
Hybrid Demand Oblivious Routing: Hyper-ubiPartitions and Theoretial Upper BoundsGábor Németh and Gábor RétváriDept. of Teleommuniations and Media InformatisBudapest University of Tehnology and EonomisMagyar tudósok körútja 2., Budapest, Hungary, H-1117{nemethgab,retvari}�tmit.bme.huSummary. Traditionally, network routing was optimized with respetto an expeted tra� matrix, whih left the network in a suboptimalstate if user tra� did not math expetations. A demand-oblivious rout-ing is, ontrarily, optimized with respet to all possible tra� matries,obviating the need for tra� matrix estimation. Oblivious routing is afundamentally distributed sheme, so it an be implemented easily. Un-fortunately, in ertain ases it may ause unwanted link over-utilization.Reently, we have introdued a hybrid entralized-distributed methodto mitigate this shortoming. However, our sheme did not provide atheoretial upper bound for the link over-utilization. In this paper, wetakle the problem again from a di�erent perspetive. Based on a novelhyper-ubi partition of the demand spae, we onstrut a new algorithmthat readily delivers the theoretial bounds. Simulation results show thetheoretial and pratial signi�ane of our algorithm.Key words: oblivious ratio, demand-oblivious routing, hyper-ubi re-gion1 IntrodutionTra� Engineering (TE) [1℄ has beome the key tool used in the majority ofautonomous systems, whose task is to map user tra� to the physial networke�iently. This is important given the high ost of the elemental network in-frastruture and the highly ompetitive nature of the ISP market. Most of theTE methods are o�ine methods: forwarding paths are optimized with respet tosome measured and/or expeted tra� matries over some period of time, andover-provisioning of network apaity ensures that unpreditable tra� spikesdo not ause violation of link apaities [2, 3℄. In a more dynamially hang-ing environment, this routing strategy has beome more and more inadequate.Thus, several proposals have surfaed to redue the signi�ane of tra� ma-tries (e.g., [4�7℄) or even eliminate them (e.g., [8�13℄) in intra-domain tra�engineering.The seond author was supported by the Janos Bolyai Fellowship of the HungarianAademy of Sienes.



2 G. Németh, G. RétváriA pratial method to deal with unpreditable tra� matries is alled (de-mand) oblivious routing [14�22℄. Here, the basi idea is to handle all legitimatetra� matries simultaneously. Demand-oblivious routing is a fundamentally dis-tributed sheme, meaning that the amount of tra� sent to a forwarding pathby a router only depends on information available loally at that router. Thisensures simpliity and salability. Unfortunately, not all tra� matries an berouted equally e�iently in oblivious routing, therefore, the routing might under-perform for the everyday tra� senario and onsequently the network will op-erate in a suboptimal state in the majority of the time. Moreover, there is notheoretial upper bound on the apaity oversubsription, and hene, ongestiondemand-oblivious routing might ause [16℄.Based on this insight, hybrid methods, ombining the advantages of obliviousrouting with some minimal entral knowledge, have drawn the attention of theresearh ommunity lately. The �rst hybrid algorithm was introdued in [23℄.The main idea is to split the set of all legitimate tra� matries (the so-alledthroughput polytope [24℄) into multiple hyper-ubi regions, and assign a sep-arate routing funtion to all of these regions. The individual routing funtionsare distributed, beause the amount of tra� sent to a path at a soure nodeonly depends on the atual demand at that node, and it is independent of thedemands at other nodes. A entral ontroller, meanwhile, periodially observesthe tra� matrix, deides in whih operating region the network is, and installsthe orresponding tra� splitting rations at the routers. This is exatly whyhyper-ubi regions are a key onept in the algorithm: a hyper-ubi regionprovides the easiest way to deide whether the atual throughput is part of it.Thus, this arhiteture only needs a limited amount of entral ontrol. Althoughit has been shown that using the algorithm in [23℄ a signi�ant improvement inthe link over-subsription an be ahieved by only a few uts, it is still unlearwhether the maximal link over-utilization onverges to a minimum value.In this paper, we analyze the properties of the maximal link over-utilizationover hyper-ubi regions. In partiular, we answer the questions� how to reate a �nite hyper-ubi partition of the throughput region and� what is the maximum size of eah hyper-ubi region when �xing the maximallink over-utilization at a previously given value.The rest of the paper is organized as follows. In Setion 2, notations andde�nitions are introdued. In Setion III, we introdue the mathematial bak-grounds of our new algorithm. Simulation results are disussed in Setion 4,related work is assessed in Setion 5 and �nally, Setion 6 onludes the paper.2 Notations and De�nitionsBefore introduing our main theorem, we need to summarize the main ideas ofthe geometri framework desribed in [23℄. We need some basi terms and de�-nitions from onvex geometry also, thus we refer the reader to the introdutorymaterial in [25℄ and [26℄.



