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Summary. Traditionally, network routing was optimized with respect
to an expected traffic matrix, which left the network in a suboptimal
state if user traffic did not match expectations. A demand-oblivious rout-
ing is, contrarily, optimized with respect to all possible traffic matrices,
obviating the need for traffic matrix estimation. Oblivious routing is a
fundamentally distributed scheme, so it can be implemented easily. Un-
fortunately, in certain cases it may cause unwanted link over-utilization.
Recently, we have introduced a hybrid centralized-distributed method
to mitigate this shortcoming. However, our scheme did not provide a
theoretical upper bound for the link over-utilization. In this paper, we
tackle the problem again from a different perspective. Based on a novel
hyper-cubic partition of the demand space, we construct a new algorithm
that readily delivers the theoretical bounds. Simulation results show the
theoretical and practical significance of our algorithm.

Key words: oblivious ratio, demand-oblivious routing, hyper-cubic re-
gion

1 Introduction

Traffic Engineering (TE) [1] has become the key tool used in the majority of
autonomous systems, whose task is to map user traffic to the physical network
efficiently. This is important given the high cost of the elemental network in-
frastructure and the highly competitive nature of the ISP market. Most of the
TE methods are offline methods: forwarding paths are optimized with respect to
some measured and/or expected traffic matrices over some period of time, and
over-provisioning of network capacity ensures that unpredictable traffic spikes
do not cause violation of link capacities [2,3]. In a more dynamically chang-
ing environment, this routing strategy has become more and more inadequate.
Thus, several proposals have surfaced to reduce the significance of traffic ma-
trices (e.g., [4-7]) or even eliminate them (e.g., [8-13]) in intra-domain traffic
engineering.
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Academy of Sciences.
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A practical method to deal with unpredictable traffic matrices is called (de-
mand) oblivious routing [14-22]. Here, the basic idea is to handle all legitimate
traffic matrices simultaneously. Demand-oblivious routing is a fundamentally dis-
tributed scheme, meaning that the amount of traffic sent to a forwarding path
by a router only depends on information available locally at that router. This
ensures simplicity and scalability. Unfortunately, not all traffic matrices can be
routed equally efficiently in oblivious routing, therefore, the routing might under-
perform for the everyday traffic scenario and consequently the network will op-
erate in a suboptimal state in the majority of the time. Moreover, there is no
theoretical upper bound on the capacity oversubscription, and hence, congestion
demand-oblivious routing might cause [16].

Based on this insight, hybrid methods, combining the advantages of oblivious
routing with some minimal central knowledge, have drawn the attention of the
research community lately. The first hybrid algorithm was introduced in [23].
The main idea is to split the set of all legitimate traffic matrices (the so-called
throughput polytope [24]) into multiple hyper-cubic regions, and assign a sep-
arate routing function to all of these regions. The individual routing functions
are distributed, because the amount of traffic sent to a path at a source node
only depends on the actual demand at that node, and it is independent of the
demands at other nodes. A central controller, meanwhile, periodically observes
the traffic matrix, decides in which operating region the network is, and installs
the corresponding traffic splitting rations at the routers. This is exactly why
hyper-cubic regions are a key concept in the algorithm: a hyper-cubic region
provides the easiest way to decide whether the actual throughput is part of it.
Thus, this architecture only needs a limited amount of central control. Although
it has been shown that using the algorithm in [23] a significant improvement in
the link over-subscription can be achieved by only a few cuts, it is still unclear
whether the maximal link over-utilization converges to a minimum value.

In this paper, we analyze the properties of the maximal link over-utilization
over hyper-cubic regions. In particular, we answer the questions

— how to create a finite hyper-cubic partition of the throughput region and
— what is the maximum size of each hyper-cubic region when fixing the maximal
link over-utilization at a previously given value.

The rest of the paper is organized as follows. In Section 2, notations and
definitions are introduced. In Section III, we introduce the mathematical back-
grounds of our new algorithm. Simulation results are discussed in Section 4,
related work is assessed in Section 5 and finally, Section 6 concludes the paper.

2 Notations and Definitions

Before introducing our main theorem, we need to summarize the main ideas of
the geometric framework described in [23]. We need some basic terms and defi-
nitions from convex geometry also, thus we refer the reader to the introductory
material in [25] and [26].
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Suppose that we are given the network topology as usual, in the form
of a directed graph G(V,E) and a vector of positive, finite link capacities
¢ =[cc >0 :e € E] (see Table 1 for a summary on notations). Each user
is associated with a unique source-destination pair (sg,dy) : k € K and a set
of static paths Py. Additionally, each user k independently presents its demand
0i at the source node si. The task of the routing algorithm is to distribute the
demands 0y between the paths Py, Vk € K in a way as to avoid or minimize link
oversubscription.

