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tto an expe
ted tra�
 matrix, whi
h left the network in a suboptimalstate if user tra�
 did not mat
h expe
tations. A demand-oblivious rout-ing is, 
ontrarily, optimized with respe
t to all possible tra�
 matri
es,obviating the need for tra�
 matrix estimation. Oblivious routing is afundamentally distributed s
heme, so it 
an be implemented easily. Un-fortunately, in 
ertain 
ases it may 
ause unwanted link over-utilization.Re
ently, we have introdu
ed a hybrid 
entralized-distributed methodto mitigate this short
oming. However, our s
heme did not provide atheoreti
al upper bound for the link over-utilization. In this paper, weta
kle the problem again from a di�erent perspe
tive. Based on a novelhyper-
ubi
 partition of the demand spa
e, we 
onstru
t a new algorithmthat readily delivers the theoreti
al bounds. Simulation results show thetheoreti
al and pra
ti
al signi�
an
e of our algorithm.Key words: oblivious ratio, demand-oblivious routing, hyper-
ubi
 re-gion1 Introdu
tionTra�
 Engineering (TE) [1℄ has be
ome the key tool used in the majority ofautonomous systems, whose task is to map user tra�
 to the physi
al networke�
iently. This is important given the high 
ost of the elemental network in-frastru
ture and the highly 
ompetitive nature of the ISP market. Most of theTE methods are o�ine methods: forwarding paths are optimized with respe
t tosome measured and/or expe
ted tra�
 matri
es over some period of time, andover-provisioning of network 
apa
ity ensures that unpredi
table tra�
 spikesdo not 
ause violation of link 
apa
ities [2, 3℄. In a more dynami
ally 
hang-ing environment, this routing strategy has be
ome more and more inadequate.Thus, several proposals have surfa
ed to redu
e the signi�
an
e of tra�
 ma-tri
es (e.g., [4�7℄) or even eliminate them (e.g., [8�13℄) in intra-domain tra�
engineering.The se
ond author was supported by the Janos Bolyai Fellowship of the HungarianA
ademy of S
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es.



2 G. Németh, G. RétváriA pra
ti
al method to deal with unpredi
table tra�
 matri
es is 
alled (de-mand) oblivious routing [14�22℄. Here, the basi
 idea is to handle all legitimatetra�
 matri
es simultaneously. Demand-oblivious routing is a fundamentally dis-tributed s
heme, meaning that the amount of tra�
 sent to a forwarding pathby a router only depends on information available lo
ally at that router. Thisensures simpli
ity and s
alability. Unfortunately, not all tra�
 matri
es 
an berouted equally e�
iently in oblivious routing, therefore, the routing might under-perform for the everyday tra�
 s
enario and 
onsequently the network will op-erate in a suboptimal state in the majority of the time. Moreover, there is notheoreti
al upper bound on the 
apa
ity oversubs
ription, and hen
e, 
ongestiondemand-oblivious routing might 
ause [16℄.Based on this insight, hybrid methods, 
ombining the advantages of obliviousrouting with some minimal 
entral knowledge, have drawn the attention of theresear
h 
ommunity lately. The �rst hybrid algorithm was introdu
ed in [23℄.The main idea is to split the set of all legitimate tra�
 matri
es (the so-
alledthroughput polytope [24℄) into multiple hyper-
ubi
 regions, and assign a sep-arate routing fun
tion to all of these regions. The individual routing fun
tionsare distributed, be
ause the amount of tra�
 sent to a path at a sour
e nodeonly depends on the a
tual demand at that node, and it is independent of thedemands at other nodes. A 
entral 
ontroller, meanwhile, periodi
ally observesthe tra�
 matrix, de
ides in whi
h operating region the network is, and installsthe 
orresponding tra�
 splitting rations at the routers. This is exa
tly whyhyper-
ubi
 regions are a key 
on
ept in the algorithm: a hyper-
ubi
 regionprovides the easiest way to de
ide whether the a
tual throughput is part of it.Thus, this ar
hite
ture only needs a limited amount of 
entral 
ontrol. Althoughit has been shown that using the algorithm in [23℄ a signi�
ant improvement inthe link over-subs
ription 
an be a
hieved by only a few 
uts, it is still un
learwhether the maximal link over-utilization 
onverges to a minimum value.In this paper, we analyze the properties of the maximal link over-utilizationover hyper-
ubi
 regions. In parti
ular, we answer the questions� how to 
reate a �nite hyper-
ubi
 partition of the throughput region and� what is the maximum size of ea
h hyper-
ubi
 region when �xing the maximallink over-utilization at a previously given value.The rest of the paper is organized as follows. In Se
tion 2, notations andde�nitions are introdu
ed. In Se
tion III, we introdu
e the mathemati
al ba
k-grounds of our new algorithm. Simulation results are dis
ussed in Se
tion 4,related work is assessed in Se
tion 5 and �nally, Se
tion 6 
on
ludes the paper.2 Notations and De�nitionsBefore introdu
ing our main theorem, we need to summarize the main ideas ofthe geometri
 framework des
ribed in [23℄. We need some basi
 terms and de�-nitions from 
onvex geometry also, thus we refer the reader to the introdu
torymaterial in [25℄ and [26℄.
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ubi
 Pars and Theo Upper Bounds 3Suppose that we are given the network topology as usual, in the formof a dire
ted graph G(V, E) and a ve
tor of positive, �nite link 
apa
ities
c = [ce > 0 : e ∈ E] (see Table 1 for a summary on notations). Ea
h useris asso
iated with a unique sour
e-destination pair (sk, dk) : k ∈ K and a setof stati
 paths Pk. Additionally, ea
h user k independently presents its demand
θk at the sour
e node sk. The task of the routing algorithm is to distribute thedemands θk between the paths Pk, ∀k ∈ K in a way as to avoid or minimize linkoversubs
ription. Table 1: Notations
G(V,E) a dire
ted graph, with the set of nodes V (|V | = n) and the set of dire
tededges E (|E| = m)
c the 
olumn m-ve
tor of edge 
apa
ities
ξe the number of paths sharing the edge e ∈ E