Hybrid Demand Obl. Routing: Hyper-ubi Pars and Theo Upper Bounds 3Suppose that we are given the network topology as usual, in the formof a direted graph G(V, E) and a vetor of positive, �nite link apaities
c = [ce > 0 : e ∈ E] (see Table 1 for a summary on notations). Eah useris assoiated with a unique soure-destination pair (sk, dk) : k ∈ K and a setof stati paths Pk. Additionally, eah user k independently presents its demand
θk at the soure node sk. The task of the routing algorithm is to distribute thedemands θk between the paths Pk, ∀k ∈ K in a way as to avoid or minimize linkoversubsription. Table 1: Notations
G(V,E) a direted graph, with the set of nodes V (|V | = n) and the set of diretededges E (|E| = m)
c the olumn m-vetor of edge apaities
ξe the number of paths sharing the edge e ∈ E

(sk, dk) the set of soure-destination pairs (or users) for k ∈ K = {1, . . . , K}

Pk the set of sk → dk paths assigned to some k ∈ K

pk the number of paths for user k, pk = |Pk|

p number of all paths, p =
∑

k∈K
pk

Pk an m × pk matrix. The olumn orresponding to path P ∈ Pk holds thepath-ar inidene vetor of P

uP salar, desribing the tra� routed at path P

uk a olumn-vetor, whose omponents are uP : P ∈ Pk for some k ∈ K(whether we mean uk or up will always be lear from the ontext)
u a olumn vetor representing a partiular hoie of uP s (a �routing�)
θk the demand/throughput of some user k ∈ K

θ a olumn K-vetor representing a partiular ombination of throughputs (a�tra� matrix�)
M �ow polytope, the set of path �ows orresponding to P subjet to non-negativity and apaity onstraints
T throughput polytope, i.e., the set of throughputs realizable over P subjetto apaity onstraints
S ,Sk a routing funtion, S : R

K 7→ R
p and the routing funtion orresponding to

k ∈ K, Sk : R
K 7→ R

pk , respetively
SR,Sb the optimal routing funtion over the region R ∈ R

K , or for the throughput
b ∈ R

KA routing is, onsequently, represented by a vetor of path �ows: u = [uk :
k ∈ K] ∈ R

p1 ×R
p2 × . . .×R

pK = R
p, where pk is the number of paths for k and

p is the number of all paths.De�nition 1. The polytope M = {u :
∑

k∈K Pkuk ≤ c, u ≥ 0} ⊂ R
p is alled�ow polytope. M ontains all admissible routings, subjet to link apaities andnon-negativity onstraints.
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(s1, d1) = (3, 4)
(s2, d2) = (1, 4)

P1 = {(3, 4)}
P2 = {(3, 2), (2, 4)}
P3 = {(1, 2), (2, 4)}(a)
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0 ()Fig. 1: The (a) sample network with unit edge apaities, soure-destination pairs, theset of paths for eah user and the orresponding (b) �ow and () throughput polytopes.Consider the a�ne transformation (the so alled throughput mapping) T :
R

p → R
K that from a routing u generates the orresponding tra� matrix θ bysumming up the path �ows for eah partiular path of a user:

θ = T (u) = [θk =
∑

P∈Pk

uP : k ∈ K] .De�nition 2. Mapping the �ow polytope M through T gives the throughputpolytope T [24℄:
R

p ⊃ M
T
−→ T ⊂ R

K .The throughput polytope ontains all the tra� matries realizable in the networkby some properly hosen stati routing without violating link apaities:
T = {θ : ∃u ∈ M so that T (u) = θ} .Consequently, we all θ ∈ T admissible.A sample network and the orresponding polytopes are depited in Fig. 1.The other entral objet in the framework is the routing funtion S, whihdetermines the way a tra� matrix θ is mapped to the paths: u = S(θ). Therouting funtion S must always satisfy the throughput invariane rules, i.e., S(θ)must realize preisely θ: ∀θ ∈ R

K : T (S(θ)) ≡ θ. Throughout this paper, weonly onsider a�ne routing funtions of the form S : R
K → R

p; θ 7→ Fθ + g(omponent-wise we have Sk : θ 7→ Fkθ + gk), where F (Fk) is a p×K (pk ×K)matrix and g (gk) is a olumn vetor of size p (pk). Throughput invarianeimplies:
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1T Fkl = δkl =

{

1 if k = l

0 otherwise , 1T gk = 0 ,where Fkl denotes the lth olumn of Fk. We all a routing funtion distributed,if
∂Sk

