
Optimizing IGP Link Costs for Improving IP-level

Resilience with Loop-Free Alternates

Levente Csikor∗, János Tapolcai, Gábor Rétvári

HSNLab, Dept. of Telecommunications and Media Informatics, Budapest University of

Technology and Economics

Abstract
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easily deployable technique to provide fast failure protection right in the
IP layer. To our days, most major IP device vendors have products on
the market that support LFA out of the box. Unfortunately, LFA usually
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Therefore, it is crucial to develop LFA-based network optimization tools in
order to assist operators in deciding whether deploying LFA in their network
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to maximize the number of protected failure scenarios. We show that this
problem is NP-complete even in a very restricted formulation, and we give
an exact algorithm as well as a complete family of heuristics to solve it. Our
simulation studies indicate that a deliberate tuning of the approximation
strategy can significantly improve the quality of the IGP link costs, and we
conclude that LFA cost optimization has the potential for boosting LFA-
based resilience in most operational networks significantly.
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1. Introduction

To our days, the Internet Protocol (IP) suite has become the de-facto
standard for large-scale inter-networking throughout the world. The proto-
col suite, with its accompanying control plane protocols, has come a long
way to become a viable bearing platform for commercial telecom services.
Unfortunately, there still exists missing functionality in IP that make it diffi-
cult to sustain the transmission quality required by multimedia applications,
like VoIP, IPTV, online gaming, etc., in an IP environment. One of the most
prominent shortcomings in existence today is the slow reaction to device and
link failures. Interior Gateway Protocols (IGPs), like the Open Shortest Path
First (OSPF,[1]) or the Integrated IS-IS (IS-IS, [2]) routing protocol, adopt
a restoration-based resilience approach, based on a global flooding of failure
information and a lengthy network-wide re-convergence process. This slow
reaction to failures, inherent to the traditional IP control plane, does not
only hinder operators providing telecom services over pure IP, but a growing
number of service providers that switched to MultiProtocol Label Switching–
Label Distribution Protocol (MPLS/LDP) also suffer, because MPLS-LDP
also relies on the IP control plane for routing information.

The key to the slow convergence of IGPs is the global, reactive response
philosophy they adopt: failure information is distributed to all routers in
the administrative scope, which in turn react by recomputing their routing
tables and refreshing their forwarding information bases in accordance with
the changed network topology. This often leads to convergence time in the
range of couple of hundreds of milliseconds to several seconds, and even a
very careful adjustment of the IGP parameters [3] is insufficient to decrease
this to less than 50 milliseconds, usually used as a rough estimate on the
longest outage a modern multimedia application can tolerate.

In order to achieve a sub-50 ms convergence time, one needs to go beyond
conventional IGP-based restoration and invoke a proactive, local protection
method, called IP Fast ReRoute (IPFRR, [4]). In IPFRR, routers precom-
pute alternate next-hops proactively, and traffic is instantly switched to these
secondary next-hops should the primary next-hop become unavailable. This
ensures that traffic flows without interruption until the IGP converges in
the background. Note that in IPFRR only the routers in the immediate
vicinity of the failed component participate in the failure recovery process,
and routers several hops away do not even get notified about the outage.
This saves the time needed for global failure notification, one of the most
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time-consuming steps in IGP-based restoration.
It turned out, however, that combining local protection with IP’s intrinsic

destination-based forwarding scheme is notoriously difficult. This is because
a router not immediately adjacent to the failure, not knowing that a fail-
ure in fact has occurred, has no way to decide whether a received packet
is traveling on its default shortest path to the destination, or it is actually
being routed around a failure and so out-of-order forwarding rules should
be applied to it. Any IPFRR mechanism, therefore, that does not adopt
special remedies to this problem, is prone to either producing micro-loops or
being unable to handle certain failure cases [5]. To avoid this, IPFRR pro-
posals either apply explicit or implicit failure signaling [6, 7, 8], or alter IP’s
destination-based forwarding [9], or introduce tunnels to route around the
failed component [10, 11, 12]. Deploying these IPFRR mechanisms, however,
would either demand non-trivial modifications to the essential IP infrastruc-
ture or impose considerable management burden on network operations [13]
(or both), making network device vendors reluctant to implement them and
discouraging operators from deploying IPFRR all together.

To our days, only a single IPFRR specification has found its way into com-
mercial IP routers: Loop-Free Alternates (LFA, [14]). This can be attributed
to the fact that LFA is a clever trade-off between simplicity and protection-
capability, in that LFA has never been intended to provide 100% protection
for all possible failure cases because, as we argued above, this would require
widespread modifications to the IP infrastructure and so would hinder de-
ployment. Instead, LFA is as simple as it can get: traffic impacted by a
failure is passed on to an alternate next-hop (called a Loop Free Alternate)
that still has an intact path to the destination. When the aim is merely
to protect against link outages then it is enough to ensure that the detour
bypasses the link to the next-hop, while for node-protecting LFAs it is a
requirement to avoid both the link to the next-hop and the next-hop itself.
LFA can be implemented with a straightforward upgrade to IGPs, without
special staff-training and extensive pilot deployments, and so it can be in-
troduced incrementally. On the other hand, as the price of this simplicity,
depending on the network topology and IGP link costs very often not all
routers have LFAs to all destinations, making it impossible to repair certain
failure scenarios rapidly with LFA.

Consequently, many operators are hesitating to enable LFA, trying to
measure the expected benefits against the additional costs. In this paper,
we seek ways to assist in making this important decision. In the first part,
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we give new graph theoretical tools for analyzing LFA failure case coverage
in operational networks. Similar protectability analyses are already available
for some non-standardized IPFRR mechanisms: [15] considers the O2 method
and [16] discusses a centralized destination-based routing scheme. For LFA,
only simulation-based reports have been available this far [17, 18, 19, 20], and
mathematical analysis has been confined to the link-protection case [21, 22].
Below, we extend previous work on mathematical LFA-coverage analysis with
new tools for studying both the link- and node-protection cases as well.

Initial deployments as well as numerical analyses confirmed that in many
operational networks LFA indeed does not guarantee protection for all failure
scenarios [19]. This calls for developing network optimization tools to tune
the network topology in a way as to increase the number of failure cases pro-
tectable by LFA. There are various approaches to reach this end. One way is
LFA network design, which aims to design LFA-friendly network topologies
right from the outset [20]. Another approach is LFA graph extension, where
the task is to alter the network topology to boost LFA coverage [21]). Third,
LFA cost optimization asks to construct IGP link costs in a way as to max-
imize the number of possible failure cases protectable by LFA [23, 24, 22].
This LFA cost optimization problem is in the main focus in the second part
of this paper. While improving IP resilience is a recurring theme in the lit-
erature (see [25] for deflection routing, [15] for O2, or [16] for a review), for
the specific case of LFA only the joint optimization of network performance
and resilience has been investigated previously [23, 24]. Thus, at the mo-
ment very little understanding is available as to how much LFA-based IP
Fast ReRoute is suitable to protect an IP network and to what extent this
can be improved by optimizing link costs.

The main contributions in this paper are as follows.

• We develop a comprehensive graph theoretical LFA analysis frame-
work, for the first time considering both the link-protection and node-
protection cases.

• We study the LFA cost optimization problem in huge detail. We show
that this problem is NP-complete, and we give an exact algorithm of
exponential complexity as well as a family of heuristics with tunable
performance and running time. Our selection of heuristics facilitate for
picking the right approximation algorithm for the particular problem
under consideration.
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• We provide a comprehensive numerical evaluation of LFA cost opti-
mization methods to compare their performance on a wide range of
artificial and realistic graph topologies.