(sk, dk) the set of sour
e-destination pairs (or users) for k ∈ K = {1, . . . , K}

Pk the set of sk → dk paths assigned to some k ∈ K

pk the number of paths for user k, pk = |Pk|

p number of all paths, p =
∑

k∈K
pk

Pk an m × pk matrix. The 
olumn 
orresponding to path P ∈ Pk holds thepath-ar
 in
iden
e ve
tor of P

uP s
alar, des
ribing the tra�
 routed at path P

uk a 
olumn-ve
tor, whose 
omponents are uP : P ∈ Pk for some k ∈ K(whether we mean uk or up will always be 
lear from the 
ontext)
u a 
olumn ve
tor representing a parti
ular 
hoi
e of uP s (a �routing�)
θk the demand/throughput of some user k ∈ K

θ a 
olumn K-ve
tor representing a parti
ular 
ombination of throughputs (a�tra�
 matrix�)
M �ow polytope, the set of path �ows 
orresponding to P subje
t to non-negativity and 
apa
ity 
onstraints
T throughput polytope, i.e., the set of throughputs realizable over P subje
tto 
apa
ity 
onstraints
S ,Sk a routing fun
tion, S : R

K 7→ R
p and the routing fun
tion 
orresponding to

k ∈ K, Sk : R
K 7→ R

pk , respe
tively
SR,Sb the optimal routing fun
tion over the region R ∈ R

K , or for the throughput
b ∈ R

KA routing is, 
onsequently, represented by a ve
tor of path �ows: u = [uk :
k ∈ K] ∈ R

p1 ×R
p2 × . . .×R

pK = R
p, where pk is the number of paths for k and

p is the number of all paths.De�nition 1. The polytope M = {u :
∑

k∈K Pkuk ≤ c, u ≥ 0} ⊂ R
p is 
alled�ow polytope. M 
ontains all admissible routings, subje
t to link 
apa
ities andnon-negativity 
onstraints.
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(s1, d1) = (3, 4)
(s2, d2) = (1, 4)

P1 = {(3, 4)}
P2 = {(3, 2), (2, 4)}
P3 = {(1, 2), (2, 4)}(a)
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R1 R2
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0 (
)Fig. 1: The (a) sample network with unit edge 
apa
ities, sour
e-destination pairs, theset of paths for ea
h user and the 
orresponding (b) �ow and (
) throughput polytopes.Consider the a�ne transformation (the so 
alled throughput mapping) T :
R

p → R
K that from a routing u generates the 
orresponding tra�
 matrix θ bysumming up the path �ows for ea
h parti
ular path of a user:

θ = T (u) = [θk =
∑

P∈Pk

uP : k ∈ K] .De�nition 2. Mapping the �ow polytope M through T gives the throughputpolytope T [24℄:
R

p ⊃ M
T
−→ T ⊂ R

K .The throughput polytope 
ontains all the tra�
 matri
es realizable in the networkby some properly 
hosen stati
 routing without violating link 
apa
ities:
T = {θ : ∃u ∈ M so that T (u) = θ} .Consequently, we 
all θ ∈ T admissible.A sample network and the 
orresponding polytopes are depi
ted in Fig. 1.The other 
entral obje
t in the framework is the routing fun
tion S, whi
hdetermines the way a tra�
 matrix θ is mapped to the paths: u = S(θ). Therouting fun
tion S must always satisfy the throughput invarian
e rules, i.e., S(θ)must realize pre
isely θ: ∀θ ∈ R

K : T (S(θ)) ≡ θ. Throughout this paper, weonly 
onsider a�ne routing fun
tions of the form S : R
K → R

p; θ 7→ Fθ + g(
omponent-wise we have Sk : θ 7→ Fkθ + gk), where F (Fk) is a p×K (pk ×K)matrix and g (gk) is a 
olumn ve
tor of size p (pk). Throughput invarian
eimplies:
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1T Fkl = δkl =

{

1 if k = l

0 otherwise , 1T gk = 0 ,where Fkl denotes the lth 
olumn of Fk. We 
all a routing fun
tion distributed,if
∂Sk

∂θl
= 0 if k 6= lwherever the derivative is de�ned. The main advantage of distributed routingfun
tions is that the amount of tra�
 sent to a path at a sour
e node onlydepends on the a
tual demand at that node, and it is independent of the demandsat other nodes.Note that distributed routing fun
tions 
an be treated as a�ne routing fun
-tions by restri
ting F to blo
k-diagonal matri
es. Another restri
tion 
an bemade by �xing g at zero. In the latter 
ase the routing fun
tion is a simple blo
kdiagonal linear transformation, i.e., it only spe
i�es the splitting ratios based onwhi
h demands are distributed among the paths with the same ingress/egressnodes. Letting g be di�erent from zero allows more freedom in assigning path-�ows, though, this option might raise implementation issues as tra�
 splittingratios need to vary in small steps in this 
ase.So far we have dealt with simple routing fun
tions, in the sense that we triedto route all the admissible tra�
 matri
es, that is, 
over the whole throughputpolytope, with one routing fun
tion. It is tempting to 
ombine several routingfun
tions into a single one. Su
h a 
ompound routing fun
tion would be able toa

ommodate any admissible tra�
 matrix θ ∈ T with 
ausing less link overload.To do this, we asso
iate di�erent routing fun
tions with di�erent regions of thethroughput spa
e, so S takes the form S = {(Ri,Si) : i ∈ I} where Ris give adisjun
t partition of the throughput spa
e (e.g., see Fig. 1
, where two su
h aregions are depi
ted), and we use the mapping θ 7→ Si(θ) whenever θ ∈ Ri.Now, we are in a position to formulate the demand-oblivious routing problemin geometri
 terms.De�nition 3. The minimal s
alar α solving the optimization problem

min
S

α : S(T ) ⊆ αM (1)is 
alled the oblivious ratio and the 
orresponding routing fun
tion is 
alleddemand-oblivious routing.The interpretation of the optimization problem (1) is as follows. The set S(T )represents all the routings one 
an get when applying S to the set of admissibletra�
 matri
es T . The obje
tive is to up-s
ale the 
apa
ities of the network, andso the �ow polytope of the network, to make all the routings in the set S(T )feasible. Hen
e, α signi�es the maximal link over-utilization 
aused when routingany admissible tra�
 matrix over S. This also implies that α ≥ 1.So far, the oblivious ratio was de�ned with respe
t to the throughput set
T . We need to �nd the oblivious ratio with respe
t to arbitrary regions andsometimes to arbitrary routing fun
tion. Thus, we need to introdu
e the followinggeneralization.