∂θl
= 0 if k 6= lwherever the derivative is de�ned. The main advantage of distributed routingfuntions is that the amount of tra� sent to a path at a soure node onlydepends on the atual demand at that node, and it is independent of the demandsat other nodes.Note that distributed routing funtions an be treated as a�ne routing fun-tions by restriting F to blok-diagonal matries. Another restrition an bemade by �xing g at zero. In the latter ase the routing funtion is a simple blokdiagonal linear transformation, i.e., it only spei�es the splitting ratios based onwhih demands are distributed among the paths with the same ingress/egressnodes. Letting g be di�erent from zero allows more freedom in assigning path-�ows, though, this option might raise implementation issues as tra� splittingratios need to vary in small steps in this ase.So far we have dealt with simple routing funtions, in the sense that we triedto route all the admissible tra� matries, that is, over the whole throughputpolytope, with one routing funtion. It is tempting to ombine several routingfuntions into a single one. Suh a ompound routing funtion would be able toaommodate any admissible tra� matrix θ ∈ T with ausing less link overload.To do this, we assoiate di�erent routing funtions with di�erent regions of thethroughput spae, so S takes the form S = {(Ri,Si) : i ∈ I} where Ris give adisjunt partition of the throughput spae (e.g., see Fig. 1, where two suh aregions are depited), and we use the mapping θ 7→ Si(θ) whenever θ ∈ Ri.Now, we are in a position to formulate the demand-oblivious routing problemin geometri terms.De�nition 3. The minimal salar α solving the optimization problem

min
S

α : S(T ) ⊆ αM (1)is alled the oblivious ratio and the orresponding routing funtion is alleddemand-oblivious routing.The interpretation of the optimization problem (1) is as follows. The set S(T )represents all the routings one an get when applying S to the set of admissibletra� matries T . The objetive is to up-sale the apaities of the network, andso the �ow polytope of the network, to make all the routings in the set S(T )feasible. Hene, α signi�es the maximal link over-utilization aused when routingany admissible tra� matrix over S. This also implies that α ≥ 1.So far, the oblivious ratio was de�ned with respet to the throughput set
T . We need to �nd the oblivious ratio with respet to arbitrary regions andsometimes to arbitrary routing funtion. Thus, we need to introdue the followinggeneralization.



6 G. Németh, G. RétváriDe�nition 4. Given an arbitrary set of tra� matries R
K ⊃ X 6= ∅ and arouting funtion S, the oblivious ratio α(X, S) with respet to X and S is theoptimal solution of the optimization problem:

α(X, S) = argmin
α

{S(X) ⊆ αM} . (2)De�nition 5. Given an arbitrary set of tra� matries R
K ⊃ X 6= ∅, the obliv-ious ratio α(X) with respet to X is the optimal solution of the optimizationproblem:

α(X) = min
S

α : α(X,S) ≡ min
S

α : S(X) ⊆ αM . (3)Remark 1. Note that α(X) is equivalent to the onventional notion of obliviousratio when X = T . In other ases, it depends on X and it may even be smallerthan 1 when X ⊂ T .Remark 2. The routing funtion S minimizing the optimization problem 3 isalled optimal routing funtion over the set of tra� matries X .De�nition 6. Given a throughput polytope T and a ompound routing funtion
S = {(Ri,Si) : i ∈ I} the umulative oblivious ratio of the system is de�ned asfollows.

sα({Ri}i∈I) = max
i∈I

{α(Ri)} . (4)Note that the previous de�nition of umulative oblivious ratio is the naturalgeneralization of the oblivious ratio for ompound routing funtions, reallingthat the oblivious ratio an be interpeted as the maximal link over-utilization.3 Cumulative Oblivious Ratio over Hyper-Cubi Regionsand a Partitioning AlgorithmIn this setion, we analyze the umulative oblivious ratio, when dividing thethroughput polytope T into �nite hyper-ubi partitions. First, we prove sometheoretial properties of these partitions. Then, we introdue a novel algorithm,whih, in ontrast to the algorithm given in [23℄, provides provable guaranteeson the umulative oblivious ratio.3.1 The Theoretial Upper BoundThe proof of our main theorem is based on some basi properties of hyper-ubithroughput regions. Thus, we �rst introdue an auxiliary theorem summarizingthese observations.Theorem 1. Let ai, bi ∈ R+, ∀i ∈ {1, · · · , K} , ai ≤ bi and H =
K
×

i=1
[ai, bi] ⊂ R

Ka hyper retangle in the K dimensional throughput spae. The optimal rout-ing funtion SH for the throughput region H is blok diagonal and SH = Sb,where b = (b1, · · · , bK) and Sb is the optimal routing funtion for the (singleton)throughput set {b}.