Table 1: Notations

G(V, E)|a directed graph, with the set of nodes V' (|V| = n) and the set of directed
edges E (|E| =m)

c the column m-vector of edge capacities

e the number of paths sharing the edge e € E

(sk,dr) |the set of source-destination pairs (or users) for k € K ={1,..., K}

P the set of s — di paths assigned to some k € K

Dk the number of paths for user k, pr = |Px|

P number of all paths, p = Zkelcpk

Py an m X pr matrix. The column corresponding to path P € Py holds the
path-arc incidence vector of P

up scalar, describing the traffic routed at path P

Uk a column-vector, whose components are up : P € Py for some k € K
(whether we mean wuy, or u, will always be clear from the context)

u a column vector representing a particular choice of ups (a “routing”)

Ok the demand/throughput of some user k € K

0 a column K-vector representing a particular combination of throughputs (a

“traffic matrix”)

M flow polytope, the set of path flows corresponding to P subject to non-
negativity and capacity constraints

T throughput polytope, i.e., the set of throughputs realizable over P subject
to capacity constraints

8,8, |arouting function, S : R — RP and the routing function corresponding to
ke K, S, : RE — RPx, respectively

Sr,Sy |the opi(timal routing function over the region R € R¥, or for the throughput
beR

A routing is, consequently, represented by a vector of path flows: v = [uy, :
k € K] € Rt x RP2 x ... x RPXK = RP, where py, is the number of paths for k& and
p is the number of all paths.

Definition 1. The polytope M = {u : ) p Prur < ¢, u > 0} C RP is called
flow polytope. M contains all admissible routings, subject to link capacities and
non-negativity constraints.
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Fig. 1: The (a) sample network with unit edge capacities, source-destination pairs, the
set of paths for each user and the corresponding (b) flow and (c) throughput polytopes.

Consider the affine transformation (the so called throughput mapping) T :
R? — R¥ that from a routing v generates the corresponding traffic matrix 6 by
summing up the path flows for each particular path of a user:

0=T(u)=[0= Y up:kek].
PcPy

Definition 2. Mapping the flow polytope M through T gives the throughput
polytope T [24]:
R* 5> M L T cRE .

The throughput polytope contains all the traffic matrices realizable in the network
by some properly chosen static routing without violating link capacities:

T={6:3uec M sothat T(u) =0} .

Consequently, we call 6 € T admissible.

A sample network and the corresponding polytopes are depicted in Fig. 1.

The other central object in the framework is the routing function S, which
determines the way a traffic matrix 6 is mapped to the paths: u = S§(8). The
routing function S must always satisfy the throughput invariance rules, i.e., S(6)
must realize precisely 0: V6 € R¥ : 7(S(0)) = 6. Throughout this paper, we
only consider affine routing functions of the form S : RK — RP; § +— FO + ¢
(component-wise we have Sy : 0 — Fj.0 4 gi.), where F' (F}) is a p x K (pg x K)
matrix and g (gx) is a column vector of size p (px). Throughput invariance
implies:
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1 ifk=1

, 1Tg.=0
0 otherwise Ik ’

1T Fy =6 = {
where F},; denotes the Ith column of Fj. We call a routing function distributed,

if

0S8y, .
_ = f
29, 0if k #1

wherever the derivative is defined. The main advantage of distributed routing
functions is that the amount of traffic sent to a path at a source node only
depends on the actual demand at that node, and it is independent of the demands
at other nodes.

Note that distributed routing functions can be treated as affine routing func-
tions by restricting F' to block-diagonal matrices. Another restriction can be
made by fixing g at zero. In the latter case the routing function is a simple block
diagonal linear transformation, i.e., it only specifies the splitting ratios based on
which demands are distributed among the paths with the same ingress/egress
nodes. Letting g be different from zero allows more freedom in assigning path-
flows, though, this option might raise implementation issues as traffic splitting
ratios need to vary in small steps in this case.

So far we have dealt with simple routing functions, in the sense that we tried
to route all the admissible traffic matrices, that is, cover the whole throughput
polytope, with one routing function. It is tempting to combine several routing
functions into a single one. Such a compound routing function would be able to
accommodate any admissible traffic matrix 6 € 7" with causing less link overload.
To do this, we associate different routing functions with different regions of the
throughput space, so S takes the form S = {(R?,S*) : i € T} where R's give a
disjunct partition of the throughput space (e.g., see Fig. 1c, where two such a
regions are depicted), and we use the mapping 0 — S*(f) whenever 6 € R'.

Now, we are in a position to formulate the demand-oblivious routing problem
in geometric terms.

Definition 3. The minimal scalar o solving the optimization problem
msinoz :S(T) CaM (1)

is called the oblivious ratio and the corresponding routing function is called
demand-oblivious routing.

The interpretation of the optimization problem (1) is as follows. The set S(T")
represents all the routings one can get when applying S to the set of admissible
traffic matrices T'. The objective is to up-scale the capacities of the network, and
so the flow polytope of the network, to make all the routings in the set S(7T')
feasible. Hence, « signifies the maximal link over-utilization caused when routing
any admissible traffic matrix over S. This also implies that o > 1.