6 G. Németh, G. RétváriDe�nition 4. Given an arbitrary set of tra�
 matri
es R
K ⊃ X 6= ∅ and arouting fun
tion S, the oblivious ratio α(X, S) with respe
t to X and S is theoptimal solution of the optimization problem:

α(X, S) = argmin
α

{S(X) ⊆ αM} . (2)De�nition 5. Given an arbitrary set of tra�
 matri
es R
K ⊃ X 6= ∅, the obliv-ious ratio α(X) with respe
t to X is the optimal solution of the optimizationproblem:

α(X) = min
S

α : α(X,S) ≡ min
S

α : S(X) ⊆ αM . (3)Remark 1. Note that α(X) is equivalent to the 
onventional notion of obliviousratio when X = T . In other 
ases, it depends on X and it may even be smallerthan 1 when X ⊂ T .Remark 2. The routing fun
tion S minimizing the optimization problem 3 is
alled optimal routing fun
tion over the set of tra�
 matri
es X .De�nition 6. Given a throughput polytope T and a 
ompound routing fun
tion
S = {(Ri,Si) : i ∈ I} the 
umulative oblivious ratio of the system is de�ned asfollows.

sα({Ri}i∈I) = max
i∈I

{α(Ri)} . (4)Note that the previous de�nition of 
umulative oblivious ratio is the naturalgeneralization of the oblivious ratio for 
ompound routing fun
tions, re
allingthat the oblivious ratio 
an be interpeted as the maximal link over-utilization.3 Cumulative Oblivious Ratio over Hyper-Cubi
 Regionsand a Partitioning AlgorithmIn this se
tion, we analyze the 
umulative oblivious ratio, when dividing thethroughput polytope T into �nite hyper-
ubi
 partitions. First, we prove sometheoreti
al properties of these partitions. Then, we introdu
e a novel algorithm,whi
h, in 
ontrast to the algorithm given in [23℄, provides provable guaranteeson the 
umulative oblivious ratio.3.1 The Theoreti
al Upper BoundThe proof of our main theorem is based on some basi
 properties of hyper-
ubi
throughput regions. Thus, we �rst introdu
e an auxiliary theorem summarizingthese observations.Theorem 1. Let ai, bi ∈ R+, ∀i ∈ {1, · · · , K} , ai ≤ bi and H =
K
×

i=1
[ai, bi] ⊂ R

Ka hyper re
tangle in the K dimensional throughput spa
e. The optimal rout-ing fun
tion SH for the throughput region H is blo
k diagonal and SH = Sb,where b = (b1, · · · , bK) and Sb is the optimal routing fun
tion for the (singleton)throughput set {b}.
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tion Sb 
an be written in blo
k diagonal ma-trix form, viz., the routing fun
tion for a single throughput simply de�nes thedistribution of demand between the routes being used.Moreover, ∀θ ∈ H : θ ≤ b results that Sb is routing fun
tion for θ and
Sb (b) ≥ Sb (θ). The lowest possible oblivious ratio for b is a
hieved using the Sbrouting fun
tion (be
ause of the optimality of Sb), thus SH = Sb is the optimalrouting fun
tion over the whole region H .Remark 3. K

×
i=1

[ai, bi] ⊂ T ⇒ α(
K
×

i=1
[ai, bi]) ≤ 1.Remark 4. The routing fun
tion Sb is distributed linear, i.e.,

0 ≤ {Sb}ij ≤

{

1 if ij is a blo
k diagonal element
0 otherwise .Let us take a 
loser look on the network 
on�guration depi
ted in Fig. 1. Wederive the routing fun
tion of the hyper-
ubi
 region R1. The maximum pointof this region is the point (1, 1) ∈ R

2, whi
h 
an be routed using the routingfun
tion
S(1,1) : θ 7→





1 0
0 0
0 1



 θ; θ ∈ R1 .Observe that S(1,1) is a distributed linear routing fun
tion. Additionally, S(1,1)routes any demand in R1 without 
ausing link over-utilization, as the �rst de-mand is routed using path P1, while the se
ond demand uses only P3. Moreover,all other demands in the region R1 
an be routed using this routing fun
tion,too.Now, we are ready to state the main theorem that gives an easy-to-
omputeupper bound for the 
umulative oblivious ratio over �nite hyper-
ubi
 partitions.Theorem 2. Let {Hǫ
i }i∈I , Hǫ

i ⊂ R
K
+ be �nite partition of any �nite hyper
ube
ontaining the throughput polytope T . Suppose, that Hǫ

i are mutually ex
lusiveand 
olle
tively exhaustive hyper
ubes with side length ǫ. Moreover, let ai =
min{x : x ∈ Hǫ

i } and let Sai
be the optimal routing fun
tion for the point ai.For any su
h partition of T , the 
umulative oblivious ratio is given by:

sǫ
α ≤ 1 + max

e∈E

{

ξe

ce

}

ǫ ,where ce and ξe denotes the 
apa
ity and number of paths sharing the edge e ∈ E,respe
tively.Proof. Introdu
ing the notation T = R
K
+ \ T we have:

sǫ
α = sα({Hǫ

i ∩ T }i∈I) = max
i∈I

{α(Hǫ
i ∩ T )} =

= max
i∈I

Hǫ
i
∩T 6=0

{α(Hǫ
i ∩ T )} = max

i∈I

Hǫ
i
∩T 6=0

Hǫ
i
∩T 6=0

{α(Hǫ
i ∩ T )} ,



8 G. Németh, G. Rétváriwhere the last equality is valid, be
ause all the boundary points of T have atleast oblivious ratio equal to 1 (note that ea
h boundary point of T �lls the
apa
ities along at least one edge of the network). Simply put, when 
al
ulatingthe oblivious ratio only hyper
ubes (hyper
ube splits) 
ontaining at least oneboundary point from T 
ount.Let P e
k denote the row of the ar
-path in
iden
e matrix of k 
orrespondingto link e. Now, we have

sǫ
α

1
≤ max

e∈E
max

i∈I

Hǫ
i
∩T 6=0

Hǫ
i
∩T 6=0

K
∑

k=1

P e
kSai

(Hǫ
i ∩ T )

ce
≤ max

e∈E
max

iI
Hǫ

i
∩T 6=0

Hǫ
i
∩T 6=0

K
∑

k=1

P e
kSai

(Hǫ
i )

ce2
≤ max

e∈E
max

i∈I

Hǫ
i
∩T 6=0

Hǫ
i
∩T 6=0

K
∑

k=1

P e
kSai

(ai + 1ǫ)

ce3
= max

e∈E
max

i∈I
Hǫ

i
∩T 6=0

Hǫ
i
∩T 6=0



























K
∑

k=1

P e
kSai

(ai)

ce
+

K
∑

k=1

P e
kSai

(1ǫ)

ce

























4
≤ 1 + max

e∈E
max

i∈I

Hǫ
i
∩T 6=0

Hǫ
i
∩T 6=0

K
∑

k=1

P e
kSai

(1ǫ)

ce

5
≤

1 + max
e∈E

{

ξe

ce

}

ǫ,where 1 is valid, be
ause instead of the optimal routing fun
tion we introdu
ed aspe
ial (maybe not optimal) one in the formulae; 2 is valid be
ause of Theorem 1;3 is valid be
ause of the linearity of Sai
(see Remark 4); 4 is valid be
ause ai ∈ T ;5 is valid be
ause of Remark 4.Remark 5. During the proof we used the routing fun
tion Sai

, whi
h belongs tothe stri
test 
lass of possible routing fun
tions 
overed in this paper (Sai
is adistributed linear routing fun
tion; re
all Remark 4). Thus, the derived formulais valid for more general a�ne fun
tions, too (that is, when we let g 6= 0).The results of Theorem 2 empowers us to analyze the behaviour of the 
u-mulative oblivious ratio over in�nitesimally small hyper-
ubi
 regions.Corollary 1. lim

ǫ→0
sǫ

α = lim
ǫ→0

(

1 + max
e∈E

{

ξe

ce

}

ǫ

)

= 1Simply put, Corollary 1 states that using smaller and smaller hyper-
ubi
regions as partitions the 
umulative oblivious ratio 
onverges to its minimum.
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an be eliminated be using su�
iently smallregions.3.2 The Partitioning AlgorithmAfter the theoreti
al 
onsiderations, we introdu
e a novel algorithm to 
om-pute a hybrid demand-oblivious routing fun
tion that guarantees that link over-utilization does ex
eed a given parameter. The input to the algorithm is, 
on-sequently, the desirable oblivious ratio δ. This parameter then, a

ording toTheorem 2, determines an upper bound ǫ on the size of hyper
ubes we need to
over the throughput polytope as follows:
ǫ ≤ δ−1

maxe∈E{ξe/ce}
. (5)Cal
ulating the optimal routing fun
tions over these hyper
ubes (i.e., solvingEquation (3) for ea
h hyper
ube Ri, i ∈ I, separately), a 
ompound routingfun
tion S = {(Ri,Si) : i ∈ I} 
an be 
onstru
ted with guaranteed obliviousratio δ (see Algorithm 1).Algorithm 1 Partitioning algorithmfun
tion partitioning_oblivious_routing(δ)

ǫ← δ−1

maxe∈E{ξe/ce}

{Hǫ
i }i∈I ← ∪i∈IHǫ

i so that T ⊆ {Hǫ
i }i∈Ifor i ∈ I

Ri = Hǫ
i ∩ T

(αi,Si)← minS α : S(Ri) ⊂ αMstore (αi,Si, Ri)end forend fun
tionHitherto, we have not spe
i�ed the type of the routing fun
tions used in thepartitioning algorithm. A

ording to Theorem 2, it is possible to use any kind ofrouting fun
tions, however, it is a good de
ision to restri
t the routing fun
tionsto a�ne distributed fun
tions. The main advantage of the distributed routingfun
tions is that the a
tual splitting ratio for a given demand depends only uponthat demand, and it is not dependent upon other demands.Hen
e, our s
heme will require minimal 
entral 
ontrol, only to lookup theright routing region based on the a
tual demands. For this, the 
entral 
ontrollerperiodi
ally determines the a
tual tra�
 matrix and 
he
ks whether the 
urrentdemand θ still resides in the 
urrent routing region Ri . If yes, no a
tion is takenas the 
urrent routing fun
tion is 
orre
t. Otherwise, the 
ontroller sear
hes fora new region. Organizing the regions into a de
ision tree improves the online
omplexity to O(log |I|), where |I| denotes the number of routing regions.Re
all the sample network depi
ted in Fig. 1. For this 
on�guration, due tothe edge between the nodes labelled by 2 and 4, and due to the unit 
apa
ity



10 G. Németh, G. Rétváriof the edges, maxe∈E ξe = 2. Suppose that we need to ful�ll a given 
onstraint,say, the 
umulative oblivious ratio should be less than δ = 3. A

ording to ex-pression (5), we get ǫ = 1 as the size of the hyper
ubes needed to 
over thethroughput polytope to attain this δ as the oblivious ratio. A possible partition-ing is depi
ted in Fig. 1
. Then, running Algorithm 1 over this partitioning (thatis, solving (3) for ea
h hyper-
ubi
 region in Fig. 1
) over the 
lass of distributeda�ne fun
tions, we obtain the following routing fun
tions:
S1 : θ 7→