Hybrid Demand Obl. Routing: Hyper-ubi Pars and Theo Upper Bounds 7Proof. Obviously, the routing funtion Sb an be written in blok diagonal ma-trix form, viz., the routing funtion for a single throughput simply de�nes thedistribution of demand between the routes being used.Moreover, ∀θ ∈ H : θ ≤ b results that Sb is routing funtion for θ and
Sb (b) ≥ Sb (θ). The lowest possible oblivious ratio for b is ahieved using the Sbrouting funtion (beause of the optimality of Sb), thus SH = Sb is the optimalrouting funtion over the whole region H .Remark 3. K

×
i=1

[ai, bi] ⊂ T ⇒ α(
K
×

i=1
[ai, bi]) ≤ 1.Remark 4. The routing funtion Sb is distributed linear, i.e.,

0 ≤ {Sb}ij ≤

{

1 if ij is a blok diagonal element
0 otherwise .Let us take a loser look on the network on�guration depited in Fig. 1. Wederive the routing funtion of the hyper-ubi region R1. The maximum pointof this region is the point (1, 1) ∈ R

2, whih an be routed using the routingfuntion
S(1,1) : θ 7→





1 0
0 0
0 1



 θ; θ ∈ R1 .Observe that S(1,1) is a distributed linear routing funtion. Additionally, S(1,1)routes any demand in R1 without ausing link over-utilization, as the �rst de-mand is routed using path P1, while the seond demand uses only P3. Moreover,all other demands in the region R1 an be routed using this routing funtion,too.Now, we are ready to state the main theorem that gives an easy-to-omputeupper bound for the umulative oblivious ratio over �nite hyper-ubi partitions.Theorem 2. Let {Hǫ
i }i∈I , Hǫ

i ⊂ R
K
+ be �nite partition of any �nite hyperubeontaining the throughput polytope T . Suppose, that Hǫ

i are mutually exlusiveand olletively exhaustive hyperubes with side length ǫ. Moreover, let ai =
min{x : x ∈ Hǫ

i } and let Sai
be the optimal routing funtion for the point ai.For any suh partition of T , the umulative oblivious ratio is given by:

sǫ
α ≤ 1 + max

e∈E

{

ξe

ce

}

ǫ ,where ce and ξe denotes the apaity and number of paths sharing the edge e ∈ E,respetively.Proof. Introduing the notation T = R
K
+ \ T we have:

sǫ
α = sα({Hǫ

i ∩ T }i∈I) = max
i∈I

{α(Hǫ
i ∩ T )} =

= max
i∈I

Hǫ
i
∩T 6=0

{α(Hǫ
i ∩ T )} = max

i∈I

Hǫ
i
∩T 6=0

Hǫ
i
∩T 6=0

{α(Hǫ
i ∩ T )} ,



8 G. Németh, G. Rétváriwhere the last equality is valid, beause all the boundary points of T have atleast oblivious ratio equal to 1 (note that eah boundary point of T �lls theapaities along at least one edge of the network). Simply put, when alulatingthe oblivious ratio only hyperubes (hyperube splits) ontaining at least oneboundary point from T ount.Let P e
k denote the row of the ar-path inidene matrix of k orrespondingto link e. Now, we have

sǫ
α

1
≤ max

e∈E
max

i∈I

Hǫ
i
∩T 6=0

Hǫ
i
∩T 6=0

K
∑

k=1

P e
kSai

(Hǫ
i ∩ T )

ce
≤ max

e∈E
max

iI
Hǫ

i
∩T 6=0

Hǫ
i
∩T 6=0

K
∑

k=1

P e
kSai

(Hǫ
i )

ce2
≤ max

e∈E
max

i∈I

Hǫ
i
∩T 6=0

Hǫ
i
∩T 6=0

K
∑

k=1

P e
kSai

(ai + 1ǫ)

ce3
= max

e∈E
max

i∈I
Hǫ

i
∩T 6=0

Hǫ
i
∩T 6=0



























K
∑

k=1

P e
kSai

(ai)

ce
+

K
∑

k=1

P e
kSai

(1ǫ)

ce

























4
≤ 1 + max

e∈E
max

i∈I

Hǫ
i
∩T 6=0

Hǫ
i
∩T 6=0

K
∑

k=1

P e
kSai

(1ǫ)

ce

5
≤

1 + max
e∈E

{

ξe

ce

}

ǫ,where 1 is valid, beause instead of the optimal routing funtion we introdued aspeial (maybe not optimal) one in the formulae; 2 is valid beause of Theorem 1;3 is valid beause of the linearity of Sai
(see Remark 4); 4 is valid beause ai ∈ T ;5 is valid beause of Remark 4.Remark 5. During the proof we used the routing funtion Sai

, whih belongs tothe stritest lass of possible routing funtions overed in this paper (Sai
is adistributed linear routing funtion; reall Remark 4). Thus, the derived formulais valid for more general a�ne funtions, too (that is, when we let g 6= 0).The results of Theorem 2 empowers us to analyze the behaviour of the u-mulative oblivious ratio over in�nitesimally small hyper-ubi regions.Corollary 1. lim

ǫ→0
sǫ

α = lim
ǫ→0

(

1 + max
e∈E

{

ξe

ce

}

ǫ

)

= 1Simply put, Corollary 1 states that using smaller and smaller hyper-ubiregions as partitions the umulative oblivious ratio onverges to its minimum.



