MTS: Bringing Multi-Tenancy to Virtual Networking

Kashyap Thimmaraju, Saad Hermak, Gábor Rétvári and Stefan Schmid

USENIX Annual Technical Conference 2019 July 11, Renton, Washington, USA

Virtual Networks Using Virtual Switches

Virtual Networks Using Virtual Switches

Virtual Networks Using Virtual Switches

More Than 20 Virtual Switches

Most emphasis has been on performance and flexibility

				lithic	ocatie	n J
Name	Year	Emphasis	Mo	no cor	re ter	nt USE
OvS	2009	Flexibility	\checkmark	\checkmark	\checkmark	\checkmark
Cisco NexusV	2009	Flexibility	\checkmark	\checkmark	\checkmark	X
VMware vSwitch	2009	Centralized control	\checkmark	~	~	×
Vale	2012	Performance	\checkmark	\checkmark	\checkmark	X
Research prototype	2012	Isolation	\checkmark	×	\checkmark	\checkmark
Hyper-Switch	2013	Performance	\checkmark	\checkmark	\checkmark	\checkmark
MS HyperV-Switch	2013	Centralized control	~	~	~	×
NetVM	2014	Performance, NFV	~	\checkmark	X	~
sv3	2014	Security	X	\checkmark	X	\checkmark
fd.io	2015	Performance	\checkmark	\checkmark	X	\checkmark
mSwitch	2015	Performance	\checkmark	\checkmark	\checkmark	X
BESS	2015	Programmability, NFV	~	\checkmark	X	~
PISCES	2016	Programmability	\checkmark	\checkmark	\checkmark	\checkmark
OvS with DPDK	2016	Performance	\checkmark	\checkmark	X	\checkmark
ESwitch	2016	Performance	\checkmark	\checkmark	X	\checkmark
MS VFP	2017	Performance, flexibility	~	~	~	X
Mellanox BlueField	2017	CPU offload	\checkmark	X	\checkmark	\checkmark
Liquid IO	2017	CPU offload	\checkmark	X	\checkmark	\checkmark
Stingray	2017	CPU offload	\checkmark	X	\checkmark	~
GPU-based OvS	2017	Acceleration	\checkmark	\checkmark	\checkmark	\checkmark
MS AccelNet	2018	Performance, flexibility	\checkmark	\checkmark	\checkmark	X
Google Andromeda	2018	Flexibility and performance	~	~	X	✓ 6

Security Weaknesses of Virtual Switches

Processes Untrusted Data

A malicious VM can send arbitrary packets to the virtual switch

Privileged Packet Processing

Oftentimes runs in the kernel for performance

Single Point of Failure

Virtual network configurations are complex

Screenshot from Karim Elatov's blog: https://elatov.github.io/2018/01/openstack-ansible-and-kolla-on-ubuntu-1604/#5-packet-goes-from-ovs-integeneration-ovs-integ gration-bridge-br-int-to-ovs-tunnel-bridge-br-tun

cookie=0x9e71d200b05c476d, duration=9483.262s, table=0, n_packets=68, n_bytes=5430, idle_age=768, priority=1,in_port=1 actions=resubmit(,2)

cookie=0x9e71d200b05c476d, duration=9282.478s, table=4, n packets=0, n bytes=0, idle age=9282, priority=1,tun id=0xf actions=mod vlan vid:1,re

=300, priority=1, cookie=0x9e71d200b05c476d, NXM_OF_VLAN_TCI[0..11], NXM_OF_ETH_DST[]=NXM_OF_ETH_SRC[], load:0->NXM_OF_VLAN_TCI[], load:NXM_NX_TUN_ID

cookie=0x9e71d200b05c476d, duration=9483.257s, table=20, n packets=12, n bytes=1052, idle age=768, priority=0 actions=resubmit(,22)

cookie=0x9e7ld200b05c476d, duration=9483.256s, table=21, n packets=21, n bytes=1080, idle age=768, priority=0 actions=resubmit(,22) cockie=0x9e71d200b05c476d, duration=9483.256s, table=22, n_packets=68, n_bytes=5430, idle_age=768, priority=0 actions=drop

cookie=0x9e71d200b05c476d, duration=9483.262s, table=0, n_packets=0, n_bytes=0, idle_age=9483, priority=0 actions=drop

cookie=0x9e71d200b05c476d, duration=9483.259s, table=3, n packets=0, n bytes=0, idle age=9483, priority=0 actions=drop

cockie=0x9e71d200b05c476d, duration=9483.258s, table=4, n_packets=0, n_bytes=0, idle_age=9483, priority=0 actions=drop

cookie=0x9e71d200b05c476d, duration=9483.258s, table=6, n packets=0, n bytes=0, idle age=9483, priority=0 actions=drop