So far, the oblivious ratio was defined with respect to the throughput set
T. We need to find the oblivious ratio with respect to arbitrary regions and
sometimes to arbitrary routing function. Thus, we need to introduce the following
generalization.
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Definition 4. Given an arbitrary set of traffic matrices R > X # () and a
routing function S, the oblivious ratio o(X,S) with respect to X and S is the
optimal solution of the optimization problem:

alX,S) = argiilin{S(X) CaM} . (2)

Definition 5. Given an arbitrary set of traffic matrices RX > X # (), the obliv-
ious ratio «(X) with respect to X is the optimal solution of the optimization

problem:
a(X):mgna:a(X,S)Emgna:S(X)gaM. (3)

Remark 1. Note that a(X) is equivalent to the conventional notion of oblivious
ratio when X = T'. In other cases, it depends on X and it may even be smaller
than 1 when X C T.

Remark 2. The routing function S minimizing the optimization problem 3 is
called optimal routing function over the set of traffic matrices X.

Definition 6. Given a throughput polytope T' and a compound routing function
S ={(R",S8%) :i € I} the cumulative oblivious ratio of the system is defined as
follows.

sa({R'}ier) = Iglea:,}({a(Ri)} : (4)

Note that the previous definition of cumulative oblivious ratio is the natural
generalization of the oblivious ratio for compound routing functions, recalling
that the oblivious ratio can be interpeted as the maximal link over-utilization.

3 Cumulative Oblivious Ratio over Hyper-Cubic Regions
and a Partitioning Algorithm

In this section, we analyze the cumulative oblivious ratio, when dividing the
throughput polytope T into finite hyper-cubic partitions. First, we prove some
theoretical properties of these partitions. Then, we introduce a novel algorithm,
which, in contrast to the algorithm given in [23], provides provable guarantees
on the cumulative oblivious ratio.

3.1 The Theoretical Upper Bound

The proof of our main theorem is based on some basic properties of hyper-cubic
throughput regions. Thus, we first introduce an auxiliary theorem summarizing
these observations.

K
Theorem 1. Let a;,b; € R4, Vi e {1,--- ,K},ai <b; and H = X [ai,bi] C RE
i=1

a hyper rectangle in the K dimensional throughput space. Th:a optimal rout-
ing function Sy for the throughput region H is block diagonal and Sy = S,
where b = (b1, - ,bi) and Sy is the optimal routing function for the (singleton)
throughput set {b}.
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Proof. Obviously, the routing function S, can be written in block diagonal ma-
trix form, viz., the routing function for a single throughput simply defines the
distribution of demand between the routes being used.

Moreover, V0 € H : 6 < b results that S is routing function for § and
Sp (b) > S (0). The lowest possible oblivious ratio for b is achieved using the S
routing function (because of the optimality of S), thus Sy = S, is the optimal
routing function over the whole region H.

K K
Remark 3. x [ai,bi] cT = Oé( X [al,bi]) <1.
3 ;=1

=1 i=

Remark 4. The routing function S is distributed linear, i.e.,

1 if 45 is a block diagonal element
0 otherwise '

0<{Sp}i; < {

Let us take a closer look on the network configuration depicted in Fig. 1. We
derive the routing function of the hyper-cubic region R!. The maximum point
of this region is the point (1,1) € R?, which can be routed using the routing

function
10

S,y 10— 100 |6 6eR'.
01

Observe that S(; 1) is a distributed linear routing function. Additionally, S 1)
routes any demand in R! without causing link over-utilization, as the first de-
mand is routed using path P;, while the second demand uses only P;. Moreover,
all other demands in the region R' can be routed using this routing function,
too.

Now, we are ready to state the main theorem that gives an easy-to-compute
upper bound for the cumulative oblivious ratio over finite hyper-cubic partitions.

Theorem 2. Let {Hf}icz, H C RE be finite partition of any finite hypercube
containing the throughput polytope T'. Suppose, that H are mutually exclusive
and collectively exhaustive hypercubes with side length €. Moreover, let a; =
min{z : x € Hf} and let S,, be the optimal routing function for the point a;.
For any such partition of T, the cumulative oblivious ratio is given by:
< trma{E)e.

where ¢, and &, denotes the capacity and number of paths sharing the edge e € E,
respectively.

Proof. Introducing the notation T = Rf \ T we have:
So = Sa({H NT}ier) = max{a(H; NT)} =
1€
= max {o(Hi NT)} = max {a(H;NT)},

HfmT¢0 HfmT¢0
HE NT#0
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where the last equality is valid, because all the boundary points of T" have at
least oblivious ratio equal to 1 (note that each boundary point of T fills the
capacities along at least one edge of the network). Simply put, when calculating
the oblivious ratio only hypercubes (hypercube splits) containing at least one
boundary point from T count.

