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a b s t r a c t 

Splitting traffic flows to different data paths is crucial in current and future networks. Traffic division 

serves as the basis for load balancing between application servers, optimal Traffic Engineering, using 

multiple paths in data centers, and several other places of an end-to-end connection. Unfortunately, by 

allowing only equal division amongst the parallel resources, existing technologies often cannot realize the 

optimal traffic splitting, which can have serious negative consequences on the network performance. 

In this paper we present a flexible and effective traffic splitting method that is incrementally deploy- 

able and fully compatible with practically all existing protocols and data planes. Our proposal, called Vir- 

tual Resource Allocation (VRA), is based on setting up virtual resources alongside existing ones, thereby 

tricking the legacy equal traffic splitting technology into realizing the required non-equal traffic division 

over the physical media. We propose several VRA schemes, give theoretical bounds on their performance, 

and also show that the full-fledged VRA problem is NP-complete in general. Accordingly, we provide so- 

lution algorithms, including an optimal, but necessarily slow method and several quick heuristics. Our 

simulations show that VRA has huge practical potential as it allows approaching an ideal traffic split us- 

ing only a very limited set of virtual resources. Based on the results, we also give detailed suggestions on 

which algorithm to apply in different scenarios. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Unity is strength. Treating separate network resources as one

nd sharing it among the users is a technique inherent to the In-

ernet. This scheme, often called the Resource Pooling Principle [1] ,

an be observed at several aspects of today’s networks. Examples

f this principle include multipath routing, multihoming, Ethernet

ink Aggregation Groups [2] , load balancing between application

evel servers (such as web-servers or database servers), load bal-

ncing in Traffic Engineering. Content Delivery Networks [3] are

lso a form of resource pooling, just as cloud storage and cloud

omputing [4] . To realize these services, data centers are being

nstalled rapidly, also often utilizing equal-length parallel paths,

hich are, in many of the cases, asymmetric in capacity [5] . Fur-

hermore, several new concepts, such as network virtualization and

oftware Defined Networking (SDN) [6] appeared in the recent
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ears, which also take advantage of the pooling principle in order

o optimally exploit the network resources. 

This list is far from being comprehensive, yet it shows the ver-

atility of scenarios where resources are pooled. There are several

easons to do so. First, its inherent redundancy increases the robust-

ess against component failures. Second, by dynamically allocating

ore resources for a temporal peak usage higher level service can be

ffered on the same infrastructure, due to statistical multiplexing.

hird, having a greater freedom to couple demands and resources,

ore efficient network utilization can be achieved along with a more

calable service . 

The implementation of resource pooling, however, is challeng-

ng, as the load balancers can usually split the incoming demands

nly roughly equally amongst the resources. As an illustration, a

oad balancer between two web-servers typically splits the incom-

ng requests in half, which heavily hinders the overall performance

f one of the back-end servers are for instance twice as powerful

s the other. Likewise, in routing protocols such as OSPF [7] or IS-

S [8] Equal-Cost Multipath (ECMP) is used to distribute the traffic

ver the shortest paths with the same cost. ECMP, however, is only

ble to split traffic between these paths uniformly, even if they

http://dx.doi.org/10.1016/j.comnet.2017.08.017
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have different capacities, which poses a giant barrier when aspir-

ing to an optimal Traffic Engineering [5,9–11] . 

There are several existing proposals which target specific cases

of this issue. Weighted Cost Multipathing (WCMP, [5] ), for exam-

ple, aims unequal traffic splitting at data centers. It assumes SDN-

capable switches, and operates by replicating rule table entries.

Niagara [10] is another SDN-based proposal, which provides flex-

ible traffic splitting between load balancers by building SDN rules

based on the last bits of the source address. Fibbing [12] is lately

proposed, interesting architecture, which promises centralized con-

trol over distributed routing, without SDN. It works by effectively

“lying” to OSPF, advertising fake nodes and links through standard

routing protocol messages. A recent application of Fibbing directly

targets load balancing [13] . These proposals, however, are more or

less coupled to a single field of application, and, in the case of Fib-

bing, would introduce a new level of abstraction, which it is yet

unclear if operators are willing to cope with. 

As a solution, we introduce a technique called Virtual Resource

Allocation (VRA). The basic idea of VRA is to virtually multiply the

available parallel resources so that the load balancing system sees

a greater number than what actually exists. We then group the vir-

tual resources and assign them to the physical ones, thereby trick-

ing the legacy equal splitting technology into realizing the required

non-equal load division over the existing media. 

As an example, we can install two virtual machines on the

stronger web-server and present them, along with the unmodi-

fied weaker server, to the load balancer. It then sees three servers,

and by realizing equal split between them the stronger server will

eventually end up with 2/3 part of the total load, as desired. In a

similar fashion, installing virtual links or paths alongside the phys-

ical ones (which, in practice, can be carried out via some adminis-

trative settings), ECMP’s equal-split limitation can be amended. If,

for example a 25 − 75% traffic proportion is desired on two, equal

cost shortest paths A and B , then by installing two virtual paths

parallel to B , and presenting these four to ECMP, it will happily re-

alize the expected traffic split rate. 

The engineering problem to solve in VRA is then to come up

with an optimal setting of virtual resources so that a predefined

non-equal traffic split ratio is approximated sufficiently with lim-

ited resource usage. Furthermore, placing VRA in a broader scope,

other, network-wide goals can be targeted as well. 

Later on in this paper Traffic Engineering (TE) in IP networks

will be used to introduce the VRA proposal. Let us emphasize,

however, that TE is just a descriptive example application of the

VRA concept, and its possible fields of usage are much broader. For

instance, Fibbing can be enhanced by our algorithms proposed for

virtual resource mapping. Software Defined Networking is a recent

and promising trend in the IP world. While VRA does not depend

on SDN, there already exist application possibilities for VRA within

an SDN framework and more are likely to come. To name one, in

data centers parallel shortest path are very frequent, but their ca-

pacities tend to be asymmetric [5] , causing ECMP to be a subopti-

mal tool for splitting. WCMP, using OpenFlow, is designed to cope

with this challenge. Yet, it can be enhanced by the algorithms de-

scribed in this paper to minimize to forwarding table entries while

keeping the oversubscription rate under a limit. 

Main contributions. We present a precise VRA problem definition

along with theoretical error bounds for different scenarios. We also

provide algorithms to solve the problem under different real-life con-

straints . Our proposition is incrementally deployable , since it is per-

fectly fine to set up virtual resources only at a subset of the net-

work nodes. Moreover, unlike most other proposals, VRA is highly

compatible , meaning that it does not necessitate installing any new

hardware or software component in the network. Finally, VRA is

extremely efficient , as our numerical results indicate that by adding
nly a small set of virtual resources the ideal traffic split ratio can

e very well approximated, resulting in substantial performance

ain. 

We show the NP-completeness of the full-fledged version of the

RA problem, and also show that no polynomial time algorithm can

pproximate the optimal solution within any constant ratio . Yet, we

ropose an Integer Linear Program (ILP) as an optimal solution along

ith quick heuristics . 

Finally, we present our simulation evaluation , which includes

ur algorithms as well as the existing best-practice solution. Our

esults underpin that the VRA approach has a huge practical poten-

ial . This, together with the easy deployability make VRA an ideal

hoice for network operators . 

revious works. This paper is a continuation, and in some sense,

 completion of an earlier work carried out by the same authors,

hich has been published in [14] and [15] , and which address the

verlay Optimization an Peer-Local Optimization. The main find-

ngs of those conference papers are summarized in this one for the

ake of completeness, but everything else in this paper, unless di-

ectly cited, are, to our best knowledge, first published here. These

nclude, but not limited to the Peer-Global Optimization ILP, the

esults about the computational complexity of the problem, and

he whole simulation evaluation. While our earlier effort s f ocused

olely on TE, this time we have generalized it into the much more

niversal VRA context, which have certainly affected the structure

f the whole paper. 

rganization. The rest of this paper is structured as follows.

ection 2 introduces the VRA concept with some simple examples.

ections 3 and 4 carry our main theoretical results about differ-

nt versions of the original problem. A numerical evaluation is de-

cribed in Section 5 , followed by an overview of the most impor-

ant related works in Section 6 . Finally, Section 7 concludes this

aper. Appendix A contains an ILP that solves the full-fledged VRA

roblem, and Appendix B reveals our theorems and proofs about

ts computational complexity. 

. Virtual resource allocation overview 

In this section we overview the Virtual Resource Allocation con-

ept, using Traffic Engineering as a descriptive example. 

The idea behind VRA is fairly simple and is best explained by

 small sample problem. Consider the triangular network that is

hown, with the link capacities, in Fig. 1 (a). Suppose we would

ike to transfer 30 units of traffic from A to C without overutilizing

ny of the links. Using stock OSPF would allow us to set the link

eights (also often called link costs, link metrics or SPF (Shortest

ath First) metrics), thereby we could easily create two equal cost

hortest paths (i.e. paths with minimal total weight): A − B − C and

 − C, by using for example the weights shown in Fig. 1 (b). On the

ther hand, OSPF ECMP only allows to split the traffic equally be-

ween the shortest paths, implying a 150% load on A − B and B − C.

If, however, we could set up a virtual link on top of the existing

 − C link, and expose it to OSPF (see Fig. 1 (c)), it would happily

plit the traffic in three, sending one third on the A − B − C path

nd the rest on the A − C physical link ( Fig. 1 (d)). Naturally, in-

talling a virtual link over the A − C physical link does not change

ts capacity, it only enables OSPF ECMP to use its full potential

n this case. The link weights would also remain unchanged, and

he new virtual link would have the same weight as the respective

hysical one (2 in our example). By this simple administrative in-

ervention we can route the traffic through this network without

xceeding the link capacities. 

There are several possible ways to set up a virtual link paral-

el to an existing one. These options include Ethernet VLANs, IP-
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Fig. 1. A triangular network. Demand: A → C : 30. 
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Fig. 2. A capacitated example network. Demand: A → D : 35. 

 

 

 

 

 

 

 

 

 

 

2

 

p  

c  

a  

m  

s

 

r  

(  

v  

m  

m

 

s  

a  

t  

l  

B  

n  

t

 

d  

u

P tunnels, GRE tunnels, etc. The exact method of setting up this

ayer 2 connection is out of the scope of this paper, as we only fo-

us on the effect of the virtual links on the network performance. 

.1. Traffic Engineering basics 

Traffic Engineering (TE) is the scientific area of performance

anagement in operational networks [16] . Several methods exist

or assigning traffic flows to data paths and thereby approximating

ptimal TE, the perhaps most well-known being MPLS with RSVP-

E (MPLS- TE). However, for a network with N nodes and a full traf-

c matrix, it requires N 

2 label switched paths. Either for this or for

ther reasons some operators are reluctant to deploy MPLS-TE in

heir network. 

A less demanding alternative is OSPF Traffic Engineering (OSPF-

E). Its basic idea is to adjust the administrative link costs in a

ay as to ensure that the shortest paths calculated by OSPF will

ap to exactly the ones chosen by the administrator, which may

e a result of solving an adequate linear program or using some

elated heuristics [17] . OSPF-TE has been proven to be theoretically

easible [18] . In practice, however, in certain networks the qual-

ty of OSPF-TE can become arbitrarily poor compared to optimal

E [9] , solely because the even-split nature of OSPF ECMP. Finding

he best possible link weight configuration is not straightforward,

ither. It is well known to be NP-hard [9] , but as a recent study

evealed, even approximating it by a computationally-efficient al-

orithm within any constant ratio is infeasible [19] . Still, there are

roposed weight optimization heuristics that perform well in real-

ife scenarios [20] , [21] . 

.2. Resource bounds 

We shall see that generally a network using VRA performs bet-

er as the number of applicable virtual link grows. In practice,

owever, the number of next hops one can provision for a partic-

lar destination entry in the routing table is often limited by the

SPF implementation, in line with the OSPF RFC [7] . For example,

n many Cisco, Ericsson and Juniper routers this limit is adjustable,

ut the maximum allowed setting 16 [22–24] . Similar limits exist

or other routing protocol implementations, like EIGRP, IS-IS, RIP

22] . 

In other use cases similar bounds may exist. For example in

DN, the number of rules to be installed is also finite. For WCMP

nd Niagara this limit is in the order of several hundreds–several

housands. This is much larger than the number of allowed next

ops in OSPF ECMP, but the important point is that there is an up-

er bound. 

On that ground, we shall also study the form of VRA, when we

re given an upper limit on the applicable resources. We will ex-

mine the following three models, which are important from the-

retical and/or practical point of view: 

1. No limit. In this simple case we pose no upper bound on the

maximum usable resources. Certainly, this approach is not di-
rectly applicable in real life settings, but in some scenarios solv-

ing this simpler problem will lead to the solution of more com-

plicated ones. 

2. Bounded total resources. In this model the total number of re-

sources, including the real and virtual ones, are limited. For ex-

ample in Section 3.1 we will require that the total number of

outgoing links used for a demand is bounded by a constant Q .

In this case, as Q is fixed, the higher is the number of used

physical links, the smaller is the number of allowed virtual

links. 

3. Bounded virtual resources. In this scenario the number of vir-

tual resources are limited by a constant R , which is independent

of the number of applied physical resources. 

.3. Overview of VRA optimization strategies 

As shown above, installing virtual resources (virtual links in this

articular case) in a pure OSPF ECMP environment can reduce the

ongestion in a network. It is not straightforward, however, where

nd how many virtual links to install in order to achieve an opti-

al TE scenario. We examine different virtual resource allocation

trategies, each aiming to answer these questions. 