One of the above page goes over the tables in great detail and actually has a nice diagram:

- Troubleshooting OpenStack Neutron Networking, Part One IP
- Distributed Virtual Routing Overview and East/West Routing IP

- I found a couple of sites that talk about the Openflow tables:

[1->NXM NX TUN ID[], output; OXM OF IN PORT[]), output; 1

NXST FLOW reply (xid=0x4):

0:00:00:00 actionspresubmit(.20) 0:00:00:00 actions=resubmit(,22)

ons=resubmit(.21)

submit(.10)

- Openstack Neutron using VXLAN

Single Point of Failure

Mis-configurations could lead to security issues

Co-Located with the Host OS

The consequence of a compromise can be severe, e.g., break out of VM isolation

Exploiting Virtual Switches in the Cloud

SOSR'18: Remote-Code Exection OvS Con'19: Cross Tenant DoS

Outline

- Motivation
- MTS
- Evaluation
- Scalability
- Pros and Cons
- Conclusion

MTS: Multi-Tenant Switch

Least Privilege Virtual Switch

- 1. Processes untrusted data
- 2. Privileged packet processing
- 3. Single point of failure
- 4. Co-located with the Host OS

Least Common Mechanism

- 1. Processes untrusted data
- 2. Privileged packet processing
- 3. Single point of failure
- 4. Co-located with the Host OS

Extra Security Boundary

- 1. Processes untrusted data
- 2. Privileged packet processing
- 3. Single point of failure
- 4. Co-located with the Host OS

Complete Mediation

- 1. Processes untrusted data
- 2. Privileged packet processing
- 3. Single point of failure
- 4. Co-located with the Host OS

Evaluation

Experimental Setup & Factors

- Resources
- Traffic Patterns

Mellanox ConnectX4, Open vSwitch, DPDK, QEMU, KVM More details in the paper

Shared Resources

- Host OS pinned to 1 core
- All vswitch-VMs pinned to 1 core
- Each Tenant VM got dedicated cores (not shown here)

Traffic Patterns

p2p

Baseline vs MTS Packet Processing Throughput Comparison

64 byte UDP packets Roughly the same in p2p MTS is ~2x Baseline in p2v and v2v

Baseline vs MTS Packet Processing Throughput Comparison

64 byte UDP packets Roughly the same in p2p MTS is ~2x Baseline in p2v and v2v

Baseline vs MTS Network Application Throughput

MTS beats Baseline in Apache and Memcached

1+ Physical Core4x Network Isolation1.5-2x Throughput

Containers in VMs

Real cloud systems can host more than just 4 tenants on a server

- Work in progress
- The packets per second throughput is the same as running it in a VM for 4 containers
- Can run 12 vswitches spread across 4 VMs
- Faced an issue with libvirt when adding 40 VFs to 16 vswitches spread across 4 VMs. The interfaces do not appear in the VM although the configuration is present.

Pros and Cons

Limitations

- PCIe bus could become a bottleneck which our evaluation did not reveal
- The number of VFs on the NIC
- No clean solution for live migration of VMs with VFs

Pricing

Charge for CPU cycles used by the tenant-specific virtual switch

Tenant Specific Virtual Switch Software

- 1. Reduce parsing logic
- 2. Support tenant-specific features

Key Takeaways

Our scripts and data are on github www.github.com/securedataplane

- Many virtual switches can be exploited to compromise Host and Network isolation
- 2. MTS is based on secure design principles that addresses security weakness of existing designs
- 3. MTS with SR-IOV offers security and performance for modest resources