Let P denote the row of the arc-path incidence matrix of k corresponding
to link e. Now, we have

K K
N PiS.(H{NT) > PgSa, (H)

k=1 k=1

max max < max max

ecE i€Z Ce ecE _iZ Ce
HfmT¢0 HfmT¢0

Hf NT#0 HE NT#0

S

=]

€
[e3%

K
S PeSa(a; + 16)

k=1
max max
S eecE  i€Z Ce
HfmT¢0

Hf NT#0

I &3
>
i
I

max max +
E €T
e€ ne S0 Ce Ce

HE AT #0

k=1
%]leraX max = "1 4+ max< = e,
= e€cE i€ZT Ce < e€E

HENT#0 —

HE NT#0

where [I] is valid, because instead of the optimal routing function we introduced a
special (maybe not optimal) one in the formulae; 2 is valid because of Theorem 1;
is valid because of the linearity of S,, (see Remark 4); [ is valid because a; € T;
is valid because of Remark 4.

Remark 5. During the proof we used the routing function S,,, which belongs to
the strictest class of possible routing functions covered in this paper (S,, is a
distributed linear routing function; recall Remark 4). Thus, the derived formula
is valid for more general affine functions, too (that is, when we let g # 0).

The results of Theorem 2 empowers us to analyze the behaviour of the cu-

mulative oblivious ratio over infinitesimally small hyper-cubic regions.

Corollary 1. lim s, = lim (1 + max {E—E} e) =1
e—0 e—0 ecE | Ce

Simply put, Corollary 1 states that using smaller and smaller hyper-cubic
regions as partitions the cumulative oblivious ratio converges to its minimum.
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In other words, link over-utilization can be eliminated be using sufficiently small
regions.

3.2 The Partitioning Algorithm

After the theoretical considerations, we introduce a novel algorithm to com-
pute a hybrid demand-oblivious routing function that guarantees that link over-
utilization does exceed a given parameter. The input to the algorithm is, con-
sequently, the desirable oblivious ratio §. This parameter then, according to
Theorem 2, determines an upper bound € on the size of hypercubes we need to
cover the throughput polytope as follows:

€ < Ter(eraT - (5)
Calculating the optimal routing functions over these hypercubes (i.e., solving
Equation (3) for each hypercube R’, i € Z, separately), a compound routing
function S = {(R?,S%) : i € Z} can be constructed with guaranteed oblivious
ratio ¢ (see Algorithm 1).

Algorithm 1 Partitioning algorithm

function PARTITIONING _OBLIVIOUS_ _ROUTING(0)
€ TmrepteTe]
{H{},cqz « UierH{ so that T C {H{}
foriecZ
RI=HNT
(@', 8" « ming a : S(R") C aM
store (o', S, RY)
end for
end function

i€L

Hitherto, we have not specified the type of the routing functions used in the
partitioning algorithm. According to Theorem 2, it is possible to use any kind of
routing functions, however, it is a good decision to restrict the routing functions
to affine distributed functions. The main advantage of the distributed routing
functions is that the actual splitting ratio for a given demand depends only upon
that demand, and it is not dependent upon other demands.

Hence, our scheme will require minimal central control, only to lookup the
right routing region based on the actual demands. For this, the central controller
periodically determines the actual traffic matrix and checks whether the current
demand 6 still resides in the current routing region R’ . If yes, no action is taken
as the current routing function is correct. Otherwise, the controller searches for
a new region. Organizing the regions into a decision tree improves the online
complexity to O(log |Z|), where |Z| denotes the number of routing regions.

Recall the sample network depicted in Fig. 1. For this configuration, due to
the edge between the nodes labelled by 2 and 4, and due to the unit capacity
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of the edges, max.cp £ = 2. Suppose that we need to fulfill a given constraint,
say, the cumulative oblivious ratio should be less than § = 3. According to ex-
pression (5), we get € = 1 as the size of the hypercubes needed to cover the
throughput polytope to attain this d as the oblivious ratio. A possible partition-
ing is depicted in Fig. 1c. Then, running Algorithm 1 over this partitioning (that
is, solving (3) for each hyper-cubic region in Fig. 1c) over the class of distributed
affine functions, we obtain the following routing functions:

10
St:0—|00]0;, 6eR
01
00 1
S2:0— 100+ -1]; 0ecR?
01 0

Note that for this compound routing function the cumulative oblivious ratio is
not only less than the desired one, but it is equal to 1. This suggests that our
theoretical bound on the oblivious ratio is somewhat pessimistic.

4 Evaluation

Algorithm During the simulations, we used a bit different version of the pre-
viously introduced partitioning algorithm. Instead of the desired oblivious ratio,
the parameter of the modified algorithm is rather the iteration depth, that is,
the number of cutting planes in each dimension of the throughput space (cut-
ting planes are equally distanced in each dimension). Note that there is a direct
connection between the cube-size value e and the iteration depth j, namely,
€/ = maxpex =k, where my is the (single-commodity) maximum flow for the k-
th source-destination pair. We chose this modification of the algorithm because
it fits better the purposes of our simulation studies: we can increase the itera-
tion depth and observe the change in the cumulative oblivious ratio, instead of
having to guess the latter value and calculating the size of hypercubes used by
partitioning. Moreover, in this way it can be guaranteed that for different iter-
ation depth the number of control regions is different, too. However, we cannot
warrant anymore that the oblivious ratio decreases when increasing the iteration
depth.

