
This paper is included in the Proceedings of the
2019 USENIX Annual Technical Conference.

July 10–12, 2019 • Renton, WA, USA

ISBN 978-1-939133-03-8

Open access to the Proceedings of the
2019 USENIX Annual Technical Conference

is sponsored by USENIX.

MTS: Bringing Multi-Tenancy to Virtual Networking
Kashyap Thimmaraju and Saad Hermak, Technische Universität Berlin; Gabor Retvari,

BME HSNLab; Stefan Schmid, Faculty of Computer Science, University of Vienna

https://www.usenix.org/conference/atc19/presentation/thimmaraju

MTS: Bringing Multi-Tenancy to Virtual Networking

Kashyap Thimmaraju1 Saad Hermak1 Gábor Rétvári2 Stefan Schmid3

1 Technische Universität Berlin 2 BME HSNLab 3 Faculty of Computer Science, University of Vienna

Abstract

Multi-tenant cloud computing provides great benefits in
terms of resource sharing, elastic pricing, and scalability,
however, it also changes the security landscape and intro-
duces the need for strong isolation between the tenants, also
inside the network. This paper is motivated by the observa-
tion that while multi-tenancy is widely used in cloud com-
puting, the virtual switch designs currently used for net-
work virtualization lack sufficient support for tenant isola-
tion. Hence, we present, implement, and evaluate a virtual
switch architecture, MTS, which brings secure design best-
practice to the context of multi-tenant virtual networking:
compartmentalization of virtual switches, least-privilege ex-
ecution, complete mediation of all network communication,
and reducing the trusted computing base shared between ten-
ants. We build MTS from commodity components, providing
an incrementally deployable and inexpensive upgrade path
to cloud operators. Our extensive experiments, extending to
both micro-benchmarks and cloud applications, show that,
depending on the way it is deployed, MTS may produce 1.5-
2x the throughput compared to state-of-the-art, with simi-
lar or better latency and modest resource overhead (1 extra
CPU). MTS is available as open source software.

1 Introduction

Security landscape of cloud virtual networking. Datacen-
ters have become a critical infrastructure of our digital so-
ciety, and with the fast growth of data centric applications
and AI/ML workloads, dependability requirements on cloud
computing will further increase [13]. At the heart of an effi-
ciently operating datacenter lies the idea of resource sharing
and multi-tenancy: independent instances (e.g., applications
or tenants) can utilize a given infrastructure concurrently, in-
cluding the compute, storage, networking, and management
resources deployed at the data center, in a physically inte-
grated but logically isolated manner [38, 23].

At the level of the data center communication network,

isolation is provided by the network virtualization architec-
ture. Key to network virtualization is the virtual switch
(vswitch), a network component located in the Host virtual-
ization layer of the (edge) servers that connects tenants’ com-
pute and storage resources (e.g., Virtual Machines (VMs),
storage volumes, etc.), provisioned at the server, to the rest
of the data center and the public Internet [38, 33, 54].

Multi-tenancy is typically provided in this design by
(i) deploying the vswitches with the server’s Host operat-
ing system/hypervisor (e.g, Open vSwitch aka OvS [56]);
(ii) using flow-table-level isolation: the vswitch’s flow ta-
bles are divided into per-tenant logical datapaths that are
populated with sufficient flow table entries to link tenants’
data-center-bound resources into a common interconnected
workspace [38, 33, 54]; and (iii) overlay networks using a
tunneling protocol, e.g., VXLAN [73], to connect tenants’
resources into a single workspace. Alternatives to this Host-
based vswitch model [56], e.g., NIC-based vswitch solu-
tions [35, 27] and FPGA-based designs [22], share the main
trait that the logical datapaths have a common networking
substrate (vswitch).