1 0
0 0
0 1



 θ; θ ∈ R1

S2 : θ 7→





0 0
1 0
0 1



 θ +





1
−1

0



 ; θ ∈ R2Note that for this 
ompound routing fun
tion the 
umulative oblivious ratio isnot only less than the desired one, but it is equal to 1. This suggests that ourtheoreti
al bound on the oblivious ratio is somewhat pessimisti
.4 EvaluationAlgorithm During the simulations, we used a bit di�erent version of the pre-viously introdu
ed partitioning algorithm. Instead of the desired oblivious ratio,the parameter of the modi�ed algorithm is rather the iteration depth, that is,the number of 
utting planes in ea
h dimension of the throughput spa
e (
ut-ting planes are equally distan
ed in ea
h dimension). Note that there is a dire
t
onne
tion between the 
ube-size value ǫ and the iteration depth j, namely,
ǫj = maxk∈K

mk

j , where mk is the (single-
ommodity) maximum �ow for the k-th sour
e-destination pair. We 
hose this modi�
ation of the algorithm be
auseit �ts better the purposes of our simulation studies: we 
an in
rease the itera-tion depth and observe the 
hange in the 
umulative oblivious ratio, instead ofhaving to guess the latter value and 
al
ulating the size of hyper
ubes used bypartitioning. Moreover, in this way it 
an be guaranteed that for di�erent iter-ation depth the number of 
ontrol regions is di�erent, too. However, we 
annotwarrant anymore that the oblivious ratio de
reases when in
reasing the iterationdepth.Performan
e metri
s We used the following three performan
e metri
s to
hara
terize the e�
ien
y of our algorithm: (i) the oblivious ratio as de�ned inthe optimization problem (1); (ii) the 
umulative oblivious ratio as de�ned inEquation (4); and (iii) the number of 
ontrol regions denoted by |I|. Note thatthe number of 
ontrol regions is dire
tly related to the 
omplexity of the routingfun
tion: the more regions, the more routing fun
tions must be 
al
ulated andstored, and hen
e the more lookups are needed during the operation of thenetwork.
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 Pars and Theo Upper Bounds 11Simulation instan
es We ran our evaluations on ISP data maps from theRo
ketfuel dataset [27℄. We used the same method as in [14℄ to obtain approxi-mate POP-level topologies: we 
ollapsed the topologies so that nodes 
orrespondto 
ities, we eliminated leaf-nodes and we set link 
apa
ities inversely propor-tional to the link weights. The number of users was in
reased from 2 to 8,sour
e-destination pairs were 
hosen a

ording to the bimodal distribution andpaths were provisioned maximally node-disjoint. The number of 
utting planes(the iteration depth) was in
reased from 1 to 4. Fifteen evaluation runs, usingdistributed a�ne (denoted by 1 in the supers
ript) and distributed linear (de-noted by 2 in the supers
ript) routing fun
tions, respe
tively, were 
ondu
ted ondi�erent randomly 
hosen network samples and the results were averaged. Theresults are depi
ted in Table 2.Apart from the realisti
 network topologies supplied by the Ro
ketfuel dataset, we also 
ondu
ted simulations on arti�
ial networks in order to assess theworst 
ase performan
e of our algorithm. The networks marked by OK-x (for
x = 3, 4, 5 and 6, resp.) were originally 
onstru
ted in [16℄ to derive the worst-
asevalue of the oblivious ratio in spe
ially 
rafted networks. For a given value x, theOK-x network is 
onstru
ted as follows. It has N =

(

x
2

)

+ x+ 1 verti
es denotedby ai,j for all 1 ≤ i ≤ j ≤ x, bi for all 1 ≤ i ≤ x and a vertex denoted by t.The edges of the network are all of unit 
apa
ity and are as follows: (ai,j , bi) and
(ai,j , bj) for all 1 ≤ i ≤ j ≤ x, and (bi, t) for 1 ≤ i ≤ x. The sour
e-destinationpairs are (aj,y, t) for all 1 ≤ j ≤ y − 1, and (ay,j , t) for all y + 1 ≤ j ≤ x. Thesimulation results for these networks are depi
ted in Fig. 2.

j

sα[log]

10

5

1 2 3 4(a) OK-3 j

sα[log]

10

5

1 2 3 4(b) OK-4
j

sα[log]

10

5

1 2 3 4(
) OK-5 j

sα[log]

10

5

1 2 3 4(d) OK-6oblivious ratio with distributeda�ne and linear fun
tion, resp. upper boundFig. 2: Measured oblivious ratio for the sele
ted arti�
ial networks and iteration depths.



12 G. Németh, G. Rétvárioblivious ratio 2 3 4
K α2 α1 α2

2
α1

2
β2 |I2| α2

3
α1

3
β3 |I3| α2

4
α1

4
β4 |I4|

2 1.012 1.012 0.997 0.990 2.687 4.0 0.998 0.989 2.121 9.0 0.996 0.989 1.838 15.9
3 1.095 1.095 0.989 0.937 2.734 8.0 0.963 0.940 2.129 26.8 0.960 0.932 1.826 62.7
4 1.139 1.139 0.978 0.929 3.228 15.9 0.947 0.919 2.446 76.2 0.945 0.908 2.055 228.0
5 1.119 1.119 0.983 0.940 2.721 31.7 0.960 0.936 2.114 231.6 0.955 0.926 1.810 930.1
6 1.229 1.229 0.981 0.911 3.440 60.8 0.929 0.895 2.566 618.9 0.919 0.878 2.128 3090.4
7 1.231 1.231 0.976 0.924 4.213 114.7 0.933 0.897 3.081 1652.4 0.919 0.878 2.515 10674.7
8 1.269 1.269 0.968 0.914 3.452 244.3 0.923 0.888 2.565 5217.6 0.905 0.867 2.121 45566.7(a) AS 1239oblivious ratio 2 3 4
K α2 α1 α2