Hybrid Demand Obl. Routing: Hyper-ubi Pars and Theo Upper Bounds 9In other words, link over-utilization an be eliminated be using su�iently smallregions.3.2 The Partitioning AlgorithmAfter the theoretial onsiderations, we introdue a novel algorithm to om-pute a hybrid demand-oblivious routing funtion that guarantees that link over-utilization does exeed a given parameter. The input to the algorithm is, on-sequently, the desirable oblivious ratio δ. This parameter then, aording toTheorem 2, determines an upper bound ǫ on the size of hyperubes we need toover the throughput polytope as follows:
ǫ ≤ δ−1

maxe∈E{ξe/ce}
. (5)Calulating the optimal routing funtions over these hyperubes (i.e., solvingEquation (3) for eah hyperube Ri, i ∈ I, separately), a ompound routingfuntion S = {(Ri,Si) : i ∈ I} an be onstruted with guaranteed obliviousratio δ (see Algorithm 1).Algorithm 1 Partitioning algorithmfuntion partitioning_oblivious_routing(δ)

ǫ← δ−1

maxe∈E{ξe/ce}

{Hǫ
i }i∈I ← ∪i∈IHǫ

i so that T ⊆ {Hǫ
i }i∈Ifor i ∈ I

Ri = Hǫ
i ∩ T

(αi,Si)← minS α : S(Ri) ⊂ αMstore (αi,Si, Ri)end forend funtionHitherto, we have not spei�ed the type of the routing funtions used in thepartitioning algorithm. Aording to Theorem 2, it is possible to use any kind ofrouting funtions, however, it is a good deision to restrit the routing funtionsto a�ne distributed funtions. The main advantage of the distributed routingfuntions is that the atual splitting ratio for a given demand depends only uponthat demand, and it is not dependent upon other demands.Hene, our sheme will require minimal entral ontrol, only to lookup theright routing region based on the atual demands. For this, the entral ontrollerperiodially determines the atual tra� matrix and heks whether the urrentdemand θ still resides in the urrent routing region Ri . If yes, no ation is takenas the urrent routing funtion is orret. Otherwise, the ontroller searhes fora new region. Organizing the regions into a deision tree improves the onlineomplexity to O(log |I|), where |I| denotes the number of routing regions.Reall the sample network depited in Fig. 1. For this on�guration, due tothe edge between the nodes labelled by 2 and 4, and due to the unit apaity



10 G. Németh, G. Rétváriof the edges, maxe∈E ξe = 2. Suppose that we need to ful�ll a given onstraint,say, the umulative oblivious ratio should be less than δ = 3. Aording to ex-pression (5), we get ǫ = 1 as the size of the hyperubes needed to over thethroughput polytope to attain this δ as the oblivious ratio. A possible partition-ing is depited in Fig. 1. Then, running Algorithm 1 over this partitioning (thatis, solving (3) for eah hyper-ubi region in Fig. 1) over the lass of distributeda�ne funtions, we obtain the following routing funtions:
S1 : θ 7→





1 0
0 0
0 1



 θ; θ ∈ R1

S2 : θ 7→





0 0
1 0
0 1



 θ +





1
−1

0



 ; θ ∈ R2Note that for this ompound routing funtion the umulative oblivious ratio isnot only less than the desired one, but it is equal to 1. This suggests that ourtheoretial bound on the oblivious ratio is somewhat pessimisti.4 EvaluationAlgorithm During the simulations, we used a bit di�erent version of the pre-viously introdued partitioning algorithm. Instead of the desired oblivious ratio,the parameter of the modi�ed algorithm is rather the iteration depth, that is,the number of utting planes in eah dimension of the throughput spae (ut-ting planes are equally distaned in eah dimension). Note that there is a diretonnetion between the ube-size value ǫ and the iteration depth j, namely,
ǫj = maxk∈K

mk

j , where mk is the (single-ommodity) maximum �ow for the k-th soure-destination pair. We hose this modi�ation of the algorithm beauseit �ts better the purposes of our simulation studies: we an inrease the itera-tion depth and observe the hange in the umulative oblivious ratio, instead ofhaving to guess the latter value and alulating the size of hyperubes used bypartitioning. Moreover, in this way it an be guaranteed that for di�erent iter-ation depth the number of ontrol regions is di�erent, too. However, we annotwarrant anymore that the oblivious ratio dereases when inreasing the iterationdepth.Performane metris We used the following three performane metris toharaterize the e�ieny of our algorithm: (i) the oblivious ratio as de�ned inthe optimization problem (1); (ii) the umulative oblivious ratio as de�ned inEquation (4); and (iii) the number of ontrol regions denoted by |I|. Note thatthe number of ontrol regions is diretly related to the omplexity of the routingfuntion: the more regions, the more routing funtions must be alulated andstored, and hene the more lookups are needed during the operation of thenetwork.