Unless otherwise stated, throughout this paper the applied met-

ic of TE optimality is the widely adopted Maximum Link Utilization

MLU) . The link utilization is defined as the link traffic volume di-

ided by the link capacity, and the MLU is the maximum of this

easure over all the links of the network. Certainly, the goal is to

inimize the MLU. 

The different VRA approaches are introduced via the example

hown in Fig. 2 . Clearly, the optimal solution would fully utilize

ll the links, resulting in MLU of 1.0. On the other hand, achieving

his in an OSPF routing environment is not a trivial task. Let us

imit the number of allocated virtual links per node to R = 4 (cf.

ounded virtual resources in the previous subsection); or the total

umber of usable next hops for a destination to Q = 6 ( Bounded

otal resources model), which are identical in this case. 

This example is used in the following subsections to enumerate

ifferent possible TE strategies, which are discussed in depth in the

pcoming sections. 
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Table 1 

Performance of the different optimization strategies. 

Optimization Strategy MLU 

OSPF Weight Optimization (no virtual links) 1.25 

Overlay Optimization 2.5 

Overlay Optimization with Path Exclusion 1.167 

Peer-Local Optimization 1.05 

Peer-Global Optimization 1.042 

Optimal Solution 1 

Fig. 3. Paths and weights for the rectangular example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Peer Optimization. 
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2.3.1. OSPF Weight Optimization 

In this simplest scenario we are not utilizing any kind of virtual

resources. Consequently, our degree of freedom is limited to set-

ting the link weights, so that running OSPF ECMP over the shortest

paths will generate optimal result. We will use this case as a one

of the reference points in our evaluation. 

In the current example the best we can do is having one min-

imum cost path: A − D, by setting for example all link weights to

1. This causes MLU of 35 / 28 = 1 . 25 . (See Table 1 for the MLUs of

this example.) 

2.3.2. Overlay optimization 

In this important scenario we suppose that a set of source-

destination tunnels are already set up; yet, splitting the traffic be-

tween these tunnels have to be done somehow. Having MPLS-TE

with a Path Computation Element (PCE) or some other kind of ad-

vanced means at our disposal, this problem can be tackled rela-

tively easily. As another example, Cisco Express Forwarding (CEF)

allows traffic splitting roughly proportionally to the MPLS tunnel

bandwidth [25] . 1 In many cases, however, no such tool is at hand,

only the pre-allocated tunnels are present, and OSPF has to be

used to transfer the traffic through this overlay network. In this

scenario we can still achieve a near-optimal traffic distribution, by

presenting virtual resources, in this case virtual paths (i.e., virtually

multiplicated tunnels), to OSPF. 

To examine this scenario, suppose we have three paths (tun-

nels) already set up, as shown in Fig. 3 (a). If proportional load

sharing was not implemented and these path were exposed to

OSPF, it would split the traffic in 3 equal portions, causing a

(35/3)/2 ≈ 5.833 utilization factor on link B − D . 

Nevertheless, we could apply virtual paths to optimize the traf-

fic. We would put the maximum allowed 4 virtual paths to the one

hop A − D path, resulting in an 5: 1: 1 traffic split ratio. In this case

the MLU (still on B − D ) would drop to (35 / 7) / 2 = 2 . 5 . 

We are even better off if we allow not to utilize some of the

paths at all. In this case we could disregard the A − B − D path, and
1 Note that even this implementation uses fractions of small integers to approx- 

imate the desired split ratio, just as we propose in this paper. In CEF the Bounded 

total resources model is used with Q = 16 . 

 

t  

p  

n  

o

se the 4 virtual links to A − D, splitting the traffic in 5: 1. Now the

aximum link utilization is on the B − C link: (35/6)/5 ≈ 1.167. 

In this scenario traffic splitting occurs within an overlay net-

ork of pre-allocated tunnels, implying the name Overlay Opti-

ization . We will refer to the latter case, where not all the paths

re used, as Overlay Optimization with Path Exclusion . 

.3.3. Peer Optimization 

In this scenario there is no overlay network, traffic optimiza-

ion takes place directly on the physical infrastructure, using, for

xample, OSPF-TE. During the optimization the link weights are ad-

usted, and virtual links are set up. Two different Peer Optimization

trategies are described below. 

eer-Local Optimization. In this approach we first compute the op-

imal routing, which is trivial in our example: fully utilize each

ink. Next, the link weights have to be set accordingly, meaning

n this case that each of the three paths shown in Fig. 3 (a) would

e a shortest path. Fig. 3 (b) shows a sufficient weight allocation. 

Finally, for each node where traffic splitting occurs, the de-

ired split should be approximated by applying virtual links. This is

one for each node individually, independently on the other nodes,

ence the name, Peer-Local Optimization . 

In our case at node A the 7: 28 split can be achieved exactly

y adding 3 virtual links to A − D (see Fig. 4 (a)). At node B , how-

ver, the 5: 2 ratio cannot be perfectly realized by using only 4

irtual links (5 would be enough, though). The best we can do is

llocating 2 virtual links to B − C. Thus the optimal virtual link al-

ocation results in (7 · 3 / 4) / 5 = 1 . 05 utilization on the B − C and

 − D links, which is the MLU in this case as well. 

eer-Global Optimization. There is a fundamental problem with the

revious approach: as the errors of the local optimization propa-

ate downstream, they can cause further disturbances in the net-

ork, whereby local errors can enlarge or weaken each other’s ef-

ect. This phenomenon can only be taken into account if we mini-

ize the local errors concurrently, in a centralized manner. This is

hat we call Peer-Global Optimization . 

In this case we determine both the link weights and the num-

er of applied virtual links for each physical link simultaneously.

ust as with the previous approaches, at this point we do not detail

ow we do it, only describe its potential. In our example network

he optimal global solution uses the same link weights as shown in

ig. 3 (b) and the virtual link provisioning is plot in Fig. 4 (b). With

his allocation the MLU will be on link A − D : (35 · 5/6)/28 ≈ 1, 042.

Notice that this result is better than the one for Peer-Local Op-

imization. This is because we sacrificed the otherwise realizable

erfect split at node A in order to lower the error downstream, at

ode B . This trick would not be possible using local considerations

nly. 
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Fig. 5. Overlay Optimization. 
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.3.4. Summary of the optimization strategies 

The maximum link utilization of the different optimization

trategies for our simple rectangular example network are shown

n Table 1 . 

Although the main purpose of this example was to give a quick

nsight into the different TE approaches, the listed results also sug-

est that OSPF-TE enhanced by VRA may result in considerably

etter network performance than pure OSPF-TE. Actually, in this

ase the Peer-Global Optimization, without using any kind of ad-

anced Traffic Engineering technology, approaches the theoretical

ptimum by only 4%. More realistic numerical studies are pre-

ented in Section 5 . 

.4. Other use cases 

It is important to emphasize again, that the deployment of VRA

lgorithms are not limited to Traffic Engineering . Several other use

ases are possible, including the SDN rule table size optimiza-

ion (WCMP), or the minimization of Fibbing virtual link and node

umbers, as will be discussed in Section 6 . 

In the following sections we explain in detail and scrutinize

hese VRA optimization approaches. For the sake of simplicity in

elivery, we will continue to use the TE as the scenario of VRA,

eeping in mind that most of our algorithms has a much more

eneral usage potential. 

. Overlay Optimization 

For the Overlay Optimization [14] we make the assumption that

nd-to-end tunnels are already set up, using MPLS-TE for example,

nd OSPF ECMP is deployed over this overlay. This also means that

e allow several paths between a source–destination pair, but only

ermit traffic split at the ingress nodes . 

A sample scenario is plot in Fig. 5 (a). In this simple transit net-

ork there are three edge routers A, B and C , and a full mesh MPLS

verlay is realized between them, containing two paths per router

air. This MPLS overlay, in turn, is seen as an IP topology deployed

n top, which runs plain OSPF as a routing protocol. Easily, if the

deal traffic splitting ratios are like the ones given in the figure,

hen this traffic allocation is impossible to implement with ECMP.

ith the proposed technique, however, we can set up 4 virtual

inks (one between A − B and three between A − C) to obtain ex-

ctly the required splitting. Note, the phrase “virtual path” could
e more appropriate in this case, but for simplicity we continue to

all them virtual links. 

The beauty of the Overlay Optimization is that traffic splitting

nly occurs at the source nodes, meaning that the demands can be

reated separately from each other. For example, adding a virtual

ink to one of the A − B overlay link does not affect the transmis-

ion of the other demands in any way. 

The Overlay Optimization can also be used in the more gen-

ral case, when only a capacitated network and the demands are

iven, and we can assume the ability of setting up (possible par-

llel) end-to-end tunnels. In this case we first have to calculate a

et of end-to-end tunnels, then use the VRA Overlay Optimization

ethod over these paths. The major steps of our proposed algo-

ithm are shown in Fig. 5 (b). 

The LP (Linear Program) for the multi-commodity flow problem,

hich allows branching [26] , can be solved in polynomial time and

upplies the per link per demand traffic volumes as the primal so-

ution. The next step is to combine these per link traffic volumes

nto end-to-end routes: generally more than one route for a de-

and, each with possibly different traffic share. This is called path

ecomposition (or subflow decomposition), which can be done in

everal ways, resulting in higher or lower total number of routes.

here are polynomial time algorithms, like SimPol proposed in [27] ,

ut finding the minimal number of routes is a strongly NP-hard

roblem [28] , which cannot even be approximated arbitrarily well

29] . 

The final, and for now the most important step is denoted by

RA-1N-1D in the figure, which stands for “VRA for One Node,

ne Demand”. Indeed, as explained above, here each demand can

e treated separately, and splitting only occurs at their sources.

his means that the VRA problem can be decomposed into D inde-

endent VRA-1N-1D problems, easing the underlying mathematical

roblem substantially. 

Using the method summarized in Fig. 5 (b) we can compare the

verlay Optimization with the other techniques, as described in

he Evaluation section. 

.1. VRA for One Node, One Demand 

This subsection is devoted to solving the VRA-1N-1D problem,

hich is a crucial part of the Overlay Optimization. We start with

 precise problem definition. 
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Table 2 

VRA-1N-1D notations. 

k Number of outgoing links used 

g 1 , g 2 , . . . , g k ∈ Z + Desired traffic volume per outgoing links 

G 0 = 

∑ k 
i =1 g i Total traffic volume 

h 1 , h 2 , . . . , h k Actual traffic volume per outgoing link 

U i = h i /g i Error on the i th outgoing link 

U = max i U i Error of a virtual resource allocation 

e 1 , e 2 , . . . , e k Number of allocated links (physical and virtual together) 

E = 

∑ k 
i =1 e i Total number of allocated links 

Q ∈ Z + Upper bound on the total number of links 
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3.1.1. Problem definition 

We are given a single node, where a single demand has to be

split. It is supposed to use k outgoing links (or paths/tunnels, but

for simplicity we will use “link” in the remainder of this section),

each with g 1 , g 2 , . . . , g k desired traffic volume. We can safely sup-

pose that g i ∈ Z 

+ . Furthermore let G 0 = 

∑ k 
i =1 g i (see Table 2 for a

list of notations). 

Our objective is to share the traffic over the outgoing links us-

ing OSPF ECMP, such that the actual h 1 , h 2 , . . . , h k subflow values

that emerge are as close as possible to the nominal g 1 , g 2 , . . . , g k 
subflow volumes. Here, “closeness” between the i -the subflows is

defined as the per link error U i = h i /g i , and the ultimate error met-

ric to be minimized ( U ) is the maximum of the per link errors. 2 

Note that this time we compare the actual traffic to the desired

traffic volume, not to the link capacities (MLU). The reason for this

is that VRA-1N-1D is just a part of the Overlay Optimization, which

only focuses on realizing the traffic split rate given by { g i }. This ap-

proach also makes the VRA-1N-1D reusable in other resource pool-

ing schemes, like WCMP (SDN) and Fibbing, as described in the Re-

lated Works section. Certainly the MLU metric can be used for the

Overlay Optimization as a whole, as shown in Section 5 . 

To reach our objective, we apply virtual links parallel to the

physical ones. Let e i denote the total number of (virtual and phys-

ical) links in place of an existing link, and E = 

∑ 

i e i for the total

number of allocated links. To save space in this paper, we only ex-

amine the case without link disabling possibilities (i.e., no “Path

Exclusion”: e i > 0). 

Applying the equal-split principle of OSPF ECMP we get: 

h i = G 0 
e i ∑ k 

j=1 e j 
= 

G 0 e i 
E 

, i = 1 , . . . , k 

and 

 = max 
i 

h i 

g i 
= max 

i 

G 0 e i 
Eg i 

. 

As described in Section 2.2 , the total number of outgoing links

for a demand is limited in the practical router implementations.

Consequently, we use the Bounded total resources model here, re-

quiring E ≤ Q . 

3.1.2. Bounds on the error 

Let us examine the theoretical bounds on the error, starting

with a lower limit: 

Lemma 1. U ≥ 1 . 