The rest of this paper is organized as follows. After reviewing the re-
lated literature in Section 2 and introducing the notations and the model
in Section 3, we first discuss LFA failure coverage analysis (see Section 4).
Then, in Section 5 we turn to discuss the LFA cost optimization problem.
In Section 6, we evaluate the proposed algorithms numerically and finally we
conclude our work with Section 7.

2. Related works

The IP Fast ReRoute framework was initiated by the Internet Engineering
Task Force in [4], and the Loop-Free Alternates standard, as the basic spec-
ification for IPFRR, was subsequently documented in [14]. It was from the
very beginning made clear by the IETF that LFA does not guarantee fast
protection for all possible failure scenarios in all network topologies. This
was later confirmed by extensive simulation studies, which indicated that,
depending on the topology and link cost settings, LFA can usually protect
only about 50-80% of the possible link failure scenarios, and the level of node
protection is even worse [17, 18, 19, 26]. These LFA coverage analyses are
all quantitative studies, based on calculating the LFA coverage for various
real-life network topologies. Perhaps the most detailed amongst these is [20],
which inspects the applicability of LFA in common access network topolo-
gies. So far, no qualitative analyses have been available in the literature,
which would help uncover the graph theoretical ingredients needed for good
LFA coverage. We initiated the work in that direction in [21] and [22], and
in this paper we refine our earlier results and generalize them to the node-
protection case as well. Possibly the closest to ours is the study in [16], where
the authors perform a qualitative protectability analysis for a fast resilience
scheme they call IP protection routing. Protection routing is appealing for
such an analysis in that it is much easier to approach theoretically than LFA,
however, in practice it is somewhat less attractive as implementing it requires
centralized control over the routing tables.

Since the appearance of the original LFA draft, countless IPFRR pro-
posals have surfaced. Implicit in these proposals is the recognition that in
order to protect all failure scenarios one either needs to go beyond standard
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IP forwarding and/or apply some forms of failure notification. The reason
for this is that a router must give special treatment to packets traveling on
a detour around a failure, or otherwise forwarding loops will arise in certain
failure scenarios.

Most IPFRR proposals choose the former option and intervene at the
level of IP packet forwarding. Failure Insensitive Routing [9, 27, 5] differen-
tiates packets based on the incoming interface they arrive through, letting
the router to guess the failure’s location from the direction of the received
packets and exploit this information in the course of packet forwarding. Mul-
tiple Routing Configurations [8] call to achieve the same goal with explicit
packet marking, while other proposals, like Not-via Addresses, use tunnels to
this end [10, 11, 12, 13]. Unfortunately, the former solution would allocate
invaluable bits in the IP header, while the latter might cause painful packet
fragmentation and time-consuming reassembly at the tunnel endpoint if the
additional IP header did not fit into the MTU. Deflection routing for fast
rerouting purposes is proposed in [25], while O2 routing, a resilient multi-
path data forwarding method, is specified in [28]. Both require non-standard
IP forwarding functionality, unavailable in commercial routers at the mo-
ment.

A different approach is to use explicit signaling to notify routers about
failures [6, 29]. This avoids having to modify standard IP forwarding at
the price of a establishing a separate signaling mechanism just for IPFRR.
Proposals also exist to combine different IPFRR mechanisms to achieve full
protection [26]. Good overviews on IPFRR are [17] and [19].

So far, only one IPFRR method has found its way into commercial
routers, and hence into operational IP networks: LFA. At least two ma-
jor vendors are already providing LFA out of the box [30, 31], and other
vendors are expected to follow suit.

Finding methods to design or optimize networks in an attempt to im-
prove fast resiliency has been an actively researched topic lately. In the
recent literature, [25] seems to be the first reference that, besides motivating
the need for fast IP resilience with detailed failure case analysis in an opera-
tional backbone, proposes a method to improve the robustness of the network
against such failures. Theory and algorithms for topology optimization for
O2 are presented in [15], and a generic approach for protection routing is
given in [16]. Apart from our studies in [21] and [22], the only attempts at
LFA-oriented network optimization seem to be [23] and (partly) [24].

A common theme shared by most approaches is that (with the exception
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of [15]) each one addresses the optimization of network resilience and routing
performance simultaneously. The former aims at better protection against
failures, while the latter is called to minimize congestion and distribute load
evenly in the network with respect to some known, measured or predicted,
traffic matrix [32]. A good example of this approach is [23], where the authors
formulate the joint LFA cost optimization and traffic engineering problem as
a constraint-programming task and feed it into a generic solver.

In this paper, we study LFA cost optimization, that is, the task of improv-
ing LFA coverage by tuning IGP link costs, separately from load balancing.
Our work, in this regard, is complementary to the above joint optimization
frameworks and, as shall be shown, provides interesting further insights. For
instance, we find that LFA cost optimization alone, even in a very minimal-
istic setting, is already NP-complete. This far, only NP-completeness for
the joint optimization problem was known [23], but this could have easily
been attributed to the well-known NP-completeness of OSPF traffic engi-
neering [33]. Our approach also allows to investigate the inherent limitations
of LFA-based IP Fast ReRoute, without the distortion of load balancing con-
cerns, and the extent to which optimizing costs just for the purpose of IPFRR
can improve the resilience in IP networks.

We acknowledge, however, that applicability of our LFA cost optimiza-
tion methods might be limited due to the lack of built-in load balancing
criteria. We note, though, that we are aware of many operators that weigh
certain operational concerns more important than load balancing, and even
if load balancing is a must, the heuristics we present in the paper are easy
to augment to consider such issues.

3. Model and problem formulation

We model the network with a connected, undirected graph G(V,E), the
set of nodes is denoted by V (|V | = n) and set of edges by E (|E| = m).
Let Ni denote the set of neighbors of some node i ∈ V . IGP link costs are
represented by an edge cost function c : E 7→ N. The cost of an edge (i, j) is
denoted by c(i, j). We presume that the network topology G(V,E) and the
cost function c are readily available to the network nodes through the IGP,
using which all routers can compute the shortest path distance between any
two routers in the network. Denote the distance from node i to node j with
dist(i, j).

For a list of notations, consult Table 1.
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Table 1: List of notations

G(V,E) connected undirected graph, with node set V and edge set E

Ni set of neighbors of some node i

c edge cost function, c : E 7→ N

c(i, j) cost of an edge between node i and node j

dist(i, j) shortest path distance from node i to node j

η(G, c) LFA failure case coverage for graph G over link costs c

ηLP(G, c) link-protecting LFA coverage

ηNP(G, c) node-protecting LFA coverage

S set of node-pairs, S ⊆ V × V

∆ average node degree

∆max maximum node degree

In this paper, we make the following key assumptions about the network:

• the network consists of point-to-point links only and there are no broad-
cast LANs;

• link costs are symmetric;

• if multiple shortest paths towards a destination exist, each node fixes
one default path arbitrarily (no Equal-Cost MultiPath); and

• failure events are independent and singular, so no Shared Risk Link
Groups (SRLGs) and multiple failures are taken into consideration.

Note that these assumptions are easy to eliminate, but the development and
the notation become substantially more complex.

3.1. Loop-Free Alternates

Fig. 1 shows a sample network, with costs indicated near the edges and
shortest paths towards node f marked by arrows. For instance, node b’s
next-hop along the shortest path to node f is node e. Should the link from
b to its next-hop e become unavailable, b can safely switch to an alternate
next-hop, in this case node d, even without explicitly notifying it about the
failure, as d will never send packets destined to f through b so no loop can
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arise. In such cases, we say that d is a link-protecting LFA for node b towards
the destination node f [14].