2
α1

2
β2 |I2| α2

3
α1

3
β3 |I3| α2

4
α1

4
β4 |I4|

2 1.025 1.025 0.998 0.987 3.414 4.0 0.994 0.982 2.602 8.9 0.991 0.982 2.196 15.5
3 1.062 1.062 0.987 0.972 4.138 8.0 0.980 0.960 3.075 26.4 0.971 0.961 2.543 61.4
4 1.163 1.163 0.986 0.938 5.156 15.6 0.956 0.912 3.725 75.4 0.939 0.904 3.010 220.7
5 1.188 1.188 0.983 0.939 3.836 31.5 0.956 0.905 2.839 211.9 0.931 0.898 2.340 829.3
6 1.208 1.208 0.978 0.942 5.261 62.4 0.959 0.914 3.783 617.3 0.933 0.898 3.045 3231.2
7 1.235 1.235 0.969 0.929 5.997 120.0 0.946 0.906 4.268 1616.7 0.918 0.885 3.404 10077.9
8 1.273 1.273 0.964 0.932 6.893 228.3 0.933 0.900 4.858 4154.8 0.909 0.876 3.840 33333.1(b) AS 1755oblivious ratio 2 3 4
K α2 α1 α2

2
α1

2
β2 |I2| α2

3
α1

3
β3 |I3| α2

4
α1

4
β4 |I4|

2 2.000 1.000 1.000 1.000 3.764 4.0 1.000 1.000 2.843 9.0 1.000 1.000 2.382 16.0
3 2.061 1.096 0.996 0.939 3.822 8.0 0.989 0.930 2.872 27.0 0.987 0.930 2.397 64.0
4 2.196 1.143 0.985 0.942 5.994 16.0 0.965 0.912 4.301 79.2 0.953 0.907 3.454 246.4
5 2.248 1.210 0.989 0.924 3.973 32.0 0.964 0.890 2.947 237.6 0.949 0.875 2.434 985.6
6 2.289 1.175 0.989 0.929 4.626 64.0 0.961 0.902 3.377 712.8 0.946 0.895 2.752 3942.4
7 2.357 1.228 0.991 0.931 5.657 128.0 0.959 0.898 4.054 2138.4 0.933 0.882 3.253 15769.6
8 2.406 1.281 0.983 0.902 6.175 256.0 0.940 0.871 4.394 6269.4 0.923 0.850 3.504 60620.8(
) AS 3257oblivious ratio 2 3 4
K α2 α1 α2

2
α1

2
β2 |I2| α2

3
α1

3
β3 |I3| α2

4
α1

4
β4 |I4|

2 1.044 1.044 0.993 0.971 3.626 4.0 0.983 0.969 2.738 8.9 0.979 0.967 2.294 15.7
3 1.108 1.108 0.980 0.944 4.185 8.0 0.962 0.930 3.092 26.6 0.953 0.924 2.546 62.1
4 1.176 1.176 0.986 0.940 6.610 16.0 0.954 0.907 4.692 78.0 0.933 0.898 3.733 236.8
5 1.190 1.190 0.983 0.932 6.645 31.5 0.956 0.911 4.713 222.8 0.938 0.895 3.746 888.0
6 1.232 1.232 0.977 0.926 5.286 62.7 0.939 0.905 3.797 654.6 0.921 0.884 3.053 3304.5
7 1.314 1.314 0.951 0.911 6.042 124.5 0.906 0.869 4.284 1893.9 0.881 0.847 3.405 12333.0
8 1.334 1.334 0.953 0.912 7.420 235.5 0.910 0.874 5.198 5139.5 0.884 0.850 4.087 43033.1(d) AS 3967Table 2: Measured 
umulative oblivious ratios for the sele
ted ro
ketfuel topologies. α2and α1 denotes the 
umulative oblivious ratio using distributed linear and distributeda�ne routing fun
tions, respre
tively. α2

j , α1

j and βj denote the average normed 
u-mulative oblivious ratio (i.e, α2

j is the average of the normed values sα2

j
/α2) and the
al
ulated average normed upper bound for the j-th iteration, respe
tively.
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 Pars and Theo Upper Bounds 13Evaluation results The main observations are as follows. First, as the theoret-i
al results suggest the measured oblivious ratio is always less than the predi
tedone. However, the di�eren
e between the two values 
an be
ome signi�
ant. Thisis the 
ost we must pay for using rough approximations in order to be able toderive a simple theoreti
al upper bound. Se
ond, we 
an 
learly see that usingthe more general distributed a�ne fun
tions (re
all, the ones marked with 1 insupers
ript) better 
umulative oblivious ratio 
an be obtained. Thus, it mightbe tempting to use a�ne routing fun
tions for real life networks. However, thesimulation results also show that the bene�t is highly network dependent. Forexample, in 
ase of the network topology AS3257 this di�eren
e is quite straight-forward, but for the other ones the bene�ts of the general routing fun
tion isnot that signi�
ant. Third, the bene�t 
aused by in
reasing the iteration depthis also dependent on the type of the routing fun
tion. Using the more generaldistributed a�ne fun
tion, naturally, yields better results than distributed linearfun
tions.Lastly, we 
onsider the 
omplexity of the routing (fun
tions) expressed interms of the depends on the number of routing regions. As it is 
learly observ-able, the number of routing regions in
reases rapidly with the iteration depthin
reasing the 
omplexity of the routing fun
tion, making the proposed algo-rithm somewhat ine�
ient. Contrasting these results to the ones in [23℄, we seethat the algorithm in [23℄ is more e�
ient and less 
omplex. The algorithm inthis paper, though, is still extremely important, be
ause it provides a �rm theo-reti
al worst-
ase bound on the oblivious ratio, and hen
e, link over-utilizationexperien
ed by the network in 
ase of any admissible tra�
 matrix. This wasimpossible with previous algorithms.
θ2

θ1

1 2

1

0

L

L−1

θ2

θ1

0.5 1

1

0Fig. 3: Due to the down-monotoni
ity of the throughput polytope, after the lineartransformation L the K-simplex is going to be the part of the transformed throughputpolytope. Thus, the number of hyper
ubes 
overing the standard K-simplex is less thanthe number of the routing regions.It is tempting to investigate, whether a hyper-
ubi
 partitioning algorithmexists that is both e�
ient and simple (i.e., 
ontains at most a polynomial num-ber of hyper-
ubi
 regions) at the same time. Unfortunately, this does not seemto be the 
ase, as the following lower bound on the number of routing regionssuggests:
|I| ≥ ⌈

v(K)

(1/j)K
⌉ .