Proof. By contradiction: U < 1 means ∀ i : G 0 e i /( Eg i ) < 1, i.e.,

G 0 e i < Eg i . Summing these over i yields: G 0 �i e i < E �i g i , i.e.:

G 0 E < EG 0 . �
2 Note that we refer to U i and U as “errors”, but in fact they represent actual-to- 

required traffic ratios. Usually zero or close-to-zero errors are preferred, but in this 

case U = 1 is the ideal condition. 

c  

c

T  

i

Easily, if the number of links are unlimited, U = 1 can always

e reached: 

emma 2. If Q ≥ G 0 then ∃ { e i } s.t. U = 1 . 

roof. Using e i = g i means E = G 0 and U i = G 0 e i / (Eg i ) = 1 ∀ i . �

There is a simple upper bound on the error, which will be use-

ul later on: 

emma 3. U ≤ G 0 . 

roof. Since g i ≥ 1 (as g i ∈ Z 

+ ) and e i ≤ E , ∀ i : U i = G 0 e i / (Eg i ) ≤
 0 . �

A stronger upper bound is: 

emma 4. U ≤ G 0 
min i g i 

. 

roof. Similarly to the previous proof, ∀ i : U i = G 0 e i / (Eg i ) ≤ G 0 /g i .

herefore U = max i U i ≤ max i G 0 /g i = G 0 / min i g i . �

This latter bound is also applicable if the desired traffic split

atio is given by real numbers in the form of { γ i }, 
∑ 

i γi = 1 . ( γi =
 i /G 0 can be used if integer g i ’s are given.) In this case the bound

s U ≤ 1/min i γ i . 

The final remark on the error limits is about large G 0 ’s: 

emma 5. If G 0 is unbounded and E is bounded by a finite Q, then U

an be arbitrarily high for any Q > 2 . 

roof. Let k = 2 , g 1 = 1 , g 2 = x, s.t. x > Q(x ∈ Z ) . Then G 0 = x +
 and the optimal allocation of links is e 1 = 1 , e 2 = Q − 1 . The

ink traffic volumes are h 1 = (x + 1) /Q, h 2 = (x + 1)(Q − 1) /Q . The

rrors are U 1 = (x + 1) /Q, U 2 = (x + 1)(Q − 1) / (Qx ) . Since (Q −
) /x < 1 , U 2 < U 1 , meaning that U = U 1 , i.e.: U = (x + 1) /Q, which

an be arbitrary high, as Q is fixed and x is unbounded. �

.1.3. Optimal solution 

Now we answer the question: which virtual link allocation min-

mizes the error? As there are only finite link allocations due to

he constraint E ≤ Q , a brute-force search might be a possibility. To

heck its validity first let us cont the number of possible alloca-

ions: 

emma 6. The number of possible VRA-1N-1D allocations are 
(

Q 
k 

)
. 

roof. We have to dispense Q − k virtual links between k + 1

laces: the first k places are the k physical links, and the last one is

 place for the unused virtual links (allowing E < Q ). This is a com-

ination with repetitions with the number of possibilities being:
(Q−k )+(k +1) −1 

(k +1) −1 

)
= 

(
Q 
k 

)
. �

This means, that for small Q values (like Q < 30 , . . . , 35 ) a brute

orce search may be feasible, but not for much larger ones. For

he given example of OSPF-TE Q ≤ 16 is probably enough in most

ractical cases, but VRA-1N-1D can be used in other scenarios (like

DN), where Q (representing the maximal rule number) could be

n the order of thousands as well. Therefore we show an iterative

lgorithm that can solve the link allocation problem in pseudo-

olynomial time. 

Refer to Algorithm 1 that, for a given α, k , { g i } and E , checks

hether or not it is possible to assign the links with U ≤α. If the

ssignment is feasible, then it also provides a solution and indi-

ates if it is the only solution. We prove that Algorithm 1 provides

orrect result: 

heorem 7. VRA-1N-1D-Fixed-E can be solved with U ≤α if and only

f 
∑ k 

i =1 x i ≥ E, where x i = 

⌊ 

αg i E 
G 0 

⌋ 

. 
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Algorithm 1 VRA-1N-1D-Fixed-E. 

Input: α, k , { g i } , E 
Output: f easibl e , singl e _ sol ution , { e i } 

for i ← 1 . . . k do 

x i ← 

⌊ 

αg i E 

G 0 

⌋ 

(1) 

end for 

if 
∑ k 

i =1 x i < E then 

f easible ← false 

else if 
∑ k 

i =1 x i = E then 

f easible ← true 

singl e _ sol ution ← true 

else 

f easible ← true 

singl e _ sol ution ← false 

end if 

if f easible = true then 

Solve the following set of equations to find an { e i } : 
k ∑ 

i =1 

e i = E; 1 ≤ e i ≤ x i (e i ∈ Z , i = 1 , . . . , k ) (2) 

end if 
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Algorithm 2 VRA-1N-1D-Bin-Search. 

Input: k , { g i } , E 
Output: { e i } , U 

lower ← 1 . 0 

upper ← G 0 

while upper − lower ≥ 1 / (G 0 E) do 

α ← (upper + lower) / 2 

if VRA-1N-1D-Fixed-E ( α, { g i } , E) finds a solution then 

upper ← α
else 

lower ← α
end if 

end while 

{ e i } ← VRA-1N-1D-Fixed-E ( α, { g i } , E) {Lower limits are not valid 

settings, upper limits are valid. We need a valid setting} 

Calculate U from { g i } and { e i } 
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0 
roof. For any correct solution { e i }, for all i = 1 , . . . , k : 

≥ U = max 
j=1 ... k 

h j 

g j 
≥ h i 

g i 
= 

G 0 e i 
Eg i 

, 

hus 

αg i E 

G 0 

≥ e i 

nd since e i ∈ Z , 

αg i E 

G 0 

≥
⌊ 

αg i E 

G 0 

⌋ 

= x i ≥ e i . (3) 

o if �x i ≥ E , then we can find e i values such that (2) is satisfied,

nd then due to (3) we will have a valid assignment, where U ≤α.

On the other hand, if �x i < E , then we cannot find e i ’s such that

2) is satisfied, and U ≤α. To see this, suppose the opposite. Then

3) still must be true, and then the supposed 

∑ k 
i =1 x i < E contra-

icts 
∑ 

e i = E in (2). �

As calculating x i ’s according to (1) is simple (i.e., O (1)) and solv-

ng (2) can be done in O ( k ), Algorithm 1 has a complexity of O ( k ). 

Next, we use this VRA-1N-1D-Fixed-E algorithm in a binary

earch framework for finding a minimal α that is satisfiable, given

 i ’s and E . To do so, we need a lower and an upper bound on U . For

his, we shall use 1 and G 0 , respectively, as given by Lemmas 1 and

 . ( Lemma 4 could have been used, too.) To stop the iteration, we

lso need a lower bound on | U − U 

′ | , where U and U 

′ belong to

wo different link allocations, { e i } and { e ′ 
i 
} . The following lemma

elps: 

emma 8. Consider two different link allocations, { e i } and { e ′ 
i 
} , both

sing a total number of E links. For the associated errors, U and U 

′ , if
 � = U 

′ then | U − U 

′ | ≥ 1 / (G 0 E) . 

roof. We can suppose U > U 

′ . Then 

 − U 

′ = max 
i ∈ 1 ... k 

U i − max 
j∈ 1 ... k 

U 

′ 
j ≥ min 

i, j∈ 1 ... k 
U i − U 

′ 
j = min 

i, j∈ 1 ... k 
G 0 e i 
Eg i 

−
G 0 e 

′ 
j 

Eg j 
= 

= min 

i, j∈ 1 ... k 
G 0 

E 

e i g j − e ′ 
j 
g i 

g i g j 
≥ min 

i, j∈ 1 ... k 
G 0 

E 

1 

g i g j 
= 

G 0 

E 

1 

G 

2 
0 

= 

1 

G 0 E 
, 

ince e i g j − e j g i is a positive integer. �
The binary search method is described in Algorithm 2 . This al-

orithm runs in log (G 

2 
0 E) steps, yielding an overall in O (k log (G 

2 
0 E))

olynomial complexity. 

What remains to be done is to actually find the value of E that

ields the smallest error subject to the given Q . This is done by the

imple Algorithm 3 . Note that this is theoretically not a polynomial

lgorithm 3 VRA-1N-1D. 

nput: k , { g i } , Q 

utput: { e i } , U(E) , U 

best _ U ← G 0 + 1 . 0 

for E ← k . . . Q do 

{ current _ e i } , current _ U ← VRA-1N-1D-Bin-Search ( { g i } , E) 

if current _ U < best _ U then 

best _ U ← current _ U 

{ best _ e i } ← { e i } 
end if 

U(E) ← best _ U {used in Section 3.1.4} 

end for 

U ← best _ U 

{ e i } ← { best _ e i } 

ime algorithm as the complexity is O (Qk log (G 

2 
0 
Q )) , which is not

olynomial in Q , as its size is log ( Q ). For a fixed Q , however, as it is

he case in practice, the algorithm is indeed polynomial. Moreover,

his algorithm easily tractable for all practical use cases, even if Q

s in the range of thousands or even millions. 

.1.4. Other problem formulations 

The algorithms described above can be used, with minor mod-

fications, to solve a set of related problems. We list three such

roblems here along with the proposed solutions. 

inimizing the link number. We have just answered the question

How to allocate the virtual links, if we want to minimize the error

ith a given link limit ( Q )?” Another, similar question might be:

How to allocate the virtual links, if we want to minimize the total

umber of links ( E ) with a given error limit ( U lim 

)?”

The solution is simple. Consider U ( E ) generated by

lgorithm 3 (VRA-1N-1D). It is a weakly decreasing function,

hose domain is a subset of the positive integers. The answer to

he question is the E , where U(E − 1) > U lim 

and U(E) ≤ U lim 

. 

The number of loop cycles until this algorithm finds the suit-

ble E depends on U lim 

and on the shape of U ( E ). Nevertheless,

emma 2 guarantees that E = G 0 is enough in the worst case as

ell, thus the complexity is O (G 0 k log (G 

3 )) . 
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Fig. 6. Peer-Global Optimization with ILP. 

Fig. 7. Multi-demand constraint example. 

Fig. 8. Peer-Local Optimization. 
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Simultaneously minimizing the error. The next, somewhat harder

question is about solving several VRA-1N-1D problems concur-

rently: “Given N independent nodes, each with a set of desired

traffic volume per outgoing links ({ g ni }), how to allocate virtual

links at each node so that the total number of physical and vir-

tual links of all the nodes together is limited ( Q ) and the goal is to

minimize the error over all the links of all the N nodes?”

Although in our OSPF-TE example this problem is not directly

addressed, in other use cases, just like the WCMP, where the rule

number is constrained, this is indeed a valid an important ques-

tion, certainly with “rules” instead of “links”. A simple greedy al-

gorithm (similar to the one mentioned in Section 5.1 of [10] ) is

optimal in this case, as described in Algorithm 4 . We use Q 1 , Q 2 ,

Algorithm 4 N-VRA-1N-1D. 

Input: { k i } , { g i j } , Q 

Output: { e i j } , { Q i } , U 

for i ← 1 . . . N do {initialization} 

U i , U i (E) ← VRA-1N-1D ( k i , { g i j } , Q) 

Q i ← k i 
end for 

while 
∑ 

Q i < Q do {greedy algorithm} 

i = arg max U i {if there is more than one such i , select any of

them} 

Q i ← Q i + 1 

end while 

for i ← 1 . . . N do 

{ e i j } ← VRA-1N-1D ( k i , { g i j } , Q i ) 

end for 

..., Q N links for each problem, s.t. 
∑ 

Q i = Q, minimizing max U i ( Q i ).

Theorem 9. Algorithm 4 finds an optimal solution. 

Proof. We prove by contradiction. Suppose Algorithm 4 results in

{ Q i } and U , and yet there is { R i } with U 

′ < U , s.t. 
∑ 

R i ≤
∑ 

Q i =
Q . Because of the last condition, and because ∃ i : R i � = Q i there

is at least one j , s.t. R j < Q j . Due to the nature of the algorithm

and the nonincreasing property of U j : U j (Q j − 1) ≥ U ≥ U j (Q j ) .

On the other hand U 

′ ≥ U j (R j ) ≥ U j (Q j − 1) ≥ U, which contradicts

U 

′ < U . �

The complexity of Algorithm 4 is O (NQk log (G 

2 
0 
Q ) + Q ) , where

k = max k i , G 0 = max G 0 i . Note that the algorithm can be imple-

mented more efficiently by calculating U i ( E ) only when it is needed

for the computation of arg max , resulting in a complexity of

O ((Q + N) k log (G 

2 
0 
Q )) . 

Simultaneously minimizing the link number. The last question is an-

other formulation of solving parallel VRA-1N-1D problems: “Given

N nodes with demands, how to allocate the virtual links at all of

them, if we want to minimize the total sum of the links of all the

nodes given a limit on the highest error within them?” Neverthe-

less, this question is trivial: the number of links should be mini-

mized independently for each problem, as described in the begin-

ning of this subsection. 

4. Peer Optimization 

The Peer Optimization approaches have been briefly introduced

in Section 2.3 and are described in full detail here. In this sce-

nario we are given a capacitated network and a set of demands

(see Fig. 6 ). The optimization task is to determine for each link a

weight and the number of parallel virtual links, which, if fed to-

gether to OSPF, will result in minimal maximum link utilization.

We will refer to this kind of problems as Virtual Resource Alloca-

tion, Peer Optimization (VRA-PO) problems. 
Just as before, here we have a limit on the number of usable

inks per node as well, using the Bounded total resources model. In

his scenario, however, the limit exists per node per demand , in line

ith the requirement, that a single traffic flow cannot be split onto

oo many outgoing links. As an example, consider the capacitated

etwork and the two demands shown in Fig. 7 (a). Clearly, for the

ptimal routing all the links have to be fully utilized, requiring a

raffic split of 2: 1 and 1: 3 for the demands at node A . Suppose

e are allowed to use at most Q = 4 outgoing links per node per

emand. We can solve the problems by setting up virtual links as

hown in Fig. 7 (b). Although this way six links are leaving node A ,

one of the demands are split onto more than four, obeying the

imit. 