Definition 1. For some source s and destination d, let e be the default next-
hop of s towards d. Then, some neighbor n of s is a link-protecting LFA for
s to d if

(i) n 6= e, and

(ii) the loop-free condition applies:

dist(n, d) < dist(n, s) + dist(s, d) . (1)

In other words, any neighbor that is not an upstream in the shortest path
tree is a link-protecting LFA. Besides node b, e also has an LFA to f (the
same d as that of b), and so has d and c (e and d, respectively). What is
more, the LFAs of b and c are node-protecting as well, as the shortest path
from the LFA to d does not traverse the default next-hop and so it protects
against both the failure of the link to the next-hop and the next-hop itself.
The below definition formalizes this requirement.

Definition 2. For some source s and destination d, let e be the default next-
hop of s towards d. Then, some neighbor n of s is a node-protecting LFA
for s to d if, in addition to (i) and (ii) in Definition 1, the node-protection
condition also applies:

dist(n, d) < dist(n, e) + dist(e, d) . (2)

Continuing with our enumeration of LFA-types, we find that d is also a
so called per-link LFA for b, as it protects all nodes reachable from b through
the link (b, e). For a full taxonomy, see [14, 20].

We observe that, in the present network topology with the given link
costs, node a does not have an LFA to f . This is because it has only two
neighbors, one is the next-hop d towards f whose failure we want to protect,
and the other is an upstream node, which cannot provide an LFA by (1).
Given a graph G(V,E) and a cost function c, let ILP

s,d (G, c) be an indicator
variable whose value is 1 if node s has a link-protecting LFA to node d, and
zero otherwise. Then, given a set of source-destination pairs S = {(sk, dk) :
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Figure 1: Sample network, edge costs and shortest paths to node f .

k ∈ 1, . . . , K, sk 6= dk} the link-protecting LFA coverage with respect to S is
defined as (inspired by [14]):

ηLP
S (G, c) =

1

|S|

∑

(s,d)∈S

ILP
s,d (G, c) . (3)

Similarly, let INP
s,d (G, c) be an indicator variable for node-protecting LFA cov-

erage. Note, however, that special care must be taken to handle the so called
last-hop problem, which arises when d is an immediate neighbor of s and the
default shortest path between them is exactly the (s, d) link (see for instance
the case of the (e, f) pair in Fig. 1). In such cases, the node failure we want
to protect is exactly the failure of destination d itself, a failure case hardly
protectable by LFA. Therefore, for such (s, d) pairs we only require that the
link (s, d) be protected by a link-protecting LFA, and we ignore the stronger
node-protection requirement (2). Consequently, INP

s,d (G, c) takes the value 1
if and only if

(i) d is not the immediate next-hop of s to d and s has a node-protecting
LFA to d, or

(ii) d is the immediate next-hop of s to d and s has a link-protecting LFA
to d.

Then, the node-protecting LFA coverage is defined as

ηNP
S (G, c) =

1

|S|

∑

(s,d)∈S

INP
s,d (G, c) . (4)

In some cases, it will be convenient to refer to both link-protecting and
node-protecting LFAs under a common term. In such cases, we shall only
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say “an LFA exists” and the corresponding coverage metric will be written
as ηS(G, c). Moreover, we shall often confine ourselves to the special cases
when S is the set of all node pairs whose destination is a given terminal node
d: Sd = {(s, d) : s ∈ V \ {d}}, or when S contains all distinct node pairs in
V ×V . In the latter case, we shall neglect to indicate S in the LFA coverage
metric and simply write ηLP(G, c), ηNP(G, c), and we shall use the shorthand
notation η(G, c) when LFA type does not matter.

3.2. LFA cost optimization: problem formulation

As our example shows, usually not all nodes have LFA to all destinations.
There are basically two ways to remedy this: by adding new edges to the
graph or by altering the edge costs. Taken the example of Fig. 1, adding
the new edge (a, b) to E and setting its cost to, say, 10, will let b to become
an LFA of a (and vice versa). The LFA graph extension problem asks to
achieve maximal LFA protection by adding the minimum number of new
edges. We address this problem in a separate paper [21]. The other way is
to change edge costs: if we, for instance, reduce the cost of edge (c, d) from
8 to 5, then c’s shortest path to f will bypass a and so a and c will become
(link-protecting) LFAs to each other. This paper is devoted to investigate
this very problem. Formally, we define the LFA cost optimization problem
for the link-protecting case as follows:

Definition 3. LFACostOptLP(G, S): Given a graph G(V,E) and a set of
source-destination pairs S, is there a cost function c so that ηLP

S (G, c) = 1?

Easily, a similar problem formulation LFACostOptNP exists for the node-
protecting case as well. When no ambiguity arises, we shall refer to both
problems simply as LFACostOpt. In addition, we shall in many cases treat
the optimization version of these problems, that is, we shall seek the costs
that maximize network-wide LFA coverage instead of merely asking whether
or not a cost setting for full protection exists.

4. LFA failure coverage analysis

Before turning to discuss how to solve the LFA cost optimization problem,
first we show some simple theoretical limits on LFA coverage. In particular,
we give tight graph theoretical lower and upper bounds on the LFA coverage
achievable in a given graph under any selection of link costs. We shall discuss
both the link-protecting and the node-protecting cases.
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Our analysis is intended to serve for operators to quickly assess the ben-
efits LFA-based fast protection can bring in their network as well as the
inherent limitations thereof. In addition, the lower and upper bounds pro-
vide rule-of-thumb guidance on how “good” the actual selection of IGP link
costs is from the aspect of LFA: a cost setting that realizes the theoretical
upper bound is considered favorable, while a cost setting that yields LFA cov-
erage close to the lower bound is considered poor for LFA. In the latter case,
LFA cost optimization might be especially beneficial. Last but not least, the
theoretical analysis reveals an interesting relation between LFA coverage and
an essential characteristic of the underlying graph topology, the average node
degree. As shall be seen, a sparse graph (one with average node degree less
than about 2.5) usually does not admit good LFA coverage, no matter which
link costs are chosen. If an operator finds his network falls under this charac-
terization, then this may be a good indicator that LFA cost optimization will
most probably not bring significant improvements in LFA coverage. In such
cases, the operator should resort to alternative LFA network optimization
methodologies [21] or alternative fast protection mechanisms [34].

Some preliminaries. In what follows, we assume that S = (V×V )\{(v, v) :
v ∈ V }. Let ∆ denote the average node degree in G and let ∆max be the
maximum degree. Easily, ∆ ≥ 2(n−1)

n
for any connected graph, since the

sparsest connected graphs are trees for which ∆ = 2(n−1)
n

. A ∆-regular graph
is a graph in which all nodes are of constant degree ∆. An even (odd) ring is
a cycle graph with an even (odd) number of nodes. Rings are the smallest-
degree 2-connected regular graphs (in particular, ∆ = 2).

First, we extend the analysis on even and odd rings given in [21] to the
node-protecting case.