14 G. Németh, G. RétváriIn this expression, v(K) denotes the volume of the standard K-simplex and
j, as before, is the iteration depth. The expression 
ompares the volume ofthe standard K-simplex and the hyper
ubes with side length 1

j . We used theobservation that the standard K-simplex 
an be naturally transformed, using alinear transformation, into the interior of the throughput polytope, and vi
e versa(for more details, 
onsult Fig. 3). What the expression states is that halving thepermitted link over-utilization (i.e., halving the value of ǫ) needs about O(2K)times more regions.5 Related WorkDemand-oblivious routing has ri
h literature [14, 16�19, 21℄. There are variousresults regarding the worst-
ase performan
e: Rä
ke gives a method with poly-logarithmi
 oblivious ratio in undire
ted graphs [15℄, while Azar et al. provesthat no su
h bound exists for dire
ted graphs: they give a dire
ted graph of
(

k
2

)

+ k + 1 nodes, (

k
2

) sour
e-destination pairs where the oblivious ratio is atleast (

k
2

) [16℄.Re
ently, in [28℄ it was shown that for every network the link over-utilization
an be eliminated introdu
ing 
ompound a�ne routing fun
tions. Here, the rout-ing fun
tions are 
al
ulated using multi-parametri
 linear programs. However,in 
ontrast to the algorithm presented in this paper, the optimal algorithm usesextensive 
entral 
ontrol, both for setting the tra�
 splitting ratios and for thesele
tion of the a
tual routing region.The idea of 
ompound routing fun
tions inspired the development of a hybridalgorithm [23℄. This algorithm simpli�es the type of the routing regions, as itgenerates only hyper-
ubi
 regions. The algorithm uses heuristi
s when 
reatingthe routing regions: in ea
h step the algorithm tries to minimize the 
umulativeoblivious ratio by sli
ing ea
h (previously 
reated) routing region into two newhyper-
ubi
 regions. The algorithm is a 
onquer-and-divide fashion algorithm,i.e., for ea
h region the 
utting plane is sele
ted, whi
h minimizes the obliviousratio. A

ording to [23℄, by only a few 
uts the oblivious ratio 
an be drasti
allyde
reased, however, no 
onvergen
e results exist.Our re
ent algorithm 
an be viewed as the su

essor of the previous algo-rithm. It keeps all of its advantages, but tries to solve the problem from thebottom-up perspe
tive, instead of the top-down one. As a result, it 
an give atheoreti
al upper bound for the 
umulative oblivious ratio, and it 
an be usedto design routings satisfying any given maximal link over-utilization. Unfortu-nately, the 
omparison of the simulation results of the two methods show thatour re
ent method needs more routing regions to a
hieve the pres
ribed obliviousratio than the one in [23℄.There are several methods 
ombining basi
 oblivious routing with some reallife measurements to predi
t future state. These predi
tion based algorithmswork on tra�
 matrix samples 
olle
ted during some time interval. Instead ofoptimizing oblivious ratio over the full throughput polytope, as it is done in
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ubi
 Pars and Theo Upper Bounds 15demand-oblivious routing, here the optimization is performed � and the routingfun
tion is 
al
ulated � only over the 
onvex hull of the 
olle
ted tra�
 ma-tri
es. Thus, these algorithms are e�e
tive when the future demands fall intothe 
omputed 
onvex hull. Unfortunately, ful�llment of this 
ondition 
annot beguaranteed. One method solving this problem is 
alled COPE [7℄. In COPE, apenalty envelope is introdu
ed, thus, not only the oblivious ratio is optimizedover the 
onvex hull of the 
olle
ted tra�
 matri
es, but also some penalty fun
-tion of the routing fun
tion over the whole throughput polytope is bounded.Simulation results in [7℄ show that COPE 
an a
hieve e�
ient resour
e utiliza-tion under a variety of real topologies and s
enarios.There are also several on-line TE methods, whi
h, in 
ontrast to our algo-rithm, use feedba
k from the network. For example, REPLEX [13℄ and DATE [10℄are both su
h methods. They both solve the routing problem in a distributedmanner, i.e., there is a given 
onvergen
e time to 
al
ulate the appropriate rout-ing fun
tion. In 
ontrast, in our algorithm a 
entral 
ontroller is needed to pe-riodi
ally determine the a
tual tra�
 matrix and sele
t the right routing regionand the (previously, o�ine 
al
ulated) routing fun
tion.6 Con
lusionIn this paper, we analyzed the properties of demand-oblivious routing over hyper-
ubi
 regions. We determined an easy to 
omputable worst 
ase bound for the
umulative oblivious ratio, whi
h empowered us to design a hybrid 
entralized-distributed partitioning algorithm for 
al
ulating a 
ompound routing fun
tionwith upper bounded oblivious ratio (and hen
e link over-utilization). To the bestof our knowledge, this is the �rst time that a demand-oblivious routing algorithmwith provable worst-
ase performan
e in dire
ted graphs is presented.Simulation studies using several real-life network topologies showed that ouralgorithm indeed admits the theoreti
al worst-
ase behavior. In addition, thealgorithm su

essfully de
reases the 
umulative oblivious ratio in only a fewiterations. Though, a 
loser investigation of the 
ompound routing fun
tionsgenerated unearthed 
omplexity problems: halving the link over-utilization needsabout O(2K) times as many regions, where K is the dimension of the throughputspa
e.We were able to prove that link over-utilization 
an be fully eliminated whende
reasing the size of the hyper-
ubi
 regions to in�nitesimally small, (i.e., usingin�nity number of routing regions) regardless of the type of the routing fun
-tion. The question arises, whether there are networks for whi
h the link over-utilization 
an be eliminated with using only a �nite number of hyper-
ubi
routing regions. Our future work will fo
us on �nding the 
lass of networkshaving this property.