Backup

Protocol Growth for OvS

Complex & Manual Protocol Parsers

Virtual switches have to support an increasing number of protocols over time

Vswitch Table Analysis

So Many Virtual Switches

More than 20

				littic	ocatif	n N
Name	Year	Emphasis	Mor	no coi	Le Ker	nt User
OvS	2009	Flexibility	\checkmark	\checkmark	\checkmark	\checkmark
Cisco NexusV	2009	Flexibility	\checkmark	\checkmark	\checkmark	X
VMware vSwitch	2009	Centralized control	\checkmark	\checkmark	\checkmark	×
Vale	2012	Performance	\checkmark	\prec	\checkmark	X
Research prototype	2012	Isolation	\checkmark	(\mathbf{x})	\checkmark	\checkmark
Hyper-Switch	2013	Performance	\checkmark	\checkmark		~
MS HyperV-Switch	2013	Centralized control	~	~	\checkmark	×
NetVM	2014	Performance, NFV	~	\checkmark	X	~
sv3	2014	Security	X	\checkmark	X	\checkmark
fd.io	2015	Performance	\checkmark	\checkmark	X	\checkmark
mSwitch	2015	Performance	\checkmark	\checkmark	\checkmark	X
BESS	2015	Programmability, NFV	~	\checkmark	X	~
PISCES	2016	Programmability	\checkmark	\checkmark	\checkmark	\checkmark
OvS with DPDK	2016	Performance	\checkmark	\checkmark	X	\checkmark
ESwitch	2016	Performance	\checkmark	\checkmark	X	\checkmark
MS VFP	2017	Performance, flexibility	\checkmark	\checkmark	\checkmark	×
Mellanox BlueField	2017	CPU offload	\checkmark	X	\checkmark	\checkmark
Liquid IO	2017	CPU offload	\checkmark	X	\checkmark	\checkmark
Stingray	2017	CPU offload	\checkmark	X	~	\checkmark
GPU-based OvS	2017	Acceleration	\checkmark	\checkmark	\checkmark	\checkmark
MS AccelNet	2018	Performance, flexibility	\checkmark	\checkmark	\checkmark	X
Google Andromeda	2018	Flexibility and performance	~	~	X	✓ 40

So Many Virtual Switches

More than 20

				littic	ocatio	n N
Name	Year	Emphasis	No	no cor	Le Ker	ne User
OvS	2009	Flexibility	\checkmark	\checkmark	\checkmark	\checkmark
Cisco NexusV	2009	Flexibility	\checkmark	\checkmark	\checkmark	X
VMware vSwitch	2009	Centralized control	\checkmark	~	~	X
Vale	2012	Performance	\checkmark	\checkmark	\checkmark	X
Research prototype	2012	Isolation	\checkmark	X	\checkmark	\checkmark
Hyper-Switch	2013	Performance	\checkmark	\checkmark	\checkmark	\checkmark
MS HyperV-Switch	2013	Centralized control	~	~	\checkmark	X
NetVM	2014	Performance, NFV	*	Ń	X	~
sv3	2014	Security	Х		X	\checkmark
fd.io	2015	Performance	~	/	X	\checkmark
mSwitch	2015	Performance	>	V	\checkmark	X
BESS	2015	Programmability, NFV	~	X	X	~
PISCES	2016	Programmability	\checkmark	\sim	\checkmark	\checkmark
OvS with DPDK	2016	Performance	\checkmark	\checkmark	X	\checkmark
ESwitch	2016	Performance	\checkmark	\checkmark	X	\checkmark
MS VFP	2017	Performance, flexibility	\checkmark	\checkmark	\checkmark	×
Mellanox BlueField	2017	CPU offload	\checkmark	X	\checkmark	\checkmark
Liquid IO	2017	CPU offload	\checkmark	X	\checkmark	\checkmark
Stingray	2017	CPU offload	~	X	\checkmark	\checkmark
GPU-based OvS	2017	Acceleration	\checkmark	\checkmark	\checkmark	\checkmark
MS AccelNet	2018	Performance, flexibility	\checkmark	\checkmark	\checkmark	x
Google Andromeda	2018	Flexibility and performance	~	~	X	✓ 41