Lemma 1. For an even ring with n > 2 and uniform costs: ηLP(G, c) =
ηNP(G, c) = 1

n−1
. For an odd ring with n > 2 and uniform costs: ηLP(G, c) =

ηNP(G, c) = 2
n−1

Proof. Consider a ring Cn of n > 2 nodes and n even, let costs be uniform,
and let d be some node in Cn. Then, any node s 6= d has exactly one
shortest path to d, except the node on the opposite of d, which has two.
One easily sees that this is the only node that has LFA to d in Cn (which is
both link- and node-protecting), because for any other node the only possible
alternative is upstream and so cannot be LFA by (1). Due to symmetry, the
derivation holds for each node and so exactly n nodes have LFA, which gives
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η(G, c) = 1
n−1

. The development is similar for odd rings, but now we have
two nodes per destination that have LFA instead of one. �

Next, we present simple lower and upper bounds on LFA coverage. Our
bounds are based on the following idea. The shortest path tree to some
destination d can contain only n− 1 edges, and all the remaining edges can
be used for providing LFAs to their endpoints. In particular, an out-of-tree
edge provides at most 2 LFAs (either node-protecting or link-protecting or
both), and at least 1 link-protecting LFA towards d.

Consider the following lemma.

Lemma 2. For any connected simple graph G with n > 2:

ηNP(G, c) ≤ ηLP(G, c) ≤
n

n− 1
(∆− 2) +

2

n− 1
.

Proof. First, ηNP(G, c) ≤ ηLP(G, c) is trivial1 from Definition 1 and 2. To
prove the second part of the claim, we observe that an edge not contained
in the shortest path tree rooted at some d provides at most 2 link-protecting
LFAs towards d (when the edge lies between two branches of the tree), while
on-tree edges do not create any LFA. Since the number of out-of-tree edges is
exactly m−(n−1), at most 2(m−n+1) = n∆−2n+2 = n(∆−2)+2 nodes
can have LFA to d. Taken the sum over all nodes and dividing by the number
of source-destination pairs gives η(G, c) ≤ n(n(∆−2)+2)

n(n−1)
= n

n−1
(∆− 2) + 2

n−1
.

�

The Lemma is non-trivial for 2(n−1)
n
≤ ∆ < 3. For trees, in particular,

we obtain η(G, c) ≤ 0, which implies that the Lemma is tight for trees over
arbitrary link costs. It is tight for uniform cost odd rings as well, for which
we obtain η(G, c) ≤ 2

n−1
(c.f., Lemma 1).

What the above Lemma in essence says is that in large sparse graphs LFA-
coverage is upper bounded by the average node degree: η(G, c) ≤ ∆− 2. In
the course of our numerical evaluations, we found that this relation is present
in most real-world networks as well (see later).

The next Lemma gives a lower bound on the LFA coverage. Note, how-
ever, that the result concerns link-protecting LFAs exclusively.

1Note that this is only true when all links in the network are point-to-point. When the
network contains broadcast LANs, the relation becomes dimmer [14].
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Lemma 3. For any connected simple graph G with n > 2:

ηLP(G, c) ≥
n

n− 1

∆
2
− 1

∆max − 1
+

1

(n− 1)(∆max − 1)
.

Proof. Again, exactly n−1 nodes are contained in the shortest path tree of
d, and an out-of-tree edge (of which we have m− n+1) can provide at least
one LFA towards d: (i) if the edge is inside a single branch of the shortest
path tree, then it provides LFA from the upstream to the downstream; (ii) if
the edge lies between two branches, it still creates at least one link-protecting
LFA (in fact, it creates two), but it might not create any node-protecting LFA
at all. In consequence, there are m−n+1 out-of-tree edges that are incident
to at least m−n+1

∆max−1
=

n(∆
2
−1)+1

∆max−1
nodes providing a link-protecting LFA towards

d (the term ∆max − 1 is because every node has at least one in-tree edge, so
only the rest count as out-of-tree edges). Taking the sum over all nodes and
dividing by n(n− 1) gives the required result. �

The most important message here is that LFA coverage increases with ∆,
that is, the denser the network the higher the link-protecting LFA coverage.

Corollary 1. For a ∆-regular graph R∆ on n nodes:

ηLP(R∆, c) ≥
1

2
−

1

2

n−∆− 1

(n− 1)(∆− 1)
.

This gives ηLP(R2, c) ≥
1

n−1
and ηLP(R3, c) ≥

1
4
+ 3

4
1

n−1
> 1

4
. From this, we

conclude that the lower bound of Lemma 3 is tight for even rings (again, by
Lemma 1). One easily sees that it is tight for trees as well.

We have seen that LFA coverage fundamentally depends on the average
node degree. This raises the question whether we can find graphs of low
degree with 100% LFA coverage. We found that the 2-connected graph with
the smallest possible average degree that can still be fully protected using
LFA is the 3-ring C3. Every other 2-connected graph with complete LFA
coverage has average degree higher than 2. By Lemma 1, η(C3, c) = 1 which
is attained when c is uniform, and one easily sees that η(C3, c) is the only
2-connected graph of average degree ∆ = 2 with this property. Graphs with
∆ < 2 cannot have full protection because such graphs contain at least one
node with degree 1 whose single outgoing link can never be protected. On
the other hand, larger 2-connected graphs with ∆ = 2 are all ring topologies,
and rings can only have full LFA coverage if n = 3 (again, by Lemma 1).
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Figure 2: Möbius ladder topologies.

5. LFA cost optimization

Next, we turn to the LFA cost optimization problem. This problem asks
for an IGP link cost setting that maximizes the LFA coverage, given the
inherent limitations of the network topology under consideration. First, we
characterize the extent to which such an optimization can improve LFA cov-
erage, then we discuss the complexity and the algorithmic aspects of the
problem. Most of the observations apply to LFAs generally, without regard
to link-protection or node-protection, so, unless otherwise stated, the term
LFA will refer to link-protecting LFAs in the sequel. We shall indicate clearly
in the text when LFA types indeed matter.

5.1. The potential of LFA cost optimization

The question immediately arises as to whether it is worth optimizing
costs for LFA at all. Easily, readjusting costs in most of the cases alters,
possibly in a negative way, default shortest paths, which might have been
previously tweaked with great accuracy to match the needs of the network
in terms of load balancing, traffic engineering, etc. [32, 35, 36]. On the other
hand, as shall be shown through an example below, the wins achievable with
optimizing link costs for LFA can be substantial (more than 50%), and such
a huge improvement in fast resiliency might compensate for the losses in
forwarding efficiency in certain cases.

Consider the so called “Möbius ladder” topologies depicted in Fig. 2.
These graphs consist of an even ring with all the main diagonals added.
In Fig. 2a, the cost of diagonals is chosen so that the path between any
two nodes is shorter around the ring than through it via a diagonal. This
way, as one easily checks, the graph has complete LFA coverage, both in
terms of link-protection and node-protection. The graph construction can
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be generalized to arbitrary even n, and one can always choose the above cost
setting strategy to achieve complete LFA protection. Fig. 2b also depicts a
Möbius ladder (for n = 10), just with setting costs uniformly at all edges and
drawn in a slightly awkward layout. The layout was chosen so that one can
easily check the validity of the following claim for any Möbius ladder with
n
2

odd, n > 2 and c uniform: for every d ∈ V , exactly n
2
− 1 nodes have

link-protecting and node-protecting LFA to d. Considering the node d we
marked in Fig. 2b, there is exactly one node in each “column” that has an
LFA to d, except for the column of d in which there is no protected node.
This gives η(G, c) = 1

2
− 1

2
1

n−1
< 1

2
, again, in terms of both link-protection

and node-protection. For instance, in our example η(G, c) = 4
9
.

This example shows that different selections of edge costs can produce
dramatical differences in LFA failure case coverage. Simulation studies pre-
sented later also seem to support this claim. The other lesson is that resilience
and forwarding efficiency are usually contradicting requirements in routing:
in our example in the latter case all traffic flows along min-hop paths but
resilience is poor, while in the former case we have full protection but long for-
warding paths going around the ring instead of taking the shortcuts through
it. Such “joker” links that do not carry traffic seem a general requirement for
protectability [15].