.1. Peer-Local Optimization 

As introduced in the VRA Overview section, the Peer-Local Op-

imization works at the node level, consequently its complexity is

ubstantially lower compared to the Peer-Global Optimization. The

verview of its operation is shown Fig. 8 (a). 

The first step is the same as for the Overlay Optimization: solve

he multi-commodity LP with splittable flows, which can be done

uickly. The primal solution provides the per link per demand traf-

c volumes, just as before, but in this case we also extract the dual

olution. These contain the link weights (minus a constant r ) [18] ,
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Table 3 

VRA-1N-mD notations. 

G = (g i j ) ∈ Z D ×k , g i j ≥ 0 Desired traffic volume per outgoing links per demands 

� = (γi j ) ∈ R D ×k Row-normalized version of G 

� = (σi j ) ∈ { 0 , 1 } D ×k σi j = 0 if g i j = 0 , σi j = 1 otherwise 

G i = 

∑ k 
n =1 g in Total traffic volume of demand i 

h ij Actual traffic volume per demand per outgoing link 

e 1 , e 2 , . . . , e k Number of allocated links (physical and virtual together) 

E i = 

∑ k 
n =1 e n σin Total number of parallel links on the shortest paths for demand i 

U i j = e j / (γi j E i ) g i j > 0 Per demand per link error 

U = max γi j > 0 U i j Per node error 

Q ≥ E i (∀ i ) , Q ∈ Z + Upper bound on the number of usable links per demand 
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ecessary to OSPF-TE. The next and final step is to solve the VRA-

N-mD problem for each node independently. VRA-1N-mD stands

or the “One Node and Multiple Demand version of the Virtual

esource Allocation”, and provides locally optimal virtual link set-

ings, as detailed in Section 4.2 below. 

It has to be noted, however, that the link weights gained this

ay are not always ready to use by OSPF ECMP. The good news is

hat according to these weights each link that has nonzero traffic

rom a demand will be part of a shortest path between the cor-

esponding source and destination nodes. The bad news, however,

s that the opposite direction is not true: there can be links be-

onging to a shortest path of a demand, that has zero traffic on

t from that demand. It has been proven in [30] that by carefully

hanging the link weights (without modifying the primal solution)

his effect can be minimized (which the authors call minimal short-

st path representation ), but the ideal case, where all links of each

hortest path have nonzero traffic for the corresponding demand

called perfect shortest path representation ) is not achievable in gen-

ral. 

Unfortunately, VRA-1N-mD is not able to handle a non-perfect

hortest path representation, where a link on a shortest path has

ero traffic from the corresponding demand. One workaround to

his problem is what we followed in our simulation evaluation, to

ivert a minimal amount of traffic to these links. This is denoted

y the dashed arrow in Fig. 8 (a). 

.2. VRA for one node, multiple demand 

In the VRA-1N-mD version of the problem we deal with a single

ode and several demands routed through it. Consider the exam-

le shown in Fig. 8 (b) with the link capacities and the demands.

uppose identical link weights. It is easy to see that at node A the

rst flow requires a 33–67% percent split, while the second one

eeds a 50–50% divide for optimal network performance. These re-

uirements are contradictory: for the first demand a virtual link

long A − C is preferred, while the second is routed best without

ny virtual link. It is easy to see that both cannot be done at the

ame time, meaning that there is no perfect solution. Nevertheless,

 setup with the minimal error can indeed be selected. In this sub-

ection, we examine, how. 

The general problem is formulated below. 

.2.1. Problem definition 

The formal definition of the problem, using the notations sum-

arized in Table 3 , is as follows. For a network node A we are

iven a 

 = 

⎡ 

⎢ ⎢ ⎣ 

g 11 g 12 . . . g 1 k 
g 21 g 22 . . . g 2 k 
. . . 

. . . 
. . . 

. . . 
g D 1 g D 2 . . . g Dk 

⎤ 

⎥ ⎥ ⎦ 

atrix, representing how the demands 1 , . . . , D arriving at node A

hould be split among outgoing links 1 , . . . , k : g ij is the traffic vol-
me that belongs to demand i and should be sent out on link j.

 ij ’s are non-negative integers. We can assume for simplicity that G

ontains no all-zero rows and columns. Later on we will also use

he row-normalized and the signum versions of G: 

i j = 

g i j ∑ k 
n =1 g in 

; σi j = 

{
0 if g i j = 0 

1 if g i j > 0 

. 

As an example we show these matrices for the simple instance

hown in Fig 8 (b): 

 = 

[
1 2 

1 1 

]
, � = 

[
1 / 3 2 / 3 

1 / 2 1 / 2 

]
, � = 

[
1 1 

1 1 

]
. 

We aim to set up e j number of parallel links (including the

hysical and virtual ones) for every outgoing link j of node A . Our

oal is to find e 1 , . . . , e k , such that an error metric is minimized. 

An important question is if we allow setting the number of

inks to zero on an outgoing link (having e j = 0 for some j ), mean-

ng that we are not setting up parallel links, but instead disabling

 physical link, in a similar fashion to Overlay Optimization with

ath Exclusion. Whether this can be performed or not is a net-

ork administration issue, and is outside the scope of this paper.

evertheless, due to space constraints, in the rest of this paper we

uppose that such link disabling is not realizable. 

Let E i = 

∑ k 
n =1 e n σin be the total number of parallel links on the

hortest paths for the given demand (i.e., we only sum those e j ’s,

here the corresponding g ij is not zero), and G i = 

∑ k 
n =1 g in is the

ffered load for the i th demand. 

According to ECMP’s equal-split rule, the per demand traffic

olume on an outgoing link is: 

 i j = 

e j G i 

E i 
. 

For the same reasons as described at VRA-1N-1D, here we in-

roduce the per demand per link error , defined as the ratio of the

ransmitted traffic and the offered volume on a given outgoing link

 , for a given demand i , but it is only defined for the cases, where

he offered traffic is non-zero: 

 i j = 

h i j 

g i j 

= 

G i e j 

g i j E i 
= 

e j 

γi j E i 
(∀ g i j > 0) . 

he per node error is defined as the maximum of the per link per

emand errors: 

 = max 
i, j: γi j > 0 

e j 

γi j E i 
, 

hich we aim to minimize in the rest of this section. 

To complete the previous example, suppose that e 1 = 2 , e 2 = 3 ,

hich yields: 

(U i j ) = 

[
6 / 5 9 / 10 

4 / 5 6 / 5 

]
. 

his results in U = 6 / 5 , which can be shown to be actually the

inimal error for the given problem. 
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Like in the Overlay Optimization Section, below we will study

the problem variant with limited number of links used for traf-

fic splitting. We are using the Bounded total resources model

( Section 2.2 ), but here the upper limit is applied on a per demand

basis (by requiring E i ≤ Q for all i = 1 , . . . , D ), as described at Fig. 7 .

4.2.2. Bounds on the error 

We start again with the examination of the theoretical bounds

on the error. The first statement is analogous to Lemma 1 , giving a

lower limit: 

Lemma 10. U ≥ 1 . 

Proof. We will prove a stronger claim: in every row of G there is

an element for which the per link per demand error is at least

one. The proof is by contradiction: suppose this is not the case

for the i -th row. This means that for all j = 1 , . . . , k, where σi j =
1 : U i j = e j / (γi j E i ) < 1 , that is e j / E i < γ ij . Summing these yields∑ 

j=1 , ... ,k : σi j =1 

e j 
E i 

< 

∑ 

j=1 , ... ,k : σi j =1 γi j ⇒ 

E i 
E i 

< 1 , which is clearly a

contradiction. �

Note that for some G matrices U = 1 is attainable by properly

selecting e j ’s, as for instance: 

G = 

[ 

1 2 4 0 0 

0 3 6 1 0 

0 0 30 5 1 

] 

, 

e = 

[
15 30 60 10 2 

]
. 

For some G ’s, however, there is no such e j setting, like in the pre-

vious example: 

G = 

[
1 2 

1 1 

]
. 

Next, we give an upper bound on the error: 

Lemma 11. 

 ≤ 1 

min i, j: γi j > 0 γi j 

Proof. 

 i j = 

e j 

E i γi j 

= 

e j 

( 
∑ k 

n =1 e n σin ) γi j 

≤ 1 

γi j 

, 

from which the theorem follows. �

Lemma 12. There is no universal (G-independent) upper bound on

the error. 

Proof. For any M > 0 the following G matrix results in U = M: 

G = 

[
1 2 M − 1 

2 M − 1 1 

]
, � = 

[
1 

2 M 

2 M−1 
2 M 

2 M−1 
2 M 

1 
2 M 

]
. 

Easily, the optimal solution is e 1 = e 2 = 1 , for which U = U 11 =
 22 = 

1 / 2 
1 / (2 M) 

= M. �

4.2.3. Unlimited total number of links 

After exploring the theoretical limits, we try to find the optimal

link allocation. We start with a simplified version of the problem,

where the maximum allowed link constraint is released, i.e., we al-

low unlimited number of parallel links to be used simultaneously.

Hence, for simplicity we will use the normalized version of the link

number e j , denoted by f j to avoid confusion: f j ∈ R 

+ , 
∑ k 

j=1 f j = 1 . 
otes on the types of the solution. We now show two, somewhat

urprising observations about the types of the optimal solution. Al-

hough the complete proofs are omitted to save space, we highlight

heir most important steps below. 

heorem 13. Even if G contains integers only, the optimal solution

ay contain irrational numbers. 

ketch of Proof. Consider the following input matrix: 

 = 

[
2 1 0 

2 2 1 

]
; � = 

[
2 
3 

1 
3 

0 

2 
5 

2 
5 

1 
5 

]
. 

t can be proven that for this matrix U 12 = U 21 = U 23 and U 11 < U 21 ,

 22 < U 12 . For the optimal f 1 , f 2 , f 3 , expanding and solving the

 12 = U 21 = U 23 system of equations and using that f 1 , f 2 , f 3 > 0 and

hat f 1 + f 2 + f 3 = 1 , we get: 

f 1 = 

2 

5 

(7 −
√ 

34 ) , f 2 = 

1 

5 

(−16 + 3 

√ 

34 ) , f 3 = 

1 

5 

(7 −
√ 

34 ) . 

learly, the optimal f 1 , f 2 , f 3 are irrational in this case. �

This theorem shows that there are cases of the VRA-1N-mD,

here using finite number of parallel links the per node error will

ever be minimal . 

heorem 14. There are VRA-1N-mD problems whose optimal solution

ontains at least one f j that cannot be written in a finite form using

nteger constants and the usual + , - , · , / and the n-th root operators

 n ∈ Z 

+ ) only (i.e., cannot be solved by radicals). 

ketch of Proof. Consider the following matrix: 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 0 0 0 

6 1 0 0 0 0 

6 6 1 0 0 0 

6 6 6 1 0 0 

6 6 6 6 1 0 

6 6 6 6 6 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. 

t can be proven that for this case, the maximal error terms for the

ptimal solution are U 61 = U 22 = U 33 = U 44 = U 55 = U 66 . This leads

o a fairly simple system of equations on f 1 , . . . , f 6 . From these

quations f 2 , . . . , f 6 can be eliminated, and what remains is a poly-

omial of f 1 : 

23 521 f 5 1 − 16 980 870 f 4 1 + 118 664 280 f 3 1 −
− 390 577 680 f 2 1 + 934 673 904 f 1 − 336 117 600 = 0 (4)

ccording to the Galois theory, a polynomial equation can be

olved by radicals if and only if its Galois group is a solvable group.

or the polynomial given in (4) , the mathematical software Maple

31] have determined that its Galois group is the symmetric group

 5 . This group, consisting of 120 elements, is not solvable, meaning

hat (4) cannot be solved by radicals. �

This means that in general finding a closed-form solution (using

nlimited number of links) for VRA-1N-mD is not possible , and in-

tead some kind of approximation algorithm should be applied. 

n LP-based solution. We now consider the problem as a linear op-

imization task. Due to the previous results we cannot write a Lin-

ar Program that solves it in one step. Nevertheless, we can easily

et up an LP that computes { f j } while keeping the per node error

nder given α constant. (Certainly, for too small α-s, the LP will

ot have a solution.) 

We do this by enforcing each per demand per link error term

o be less than or equal to α: 

f j 

γi j 

∑ k 
n =1 σin f n 

≤ α, 
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hich can be rearranged as: 

 ≤
k ∑ 

n =1 

σin f n −
f j 

γi j α
, 

hich leads to the LP 1 . 

Note that for any solution { f j } that satisfies (7), { cf j } does so

s well, where c > 1. Therefore the objective function (6) has been

dded, mainly for aesthetic reasons, as for the unlimited case any

 f j } ’s satisfying (7) are equally good. Note also that (5) contains

 j ≥ 1, which is responsible for enforcing f j > 0. This may result in

arge f j ’s, but after obtaining them, they can be normalized to one

y dividing by their sum. 

Now we can use a binary search for the smallest α, for which

P 1 is solvable, as described in Algorithm 5 , and this way ap-

lgorithm 5 VRA-1N-mD, Unlimited Links. 

nput: G , εU 

utput: { f j } 
lower ← 1 . 0 {See Lemma 10} 

upper ← 1 / ( min i, j γi j ) {See Lemma 11} 

while upper − lower ≥ εU do 

α ← (upper + lower) / 2 

if solve_LP 1 ( α, G ) finds a solution then 

upper ← α
else 

lower ← α
end if 

end while 

f ← solve_LP 1 ( upper, G ) {Lower limits are not valid settings,

upper limits are valid. We need a valid setting} 

roximate the optimal solution arbitrarily. Note that εU shows how

lose we want to get to the optimal error. Providing it is necessary

ue to the consequences of Theorem 13 . A typical value would be

U = 10 −8 . 