Hybrid Demand Obl. Routing: Hyper-ubi Pars and Theo Upper Bounds 11Simulation instanes We ran our evaluations on ISP data maps from theRoketfuel dataset [27℄. We used the same method as in [14℄ to obtain approxi-mate POP-level topologies: we ollapsed the topologies so that nodes orrespondto ities, we eliminated leaf-nodes and we set link apaities inversely propor-tional to the link weights. The number of users was inreased from 2 to 8,soure-destination pairs were hosen aording to the bimodal distribution andpaths were provisioned maximally node-disjoint. The number of utting planes(the iteration depth) was inreased from 1 to 4. Fifteen evaluation runs, usingdistributed a�ne (denoted by 1 in the supersript) and distributed linear (de-noted by 2 in the supersript) routing funtions, respetively, were onduted ondi�erent randomly hosen network samples and the results were averaged. Theresults are depited in Table 2.Apart from the realisti network topologies supplied by the Roketfuel dataset, we also onduted simulations on arti�ial networks in order to assess theworst ase performane of our algorithm. The networks marked by OK-x (for
x = 3, 4, 5 and 6, resp.) were originally onstruted in [16℄ to derive the worst-asevalue of the oblivious ratio in speially rafted networks. For a given value x, theOK-x network is onstruted as follows. It has N =

(

x
2

)

+ x+ 1 verties denotedby ai,j for all 1 ≤ i ≤ j ≤ x, bi for all 1 ≤ i ≤ x and a vertex denoted by t.The edges of the network are all of unit apaity and are as follows: (ai,j , bi) and
(ai,j , bj) for all 1 ≤ i ≤ j ≤ x, and (bi, t) for 1 ≤ i ≤ x. The soure-destinationpairs are (aj,y, t) for all 1 ≤ j ≤ y − 1, and (ay,j , t) for all y + 1 ≤ j ≤ x. Thesimulation results for these networks are depited in Fig. 2.
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1 2 3 4(d) OK-6oblivious ratio with distributeda�ne and linear funtion, resp. upper boundFig. 2: Measured oblivious ratio for the seleted arti�ial networks and iteration depths.



12 G. Németh, G. Rétvárioblivious ratio 2 3 4
K α2 α1 α2

2
α1

2
β2 |I2| α2

3
α1

3
β3 |I3| α2

4
α1

4
β4 |I4|

2 1.012 1.012 0.997 0.990 2.687 4.0 0.998 0.989 2.121 9.0 0.996 0.989 1.838 15.9
3 1.095 1.095 0.989 0.937 2.734 8.0 0.963 0.940 2.129 26.8 0.960 0.932 1.826 62.7
4 1.139 1.139 0.978 0.929 3.228 15.9 0.947 0.919 2.446 76.2 0.945 0.908 2.055 228.0
5 1.119 1.119 0.983 0.940 2.721 31.7 0.960 0.936 2.114 231.6 0.955 0.926 1.810 930.1
6 1.229 1.229 0.981 0.911 3.440 60.8 0.929 0.895 2.566 618.9 0.919 0.878 2.128 3090.4
7 1.231 1.231 0.976 0.924 4.213 114.7 0.933 0.897 3.081 1652.4 0.919 0.878 2.515 10674.7
8 1.269 1.269 0.968 0.914 3.452 244.3 0.923 0.888 2.565 5217.6 0.905 0.867 2.121 45566.7(a) AS 1239oblivious ratio 2 3 4
K α2 α1 α2

2
α1

2
β2 |I2| α2

3
α1

3
β3 |I3| α2

4
α1

4
β4 |I4|

2 1.025 1.025 0.998 0.987 3.414 4.0 0.994 0.982 2.602 8.9 0.991 0.982 2.196 15.5
3 1.062 1.062 0.987 0.972 4.138 8.0 0.980 0.960 3.075 26.4 0.971 0.961 2.543 61.4
4 1.163 1.163 0.986 0.938 5.156 15.6 0.956 0.912 3.725 75.4 0.939 0.904 3.010 220.7
5 1.188 1.188 0.983 0.939 3.836 31.5 0.956 0.905 2.839 211.9 0.931 0.898 2.340 829.3
6 1.208 1.208 0.978 0.942 5.261 62.4 0.959 0.914 3.783 617.3 0.933 0.898 3.045 3231.2
7 1.235 1.235 0.969 0.929 5.997 120.0 0.946 0.906 4.268 1616.7 0.918 0.885 3.404 10077.9
8 1.273 1.273 0.964 0.932 6.893 228.3 0.933 0.900 4.858 4154.8 0.909 0.876 3.840 33333.1(b) AS 1755oblivious ratio 2 3 4
K α2 α1 α2