5.2. Complexity

Next, we turn to discuss how to solve the LFA cost optimization problem
as of Definition 3. First, we characterize the computational complexity of
the problem.

Theorem 1. The LFA cost optimization problems LFACostOptLP(G, S)
and LFACostOptNP(G, S) are NP-complete.

This result is not particularly unexpected, as we found basically all other
LFA-related network optimization problems NP-complete as well [21]. Tak-
ing a closer look, we find that there are two reasons due to which the problem
is difficult. First, there is an inherent coupling between the LFAs to different
destinations through the link costs, which makes it difficult to take inde-
pendent decisions. In particular, assigning a neighbor as an LFA towards
some destination necessitates adjusting edge costs accordingly, but this may
destroy LFAs to other destinations. Second, even assigning LFAs to just a
single destination seems difficult enough. Consider the following theorem
characterizing the difficulty of the node-protecting case.
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Theorem 2. Given a graph G(V,E) and a node d ∈ V , LFACostOptNP(G,
Sd) with Sd = {(s, d) : s ∈ V \ {d}} is NP-complete.

Proof. Easily, LFACostOptNP(G, Sd) is in NP. To prove NP-hardness,
we show that it is essentially equivalent to the protection routing problem,
proved to be NP-complete in [16].

Definition 4. PR(G, d): given a graph G(V,E) and some d ∈ V , is there a
directed spanning DAG Rd(V,Ed) : Ed ⊆ E rooted at d, so that for any single
node or link failure f every node s ∈ V \ {d} has a neighbor k : (s, k) /∈ Ed

for which it holds that (i) k is not upstream of s in Rf
d , and (ii) there is

a k → d path in Rf
d , where Rf

d is obtained from Rd by removing the failed
component f .

The basic differences are that (a) LFACostOpt(G, Sd) is defined in terms
of costs, while PR(G, d) in terms of a routing DAG Rd, and (b) item (ii) in the
above definition. To show equivalence, we need to handle these differences.

First, we show that a cost function c uniquely determines Rd and vice
versa, in that we can show a mapping from c to Rd so that a path is shortest
path over c if and only if it is contained in Rd (this will handle (a)). Easily,
the shortest paths over c are always in a DAG. The reverse direction, that
is, taking Rd and creating a cost c of it, is equally easy: take a topological
ordering o(v) : v ∈ V of Rd (this always exists) and for each (i, j) ∈ E set
c(i, j) = o(j)− o(i) if (i, j) ∈ Ed and c(i, j) = n otherwise.

Second, (b) means that in PR(G, d) we only take a node for protected,
if after a failure f all the paths of the the secondary next-hop in Rd avoid f .
However, this is guaranteed by the node-protecting condition (2). �

A similar result can be shown for the link-protecting case as well. Below,
we only state the result but we do not give a detailed proof. We only note
that the proof involves observing that the NP-completeness argumentation
in [16] remains valid if we treat link failures only and disregard node failures,
from which the derivation is straight forward.

Theorem 3. Given a graph G(V,E) and a node d ∈ V , LFACostOptLP(G,
Sd) is NP-complete.

Obviously, Theorem 2 and Theorem 3 prove Theorem 1 stated for the
general case, of which LFACostOpt(G, Sd) is a special case. Additionally, we
also observe that the optimization version, which asks for a cost maximizing
LFA coverage, is also intractable.
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5.3. An exact algorithm

LFA cost optimization is difficult, yet solving it would be extremely useful
for improving the resilience in operational IP networks. Next, we give an
Integer Linear Program (ILP) suitable for obtaining optimal solutions only
in small networks. For simplicity, we assume that S contains all distinct
node-pairs, noting that the algorithms are easy to generalize to arbitrary S.

The ILP is formulated in the dual space: to every node i we assign a
node potential πd

i that signifies the shortest distance from i to some d over
the costs c, and then we require that the potentials and the costs together
fulfill the Shortest Path Optimality Criteria [37] while also maximizing LFA
coverage.

Consider the below ILP for the link-protecting version of the LFA cost
optimization problem:

max
∑

(s,d)∈S

αd
s (5)

πd
j + sdij = πd

i + cij, 0 ≤ sdij ≤ Cydij

∀(s, d) ∈ S, ∀(i, j) ∈ E
(6)

∑

v∈Ns

ydsv ≤ |Ns| − 1 ∀(s, d) ∈ S (7)

ydsv ∈ {0, 1} ∀(s, d) ∈ S, ∀v ∈ Ns (8)

πs
v − πs

s + πd
s − πd

v + zdsv ≤ 0, 0 ≤ zdsv ≤ 1

∀(s, d) ∈ S, ∀v ∈ Ns

(9)

∑

v∈Ns

zdsv ≥ αd
s , 0 ≤ αd

s ≤ 1 ∀(s, d) ∈ S (10)

cij = cji, cij ∈ {1, . . . , Cmax} ∀(i, j) ∈ E (11)

In the ILP, (6)–(8) enforce the Shortest Path Optimality Criteria. In
particular, for each destination d and each node s, the node potential πd

s is
set so that the potential-difference πd

d−π
d
s encodes the shortest path distance

dist(s, d) from s to d. For each edge (i, j), the constraint πd
j ≤ πd

i +cij relates
the node potentials to the actual cost setting c, and the binary variable ydsv
is used to guarantee that the inequality is satisfied with strict equality for
at least one neighbor v of each s [37]. Namely, ydsv takes the value 0 if and
only if v is a shortest path next-hop from s to d and 1 otherwise, and (7)
guarantees that for at least one neighbor v of s variable ydsv will be set to 0.
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Furthermore, (9)–(10) represent the link-protecting LFA condition as of
(1). In particular, writing (9) in a more verbose form we get:

(πd
d − πd

v) + zdsv ≤ (πs
s − πs

v) + (πd
d − πd

s ) ,

which basically coincides with (1) when zdsv > 0 by substituting πj
j − πj

i =

dist(i, j). Correspondingly, zdsv in fact serves as an indicator variable whose
value is positive if and only if v is a link-protecting LFA from s to d. More-
over, (10) ensures that αd

s only becomes positive if at least one neighbor
of s provides LFA towards d. The requirements (11) guarantee that costs
are symmetric and are selected from the interval {1, . . . , Cmax}. Finally, the
objective function (5) maximizes the number of LFA protected node pairs.

There are two problem parameters to the ILP: Cmax is the maximum
permitted cost, while C ≥ nCmax is the maximum allowed potential difference
between two neighboring nodes. Then, solving the ILP to optimality yields
the link cost setting c that maximizes ηLP(G, c) over the input topology G.
This can be done by any standard branch-and-bound ILP solver, at least as
long as the size of the network is not particularly large (see later). Tightening
the ILP, like strengthening the formulation by cutting planes [38], is beyond
the scope of this paper.

The ILP is easy to modify to handle the node-protecting version of the
LFA cost optimization problem. For this, we need to augment (9)–(10) with
the following constraints:

πe
v − πe

e + πd
e − πd

v + zdsv ≤ Cydse
∀(s, d) ∈ S, ∀v ∈ Ns, ∀e ∈ Ns \ {d, v} (12)

Here, the new constraints (12) will only let zdsv to take a positive value,
indicating that v is a node-protecting s− d LFA, if (2) holds in addition to
(1).