About the complexity of Algorithm 5 : it is based on a linear

rogram that contains no integer variables, hence it can be solved

n polynomial time. The question is, how many times is this LP

un? Algorithm 5 does a binary search on the [1, 1/min i, j γ ij ] in-

erval, until it reaches the optimal solution with an error less than

U . For this log 2 (1/( εU min i, j γ ij )) steps are enough, meaning that

lgorithm 5 runs in polynomial time. 

To sum up, we have an iterative solution for the unlimited link

ersion of the VRA-1N-mD problem, which quickly converges to the

ptimal setting . According to Theorem 14 , a significantly better so-

ution cannot be given. 

.2.4. Limited total number of links 

Now we give solutions to the original VRA-1N-mD problem,

hich has limit on the outgoing links used in parallel. We are
earching for positive integers { e j } that minimize the error, on the

onditions E i ≤ Q(i = 1 , . . . , D ) . 

LP-based solution. Linear Program 1 can be easily modified to LP 2

o suit the limited total number of links case. Note that the objec-

ive function might be omitted here as well, it only forces the ILP

olver to select a solution with the fewest total number of links . 

Also note that LP 2 is actually an Integer Linear Program (ILP),

nd thus although it is a simple and elegant way to find the op-

imal link setting, the polynomial running time is not guaranteed

nymore. Just as before, LP 2 works for a fixed α, but using it in

lgorithm 6 solves the VRA-1N-mD problem. 

lgorithm 6 VRA-1N-mD by ILP. 

nput: G , Q , εU 

utput: { e j } 
This is the same as Algorithm 5, but with solving LP 2 instead of

LP 1. 

 heuristic solution. We provide a suboptimal, but faster heuris-

ic alternative to the ILP-based solution in Algorithm 7 . The idea

lgorithm 7 VRA-1N-mD Heuristic. 

nput: G , Q , εU 

utput: { e j } 
{ f j } ← Algorithm 5 ( G , εU ) 

{ e j } ← Algorithm 3* ( { f j } , Q) 

s very simple: reduce VRA-1N-mD to VRA-1N-1D. For the reduc-

ion we essentially solve the VRA-1N-mD problem with unlimited

umber of links. 

A note on Algorithm 3 ∗ (referred at Algorithm 7 ): Algorithms 1 –

 require { g i } as input, but internally they only use it in their nor-

alized form: g i / G 0 ( G 0 = 

∑ k 
j=1 g j ). A modified versions of these

lgorithm, marked by an asterisk, take g i / G 0 as input. This also af-

ects the complexity: instead of O (Qk log (G 

2 
0 E)) here, by applying

emma 11 , we have O ( Qk log (1/( εU min i g i / G 0 ))). In Algorithm 7 we

rovide { f j } as this input. 

Observe that in this heuristic we effectively apply the constraint
 k 
j=1 e j ≤ Q instead of the less restrictive E i ≤ Q , which might yield

uboptimal results. This can be viewed as the price to pay for the

horter running times. 

Considering the complexity of Algorithm 7 : the first step

uns in polynomial time, as it is a (non-integer) linear pro-

ram embedded in a binary search. The second step runs in

 ( Qk log (1/( εU min f j ))). Although this is only pseudo-polynomial in
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k and Q , and we have not established a lower bound on f j , on prac-

tical problem instances we found Algorithm 7 to be much faster

than Algorithm 6 [15] . 

4.3. Peer-Global Optimization 

In Section 2 the Peer-Global Optimization has been briefly in-

troduced as a solution to the VRA Peer Optimization (VRA-PO)

problem. Unlike the Peer-Local Optimization, this approach has the

potential to find the optimal solution to the problem. To do so, we

propose a single Integer Linear Program, called VRA Peer-Global

ILP. The ILP itself is fairly long, therefore we present it separately in

Appendix A . Although it does provide the optimal solution, it uses

plenty of auxiliary variables, mainly integers, making it hardly us-

able in most of the practical cases. Nonetheless, Section 5 contains

examples where this ILP had been successfully solved hundreds of

times. 

Having a slow ILP and the Peer-Local algorithms, which can be

viewed as heuristic solutions to the Peer-Global Optimization prob-

lem, the question naturally arises: is there a computationally effi-

cient, optimal solution of the VRA-PO problem? We show that the

answer is strongly negative, which justifies the importance of the

work and the results described previously. 

Our most important results about the computational hardness

on the VRA-PO problem are summarized below. These findings im-

ply that there are no solutions that are both computationally effi-

cient and optimal . As the detailed explanations of these results are

quite lengthy, the formal definitions, theorem statements and their

proofs has been moved to Appendix B . 

Our first result is that VRA-PO is NP-complete . Moreover, we

have found that the optimal solutions cannot even be efficiently ap-

proximated . First we state that no polynomial time algorithm exists

that approximates the optimum of VRA-PO better than a factor of

6/5. This means that the problem is not part of the PTAS (Polyno-

mial Time Approximation Scheme, [32] ) class, as it is not possible

to efficiently approximate the optimal solution within every con-

stant ratio. Having a single demand is a version of the problem,

which is similar in this respect, as we can prove that no polyno-

mial time algorithm exists that approximates the optimum better

than a factor of 18/17. 

The next and final result is the strongest one. The APX (mean-

ing “Approximable”) class is a collection of optimization problems

that can be approximated to some constant ratio. We have shown

that the VRA-PO problem is not part of the APX class, meaning

that no polynomial time algorithm can approximate the optimal solu-

tion within any constant ratio . 

5. Evaluation 

The negative results of the previous section state the hardness

of the VRA-PO in general. They, however, do not necessarily mean

that in practical networks no effective solution can exist. To see

how well our algorithms perform in realistic environments, we

have implemented a simulation framework, which is based on our

descriptive use case, the OSPF ECMP Traffic Engineering. The simu-

lator takes a capacitated network and a set of demands as inputs,

and solves the MLU minimization problem using several different

algorithms. 

The framework and the optimization algorithms have been im-

plemented in C++ using the powerful LEMON Graph Library [33] .

The embedded linear programs have been solved using the IBM

ILOG CPLEX Optimizer. 

5.1. Examined algorithms 

The following seven optimization approaches have been in-

cluded in the simulations: 
1. Overlay Optimization, as described in Section 3 . 

2. Overlay Optimization with Path Exclusion, see Sections 3 and

2.3.2 . 

3. Peer-Local Optimization using ILP, described in Sections 4.1 and

4.2.4 ( Algorithm 6 ). 

4. Heuristic Peer-Local Optimization, as shown in the same sec-

tions ( Algorithm 7 ). 

5. Peer-Global Optimization, outlined in Section 4.3 . 

6. Global Optimization, described in Section 5.1.1 below. 

7. OSPF Weight Optimization, as introduced in Section 2.3.1 , and

detailed in Section 5.1.2 below. 

At the Overlay and Peer Optimizations the bounds on number

f the virtual resources have been implemented slightly differently

han introduced in the previous sections. There the Bounded total

esources model has been used (see Section 2.2 ), by requiring E ≤ Q

nd E i ≤ Q , respectively. In the simulation the Bounded virtual re-

ources constraint has been implemented as E ≤ | S n | + R, where E

s the total number of links/paths used at a node, | S n | is the num-

er of (physical) outgoing links/paths of a node and R is the max-

mal number of virtual links/paths that can be installed per node.

he reason of this choice is that it makes the comparison of al-

orithms running at nodes with different outgoing physical links

asier. Also, in this case for the Peer Optimization scenarios R = 0

everts to the classical OSPF TE optimization problem without vir-

ual links, providing a meaningful comparison. 

Practical problems arose when the path decomposition module

n the Overlay Optimization algorithms (see Fig. 5 (b)) returned a

ath with very little traffic on it. In this case the VRA-1N-1D al-

orithm tried not to overutilize this path, which certainly provided

he local optimum for the VRA-1N-1D problem, but it was proven

o be highly suboptimal regarding the global MLU. To overcome

his issue, if a path was found whose traffic is less than 5% of the

otal demand, then it was deleted and its traffic was distributed

ver the rest of the paths, resulting in considerably lower MLU. 

Similarly, to avoid the same problem for the Peer-Local Opti-

ization algorithms, the case when a link is on a shortest path of

 demand ( σi j = 1 ), but it has very little traffic on it ( G i j < 10 −7 ,

r γ ij < 0.05), is treated exceptionally. In this situation the traffic

alue of the demand on the given link ( G ij ) has been risen at the

xpense of the other links. 

.1.1. Global Optimization 

Taking the capacitated network and the demands and solving

he related multi-commodity flow LP results in the optimal per link

er demand traffic . This serves as the first step of the Overlay Op-

imization and Peer-Local Optimization mechanisms, as described

arlier. If, by using an adequately sophisticated TE mechanism, the

emands could be routed perfectly according to the solution of this

P, then the theoretical minimal MLU could be reached. 

Accordingly, we have included a simple algorithm in our simu-

ation platform that treats the output of the multi-commodity LP

s the actual traffic values. These results will then serve as refer-

nce values, since no algorithm (neither Peer-, nor Overlay-based)

an perform better than this one. Furthermore, we will actually di-

ide the MLU’s of the algorithms by this optimal MLU to have a

ormalized value, which is independent of the actual link band-

idths and traffic volumes. 

The result of this optimization will be denoted in the charts as

lobal Optimum . Certainly, when displaying MLU values, the Global

ptimum will be constant 1.0 due to the normalization. 

.1.2. OSPF Weight Optimization 

The OSPF Weight Optimization problem is proven to be NP-hard

9] . In the same paper a link weight local search heuristic is pro-

osed, which have been implemented in an open source toolbox,
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Fig. 9. Global Optimization with TOTEM. 
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Table 4 

Resource consumption of the different algorithms. 

Average running times Average memory usages 

Abilene Pan-Eu Abilene Pan-Eu 

5 Algorithm 0.35 s 0.74 s 7 MB 9 MB 

TOTEM 5.98 s 18.1 s 4 MB 4 MB 

7 Algorithm 9m 37 s 9 h 49 m 46 MB 1.5 GB 
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alled TOTEM (TOolbox for Traffic Engineering Methods [34] , [35] ).

OTEM itself is a Java-based graphical, modular toolkit, and the al-

orithm described in [9] has been implemented in a C language

odule called IGPWO (Interior Gateway Protocol Weight Optimizer

36] ). Nevertheless, in the rest of this paper we will simply refer to

his algorithm as the “TOTEM” method (see Fig. 9 ). 

We have taken the source code of IGPWO module out of the

OTEM framework (version 3.2.1) and included in our simulations

o serve as a best-practice solution of the OSPF Weight Optimiza-

ion problem. To do so, the error function of TOTEM has been mod-

fied. The original implementation contained a convex, piecewise

inear cost function of the link load, which were summed over all

he links, whereas we simply used the maximum link utilization

s the error to be minimized. During the simulations we have used

he following settings: iteration number: 50 0 0 0, max link weight:

, random initial weights, minimum sampling rate: 0.001, maxi-

um sampling rate: 0.04, initial sampling rate: 0.02. 

.2. Simulation scenarios 

Two realistic network topologies had been simulated. The first

ne is the well known North American Abilene network topology,

hown in Fig. 10 (a). The second examined network is shown in

ig. 10 (b): it is a simplified Pan-European optical core network,

hich have been proposed in [37] . In both networks uniform link

andwidths of 100 units have been used. 

We had 5 simultaneous demands in each run. In each case the

ource and destination nodes were selected randomly, requesting

andom demand bandwidths with uniform distribution on the [5,

0] units interval. The maximal number of virtual links or paths

 R ) was varied for each setting between 0 and 8, inclusive. 

Due to the complexity of the ILP applied in the Peer-Global Op-

imization, it took up to several hours, or even days to run a sin-

le instance of simulation (consisting of 9 runs with R = 0 , . . . , 8 )

ith only 5 demands. Yet, these scenarios have been simulated

00 times (with all the 7 algorithms) on a high-performance com-

uter to decrease the variance of the results. 

.3. Simulation results 

The results are shown in Fig. 11 . The first two charts show the

LU as a function of R for the examined scenarios. 

For the Abilene network, TOTEM performed almost as good as

he Peer-Global Optimization for the no virtual link case, which is

ts theoretical lower bound. For R = 0 the Peer-Local and the Over-

ay Optimizations performed clearly worse than TOTEM, which is

o surprise: running a VRA algorithm without virtual resources

oes not make much sense. However, allowing only two virtual

inks per nodes the performance of the Overlay Optimization be-

omes as good as TOTEM’s, and as R grows, the Overlay Optimiza-

ion clearly overperforms TOTEM, getting as close as a few per-

ents to the Global Optimum. The Peer-Local ILP and Peer-Local

euristic algorithms performed the worst, only reaching the MLU

f TOTEM at R = 8 . Note, however, that both of these optimizations

re quick heuristics only. The Peer-Global Optimal MLU is well be-

ow TOTEM’s even for R = 1 , and it keeps decreasing as R increases,
nd almost reaches the Global Optimum for only R = 4 . It means,

hat the Peer Optimization approach does have a high potential,

ut the applied heuristics are not taking full advantage of this,

eaving space for future research for better ones. 

For the Pan-European scenario the results are similar. Note that

ere TOTEM performed significantly worse comparing to its theo-

etical limit. This is not surprising though, as TOTEM itself is just a

euristic optimization algorithm for an NP-hard problem. Here the

eer-Local Optimizations performed somewhat worse, yet the Peer-

lobal Optimization shows, that the theoretical Global Optimum is

ery closely approachable using VRA. 