So Many Virtual Switches

More than 20

				littic	reatif	5T ST
Name	Year	Emphasis	Mor	10.00	Le Ker	ne User
OvS	2009	Flexibility	\checkmark	\checkmark	\checkmark	\checkmark
Cisco NexusV	2009	Flexibility	\checkmark	\checkmark	\checkmark	X
VMware vSwitch	2009	Centralized control	\checkmark	~	\checkmark	×
Vale	2012	Performance	\checkmark	\checkmark	\checkmark	X
Research prototype	2012	Isolation	\checkmark	X	\checkmark	\checkmark
Hyper-Switch	2013	Performance	\checkmark	\checkmark	\checkmark	\checkmark
MS HyperV-Switch	2013	Centralized control	~	~	\checkmark	×
NetVM	2014	Performance, NFV	~	~	X	\checkmark
sv3	2014	Security	X	\checkmark	X	\checkmark
fd.io	2015	Performance	\checkmark	\checkmark	X	\checkmark
mSwitch	2015	Performance	\checkmark	\checkmark	\checkmark	X
BESS	2015	Programmability, NFV	\checkmark	~	X	~
PISCES	2016	Programmability	\checkmark	1	\checkmark	\checkmark
OvS with DPDK	2016	Performance	~/	~	X	\checkmark
ESwitch	2016	Performance	1	\checkmark	X	\checkmark
MS VFP	2017	Performance, flexibility	(\checkmark	~	×
Mellanox BlueField	2017	CPU offload		X		\checkmark
Liquid IO	2017	CPU offload	\checkmark	X	W	\checkmark
Stingray	2017	CPU offload	\checkmark	X		\checkmark
GPU-based OvS	2017	Acceleration	\checkmark	\checkmark		\checkmark
MS AccelNet	2018	Performance, flexibility	\checkmark	\checkmark	\checkmark	×
Google Andromeda	2018	Flexibility and performance	\checkmark	~	X	

Ingress Traffic Flow Example

MAC address of the vswitch VF

IP address of VM \$_

How it Helps **Pricing**

Can charge for compute and memory used by the vswitch

Compute Products Network pricing **Compute Engine** Product overvie Documentation

Quickstarts

How-to guides

C Google Cloud Why Google Solutions Products Pricing Getting started

Product overview	General network pricing		General network pricing
Documentation	General network pricing		Internet egress rates*
Quickstarts	Traffic turns	Price	Load balancing and forwarding rules
All quickstarts	finding type	Flice	Network Telemetry
Using a Linux VM Using a Windows VM	Ingress	No charge, unless there is a resource such	Traffic through external IP addresses
		ingress traffic. Responses to requests	Classic VPN pricing
low-to guides		count as egress and are charged.	HA VPN pricing at Beta
All how-to guides			Cloud Router pricing
Creating VM instances	Egress ¹ to the same zone	No charge	Unused IP address
Managing access to VM instances			pricing
Connecting to VM instances	Egress to Google products (such as YouTube, Maps,	No charge	Disk pricing
Adding storage	Drive), whether from a VM in GCP with an external IP		Persistent disk
Creating and managing instance templates	address or an internal IP address		pricing Local SSD pricing
Creating and managing custom images			Image storage
Managing your instances	Egress to DoubleClick in the same region	No charge	Simulated maintenance
Creating and managing groups of			event pricing
	Egress to a different Google Cloud Platform service	No charge	

Q

Docs Support Language *

Console

Network pricing

Contact sales

Load balancing and forwarding rules

The following applies to all types of load balancing and forwarding rules (protocol forwarding).

Iowa (us-central1) 🛛 👻		
ltem	Price per Unit (USD)	Pricing Unit
First 5 forwarding rules	\$0.025	Per Hour
Per additional forwarding rule	\$0.010	Per Hour
Ingress data processed by load balancer	\$0.008	Per GB

If you pay in a currency other than USD, the prices listed in your currency on Cloud Platform SKUs apply.

64 byte UDP packets Baseline is faster than MTS in p2p MTS is faster than Baseline in p2v and v2v

Baseline is faster than MTS in p2p MTS is faster than Baseline in p2v and v2v

Baseline is faster than MTS in p2p MTS is faster than Baseline in p2v and v2v

Baseline is faster than MTS in p2p MTS is faster than Baseline in p2v and v2v

