately,
while careful and delicate optimizations of ECMP configu-
ration can be close-to-optimal in some networks [30], this
approach is fundamentally plagued by the intrinsic limita-
tions of ECMP, specifically, routing only on shortest paths
and equally splitting traffic at each hop, and can hence easily
result in poor network performance. Worse yet, this scheme
suffers from inherent computational intractability, as shown
in [7,27].

Lying for more expressive OSPF-ECMP routing. The
first technique to approximate unequal splitting through ECMP
via the introduction of virtual links was introduced by Nemeth
et al. in [18] (see also [32]). [18], however, was still limited
to shortest-path routing and, consequently, coarse-grained
traffic flow manipulation. Recently, Fibbing [8, 9] showed
how any set of destination-based forwarding DAGs can be
generated through the injection of fake nodes and links into
the underlying link-state protocol (e.g., OSPF).

Adaptive TE schemes. One approach to overcoming ECMP’s
limitations is dynamically adapting the routing of traffic in
response to changes in traffic conditions as in, e.g., [27].
Adaptive schemes, however, typically require frequently gath-
ering fairly accurate information about traffic demands, po-
tentially require new routing or measurement infrastructure,
and can be prone to routing instability [33], slow conver-
gence, packet reordering, and excess control plane burden
[3] (especially in the presence of failures). COYOTE, in con-
trast, reflects the exact opposite approach: optimizing the
static configuration of traffic flow so as to simultaneously
achieve good network performance with respect to all, even
adversarially chosen, traffic demands within specified “un-
certainty bounds”.

Demands-oblivious routing. A rich body of literature on al-
gorithmic theory investigates so-called “(demand-)oblivious
routing” [10-12]. Breakthrough algorithmic results by Ricke
established that the static (non-adaptive) routing can be op-
timized so as to be within an O(logn) factor from the op-
timum (demands-aware) routing with respect to any combi-
nation of traffic demands [10]. Applegate and Cohen [11]
showed that when applied to actual (ISP) networks, such
demand-oblivious routing algorithms yield remarkably close-
to-optimal performance. Kulfi [13] uses semi-oblivious rout-
ing to improve TE in wide-area networks. Unfortunately, all
the above demand-oblivious algorithms involve forwarding
packets based on both the source and destination, these im-
mediately hit a serious deployability barrier in traditional IP
networks (e.g., due to extensive tunneling [28]). COYOTE,
in contrast, is restricted to OSPF-based destination-based
routing, and so tackles inherently different (and new) algo-
rithmic challenges and techniques, as discussed in Sect. 2.

6. CONCLUSION
We presented COYOTE, a new OSPF-ECMP-based TE

scheme that efficiently utilizes the network even with little/
no knowledge of the traffic demands. We showed that COY-
OTE significantly outperforms today’s prevalent TE schemes
while requiring no changes whatsoever to routers. We view
COYOTE as an important additional step in the recent ex-
ploration [8, 9] of how SDN functionality can be accom-
plished without changing today’s networking infrastructure.
We next discuss two important directions for future research.

Further exploring destination-based oblivious routing. To
efficiently utilize the network in an OSPF-ECMP-compatible
manner, COYOTE leveraged new algorithmic insights about

destination-based oblivious routing. We believe that further

progress on optimizing such routing configurations is key to

improving upon COYOTE. We next mention two interest-

ing research questions in this direction: (1) We showed in

Section 2 that computing the optimal oblivious IP routing

configuration is NP-hard. Can the optimal configuration be

provably well-approximated? (2) COYOTE first computes a

forwarding DAG rooted in each destination node, and then

computes traffic splitting ratios within each DAG. The latter

computation involves nontrivial optimizations, e.g., via iter-

ative geometric programming, yet, it remains unclear whether
traffic splitting within a given set of DAGs is, in fact, effi-

ciently and optimally solvable.

Evaluating COYOTE under real-world network condi-
tions. Our experimental evaluation of COYOTE combined
simulations on 16 backbone Internet topologies from the In-
ternet Topology Zoo (ITZ) archive [19] with small-scale ex-
periments on the mininet network emulator [26]. An im-
portant direction for future research is experimenting with
COYOTE on empirically-derived traffic traces, e.g., data col-
lected from the Internet2 Network [34], and running larger-
scale experiments with our prototype implementation of COY-
OTE on mininet and on SDN-capable network testbeds such
as [35].
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