Performance metrics We used the following three performance metrics to
characterize the efficiency of our algorithm: (i) the oblivious ratio as defined in
the optimization problem (1); (4i) the cumulative oblivious ratio as defined in
Equation (4); and (i) the number of control regions denoted by |Z|. Note that
the number of control regions is directly related to the complexity of the routing
function: the more regions, the more routing functions must be calculated and
stored, and hence the more lookups are needed during the operation of the
network.
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Simulation instances We ran our evaluations on ISP data maps from the
Rocketfuel dataset [27]. We used the same method as in [14] to obtain approxi-
mate POP-level topologies: we collapsed the topologies so that nodes correspond
to cities, we eliminated leaf-nodes and we set link capacities inversely propor-
tional to the link weights. The number of users was increased from 2 to 8,
source-destination pairs were chosen according to the bimodal distribution and
paths were provisioned maximally node-disjoint. The number of cutting planes
(the iteration depth) was increased from 1 to 4. Fifteen evaluation runs, using
distributed affine (denoted by 1 in the superscript) and distributed linear (de-
noted by 2 in the superscript) routing functions, respectively, were conducted on
different randomly chosen network samples and the results were averaged. The
results are depicted in Table 2.

Apart from the realistic network topologies supplied by the Rocketfuel data
set, we also conducted simulations on artificial networks in order to assess the
worst, case performance of our algorithm. The networks marked by OK-z (for
x = 3,4,5 and 6, resp.) were originally constructed in [16] to derive the worst-case
value of the oblivious ratio in specially crafted networks. For a given value x, the
OK-z network is constructed as follows. It has N = (3) + 2 + 1 vertices denoted
by a;; forall 1 <¢ < j <z, b forall 1 <7<z and a vertex denoted by t¢.
The edges of the network are all of unit capacity and are as follows: (a; ;, b;) and
(@i j,b;) forall 1 < ¢ < j <z, and (b;,t) for 1 <4 < z. The source-destination
pairs are (aj,,,t) forall 1 < j <y —1, and (ay,;,t) for all y +1 < j < x. The
simulation results for these networks are depicted in Fig. 2.

2 3 4’ 2 3 1’
(a) OK-3 (b) OK-4

sallog] sa(log]

1 1

i\‘\‘\' i\‘\‘\-

. [

T 2 3 a7 I 2 3 417
(¢) OK-5 (d) OK-6

T oblivious ratio with distributed T upper bound
affine and linear function, resp.