5.4. Approximate algorithms

The above ILP has O(n3) integer variables, which makes it intractable
in anything but the smallest topologies. Therefore, below we provide a set
of approximation algorithms, facilitating to obtain a reasonable link cost
setting in larger networks as well. In fact, we present a complete family of
heuristics, each member of the family having distinct efficiency, running-time,
and memory-requirements. This facilitates for picking the best heuristics for
the particular requirements.
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We chose the simulated annealing probabilistic metaheuristic as the main
framework to fund our approximation algorithms onto [39], and within this
framework we obtained different heuristics by fine-tuning certain aspects and
parameters of the framework. The basic version of the simulated annealing
metaheuristic operates as follows: starting from a randomly chosen initial
cost c, choose randomly a neighbor c′ “nearby” c. Here, two cost settings
are nearby if they differ at exactly one link by exactly 1. If the new cost c′

provides larger LFA coverage, then it is unconditionally accepted. On the
other hand, if c′ is worse then it is still accepted with a certain probability,
depending on a system parameter called the temperature. The temperature
is set so that from an initial, relatively high value it gradually decreases as the
algorithm proceeds, ensuring that the system easily escapes from local optima
in the beginning, while it will increasingly tend to get stuck in a good quality
optimum eventually. The iteration terminates if the temperature reaches a
certain threshold or the algorithm could not improve the LFA coverage after
a certain number of steps.

The pseudo-code for the approximation framework is given in Alg. 1.
Note that the pseudo-code works the same for the link-protecting and the
node-protecting case, therefore we below give a generic treatment suitable to
handle both cases. The input to the heuristic is the graph G(V,E), initial
temperature T0 and maximum allowed cost Cmax, and the output is the final
cost c.

Algorithm 1 Heuristic LFA cost optimization framework.

c← random_cost(Cmax), T ← T0

while T > 0 and η(G, c) < 1
c′ ← choose_cost(c)
∆η ← η(G, c)− η(G, c′)
if accept_cost(∆η, T ) then

c← c′

end if

T ← T − 1
end while

The above framework uses a couple of procedures, yet to be specified.

• random_cost(C): this procedure returns a random initial cost in the
range {1, . . . , Cmax} for each link. Throughout our numerical studies,
we used uniformly distributed initial costs.
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• choose_cost(c): this procedure selects a cost “nearby” c. Let neigh(c)
denote the set of costs that differ from c at one link by 1. We used two
different cost selection policies: we either chose a nearby cost randomly
(choose_random_cost(c)), or we chose greedily the cost setting that
improved LFA coverage the most (choose_greedy_cost(c)), i.e, sets c′

according to argmaxq∈neigh(c) η(G, q).

• accept_cost(∆η, T ): this procedure guides the way the new cost set-
ting c′ is accepted. Again, we used two different policies. Both policies
share the property that a cost that improves LFA coverage is accepted
unconditionally. In addition, the policy proportional_test(∆η, T ) ac-
cepts the new cost even if worse with probability proportional to the
temperature. Correspondingly, proportional_test(∆η, T ) returns true
if ∆η < 0 or T > random(T0). Here, the procedure random(x) re-
turns a uniformly distributed random sample from [0, x]. The so called
Metropolis-test (metropolis_test(∆η, T )), on the other hand, returns
true if ∆η < 0 or random(1) < exp(−∆η/T ).

A useful consequence of defining our approximation framework in the
above general form is that different choices for the input parameters as well
as the selection of the procedures choose_cost(c) and accept_cost(∆η, T )
yield different heuristics, with drastically varying performance and running
time. For instance, setting the initial temperature low causes faster termi-
nation but reduces the probability of finding the global optimum, since this
allows the algorithm to explore only a limited domain of the problem space.
Furthermore, picking the choose_greedy_cost(c) procedure for selecting the
best candidate nearby cost has the potential to rapidly improve the costs
initially, but might cause overly long running time due to having to check
LFA coverage for each neighboring cost in each iteration. The choice for the
accept_cost(∆η, T ) procedure, on the other hand, influences the proneness
of the heuristics to get stuck in local optima.

We also experimented with several small modifications of the above basic
approximation framework, in an attempt to obtain good solutions [39].

• Tabu lists are useful to preclude the iteration from oscillating between
two ore more cost settings, through prohibiting the algorithm to revisit
a certain number of previously visited solutions.

• Restarting allows the iteration to be restarted from an earlier good
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solution in the case when the algorithm gets stuck in a local optimum.
Note that no temperature reduction is made during the restart.

• Quantum tunneling is similar to restarting, but instead of jumping
back to a previous solution we rather jump to another random solu-
tion. Again, the intention is to avoid sticking in local optima. In
our implementation, if after a configurable number of iterations LFA
coverage could not be improved then the heuristics set each link cost
randomly up or down by the average link cost. This will change at
least one shortest path in the network, and so the iteration transitions
into a different domain of the problem space.

The running time of the heuristics principally depends on the choice
of the choose_cost(c) procedure. With greedy selection, the complexity is
O(T0mn3), dominated by the need to evaluate η(G, q) (needing O(n3) steps)
in each iteration for each 2m neighbor q of the current cost c. With selecting
the choose_random_cost(c) procedure, on the other hand, complexity de-
creases to O(T0n

3), as LFA coverage needs to be evaluated in each iteration
only once. This, however, comes with a substantial drop in efficiency, as
evidenced by the numerical results presented next.

Finally, we call the attention to an appealing aspect of our heuristic frame-
work. In particular, the framework is easy to adapt for different operational
requirements not explicitly addressed in the paper. For instance, the heuris-
tics are completely neutral to whether the underlying graph representation
is undirected or directed (a case more relevant to IP networks), or whether
link costs are symmetric or asymmetric. The framework does not even re-
quire link costs to be integral. Further operational issues, like traffic engi-
neering concerns, suppressing equal cost shortest paths [36], or considering
broadcast LANs, etc., are also easy to incorporate into the optimization al-
gorithms through tuning the objective function. The same applies to more
elaborate failure models, like multiple failures, Shared Risk Link Groups, etc.
Discovering the breadth of these options is beyond the scope of this paper.

6. Numerical evaluations

In the course of our numerical studies, first we were curious as to how close
the approximate LFA cost optimization algorithms can get to the optimum.
Therefore, we implemented the ILP (6)–(11) and the approximation frame-
work described in Section 5. Below, only results for the greedy cost selection
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rule (choose_greedy_cost(c)) and the temperature-proportional acceptance
rule (proportional_test(∆η, T )) are given, with a tabu list of size 20, no
restarting and no quantum tunneling, as this proved most efficient in com-
parison studies to be discussed later. The simulated annealing procedure
was executed 500 times consecutively (T0 = 150, Cmax = 20) and the cost
c∗ that attained the highest LFA coverage was selected. Below, we only give
the results for the link-protecting case.

We found that about the largest non-trivial graphs for which the ILP
can be solved to optimality are of 8 nodes. Unfortunately, very few real
topologies of this small size are available in the literature. Thus, the first
round of the evaluations were run on Erdős-Rényi random graphs (n = 8,
expected node degree 3). Out of the 20 random graphs generated, 17 was 2-
connected, and results are only given for these instances. Table 2 gives some
characteristics of the graphs (number of nodes n, and number of links m);
the theoretical lower and upper bounds on LFA coverage (as of Lemma 2 and
Lemma 3); and the actual LFA coverage η(G, copt) for the costs copt obtained
by the ILP and the above customized greedy version of the approximation
algorithm (η∗gr). We observe that from the 17 experiments only in 2 cases the
approximation did not find the optimum (these experiments are marked by
an asterisk in Table 2), and the difference is at most 2-3% in LFA coverage.
This indicates that in small networks the simulated-annealing-based heuris-
tics perform quite efficiently. Additionally, we found that the theoretical
bounds provide a solid estimate on the LFA coverage.