Fig. 11 (c) shows the average link utilizations for the Pan-

uropean network, again normalized by the optimal Maximum Link

tilization, which is why all the results are well below one. As

ll the presented algorithms aims to minimize a different metric,

he MLU, the average link utilization chart is considerably different

han the MLU charts. Here, the Peer-Global Optimization performs

he worst and the best ones are the Overlay methods, but note that

ll the measured values are within 5% of the optimal MLU. 

Regarding the Peer-Local Algorithms it might be somewhat sur-

rising that the ILP is not always better than the heuristic ap-

roach. The reason is simple: locally the ILP version is better, cer-

ainly, but a worse local solution can actually result in a better

lobal MLU, as the graphs shows. Nevertheless, in all the cases

heir performance is very close to each other. 

Similarly, sometimes the Overlay Optimization with Path Exclu-

ion seems to perform worse than the plain Overlay Optimization.

his is again due to the fact that the (local) optimization objec-

ive and the (global) measured metric is different. Note also that

he Overlay Optimization can theoretically overperform the Peer-

lobal Optimization, although it does not happen in our practical

valuation. 

Looking at the solution of the embedded VRA-1N-1D problem

 Fig. 11 (d)), the Optimization with Path Exclusion always performs

etter, which is not surprising as it has a higher degree of free-

om. This figure shows also clearly that the convergence to the op-

imum is quick as R increases. For R = 6 the solution is within 10%

f the optimum, which indicates the strength of Algorithm 3 and

he whole VRA concept. 

.4. Resource consumption 

Each optimization session was run on a single core of an Intel

eon Processor X5660 (but several sessions were run in parallel

n a high performance computer). The average running times and

emory consumption of the different algorithms are summarized

n Table 4 . 

The first row (“5 algorithms”) shows the total resource usage of

he two Overlay Optimizations, two Peer-Local Optimizations and

he Global Optimization. The second row represents the TOTEM

ptimization alone, while the third row reveals the results for all

he seven algorithms altogether. The first two rows were acquired

y re-running the algorithms 300 times and averaging the results,

hile the last row (“7 algorithms”) are from the actual runs that

ave been described earlier, which means that they also represent

he average of 300 runs. 

The results show very short ( ≈ second, sub-second) running

imes for the Overlay, Peer and Global Optimizations. No further
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Fig. 10. Network topologies. 

Fig. 11. Simulation results. 
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performance-profiling has been carried out here, but the results

suggest that these algorithms are likely to be suitable when short

response times are needed, like real-time TE optimization. For

TOTEM, the calculations took several tens of seconds, up to a

minute, which is considerably higher than the previous ones, but

still can be practical in non-realtime cases. The memory usage was

modest, only 4–10 MB in these cases. Note that the variance of the

results discussed so far were very low. 

When the Peer-Global Optimization was included, the average

running times increased up to several hours. In this case the vari-

ance was much higher as well: the running times for a single ses-

sion ranged from a couple of seconds to several days. The mem-
 T  
ry usage also varied from a few MB to almost 30 GB. This means

hat the proposed Peer-Global Optimization algorithm is not rec-

mmended to be used practice, but, as emphasized earlier, it was

nly included as a reference value for the Peer Optimizations. 

. Related works 

In this section we briefly overview the most relevant publica-

ions in chronological order. 

Achieving near-optimal Traffic Engineering solutions for current

SPF/IS-IS networks [38] targets the same problem as we do in our

E example: overcoming the equal split limitation of the OSPF/IS-
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Table 5 

High level summary of different techniques. 

Computational complexity Practical running time Network performance Requirements 

VRA Overlay Optimization Pseudo-polynomial Very fast Good, with few virtual links End-to-end tunnels for 

each shortest path; 

virtual paths 

VRA Peer-Local 

Optimization 

Unknown in general, 

pseudo-poly. for the 

heuristic 

Very fast Slightly worse than the others Virtual links 

VRA Peer-Global 

Optimization 

NP-complete Very slow Very good Virtual links 

OSPF Weight Optimization 

(TOTEM as heuristic) 

Undefined (iterative) for 

the heuristic, 

NP-complete in general 

Moderate Moderate OSPF ECMP only 

Global Optimization Polynomial Very fast Best (optimal) MPLS-TE or similar 

techniques 

I  

t  

d  

t  

i  

e  

a  

 

f  

c  

t  

s  

o  

a  

r

 

g  

s  

i  

T  

t  

b  

f  

a  

t  

t  

V

 

a  

t  

f  

V  

b  

t  

t  

o

 

r  

w  

t  

s

 

t  

b  

a  

a  

f  

T  

u  

r  

l  

f  

a  

s  

o  

a  

f  

f  

l

 

e  

i  

t  

n  

o  

t

 

a  

g  

N  

N  

W  

a  

r  

f  

1

 

d  

r  

A  

r  

g  

t  

p  

m

 

d  

c  

w  

n  

w  

c  

s  

a  

j  

t

 

n  

s  

i  
S routing protocols. Their basic idea is to modify the forwarding

able and this way controlling the set of shortest paths assigned to

ifferent routing prefix entries. If this is done properly, the ideal

raffic split ratio can be approximated without changing the rout-

ng protocols or the forwarding mechanism of the routers. How-

ver, unlike at VRA, in this proposal the control path of the routers

re affected by the modified way of the forwarding table maintenance .

Penalizing Exponential Flow-spliTting (PEFT [ [39] ) is a proposal

or a provably optimal Traffic Engineering using link state proto-

ols and hop-by-hop forwarding. Dissimilarly from VRA, here the

raditional operation of the routing protocols is modified : not only the

hortest paths are used but all of them, and the amount of traffic

n a path depends on the total path length. PEFT provides a quick

nd optimal Traffic Engineering, but at the expense of modifying the

outing basics and using unlimited number of next hops . 

The already mentioned Weighted Cost Multipath (WCMP [5] ) tar-

ets unequal traffic splits at data centers. It assumes SDN-capable

witches, yet the installed rules are based on longest prefix match-

ng (LPM), just like in the case of a traditional routing protocol.

he WCMP proposal assigns weights to each egress port in a mul-

ipath group, and realizes traffic split proportional to the weights

y essentially adding several duplicated entries to the multipath

orwarding table. The total number of table entries is constrained,

s in the VRA case. On the other hand, using SDN rules enables

he designers to treat each demand separately, avoiding the unfor-

unate coupling of independent demands, which happens in our

RA-1N-mD problem. 

WCMP is therefore similar to our work both in terms of the goal

nd the applied technology (LPM-based forwarding). The similari-

ies continue if we look at the WCMP problem formulation. Their

undamental mathematical problem is perfectly identical to our

RA-1N-1D case: find a set of integers that sums to a low num-

er and their relative quotients approximate a given ratio. Even

he error function is essentially the same across the two papers:

he maximum of ratios of the actual and the intended traffic per

utput ports. 

While paper [5] proposes heuristic solutions only, our algo-

ithms, which can directly be applied to the WCMP problems, al-

ays provide the optimal solutions , not just approximations. Fur-

hermore, our proposals can achieve this with comparable or even

maller computational complexity. 

Fibbing [12] is a fresh proposal aiming to compound the advan-

ages of traditional routing protocols (primarily: scalability and ro-

ustness) and the ones of SDN-based routing (easy manageability

nd flexibility). The basic idea of Fibbing is to inject fake nodes

nd links through standard routing protocol messages, thereby ef-

ectively “lying” to the other participants of the routing protocol.

he applicability of Fibbing for per destination load balancing with

neven splitting ratios has recently been demonstrated [13] . If a

outing has a single shortest path for a destination, and two paral-
el paths are to be used with equal traffic share, a fake node and a

ake link has to be injected to the network using Fibbing. If, for ex-

mple, 33%–67% traffic ratio is to be achieved in an unequal load

haring case, two fake nodes and links has to be applied. Easily,

ur VRA-1N-1D algorithm can be used with Fibbing to find the best

pproximation of an arbitrary split ratio using minimal number of

ake entities. Nevertheless, it is yet unknown if the operators will

avor the advantages provided by Fibbing over the extra abstraction

evel it requires. 

Niagara [10] is another traffic splitting scheme targeting an SDN

nvironment. Its goal is inherently the same as ours: to divide the

ncoming traffic (towards different servers in this case) according

o a given ratio. This is achieved by a set of rules for selecting the

ext hop, taking into account the destination IP address and some

f the least significant bits of its source IP address, too. The goal is

o approximate the given split ratio with a small number of rules. 

The underlying mathematical problem is similar to ours: try to

pproximate a given ratio by the sum of fractions of small inte-

ers. In VRA we mostly use fractions with common denominator,

iagara uses sums of 1/2 i . We aim for a small denominator, in the

iagara case the number of terms in the sum should be kept low.

ith some clever enhancements to Niagara negative terms can be

llowed in the sum as well (e.g., 1 / 4 + 1 / 16 − 1 / 64 ) and by sharing

ules among different traffic aggregates the number of rules can be

urther lowered. This latter case is somewhat similar to our VRA-

N-mD problem. 

Niagara, just like WCMP, can treat different demands indepen-

ently of each other, and by using the source address as well for

ule creation, it can achieve a more concise rule table than WCMP.

s shown in Section 5.1 of [10] , NIAGARA utilizes a greedy algo-

ithm to minimize the total number of rules for multiple aggre-

ates. This idea has been adopted in our Algorithm 4 , and proven

o be optimal in Section 3.1.4 . Niagara seems to be a promising and

owerful tool. On the other hand, VRA poses much lower require-

ents to the network, and is therefore more easily deployable. 

COYOTE [40] is recent proposal applying the VRA concept. It is

esigned to be a readily deployable TE scheme for robust and effi-

ient network utilization. COYOTE takes as input a capacitated net-

ork, and a set of traffic demands with a source and destination

ode and a traffic volume range (so-called “uncertainty bounds”),

ithin which the traffic amount can change arbitrary. It then cal-

ulates (static) traffic splitting ratios that are optimized with re-

pect to all scenarios within the uncertainty bounds. These rations

re realized in the network by combining the Fibbing way of in-

ecting fake protocol messages and some of our algorithms to op-

imize the number and location of the fake entities. 

Several techniques have been proposed for creating a virtual

etwork over a physical one. There are a variety of reasons to do

o, one of them being simpler than the original one, as suggested

n [41] recently. Our Overlay Optimization is also such a technique.



258 K. Németh et al. / Computer Networks 127 (2017) 243–265 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E  

t

A

 

h  

n

Its main advantage is the decomposition of a large problem into in-

dependent, smaller subproblems, one for each demand. This results

in fast and very efficient operation. On the other hand, the path

decomposition (see Fig. 5 (b)) may end up with too much end-to-

end shortest paths, which can result in suboptimal splitting if the

number of applicable virtual paths are not too high. Using end-to-

end tunnels (Overlay Optimization) is one extreme, the other is not

using overlaying at all. In between them there are several possibil-

ities, including the ones proposed in [41] . Using shorter (non end-

to-end) virtual overlays, may be a good trade-off that results in

good decomposability yet smaller number of shortest paths, there-

fore resulting in better network performance. This topic, however,

is left for future work. 

Finally, let us note that the realization of a predefined (equal or

non-equal) splitting rate is not straightforward in the data plane.

A packet-based solution can be accurate, but it may cause reorder-

ing of datagrams of a single flow. Using network flows as the unit

of splitting, on the other hand, may be less exact regarding the

splitting ratio [42] . Consequently, an intermediate approach, the

so-called flowlet-based splitting has been proposed [43] , which are

now actively used in the network nodes [44] . A recent proposal,

called FlowBender [45] , aims to enhance the flowlet-based split-

ting by taking advantage of congestion notifications. 

7. Conclusions 

In this paper we have studied the possibility of enhancing load

balancing schemes by unequal traffic splitting when the underlying

technology only offers roughly uniform data distribution among

the resources. For this, we have proposed the Virtual Resource Al-

location (VRA) technique, which tricks the load balancer into an

almost arbitrary traffic split ratio. This simple proposal does not re-

quire any hardware or software modification of today’s routers . In-

stead, VRA can be applied right away only by changing a few ad-

ministrative settings in the management plane. 

We have examined the theoretical limits of the formalized prob-

lem, and have given fast and optimal algorithms , where possi-

ble. We have shown, however, that finding the optimal solution

for some important scenarios are computationally intractable. For

these cases we have proposed heuristic algorithms , although finding

better ones could result in further performance improvements. 

We have implemented a simulation evaluation framework for

a possible VRA application: IP Traffic Engineering. The simulation

results underpin that the VRA approach has a huge practical poten-

tial . In the examined networks, the Peer-Global Optimization algo-

rithm, which applies VRA, achieved much better network perfor-

mance than the “traditional” (TOTEM) method. Moreover, by allow-

ing as few as 3–4 virtual links per node, the theoretical best per-

formance could be approximated up to 1–2%. Another VRA imple-

mentation, the Overlay Optimization, is also proven to be a very ef-

fective tool. Although it requires a more sophisticated network in-

frastructure, the proposed algorithms performed outstandingly in the

simulations . They ran very fast with minimal memory usage, and

overperformed TOTEM by using only two or three virtual links. For

quick comparison Table 5 contains a high-level summary of the

presented techniques. The numerical details can be found in the

Evaluation section. 

Finally, we have discussed how VRA can be applied to a variety

of present and future scenarios, including, but not limited to Fib-

bing, SDN environments like WCMP, classical OSPF-TE and COYOTE.
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ppendix A. ILP Formulation of VRA Peer Optimization 

In this section we present the ILP solution of the VRA-PO, which

as been introduced in Section 4.3 . (For the formal problem defi-

ition, see B.1 .) 
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Table B6 

VRA-PO notations. 