Fig. 2: Measured oblivious ratio for the selected artificial networks and iteration depths.
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‘ oblivious ratio 2 3 4
Kl o® | o of o | Bo | ITofl| of | a5 | Bs | |Tsl]| of | o3 | Bs | |Z4]
2 (|1.012 1.012 [/0.997(0.990(2.687| 4.0{{0.998]0.989]2.121 9.0({0.996]0.989|1.838 15.9
31(1.095] 1.095 [|0.989(0.937(2.734| 8.0(/0.963]|0.940|2.129| 26.8([0.960]0.932|1.826 62.7
41(1.139] 1.139 [|0.978|0.929(3.228| 15.9((0.947]|0.919|2.446| 76.2(/0.945]|0.908|2.055| 228.0
51(1.119] 1.119 [|0.983(0.940(2.721| 31.7|[/0.960]|0.936|2.114| 231.6([0.955]|0.926|1.810| 930.1
6 (|1.229| 1.229 ||0.981(0.911{3.440| 60.8]{0.929|0.895|2.566| 618.9{(0.919|0.878|2.128| 3090.4
7111.231| 1.231 {|0.976|0.924|4.213(114.7({0.933]0.897|3.081(1652.4(/0.919(0.878(2.515|10674.7
81(1.269| 1.269 [|0.968|0.914(3.452(244.3([0.923]0.888|2.565(5217.6([0.905|0.867|2.121|45566.7
(a) AS 1239
‘ oblivious ratio 2 3 4
Kl o | o o o [ Bo | ITofll of [ a3 | Bs | ITsl]| of | g | Bs | T4l
2 (|1.025| 1.025 [|0.998(0.987(3.414| 4.0{|0.994(0.982(2.602 8.9((0.991]0.982|2.196 15.5
3 (/1.062| 1.062 ||0.987(0.972(4.138| 8.0/|0.980|0.960(3.075| 26.4(({0.971|0.961|2.543 61.4
41(1.163| 1.163 [|0.986|0.938(5.156| 15.6((0.956|0.912|3.725| 75.4((0.939]0.904|3.010| 220.7
51((1.188] 1.188 [/0.983(0.939(3.836| 31.5|[{0.956|0.905|2.839| 211.9({0.931]0.898|2.340| 829.3
6 (|1.208| 1.208 ||0.978(0.942(5.261| 62.4]|0.959|0.9143.783| 617.3{[{0.933]|0.898|3.045| 3231.2
7111.235| 1.235 {/0.969]|0.929(5.997(120.0({0.946|0.906|4.268(1616.7(/0.918(0.885|3.404|10077.9
8 (|1.273] 1.273 ||0.964(0.932(6.893|228.3]{0.933|0.900(4.858|4154.8{/0.909|0.876|3.840(33333.1
(b) AS 1755
oblivious ratio 2 3 4
Kllo? | o ||of | oy | B [[Tofl| of | o3 | Bs | [Tslll of | o5 | Ba | T4
2 (|2.000| 1.000 [|1.000{1.000{3.764| 4.0{|1.000(1.000(2.843 9.0({1.000|1.000|2.382 16.0
3 (|2.061| 1.096 ||0.996(0.939(3.822| 8.0/{0.989|0.930(2.872| 27.0{{0.987]|0.930|2.397 64.0
41(2.196| 1.143 ]|0.985|0.942(5.994| 16.0({0.965]|0.912|4.301 79.21|0.953|0.907|3.454( 246.4
51(2.248] 1.210 [|0.989(0.924(3.973| 32.0(({0.964|0.890|2.947| 237.6([0.949|0.875|2.434| 985.6
61((2.289]| 1.175 ]|0.989(0.929(4.626| 64.0({0.961]0.902|3.377| 712.8(/0.946|0.895|2.752| 3942.4
7112.357| 1.228 {{0.991]|0.931|5.657(128.0({0.959|0.898|4.054(2138.4(/0.933(0.882|3.253|15769.6
8 (|2.406| 1.281 ||0.983(0.902(6.175|256.0/{0.940|0.871|4.394|6269.4{/0.923]0.850|3.504(60620.8
(c) AS 3257
oblivious ratio 2 3 4
Ko | o || o | oy | B [|Tofl| of | o3 | Bs | [Zslll of | o5 | Ba | T4
2 (|1.044| 1.044 ||0.993(0.971{3.626| 4.0||0.983(0.969(2.738 8.91|0.979(0.967(2.294 15.7
3(/1.108| 1.108 ||0.980(0.944(4.185| 8.0/|0.962|0.930(3.092| 26.6((0.953]|0.924|2.546 62.1
4 (|1.176] 1.176 ||0.986(0.940({6.610| 16.0]{0.954|0.907(4.692| 78.0{[{0.933]|0.898|3.733| 236.8
51(1.190] 1.190 [|0.983|0.932(6.645| 31.5|[{0.956]|0.911|4.713| 222.8(/0.938|0.895|3.746| 888.0
61((1.232] 1.232 ||0.977(0.926(5.286| 62.7((/0.939|0.905|3.797| 654.6([0.921]0.884|3.053| 3304.5
71/1.314| 1.314 {|0.951]|0.911|6.042({124.5([0.906|0.869|4.284(1893.9(/0.881(0.847|3.405|12333.0
8 (|1.334| 1.334 ||0.953(0.912(7.420|235.5|{0.910|0.874|5.198|5139.5|/0.884]0.850|4.087(43033.1
(d) AS 3967

Table 2: Measured cumulative oblivious ratios for the selected rocketfuel topologies. o
and o' denotes the cumulative oblivious ratio using distributed linear and distributed
affine routing functions, resprectively. a?, ajl- and 3; denote the average normed cu-
mulative oblivious ratio (i.e, o] is the average of the normed values Sa2 /a?) and the

calculated average normed upper bound for the j-th iteration, respectively.
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Evaluation results The main observations are as follows. First, as the theoret-
ical results suggest the measured oblivious ratio is always less than the predicted
one. However, the difference between the two values can become significant. This
is the cost we must pay for using rough approximations in order to be able to
derive a simple theoretical upper bound. Second, we can clearly see that using
the more general distributed affine functions (recall, the ones marked with 1 in
superscript) better cumulative oblivious ratio can be obtained. Thus, it might
be tempting to use affine routing functions for real life networks. However, the
simulation results also show that the benefit is highly network dependent. For
example, in case of the network topology AS3257 this difference is quite straight-
forward, but for the other ones the benefits of the general routing function is
not that significant. Third, the benefit caused by increasing the iteration depth
is also dependent on the type of the routing function. Using the more general
distributed affine function, naturally, yields better results than distributed linear
functions.

Lastly, we consider the complexity of the routing (functions) expressed in
terms of the depends on the number of routing regions. As it is clearly observ-
able, the number of routing regions increases rapidly with the iteration depth
increasing the complexity of the routing function, making the proposed algo-
rithm somewhat inefficient. Contrasting these results to the ones in [23], we see
that the algorithm in [23] is more efficient and less complex. The algorithm in
this paper, though, is still extremely important, because it provides a firm theo-
retical worst-case bound on the oblivious ratio, and hence, link over-utilization
experienced by the network in case of any admissible traffic matrix. This was
impossible with previous algorithms.

)

1
0 1 2 0 051

Fig. 3: Due to the down-monotonicity of the throughput polytope, after the linear
transformation L the K-simplex is going to be the part of the transformed throughput
polytope. Thus, the number of hypercubes covering the standard K-simplex is less than
the number of the routing regions.