In the second round, we examined the performance of the different ap-
proximate LFA cost optimization algorithms we proposed in the previous
section in larger real network topologies, where the ILP could not be solved
to optimality. First, we deal with the link-protecting case, while node pro-
tection will be discussed subsequently.

We used inferred ISP data maps from the Rocketfuel dataset [40] (AS1221,
AS1239, AS1755, AS3257, AS3967 and AS6461). We obtained POP-level
maps by collapsing the topologies so that nodes correspond to cities and
we eliminated leaf-nodes (this preprocessing method was suggested in [41]).
These networks come with inferred link costs (these costs are needed to com-
pute the “default” LFA coverage η(G, c) of the network). We also chose some
network topologies from [42], namely, the Abilene, Italy, Germany, NSF and
AT&T networks and the 50 node extended German backbone (Germ_50).
Unfortunately, except for the last network no valid link costs were available,
so we set each cost to 1. We also chose some representative ISP topolo-
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Table 2: LFA cost optimization in random topologies.

Num n m Lower/Upper η(G, copt) η∗gr

1* 7 11 0.278/1 1 0.976

2 8 9 0.095/0.571 0.536 0.536

3* 8 13 0.214/1 1 0.982

4 7 11 0.278/1 1 1

6 8 9 0.143/0.571 0.571 0.571

9 7 11 0.208/1 0.952 0.952

10 8 11 0.114/1 0.857 0.857

11 8 10 0.143/0.857 0.75 0.75

12 8 9 0.095/0.571 0.429 0.429

13 8 11 0.143/1 0.911 0.911

14 8 11 0.19/1 0.821 0.821

15 8 11 0.19/1 0.946 0.946

16 7 8 0.111/0.667 0.5 0.5

17 8 14 0.2/1 1 1

18 8 11 0.114/1 0.714 0.714

19 8 9 0.143/0.571 0.482 0.482

20 8 10 0.143/0.857 0.679 0.679

gies from [43], in particular, the Arnes, Deltacom, Geant, and the Inter-
netMCI topologies. Link costs were set inversely proportional to the link
capacities (this setting is recommended by Cisco, see documentation on ospf

auto-cost in [44]). Additionally, we also ran the evaluations on some artifi-
cial topologies with uniform costs. In particular, Mn are the Möbius ladder
graphs of n nodes as discussed in Section 5.

The particular approximation algorithms we used were as follows. First,
we chose the “textbook” version of the simulated annealing algorithm, with
random cost selection (choose_random_cost(c)) and the Metropolis-test for
cost acceptance (metropolis_test(∆η, T )), with a tabu list of size 20 and dif-
ferent customized settings for the restarting and quantum tunneling thresh-
olds. The notation η∗ will be used to denote the LFA coverage as provided
by this textbook version of the heuristics. In particular, η∗Q=q will signify the
version with the quantum tunneling threshold set to q (i.e., after q unsuccess-
ful trials the algorithm jumps to a new cost set). We used the setting q = 1,
q = 10 and q = 20. In addition, η∗R=r denotes the LFA coverage by setting the
restarting threshold in a similar vein. Evaluations were run for r = 2, r = 10,
and r = 20. Finally, we also executed the greedy version as used in the first
simulation round (choose_greedy_cost(c), proportional_test(∆η, T ), tabu
list of size 20, no restarting and no quantum tunneling). Results are again
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Table 3: Link-protecting results for the LFA cost optimization heuristics in
real and artificial topologies.

Name n m ∆ η(G, c) η∗ η∗
Q=1

η∗
Q=10

η∗
Q=20

η∗
R=2

η∗
R=10

η∗
R=20

η∗gr

AS1221 7 9 2.57 0.809 0.833 0.833 0.833 0.833 0.833 0.833 0.833 0.833

AS1239 30 69 4.60 0.873 0.958 0.958 0.959 0.959 0.96 0.959 0.958 0.963

AS1755 18 33 3.66 0.872 0.983 0.983 0.983 0.983 0.983 0.98 0.98 0.993

AS3257 27 64 4.74 0.923 0.997 0.995 0.998 0.997 0.997 0.997 0.997 1

AS3967 21 36 3.42 0.785 0.971 0.973 0.973 0.966 0.976 0.966 0.971 0.983

AS6461 17 37 4.35 0.933 1 0.996 0.996 0.996 1 1 1 1

Abilene 12 15 2.5 0.56 0.674 0.674 0.674 0.674 0.674 0.674 0.674 0.674

Arnes 41 57 2.78 0.623 0.702 0.704 0.707 0.704 0.706 0.703 0.7 0.709

AT&T 22 38 3.45 0.822 0.982 0.984 0.982 0.98 0.98 0.978 0.984 0.987

Deltacom 113 161 2.85 0.577 0.654 0.658 0.652 0.659 0.652 0.661 0.651 0.662

Geant 37 55 2.97 0.69 0.74 0.742 0.745 0.743 0.74 0.741 0.737 0.76

Germ_50 50 88 3.52 0.9 0.929 0.931 0.935 0.93 0.932 0.93 0.939 0.966

Germany 17 25 2.94 0.695 0.9 0.893 0.893 0.904 0.904 0.904 0.9 0.911

InternetMCI 19 33 3.47 0.904 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932

Italy 33 56 3.39 0.784 0.926 0.928 0.922 0.932 0.927 0.93 0.922 0.944

NSF 26 43 3.3 0.86 0.949 0.955 0.964 0.95 0.958 0.956 0.955 0.977

M6 6 9 3 0.4 1 1 1 1 1 1 1 1

M10 10 15 3 0.444 0.922 0.922 0.933 0.933 0.922 0.933 0.922 1

M18 18 27 3 0.470 0.882 0.875 0.885 0.885 0.882 0.872 0.888 0.905

M30 30 45 3 0.482 0.889 0.883 0.886 0.886 0.889 0.889 0.888 0.904

marked by η∗gr. For each topology, the algorithms were executed 1000 times
(T0 = 1000, Cmax = 20) and the best cost c∗ was selected. There was only
one topology on which we could solve the ILP to optimality: AS1221. For
this particular network, each of the approximation algorithms could attain
the ILP optimum (η(G, copt) = 0.833).

Detailed results of link-protecting mode are presented in Table 3. The
columns mean (in the order of appearance): the characteristics of the topolo-
gies (name, number of nodes n and edges m, and the average node degree
∆); the LFA coverage obtained by the original link cost setting for the graphs
η(G, c); and the LFA coverage obtained by the different approximation algo-
rithms. We also highlight the results for some select topologies in Fig. 3.