2
α1

2
β2 |I2| α2

3
α1

3
β3 |I3| α2

4
α1

4
β4 |I4|

2 2.000 1.000 1.000 1.000 3.764 4.0 1.000 1.000 2.843 9.0 1.000 1.000 2.382 16.0
3 2.061 1.096 0.996 0.939 3.822 8.0 0.989 0.930 2.872 27.0 0.987 0.930 2.397 64.0
4 2.196 1.143 0.985 0.942 5.994 16.0 0.965 0.912 4.301 79.2 0.953 0.907 3.454 246.4
5 2.248 1.210 0.989 0.924 3.973 32.0 0.964 0.890 2.947 237.6 0.949 0.875 2.434 985.6
6 2.289 1.175 0.989 0.929 4.626 64.0 0.961 0.902 3.377 712.8 0.946 0.895 2.752 3942.4
7 2.357 1.228 0.991 0.931 5.657 128.0 0.959 0.898 4.054 2138.4 0.933 0.882 3.253 15769.6
8 2.406 1.281 0.983 0.902 6.175 256.0 0.940 0.871 4.394 6269.4 0.923 0.850 3.504 60620.8() AS 3257oblivious ratio 2 3 4
K α2 α1 α2

2
α1

2
β2 |I2| α2

3
α1

3
β3 |I3| α2

4
α1

4
β4 |I4|

2 1.044 1.044 0.993 0.971 3.626 4.0 0.983 0.969 2.738 8.9 0.979 0.967 2.294 15.7
3 1.108 1.108 0.980 0.944 4.185 8.0 0.962 0.930 3.092 26.6 0.953 0.924 2.546 62.1
4 1.176 1.176 0.986 0.940 6.610 16.0 0.954 0.907 4.692 78.0 0.933 0.898 3.733 236.8
5 1.190 1.190 0.983 0.932 6.645 31.5 0.956 0.911 4.713 222.8 0.938 0.895 3.746 888.0
6 1.232 1.232 0.977 0.926 5.286 62.7 0.939 0.905 3.797 654.6 0.921 0.884 3.053 3304.5
7 1.314 1.314 0.951 0.911 6.042 124.5 0.906 0.869 4.284 1893.9 0.881 0.847 3.405 12333.0
8 1.334 1.334 0.953 0.912 7.420 235.5 0.910 0.874 5.198 5139.5 0.884 0.850 4.087 43033.1(d) AS 3967Table 2: Measured umulative oblivious ratios for the seleted roketfuel topologies. α2and α1 denotes the umulative oblivious ratio using distributed linear and distributeda�ne routing funtions, respretively. α2

j , α1

j and βj denote the average normed u-mulative oblivious ratio (i.e, α2

j is the average of the normed values sα2

j
/α2) and thealulated average normed upper bound for the j-th iteration, respetively.



Hybrid Demand Obl. Routing: Hyper-ubi Pars and Theo Upper Bounds 13Evaluation results The main observations are as follows. First, as the theoret-ial results suggest the measured oblivious ratio is always less than the preditedone. However, the di�erene between the two values an beome signi�ant. Thisis the ost we must pay for using rough approximations in order to be able toderive a simple theoretial upper bound. Seond, we an learly see that usingthe more general distributed a�ne funtions (reall, the ones marked with 1 insupersript) better umulative oblivious ratio an be obtained. Thus, it mightbe tempting to use a�ne routing funtions for real life networks. However, thesimulation results also show that the bene�t is highly network dependent. Forexample, in ase of the network topology AS3257 this di�erene is quite straight-forward, but for the other ones the bene�ts of the general routing funtion isnot that signi�ant. Third, the bene�t aused by inreasing the iteration depthis also dependent on the type of the routing funtion. Using the more generaldistributed a�ne funtion, naturally, yields better results than distributed linearfuntions.Lastly, we onsider the omplexity of the routing (funtions) expressed interms of the depends on the number of routing regions. As it is learly observ-able, the number of routing regions inreases rapidly with the iteration depthinreasing the omplexity of the routing funtion, making the proposed algo-rithm somewhat ine�ient. Contrasting these results to the ones in [23℄, we seethat the algorithm in [23℄ is more e�ient and less omplex. The algorithm inthis paper, though, is still extremely important, beause it provides a �rm theo-retial worst-ase bound on the oblivious ratio, and hene, link over-utilizationexperiened by the network in ase of any admissible tra� matrix. This wasimpossible with previous algorithms.
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θ1
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0Fig. 3: Due to the down-monotoniity of the throughput polytope, after the lineartransformation L the K-simplex is going to be the part of the transformed throughputpolytope. Thus, the number of hyperubes overing the standard K-simplex is less thanthe number of the routing regions.It is tempting to investigate, whether a hyper-ubi partitioning algorithmexists that is both e�ient and simple (i.e., ontains at most a polynomial num-ber of hyper-ubi regions) at the same time. Unfortunately, this does not seemto be the ase, as the following lower bound on the number of routing regionssuggests:
|I| ≥ ⌈

v(K)

(1/j)K
⌉ .