V The set of vertices (nodes) in the network 

F The set of edges (physical links) in the network 

E n = 

∑ 

l∈ S n e l The number of outgoing links at node n 

h l ∈ Q , h l ≥ 0 The total actual traffic volume on link l 
Notes: (A.2): the formal definition is: θdl = h dl /G d , where h dl 

s the actual traffic volume for demand d on link l . Certainly,

 ≤ θdl ≤ 1, but θdl ≤ 1 follows from the constraints of the ILP. 

(A .9)–(A .10): ∀ d, l , k = 1 , . . . , | S n | + R, m = 1 , . . . , R + 1 , m ≤ k,

 � = D d , where n is the source of l . 

(A .14)–(A .15): ∀ d, n : | S n | > 0, n � = D d and for all combinations of

dl ∈ {0, 1}, l ∈ S n . In other words, these constraints are repeated

 

| S n | times for each d , n ( where | S n | > 0, n � = D d ), and in each one a

ifferent element of { 0 , 1 } | S n | is assigned to { γ dl : l ∈ S n }. 

Let us see briefly explain this ILP. The first three constraints

ome from the dual formulation of a multi-commodity flow prob-

em. The node potentials of the demand origins are zero (A.4). If

 link is on a shortest path of a demand ( σdl = 1 ), then the dif-

erence of potentials of its adjacent nodes equals the link weight

 w l + r). On the other hand, if l is not part of a shortest path of d

 σdl = 0 ), then the weight is larger than the difference (A .5), (A .6).

 l ≤ 1 (A.1) will guarantee that the weights and therefore the node

otentials remain finite. The rest of the constraints assure that for

ach demand there are a set of links connecting the source and

estination for which σdl = 1 , which will cause some of the node

otentials to be nonzero, as expected. This first part provides the

equired link weights as outputs of the ILP. 

The rest of the constraints originate from the primal formula-

ion of a multi-commodity flow problem, augmented by the VRA

ow split behavior, i.e., splitting proportionally to the number of

arallel links. This second part provides the number of parallel

inks ( e l ) as output. The connection between the two parts are re-

lized exclusively by the σ dl variables. 

Equation (A.7) is the usual Kirchhoff junction rule. (A.8) is the

ink capacity constraint, where α is to be minimized in the ob-

ective. Constraints (A .9)–(A .15) are together represent the ECMP

qual-split rule applied to the virtual link scenario, which could be

ummarized as: 

dl = 

( ∑ 

x ∈ T n 
θdx + δdn 

) 

e l ∑ 

x ∈ S n e x σdx 

, (A.19) 

here n is the source of l , ∀ d, l : σdl = 1 . Unfortunately (A.19) is

ot linear, so we have introduced a set of auxiliary variables and

argely multiplied the number of constraints to make it fit the ILP.

onstraints (A.9) and (A.10) basically assert 

dl k = 

( ∑ 

x ∈ T n 
θdx + δdn 

) 

m, (A.20) 

here m = e l and k = 

∑ 

x ∈ S n e x σdx . 

m = e l is achieved by the simple set of constraints (A.11) and

A.12). Note the upper bound of the sums is R + 1 , since using R

irtual links the maximum of e l is R + 1 . 

Constraints (A .13)–(A .15) are to ensure k = 

∑ 

x ∈ S n e x σdx . Observe

hat these constraints allow k = 0 , . . . , | S n | + R . The upper limit

omes from the definition of R , while k = 0 is allowed, since if

o traffic of demand d goes through node n , then 

∑ 

x ∈ S n e x σdx =
 . Equation (A.14) is repeated for all the possible 2 | S n | combina-

ions of γ dl , but only one of them is a hard constraint (i.e., the

ight-hand side inside the parenthesis is zero): when γdl = σdl ∀ l.

he same applies to (A.15), providing together the required k =
 

x ∈ S n e x σdx for (A.20) . Note that in these equations the conditions

 S n | > 0 and n � = D d are theoretically not necessary, they are only

ncluded to reduce the number of variables and the related con-

traints. 

Eqs. (A .16) and (A .17) ensure that there is flow from a demand

n a link if and only if the corresponding σ dl equals one. The last

onstraint, (A.18), limits the number of virtual links per node to R . 

The objective function (A.3) minimizes the MLU ( α). It also

eeps the �θdl low to avoid loops and minimizes �e l to prevent

nstalling unnecessary virtual links. 
Finally, a few words about the M, r, r 2 and r 3 constants. Theo-

etically, their value can be arbitrary, as long as M is “large”, r is

small” and r 2 , r 3 are even smaller. In practice, however, the ac-

ual computation largely depends on these values. For example, M

hould be large enough to make each equation, where it is not

ultiplied by zero, an ineffective constraint. Theoretically, if we

an find such an M , a larger one is always acceptable as well. Yet

n practice having numerical values spanning too many orders of

agnitudes is not favored by the ILP solvers, and therefore they

ay come up with an erroneous solution. Consequently, M should

e kept relatively small, but large enough to fulfill its original pur-

ose. Similar considerations apply for the small r, r 2 , r 3 constants.

n the simulation, after some theoretical calculations and practi-

al experimenting, we have used the following values: M = 100 ,

 = 10 −2 , r 2 = r 3 = 10 −4 . 

ppendix B. Computational complexity of VRA Peer 

ptimization 

This section reveals the details of our computational complex-

ty related results. It consists of two subsections: the first one lists

he NP-completeness theorems along with their proofs, while the

econd one carries the inapproximability results. We will use the

otations introduced in the ILP at Appendix A , extended with a

ew new ones listed in Table B6 . 

1. NP-completeness of VRA-PO 

First we formally define the Virtual Resource Allocation–Peer

ptimization as a simple a decision problem. In this first formu-

ation we take the link weights as input parameters. 

Virtual Resource Allocation–Peer Optimization with Given 

eights (VRA-PO-GW) 

Instance. A ( V, F ) directed graph representing a network , with

 l ∈ Q 

+ capacities for each link l ∈ F . w l ∈ Q 

+ link weights for each

ink l ∈ F . A set of demands { O d ∈ F , D d ∈ F , G d ∈ Q 

+ } D 
d=1 

. R ∈ Z , R ≥
 , the maximal number of extra links (virtual links) that can be ap-

lied at a node. β ∈ Q 

+ , the maximum link utilization . 

Question. Is there a virtual resource allocation assigning e l > 0

 e l ∈ Z ) number of links to each physical link l ∈ F , such that E n ≤
 S n | + R ( ∀ n ∈ V ) and max l h l / c l ≤β? 

Notes: In the Question above, | S n | can be calculated from ( V, F );

 n and h l can be calculated from ( V, F ), the { e l } l ∈ F set, the { w l } l ∈ F 
et and from the set of demands. The only non-trivial one is the

alculation of h l , but it also can be done in polynomial time. 

This definition can be changed in several ways to gain differ-

nt versions of the basic VRA-PO problem, including the following

ossibilities: 

• VRA-PO : In this case setting the link weights, and this way

defining the routing of the demands, is part of the problem,

too. This problem has been examined in the previous parts of

the paper. 

• VRA-PO-GW-SD (Single Demand) : In this variant we have only

one origin–destination–traffic volume triplet ( D = 1 ). 

• VRA-PO-GW-Q : The definition of VRA-PO-GW utilizes the

Bounded virtual resources constraint ( R ) (described in

Section 2.2 ). In this version the Bounded total resources

( Q ) limit is used instead. 



260 K. Németh et al. / Computer Networks 127 (2017) 243–265 

Fig. B12. Network for the 3SAT reduction. 
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By combining the definitions given above, several other, equally

valid variants of the VRA-PO problem could be created. Fortunately,

the following proofs about computational complexity can relatively

easily be generalized to many of these new cases. 

We start the list of the results with an important finding: 

Theorem 15. VRA-PO-GW is NP-complete. 

Proof. This proof partially utilizes the idea of an NP-completeness

proof presented in [9] . 

First we show that VRA-PO-GW is in NP, i.e., for an e l set it

can be checked in polynomial time whether the conditions hold.

The first set of conditions ( E n ≤ | S n | + R, ∀ n ∈ V ) is trivial to check

in polynomial time. For the second condition ( max l h l / c l ≤β), h l ’s

have to be calculated. For this, for each demand the shortest path

routes have to be calculated first, which can be done in polynomial

time. Then the nodes on the shortest paths (which now together

define a DAG) have to be topologically sorted, for which the com-

plexity is NC 

2 ⊆ P. Then computing h l and ultimately max l h l / c l can

also be done in polynomial time. 

Now we prove the VRA-PO-GW in NP-hard. We will reduce

3SAT to VRA-PO-GW: 

Satisfiability of Boolean Expressions in 3CNF (3SAT) 

Instance. A Boolean expression F in conjunctive normal form

with no more than three variables per clause (3CNF). F contains n

variables x 1 , x 2 , ..., x n , and consists of m clauses C 1 , C 2 , ..., C m 

,

such that each clause is a disjunction of exactly three literals. 3 

Question. Is F satisfiable? 

For any 3SAT instance F we create a corresponding instance of

VRA-PO-GW. Fig. B12 sketches the network : node k i corresponds to

clause C i . For each variable x , a set of nodes are defined: s x , T x ,

T ′ x and a balanced binary tree between them, and likewise F x , F ′ x 

and a balanced binary tree between them. There are three global

nodes, t, u and w . The number of the leafs of both trees directly

downstream T x and F x are | x | for each tree, which denotes the least

power of 2 bounding both the number of negative and the number
3 Some sources use “at most three literals” instead of “exactly three literals”. 

These definitions are practically equivalent. 

f  

l  

t  
f positive occurrences of x in F . For a positive occurrence of x in

 clause C i , there is an arc from a leaf under F x to node k i . For a

egative occurrence of x in a clause C i , there is an arc form a leaf

nder T x to k i (just like in the figure). Each leaf can only be used

or at most one occurrence of x in the clauses. Each leaf that is

ot connected to a node representing a clause is connected to the

lobal node u . 

The link capacities are shown in the figure. The link weights are

 for each link, except for the s x t link, for which w s x t = log 2 | x | + 3 .

he demands are as follows: for each variable x: s x → t : 4| x |, T x →
 

′ 
x : | x | , F x → F ′ x : | x | . R = 1 . β = 1 . This reduction is clearly polyno-

ial. 

We now prove that if the F 3SAT instance is satisfiable, then

here is a suitable virtual link allocation for the VRA-PO-GW prob-

em. Let us consider a set of logical constants that satisfy F and use

hem for x, y, z , etc. Let e l = 1 for all the links, except for one link:

f x is true, then e s x T x = 2 and e s x F x = 1 , otherwise, if x if false, then

 s x T x = 1 and e s x F x = 2 . Easily, E n ≤ | S n | + R holds for all the nodes.

or almost all the links h l / c l ≤ 1 is trivially true, it is nontrivial only

or the k i t type links, where the capacity is 5. 

We now show that even for these links h l / c l ≤ 1 holds. Each of

he three incoming links of k i has a demand originated at an s x -

ike node, where x corresponds to a variable. If the literal in C i 
orresponding to x is not satisfied (i.e., x is in positive form and x is

alse, or x is in negative form and x is true), then 2 units of traffic

rrives to node k i . If, however, the literal is satisfied, then 1 unit

f traffic arrives due to the traffic split at node s x . We know that

 is satisfied, i.e., at most two of the literals in C i are unsatisfied,

eaning that at most 5 units of traffic can arrive to node k i . 

Now follows the opposite direction: if there is a suitable virtual

ink allocation for VRA-PO-GW, then the F 3SAT instance is satis-

able. First consider the binary tree under T x . As it has | x | leaves,

ach connected to T ′ x with a link with capacity of 1, and as there is

 demand T x → T ′ x : | x | , and as R = 1 , it follows that e l = 1 for all

he links between T x and T ′ x for any suitable virtual link allocation

or VRA-PO-GW. By symmetry, this statement also holds for the

inks between F x and F ′ x . It is also easy to see that e s x t = 1 and ei-

her (e s T = 1 and e s F = 2) or (e s T = 2 and e s F = 1) : if it were

x x x x x x x x 
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Fig. B13. Network for VRA-PO-GW-SD. 
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ot so (i.e., e s x T x = e s x F x = 1 and either e s x t = 1 or e s x t = 2 ), then the

apacity limit would be violated on s x t . There are no other nodes

n the network where traffic split occurs. 

Observe the following: if the literal in C i containing x is unsat-

sfied then 2 units of traffic arrives to k i from s x , otherwise 1 unit,

s we have equal split throughout both balanced binary trees. Now,

et each variable x be true, if e s x T x = 2 , and let it be false if e s x F x = 2 .

his variable substitution will satisfy F . The reason is simple: for

ach clause C i in F , there is a node k i . As h k i t /c k i t = h k i t / 5 ≤ 1 , there

s at most 5 units of traffic arriving to k i . This means that for each

lause there is at most two unsatisfied literals in F . �

This proof can be easily modified to prove that VRA-PO-GW-Q

s NP-complete, too, by using Q = 4 instead of R = 1 . Although in

he binary trees it is possible to have e l = 2 simultaneously for a

air of links originated at a common node, as this still results in

qual traffic split, this causes no problem. 

It can also be proven that VRA-PO is NP-complete. That proof,

owever, is quite long, hence it is omitted from this paper. Like-

ise, to save space only a sketch of the lengthy proof of the next

heorem has been included here. 

heorem 16. VRA-PO-GW-SD is NP-complete. 

ketch of Proof. This proof is similar to the proof of Theorem 15 .

RA-PO-GW-SD is in NP, for the same reasons as VRA-PO-GW is in

P. 