It is tempting to investigate, whether a hyper-cubic partitioning algorithm
exists that is both efficient and simple (i.e., contains at most a polynomial num-
ber of hyper-cubic regions) at the same time. Unfortunately, this does not seem
to be the case, as the following lower bound on the number of routing regions
suggests:

v(K)

sk

1.



14 G. Németh, G. Rétvari

In this expression, v(K) denotes the volume of the standard K-simplex and
j, as before, is the iteration depth. The expression compares the volume of
the standard K-simplex and the hypercubes with side length Jl We used the
observation that the standard K-simplex can be naturally transformed, using a
linear transformation, into the interior of the throughput polytope, and vice versa
(for more details, consult Fig. 3). What the expression states is that halving the
permitted link over-utilization (i.e., halving the value of €) needs about O(2K)
times more regions.

5 Related Work

Demand-oblivious routing has rich literature [14,16-19,21]. There are various
results regarding the worst-case performance: Ricke gives a method with poly-
logarithmic oblivious ratio in undirected graphs [15], while Azar et al. proves
that no such bound exists for directed graphs: they give a directed graph of
(g) + k 4+ 1 nodes, (g) source-destination pairs where the oblivious ratio is at
least (g) [16].

Recently, in [28] it was shown that for every network the link over-utilization
can be eliminated introducing compound affine routing functions. Here, the rout-
ing functions are calculated using multi-parametric linear programs. However,
in contrast to the algorithm presented in this paper, the optimal algorithm uses
extensive central control, both for setting the traffic splitting ratios and for the
selection of the actual routing region.

The idea of compound routing functions inspired the development of a hybrid
algorithm [23]. This algorithm simplifies the type of the routing regions, as it
generates only hyper-cubic regions. The algorithm uses heuristics when creating
the routing regions: in each step the algorithm tries to minimize the cumulative
oblivious ratio by slicing each (previously created) routing region into two new
hyper-cubic regions. The algorithm is a conquer-and-divide fashion algorithm,
i.e., for each region the cutting plane is selected, which minimizes the oblivious
ratio. According to [23], by only a few cuts the oblivious ratio can be drastically
decreased, however, no convergence results exist.

Our recent algorithm can be viewed as the successor of the previous algo-
rithm. It keeps all of its advantages, but tries to solve the problem from the
bottom-up perspective, instead of the top-down one. As a result, it can give a
theoretical upper bound for the cumulative oblivious ratio, and it can be used
to design routings satisfying any given maximal link over-utilization. Unfortu-
nately, the comparison of the simulation results of the two methods show that
our recent method needs more routing regions to achieve the prescribed oblivious
ratio than the one in [23].

There are several methods combining basic oblivious routing with some real
life measurements to predict future state. These prediction based algorithms
work on traffic matrix samples collected during some time interval. Instead of
optimizing oblivious ratio over the full throughput polytope, as it is done in
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demand-oblivious routing, here the optimization is performed — and the routing
function is calculated — only over the convex hull of the collected traffic ma-
trices. Thus, these algorithms are effective when the future demands fall into
the computed convex hull. Unfortunately, fulfillment of this condition cannot be
guaranteed. One method solving this problem is called COPE [7]. In COPE, a
penalty envelope is introduced, thus, not only the oblivious ratio is optimized
over the convex hull of the collected traffic matrices, but also some penalty func-
tion of the routing function over the whole throughput polytope is bounded.
Simulation results in [7] show that COPE can achieve efficient resource utiliza-
tion under a variety of real topologies and scenarios.

There are also several on-line TE methods, which, in contrast to our algo-
rithm, use feedback from the network. For example, REPLEX [13] and DATE [10]
are both such methods. They both solve the routing problem in a distributed
manner, i.e., there is a given convergence time to calculate the appropriate rout-
ing function. In contrast, in our algorithm a central controller is needed to pe-
riodically determine the actual traffic matrix and select the right routing region
and the (previously, offline calculated) routing function.

6 Conclusion

In this paper, we analyzed the properties of demand-oblivious routing over hyper-
cubic regions. We determined an easy to computable worst case bound for the
cumulative oblivious ratio, which empowered us to design a hybrid centralized-
distributed partitioning algorithm for calculating a compound routing function
with upper bounded oblivious ratio (and hence link over-utilization). To the best
of our knowledge, this is the first time that a demand-oblivious routing algorithm
with provable worst-case performance in directed graphs is presented.

Simulation studies using several real-life network topologies showed that our
algorithm indeed admits the theoretical worst-case behavior. In addition, the
algorithm successfully decreases the cumulative oblivious ratio in only a few
iterations. Though, a closer investigation of the compound routing functions
generated unearthed complexity problems: halving the link over-utilization needs
about O(2%) times as many regions, where K is the dimension of the throughput
space.

We were able to prove that link over-utilization can be fully eliminated when
decreasing the size of the hyper-cubic regions to infinitesimally small, (i.e., using
infinity number of routing regions) regardless of the type of the routing func-
tion. The question arises, whether there are networks for which the link over-
utilization can be eliminated with using only a finite number of hyper-cubic
routing regions. Our future work will focus on finding the class of networks
having this property.