14 G. Németh, G. RétváriIn this expression, v(K) denotes the volume of the standard K-simplex and
j, as before, is the iteration depth. The expression ompares the volume ofthe standard K-simplex and the hyperubes with side length 1

j . We used theobservation that the standard K-simplex an be naturally transformed, using alinear transformation, into the interior of the throughput polytope, and vie versa(for more details, onsult Fig. 3). What the expression states is that halving thepermitted link over-utilization (i.e., halving the value of ǫ) needs about O(2K)times more regions.5 Related WorkDemand-oblivious routing has rih literature [14, 16�19, 21℄. There are variousresults regarding the worst-ase performane: Räke gives a method with poly-logarithmi oblivious ratio in undireted graphs [15℄, while Azar et al. provesthat no suh bound exists for direted graphs: they give a direted graph of
(

k
2

)

+ k + 1 nodes, (

k
2

) soure-destination pairs where the oblivious ratio is atleast (

k
2

) [16℄.Reently, in [28℄ it was shown that for every network the link over-utilizationan be eliminated introduing ompound a�ne routing funtions. Here, the rout-ing funtions are alulated using multi-parametri linear programs. However,in ontrast to the algorithm presented in this paper, the optimal algorithm usesextensive entral ontrol, both for setting the tra� splitting ratios and for theseletion of the atual routing region.The idea of ompound routing funtions inspired the development of a hybridalgorithm [23℄. This algorithm simpli�es the type of the routing regions, as itgenerates only hyper-ubi regions. The algorithm uses heuristis when reatingthe routing regions: in eah step the algorithm tries to minimize the umulativeoblivious ratio by sliing eah (previously reated) routing region into two newhyper-ubi regions. The algorithm is a onquer-and-divide fashion algorithm,i.e., for eah region the utting plane is seleted, whih minimizes the obliviousratio. Aording to [23℄, by only a few uts the oblivious ratio an be drastiallydereased, however, no onvergene results exist.Our reent algorithm an be viewed as the suessor of the previous algo-rithm. It keeps all of its advantages, but tries to solve the problem from thebottom-up perspetive, instead of the top-down one. As a result, it an give atheoretial upper bound for the umulative oblivious ratio, and it an be usedto design routings satisfying any given maximal link over-utilization. Unfortu-nately, the omparison of the simulation results of the two methods show thatour reent method needs more routing regions to ahieve the presribed obliviousratio than the one in [23℄.There are several methods ombining basi oblivious routing with some reallife measurements to predit future state. These predition based algorithmswork on tra� matrix samples olleted during some time interval. Instead ofoptimizing oblivious ratio over the full throughput polytope, as it is done in



Hybrid Demand Obl. Routing: Hyper-ubi Pars and Theo Upper Bounds 15demand-oblivious routing, here the optimization is performed � and the routingfuntion is alulated � only over the onvex hull of the olleted tra� ma-tries. Thus, these algorithms are e�etive when the future demands fall intothe omputed onvex hull. Unfortunately, ful�llment of this ondition annot beguaranteed. One method solving this problem is alled COPE [7℄. In COPE, apenalty envelope is introdued, thus, not only the oblivious ratio is optimizedover the onvex hull of the olleted tra� matries, but also some penalty fun-tion of the routing funtion over the whole throughput polytope is bounded.Simulation results in [7℄ show that COPE an ahieve e�ient resoure utiliza-tion under a variety of real topologies and senarios.There are also several on-line TE methods, whih, in ontrast to our algo-rithm, use feedbak from the network. For example, REPLEX [13℄ and DATE [10℄are both suh methods. They both solve the routing problem in a distributedmanner, i.e., there is a given onvergene time to alulate the appropriate rout-ing funtion. In ontrast, in our algorithm a entral ontroller is needed to pe-riodially determine the atual tra� matrix and selet the right routing regionand the (previously, o�ine alulated) routing funtion.6 ConlusionIn this paper, we analyzed the properties of demand-oblivious routing over hyper-ubi regions. We determined an easy to omputable worst ase bound for theumulative oblivious ratio, whih empowered us to design a hybrid entralized-distributed partitioning algorithm for alulating a ompound routing funtionwith upper bounded oblivious ratio (and hene link over-utilization). To the bestof our knowledge, this is the �rst time that a demand-oblivious routing algorithmwith provable worst-ase performane in direted graphs is presented.Simulation studies using several real-life network topologies showed that ouralgorithm indeed admits the theoretial worst-ase behavior. In addition, thealgorithm suessfully dereases the umulative oblivious ratio in only a fewiterations. Though, a loser investigation of the ompound routing funtionsgenerated unearthed omplexity problems: halving the link over-utilization needsabout O(2K) times as many regions, where K is the dimension of the throughputspae.We were able to prove that link over-utilization an be fully eliminated whendereasing the size of the hyper-ubi regions to in�nitesimally small, (i.e., usingin�nity number of routing regions) regardless of the type of the routing fun-tion. The question arises, whether there are networks for whih the link over-utilization an be eliminated with using only a �nite number of hyper-ubirouting regions. Our future work will fous on �nding the lass of networkshaving this property.
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