Our observations are as follows. First, we found that the LFA cover-
age produced by the approximate algorithms is usually significantly higher
(about 90% or more in the link-protecting case) than the LFA coverage pro-
duced by the network’s original cost setting (around 70% on average). The
improvement almost always exceeds 7%, but in many cases it amounts to
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Figure 3: Final LFA coverage for some select topologies.

more than 20-25% (e.g., AS3967, Abilene, or the German backbone). This
suggests that optimizing costs specifically for LFA usually attains significant
improvement in network resilience. The improvement is especially significant
for the artificial networks. We also found that the denser the network, the
higher the LFA coverage. It seems that networks with an average node degree
exceeding about 3.5 lend themselves especially well to LFA cost optimization
(AS1239, AS1755, AS3257, AS6461, AT&T, Germ_50): in these networks
even the default cost settings yield a higher than 80% LFA coverage and
our cost optimization tool can bring these networks well beyond 95% and
close to 100% in many cases. Networks of average node degree of 3 are still
amenable to LFA, but when the degree falls below 3 the chances of getting
a high LFA coverage rapidly vanish. For sparser networks (like the Abilene
topology), the final LFA coverage η(G, c∗) hardly reached 70%. These obser-
vations are in line with our theoretical analysis in Section 4. Note, however,
that node degree alone is not sufficient to assess the extent to which LFA can
protect a network, as there are topologies (the Möbius ladder graphs) that
have small average degree of 3 but complete link-protecting LFA coverage
over some appropriately chosen costs. It seems that LFA cost optimization
is most difficult when the degree is about 3.
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Second, we observe that for large Möbius ladder graphs the approximation
could not get closer than 10% to the optimum (which we know is η(G, copt) =
1 in this case). This indicates that in larger topologies the efficiency of the
heuristics we identified in small networks might not be present.

Third, we find that the approximation algorithms work roughly similarly.
In particular, Fig. 4 compares the LFA coverage of the different heuristics,
when taking the textbook simulated annealing heuristics as the basis for the
comparison. We observe that the best performance is attained by the greedy
version consistently. This is not surprising, considering the more elaborate
(and more time-consuming) cost selection rule. In addition, quantum tun-
neling seems to work better for larger thresholds, while restarting produces
consistently better results for smaller thresholds. The differences in the even-
tual LFA coverage between the different heuristics, however, are in the order
of mere percents. We note, however, that minuscule differences in the LFA
coverage can mean dozens of more protected source-destinations in reality.
This is because the normalizing factor n(n− 1) in (3) can become very large
in big networks. For instance, in the Deltacom topology the greedy heuris-
tics covered 2367 source-destination pairs while the others reached less than
2300.

Last but not least, the execution time for 1000 rounds of the different
heuristics is depicted in Fig. 5 in a logarithmic scale. As expected, for the
wins in performance with the greedy version of the heuristics we pay by
significantly increasing execution time. This is because, as mentioned pre-
viously, choosing the best neighbor in every step requires 2m times more
evaluations of the LFA coverage metric than selecting one randomly. Note
that these execution times are representative to the offline phase of LFA cost
optimization, which is usually performed only once for the lifetime of the
network before the final deployment, and in no way affect the real-time re-
quirements of finding loop-free alternates in the online phase (which remains
below 50ms as required). Therefore, we do not consider execution times to be
a particularly pressing issue in LFA cost optimization. Finally, we mention
that, curiously, running 1000 rounds of the heuristics is usually unnecessary,
because the best solutions were realized after 200 rounds in each case.

We repeated the simulations for the node-protecting case as well (see Ta-
ble 4). The observations are essentially the same as in the link-protecting
case, just the numeric values seem somewhat smaller. We found that the ini-
tial node-protecting LFA coverage was 57% on average which the algorithms
could improve by about 10-20%, so that eventual the LFA coverage was in
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Figure 4: Final LFA coverage obtained by different heuristics compared to
the textbook version.

the range of 75-80%. In some cases, however, the heuristics could reach
more than 25% of improvement (for instance, this is the case for the AS3257
topology). Again, the greedy heuristic is consistently the most effective, and
restarting and quantum tunneling seem worthwhile extensions to textbook
simulated annealing.

In summary, our results suggest that most real network topologies, which
are usually richly connected and highly redundant, lend themselves readily
to LFA cost optimization, to the point that almost perfect link-protecting
LFA coverage can be achieved in many cases. For fast execution time the
textbook simulated annealing version with a reasonable quantum tunneling
and restarting threshold seems most appealing, whereas the greedy version
is the best choice when the aim is to find the highest quality link costs.

7. Conclusions

In this paper, we have assessed the possibilities of improving fast re-
silience in operational IP networks using the Loop-Free Alternates IPFRR
technique. The motivation for choosing LFA over its alternatives is its sim-
plicity, easy deployability, and availability in IP routers. We presented new
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Figure 5: Execution time for different heuristics in hours.

tools to quickly estimate LFA failure case coverage both in the link-protecting
and the node-protecting cases, and we sought ways to improve it by carefully
adjusting IGP link costs. We showed that this problem is NP-complete and
we gave an Integer Linear Program to obtain an exact solution. As our exact
algorithm only works in small networks, we proposed a family of simulated-
annealing-based approximations with different tunable performance and exe-
cution time parameters. Our heuristics could achieve significant boost in LFA
coverage in many real-world network topologies, to the point that in some
cases close to perfect protection could be guaranteed by LFA. Considering
that LFA is just a router-configuration command away in many modern IP
networks, we believe that these results have huge practical relevance. Nev-
ertheless, we also found that some topologies are less amenable to LFA cost
optimization. Future work involves combining the LFA network optimization
tools we gave in [21] and the algorithms presented herein to improve IP-level
fast resilience in such notorious network topologies.
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Table 4: Node-protecting results for the LFA cost optimization heuristics in
real and artificial topologies.

Name n m ∆ η(G, c) η∗ η∗
Q=1

η∗
Q=10

η∗
Q=20

η∗
R=2

η∗
R=10

η∗
R=20

η∗gr

AS1221 7 9 2.57 0.452 0.523 0.523 0.523 0.523 0.523 0.523 0.523 0.523

AS1239 30 69 4.60 0.757 0.886 0.896 0.889 0.886 0.894 0.893 0.882 0.937

AS1755 18 33 3.66 0.764 0.895 0.885 0.888 0.885 0.882 0.882 0.911 0.941

AS3257 27 64 4.74 0.726 0.863 0.877 0.881 0.871 0.871 0.873 0.87 0.938

AS3967 21 36 3.42 0.642 0.84 0.838 0.838 0.847 0.847 0.857 0.835 0.897

AS6461 17 37 4.35 0.738 0.845 0.838 0.83 0.841 0.852 0.841 0.838 0.886

Abilene 12 15 2.5 0.515 0.606 0.598 0.606 0.606 0.606 0.606 0.606 0.606

Arnes 41 57 2.78 0.359 0.469 0.482 0.484 0.478 0.471 0.472 0.486 0.49

AT&T 22 38 3.45 0.58 0.783 0.8 0.796 0.783 0.779 0.781 0.781 0.82

Deltacom 113 161 2.85 0.488 0.559 0.571 0.566 0.568 0.567 0.564 0.558 0.581

Geant 37 55 2.97 0.41 0.572 0.590 0.585 0.581 0.577 0.573 0.57 0.622

Germ_50 50 88 3.52 0.827 0.829 0.816 0.807 0.815 0.829 0.822 0.82 0.86

Germany 17 25 2.94 0.562 0.731 0.72 0.709 0.713 0.713 0.705 0.705 0.727

InternetMCI 19 33 3.47 0.704 0.783 0.766 0.766 0.777 0.78 0.777 0.769 0.809

Italy 33 56 3.39 0.57 0.768 0.754 0.748 0.75 0.764 0.754 0.754 0.803

NSF 26 43 3.3 0.633 0.83 0.796 0.806 0.815 0.829 0.807 0.836 0.866

M6 6 9 3 0.444 0.922 0.888 0.9 0.9 0.9 0.911 0.9 0.966

M10 10 15 3 0.47 0.81 0.8 0.807 0.81 0.816 0.813 0.81 0.849

M18 18 27 3 0.482 0.812 0.809 0.809 0.81 0.809 0.817 0.812 0.833

M30 30 45 3 0.4 1 1 1 1 1 1 1 1
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