The network is modified, and is shown in Fig. B13 . The first

ifference between Figs. B12 and B13 is the binary tree rooted at

ode s . It has q leaves, where q = min k ∈ Z 2 k : q > 12 
∑ n 

i =1 | x i | . Most

f these leaves are connected to the nodes s x , T x , F x , s y , T y , F y , . . .

each triplet representing a variable in the related 3SAT instance),

s shown in the figure. The number of leaves connected to a single

ode are shown underlined. The rest of the leaves, not connected
o any of the s x , T x , F x type nodes, are connected to t . Their number

s q − 12 
∑ | x i | , which, by the definition of q , is at most q /2. 

The leaves of the trees rooted at T x and F x are named T x , 1 ,

 x, 2 , . . . , T x, | x | and F x , 1 , F x, 2 , . . . , F x, | x | , respectively. They are con-

ected to some k i or to u , as described previously. 

The link capacities are shown next to each link. Let p =
ax i =1 ... n log 2 | x i | . All the link weights are 1 by default, except for

he links where it is shown by the numbers in ellipse. Let the sin-

le demand be s → t : q . R = 1 . β = 1 . This reduction is polynomial.

he rest of this proof is similar to the proof of Theorem 15 . �

2. Inapproximability of VRA-PO 

For stating theorems about the approximability of a problem the

rst step is to formulate them as an NP optimization (NPO) prob-

em [32] . Again, several definition versions could have been listed

ere, but for simplicity we only list those two, which are crucial

or the main inapproximability results: 

Minimum Error with Virtual Resource Allocation–Peer Op-

imization with Given Weights (MIN-VRA-PO-GW, or shortly

VPG) 

Instance. A ( V, F ) directed graph representing a network , with

 l ∈ Q 

+ capacities for each link l ∈ F . w l ∈ Q 

+ link weights for each

ink l ∈ F . A set of demands { O d ∈ F , D d ∈ F , G d ∈ Q 

+ } D 
d=1 

. R ∈ Z 

+ , the

aximal number of extra links (virtual links) that can be applied at

 node. 

Solution. A virtual resource allocation assigning e l > 0 ( e l ∈ Z )

umber of links to each physical link l ∈ F , such that E n ≤ | S n | + R

 ∀ n ∈ V ). (Here | S n | can be calculated from ( V, F ); E n can be calcu-

ated from ( V, F ) and from the { e l } l ∈ F set.) 

Measure. β = max l h l /c l , the maximum link utilization . ( h l can

e calculated from ( V, F ), the { e l } l ∈ F set, the { w l } l ∈ F set and from

he set of demands.) 

Goal. Minimize the measure. 
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Fig. B14. MVGPS compounding. 

Fig. B15. � definition. 
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Next we show that MVPG is indeed an NPO: 

1. The set of the instances of MVPG is recognizable in polynomial

time. This means that if � is the input alphabet and I ⊆ �∗ is

the set of input instances then x ∈ I for an x ∈ �∗ can be ver-

ified within polynomial time of | x |. For MVPG it is clearly the

case. 

2. The size of the solutions is indeed a polynomial function of the

size of the instance. 

3. Deciding if a solution candidate is a solution or not can be done

in polynomial time, as computing E n is fast. 

4. The measure can be calculated in polynomial time of the size

of the solution. This statement is not trivial, but the proof is

essentially the same as the proof of VRA-PO-GW is in NP, pre-

sented in the proof of Theorem 15 . 

The Minimum Error with VRA-PO with Given Weights for a

Single Demand (MIN-VRA-PO-GW-SD, or shortly MVPGS) version

of the previous problem will also be important for the approxima-

bility results. MVGPS is essentially the same as MVPG, but it has

only exactly one demand. This problem is an NPO as well, because

the reasons listed for MVGP are all valid here, too. 

The proof of Theorem 15 can be extended to show that gener-

ally the optimal solution cannot even be efficiently approximated: 

Theorem 17. No polynomial time algorithm exists that approximates

the optimum of MVGP better than a factor of 6/5 . 

Proof. This proof heavily relies on the proof of Theorem 15 , us-

ing the same VRA-PO-GW instance bound to a 3SAT problem (see

Fig. B12 ). This proof is also inspired by a similar reasoning pre-

sented in [9] . 

Finding an optimal resource allocation, which yields β = 1 , is

proven there to be NP-hard. We will now show that for the same

instance any virtual resource allocation that results in β > 1 also

results in β ≥ 6/5. 

We in fact prove an equivalent statement: for the given VRA-

PO-GW instance if a virtual resource allocation results in β < 6/5

then it also results in β = 1 . Because of R = 1 , for each link l , either

e l = 1 or e l = 2 . Consider first the links within the binary trees. If

e l were 2 for any of them, then there would be an ingress link of

T ′ x or F ′ x , for which h l / c l ≥ 4/3, which is against our assumptions. 

Next, consider the outgoing arcs of s x . If for all the three arcs

e l = 1 , then h s x t /c s x t = 4 / 3 , again a contradiction. e s x t = 2 would

result in h s x t /c s x t = 2 , which is not possible either. Thus either

e s x T x = 2 or e s x F x = 2 . As no more splitting occurs, we can suppose

e l = 1 for the rest of the links. 

Now it is easy to see that for almost for all the links h l / c l ≤ 1:

the only critical links are the k i t type ones. Based on the previous

observations, for a k i node each incoming link carries either 1 or 2

units of traffic. Consequently, if h k i t /c k i t < 6 / 5 then h k i t /c k i t ≤ 1 . �

A corollary of this theorem is that MVGP is not part of the a

PTAS (Polynomial Time Approximation Scheme) class, as it is not

possible to efficiently approximate the optimal solution within ev-

ery constant ratio. The same is true for the single demand version

of the problem, which will also be used later, in the proof of a

stronger statement. 

Theorem 18. No polynomial time algorithm exists that approximates

the optimum of MVGPS better than a factor of 18/17 . 

The proof of this theorem relies on the proofs of

Theorems 16 and 17 , and is similar to the latter, but it is omitted

to save space. 

The next statement is the strongest in this section. It effectively

states that no polynomial time algorithm exists that could approx-

imate the optimal solution of MVGPS to any given constant ratio: 

Theorem 19. MVGPS is not part of the APX class. 
The proof of Theorem 19 applies the inapproximability gap am-

lification technique , which has recently been introduced in [19] to

rove similar inapproximability for the OSPF ECMP link weight

onfiguration problem. 

Just like at the inapproximability proof in [19] , we first intro-

uce the � (compound) operator for MVGPS instances. From two

nstances I 1 and I 2 a new I instance can be crated by I = I 1 � I 2 , if

oth of the following conditions hold: 

1. the demand to be transmitted in I 2 is 1, 

2. R , the allowed maximum number of extra links is identical in

I 1 and I 2 . 

An example of compounding is shown in Fig. B14 . The capaci-

ies are shown next to the links and each link weight is one unit.

n I 1 the demand is A → D : 1, in I 2 it is U → Z : 1. R = 1 in all these

nstances. 

The formal definition of I 1 
�I 2 is the following (see Fig. B15 ).

ake the I 1 network and replace each link in it with the following

ubnetwork. Let the original link in I be ab with capacity c and
1 
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eight w , and the demand in I 2 be s → t . Let the total minimum

eight of s → t (i.e., the length of the shortest path between s and

 ) be w 2 . 

In I 1 
�I 2 create an as ab link with capacity c and weight w /4. Also

reate a t ab b link with infinite capacity and w /4 weight. Between

 ab and t ab insert the network of I 2 : s replaced by s ab , t becoming

 ab , x turning to x ab , etc. For each xy link in I 2 with capacity c xy 

nd weight w xy create an x ab y ab link of capacity c xy c and weight

 xy w /(2 w 2 ). This way the total minimum weight of the ab subnet-

ork in I 1 
�I 2 will remain w , and also the shortest paths between

 ab and t ab will stay as it were between s and t . 

Let the demand of the new I 1 
�I 2 instance be equal to the de-

and of I 1 , and R in the new instance be as it was in I 1 and I 2 . 

For an MVGPS instance I let OPT ( I ) denote the measure for the

ptimal solution, i.e, the minimal β . Furthermore, let us use the

otation 

 0 = �
0 I = I 

 1 = �
1 I = I � I 

 2 = �
2 I = I � (�1 I) = I � (I � I) 

· · ·
 k = �

k I = I � (�k −1 I) 

ote that in general ( I �I ) �I � = I �( I �I ). 

Now the following lemma can be proven: 

emma 20. Let I be an instance of MVGPS with OPT ( I ) ≥ 1 . Then

P T (�k I) = (OP T (I)) k +1 for any k ∈ Z 

+ . 

roof. The proof is by induction. For k = 0 we have OP T (�0 I) =
P T (I) 1 , which is clearly true. Now suppose the lemma is true for

 , i.e. OP T (I k ) = OP T (I) k +1 , and we prove it for k + 1 . 

First we prove that OP T (I k +1 ) ≤ OP T (I) k +2 , by giving a link allo-

ation setting in I k +1 with MLU OP T (I) k +2 . Let e 0 
l 

denote the num-

er of parallel links at link l in I 0 , which results in the optimal al-

ocation. Furthermore, let e k 
l 

be the number of parallel links at link

 for the optimal allocation in I k (for which OP T (I k ) = OP T (I) k +1 ).

ikewise, let e k +1 
l 

denote the number of links at l in I k +1 . This new

ink allocation is: 

 

k +1 
as ab 

= e 0 ab , e k +1 
t ab b 

= 1 , e k +1 
x ab y ab 

= e k xy . 

Let β0 
l 

= h l /c l be the utilization of link l in I 0 with the optimal

ink setting. Similarly, let βk 
l 

be the link overload in I k using opti-

al allocation. The link utilization in I k +1 is: 

k +1 
as ab 

= β0 
ab , βk +1 

t ab b 
= 0 , βk +1 

x ab y ab 
= βk 

xy β
0 
ab . 

e used a link allocation for which max l β
0 
l 

= OP T (I) , which is

upposed to be at least one, and we assumed that max l β
k 
l 

=
P T (I) k +1 . These yield max l β

k +1 
l 

will not take place at an as ab or

 ab b type link. Instead, 

ax 
l 

βk +1 
l 

= max 
xy,ab 

βk +1 
x ab y ab 

= max 
xy,ab 

βk 
xy β

0 
ab = OP T (I) k +1 · OP T (I) 

= OP T (I) k +2 . 

Next we prove that OP T (I k +1 ) ≥ OP T (I) k +2 . The proof is by con-

radiction. Suppose the opposite, i.e. for a suitable link allocation in

 k +1 : OP T (I k +1 ) < OP T (I) k +2 . Thus, using the previous notations, we

uppose that for this link setting for each link l : βk +1 
l 

< OP T (I) k +2 .

Let us focus on a subnetwork in I k +1 , which corresponds to an

b link in I 0 . Let βk +1 
as ab 

= δab . There are two possibilities: 

In the first case for all the ab links in I 0 : δab < OPT ( I ) in I k +1 .

his would mean, however, that using e 0 
ab 

= e k +1 
as ab 

in I 0 would result

n β0 < OPT ( I ), which contradicts to the definition of OPT ( I ). 

In the second case there is at least one ab link in I 0 
uch that δab ≥ OPT ( I ) in I k +1 . Consider now the corresponding
 ab → t ab subnetwork in I k +1 with unaltered link allocation. Sup-

ose it had one unit of incoming traffic and let us denote the

tilization for link x ab y ab in this case with γx ab y ab 
. We know

hat βk +1 
x ab y ab 

= δab γx ab y ab 
and we supposed for all the links that

k +1 
l 

< OP T (I) k +2 . This means for all xy that OP T (I) k +2 > βk +1 
x ab y ab 

=
ab γx ab y ab 

≥ OP T (I) γx ab y ab 
that is γx ab y ab 

< OP T (I) k +1 , which means

hat the I k instance could be solved with MLU less than OP T (I) k +1 ,

hich is again a contradiction. �

Now we are ready to prove that MVGPS is not part of the APX

lass: 

roof (Theorem 19). The theorem states that for any constant fac-

or α > 1 there is no polynomial time algorithm that can find a

olution to each MVGPS instance I with MLU less than α · OPT ( I ).

o show this, for each α we will create one MVGPS instance and

how that it is not possible to quickly approximate the optimum

ithin a factor of α for that instance. 

First take the instance described at proof of Theorem 16 , with

he network plot in Fig. B13 . Divide each link capacity by q and

et the demand be s → t : 1. The rest of the instance (e.g. the link

eights) are unaltered. We will call this instance I 0 . 

From the proof of Theorem 18 it follows that either OP T (I 0 ) = 1

r OP T (I 0 ) = 18 / 17 (depending on the solubility of the 3SAT prob-

em behind it), and deciding between these two possibilities is NP-

ard. 

Let k be the smallest positive integer such that (18/17) k ≥α.

ow let us create MVGPS instance I k −1 = �
k −1 I 0 . First note that the

ize of I k −1 can be upper bounded by a polynomial function of the

ize of I 0 ; consequently it can also be upper bounded by a poly-

omial function of the size of the 3SAT problem behind it. Next,

ccording to Lemma 20 OP T (I k −1 ) = OP T (I 0 ) 
k . This means that ei-

her OP T (I k −1 ) = 1 or OP T (I k −1 ) = (18 / 17) k ≥ α and it is NP-hard

o decide which case holds. The latter is true as if we could decide

n polynomial time between these options then by this we could

lso solve I 0 quickly. 

This means that if OP T (I k −1 ) = 1 then it cannot be approxi-

ated in polynomial time better than a factor of α. �
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