16

G. Németh, G. Rétvari

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. Overview and principles
of Internet traffic engineering. RFC 3272, May 2002.

D. G. Cantor and M. Gerla. Optimal routing in a packet-switched computer net-
work. IEEE Transactions on Computer, 23(10):1062-1069, 1974.

B. Fortz, J. Rexford, and M. Thorup. Traffic engineering with traditional IP routing
protocols. IEEE Communications Magazine, 40(10):118-124, Oct 2002.

M. Roughan, M. Thorup, and Y. Zhang. Traffic engineering with estimated traffic
matrices. In IMC ’03: Proceedings of the 3rd ACM SIGCOMM conference on
Internet measurement, pages 248-258, 2003.

C. Zhang, Y. Liu, W. Gong, J. Moll, and R. D. Towsley. On optimal routing with
multiple traffic matrices. In INFOCOM 2005, volume 1, pages 607-618, 2005.

D. Medhi. Multi-hour, multi-traffic class network design for virtual path-based
dynamically reconfigurable wide-area ATM networks. IEEE/ACM Transactions
on Networking, 3(6):809-818, 1995.

Hao Wang, Haiyong Xie, Lili Qiu, Yang Richard Yang, Yin Zhang, and Albert
Greenberg. COPE: traffic engineering in dynamic networks. SIGCOMM Comput.
Commun. Rev., 36(4):99-110, 2006.

D. P. Bertsekas. Dynamic behavior of shortest path routing algorithms for com-
munication networks. IEEE Trans. on Automatic Control, 27:60-74, 1982.

Mung Chiang, S.H. Low, A.R. Calderbank, and J.C. Doyle. Layering as optimiza-
tion decomposition: A mathematical theory of network architectures. Proceedings
of the IEEE, 95(1):2556-312, Jan 2007.

J. He, M. Bresler, M. Chiang, and J. Rexford. Towards robust multi-layer traffic
engineering: Optimization of congestion control and routing. Selected Areas in
Communications, IEEE Journal on, 25(5):868-880, June 2007.

Constantino M. Lagoa, Hao Che, and Bernardo A. Movsichoff. Adaptive control
algorithms for decentralized optimal traffic engineering in the internet. IEEE/ACM
Trans. Netw., 12(3):415-428, 2004.

Srikanth Kandula, Dina Katabi, Bruce Davie, and Anna Charny. Walking the
Tightrope: Responsive Yet Stable Traffic Engineering. In ACM SIGCOMM’05,
August 2005.

Simon Fischer, Nils Kammenhuber, and Anja Feldmann. REPLEX: dynamic traffic
engineering based on wardrop routing policies. In Proceedings of CoNEXT’06,
pages 1-12; 2006.

D. Applegate and E. Cohen. Making intra-domain routing robust to changing and
uncertain traffic demands: understanding fundamental tradeoffs. In Proceedings of
SIGCOMM 03, pages 313-324, 2003.

H. Récke. Minimizing congestion in general networks. In FOCS ’02, pages 43-52,
2002.

Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Ricke. Optimal oblivious routing
in polynomial time. J. Comput. Syst. Sci., 69(3):383-394, 2004.

J. Wellons and Yuan Xue. Oblivious routing for wireless mesh networks. In ICC
’08, pages 29692973, May 2008.

Y. Li, B. Bai, J. J. Harms, and R. Holte. Stable and robust multipath oblivious
routing for traffic engineering. In International Teletraffic Congress, volume 4516
of Lecture Notes in Computer Science, pages 129-140. Springer, 2007.

D. Applegate, L. Breslau, and E. Cohen. Coping with network failures: routing
strategies for optimal demand oblivious restoration. SIGMETRICS Perform. Eval.
Rev., 32(1):270-281, 2004.



20.

21.

22.

23.

24.

25.

26.

27.

28.

Hybrid Demand Obl. Routing: Hyper-cubic Pars and Theo Upper Bounds 17

M. Hajiaghayi, J. Kim, T. Leighton, and H. Récke. Oblivious routing in directed
graphs with random demands. In STOC ’05, pages 193-201, 2005.

N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Online oblivious routing. In
SPAA 03, pages 44-49, 2003.

B. Towles and W. Dally. Worst-case traffic for oblivious routing functions. In
SPAA 02, pages 1-8, 2002.

G. Rétvari and G. Németh. Demand-oblivious routing: distributed vs. centralized
approaches. In INFOCOM 2010, March 2010.

G. Rétvari, J. J. Bir6, and T. Cinkler. Fairness in capacitated networks: A poly-
hedral approach. In INFOCOM’07, volume 1, pages 1604-1612, May 2007.

G.M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics.
Springer, 1998.

B. Griinbaum. Convez Polytopes. John Wiley & Sons, 1967.

Ratul Mahajan, Neil Spring, David Wetherall, and Tom Anderson. Inferring link
weights using end-to-end measurements. In IMW ’02: Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurment, pages 231-236, 2002.

G. Rétvari and G. Németh. On optimal rate-adaptive routing. In ISCC 2010,
pages 605-610, 2010.