16 G. Németh, G. RétváriReferen
es1. D. Awdu
he, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. Overview and prin
iplesof Internet tra�
 engineering. RFC 3272, May 2002.2. D. G. Cantor and M. Gerla. Optimal routing in a pa
ket-swit
hed 
omputer net-work. IEEE Transa
tions on Computer, 23(10):1062�1069, 1974.3. B. Fortz, J. Rexford, and M. Thorup. Tra�
 engineering with traditional IP routingproto
ols. IEEE Communi
ations Magazine, 40(10):118�124, O
t 2002.4. M. Roughan, M. Thorup, and Y. Zhang. Tra�
 engineering with estimated tra�
matri
es. In IMC '03: Pro
eedings of the 3rd ACM SIGCOMM 
onferen
e onInternet measurement, pages 248�258, 2003.5. C. Zhang, Y. Liu, W. Gong, J. Moll, and R. D. Towsley. On optimal routing withmultiple tra�
 matri
es. In INFOCOM 2005, volume 1, pages 607�618, 2005.6. D. Medhi. Multi-hour, multi-tra�
 
lass network design for virtual path-baseddynami
ally re
on�gurable wide-area ATM networks. IEEE/ACM Transa
tionson Networking, 3(6):809�818, 1995.7. Hao Wang, Haiyong Xie, Lili Qiu, Yang Ri
hard Yang, Yin Zhang, and AlbertGreenberg. COPE: tra�
 engineering in dynami
 networks. SIGCOMM Comput.Commun. Rev., 36(4):99�110, 2006.8. D. P. Bertsekas. Dynami
 behavior of shortest path routing algorithms for 
om-muni
ation networks. IEEE Trans. on Automati
 Control, 27:60�74, 1982.9. Mung Chiang, S.H. Low, A.R. Calderbank, and J.C. Doyle. Layering as optimiza-tion de
omposition: A mathemati
al theory of network ar
hite
tures. Pro
eedingsof the IEEE, 95(1):255�312, Jan 2007.10. J. He, M. Bresler, M. Chiang, and J. Rexford. Towards robust multi-layer tra�
engineering: Optimization of 
ongestion 
ontrol and routing. Sele
ted Areas inCommuni
ations, IEEE Journal on, 25(5):868�880, June 2007.11. Constantino M. Lagoa, Hao Che, and Bernardo A. Movsi
ho�. Adaptive 
ontrolalgorithms for de
entralized optimal tra�
 engineering in the internet. IEEE/ACMTrans. Netw., 12(3):415�428, 2004.12. Srikanth Kandula, Dina Katabi, Bru
e Davie, and Anna Charny. Walking theTightrope: Responsive Yet Stable Tra�
 Engineering. In ACM SIGCOMM'05,August 2005.13. Simon Fis
her, Nils Kammenhuber, and Anja Feldmann. REPLEX: dynami
 tra�
engineering based on wardrop routing poli
ies. In Pro
eedings of CoNEXT'06,pages 1�12, 2006.14. D. Applegate and E. Cohen. Making intra-domain routing robust to 
hanging andun
ertain tra�
 demands: understanding fundamental tradeo�s. In Pro
eedings ofSIGCOMM '03, pages 313�324, 2003.15. H. Rä
ke. Minimizing 
ongestion in general networks. In FOCS '02, pages 43�52,2002.16. Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Rä
ke. Optimal oblivious routingin polynomial time. J. Comput. Syst. S
i., 69(3):383�394, 2004.17. J. Wellons and Yuan Xue. Oblivious routing for wireless mesh networks. In ICC'08, pages 2969�2973, May 2008.18. Y. Li, B. Bai, J. J. Harms, and R. Holte. Stable and robust multipath obliviousrouting for tra�
 engineering. In International Teletra�
 Congress, volume 4516of Le
ture Notes in Computer S
ien
e, pages 129�140. Springer, 2007.19. D. Applegate, L. Breslau, and E. Cohen. Coping with network failures: routingstrategies for optimal demand oblivious restoration. SIGMETRICS Perform. Eval.Rev., 32(1):270�281, 2004.



Hybrid Demand Obl. Routing: Hyper-
ubi
 Pars and Theo Upper Bounds 1720. M. Hajiaghayi, J. Kim, T. Leighton, and H. Rä
ke. Oblivious routing in dire
tedgraphs with random demands. In STOC '05, pages 193�201, 2005.21. N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Online oblivious routing. InSPAA '03, pages 44�49, 2003.22. B. Towles and W. Dally. Worst-
ase tra�
 for oblivious routing fun
tions. InSPAA '02, pages 1�8, 2002.23. G. Rétvári and G. Németh. Demand-oblivious routing: distributed vs. 
entralizedapproa
hes. In INFOCOM 2010, Mar
h 2010.24. G. Rétvári, J. J. Bíró, and T. Cinkler. Fairness in 
apa
itated networks: A poly-hedral approa
h. In INFOCOM'07, volume 1, pages 1604�1612, May 2007.25. G.M. Ziegler. Le
tures on Polytopes, volume 152 of Graduate Texts in Mathemati
s.Springer, 1998.26. B. Grünbaum. Convex Polytopes. John Wiley & Sons, 1967.27. Ratul Mahajan, Neil Spring, David Wetherall, and Tom Anderson. Inferring linkweights using end-to-end measurements. In IMW '02: Pro
eedings of the 2nd ACMSIGCOMM Workshop on Internet measurment, pages 231�236, 2002.28. G. Rétvári and G. Németh. On optimal rate-adaptive routing. In ISCC 2010,pages 605�610, 2010.