Despite the wide-scale deployment [16, 22, 35], the level
of (logical and performance) isolation provided by vswitches
is not yet well-understood. For example, Thimmaraju et
al. [69] uncovered a serious isolation problem with a popular
virtual switch (OvS). An adversary could not only break out
of the VM and attack all applications on the Host, but could
also manifest as a worm, and compromise an entire datacen-
ter in a few minutes. Csikor et al. [15] identified a severe
performance isolation vulnerability, also in OvS, which re-
sults in a low-resource cross-tenant denial-of-service attack.
Such attacks may exacerbate concerns surrounding the secu-
rity and adoption of public clouds (that is already a major
worry across cloud users [62]).

Indeed, a closer look at the cloud virtual networking best-
practice, whereby per-tenant logical datapaths are deployed
on a single Host-based vswitch using flow-table-level iso-
lation [38, 33, 54], reveals that the current state-of-the-art
violates basically all relevant secure system design princi-

USENIX Association 2019 USENIX Annual Technical Conference 521

B
ef

or
e

A
tta

ck
A

fte
r

A
tta

ck
Tr

ad
e-

of
fs

State-of-the-art
(a)

Single vswitch VM
(b)

Multiple vswitch VM
(c)

Low Low Low

Security Performance Resource

Mid Mid Mid

Security Performance Resource Security Performance Resource

VM A Host vswitch
VMVM B VM A VM B Host vswitch

VM AVM A VM B Hostvswitch
VM B

HighHigh Mid

Figure 1: A high-level view of the tradeoffs between security, performance and resources for the state-of-the-art and MTS

ples [61, 9]. First, the principle of least privilege would re-
quire that any system component should be given only the
minimum set of privileges necessary to complete its task,
yet we see that vswitch code typically executes on the Host
with administrator, or what is worse, with full kernel privi-
lege [72, 28], even though this would not be absolutely nec-
essary (see Sec. 3). Second, untrusted user code directly in-
teracts with the vswitch and hence with the Host OS, e.g.,
it may send arbitrary packets from VMs, query statistics,
or even install flow table entries through side channels [15],
which violates the secure design principle of complete medi-
ation. But most importantly, the shared vswitch design goes
directly against the principle of the least common mecha-
nism, which would minimize the amount of resources com-
mon to more than one tenant.

Secure vswitch design. The main motivation for our work is
the observation that current virtual switch architectures are
not well-suited for multi-tenancy. This observation leads us
to revisit the fundamental design of secure vswitches. Hence,
in this paper, we present, implement, and evaluate a multi-
tenant (virtual) switch architecture, MTS, which extends the
benefits of multi-tenancy to the vswitch in a secure manner,
without imposing prohibitive resource requirements or jeop-
ardizing performance.

Fig. 1 illustrates the key idea underlying the MTS de-
sign, by showing the security-performance-resource trade-
offs for different architectures. The current vswitch architec-
ture is shown in Fig. 1(a), whereby per-tenant logical data-
paths share a common (physical or software) switch com-
ponent deployed at the Host hypervisor layer (in the rest
of this paper, we shall sometimes refer to this design point
as the “Baseline”). As we argued above, this design is
fundamentally insecure [69, 15] as it violates basic secure
design principles, like least privilege, complete mediation,
or the least common mechanism. In MTS, we address the
least privilege principle by the compartmentalization of the
vswitches (Fig. 1(b)): by moving the vswitches into a ded-
icated vswitch VM, we can prevent an attacker from com-

promising the Host via the vswitch [34]. Then, we establish
a secure communication channel between the tenant VMs
and the vswitch VM via a trusted hardware technique, Sin-
gle Root Input/Output Virtualization, or SR-IOV, a com-
mon feature implemented in most modern NICs and moth-
erboards [4, 35]. Thus, all tenant-to-tenant and tenant-Host
networking is completely mediated via the SR-IOV NIC.
Adopting Google’s extra security layer design principle [1]
which requires that between any untrusted and trusted com-
ponent, there have to be at least two distinct security bound-
aries [7, 23], we introduce a second level of isolation by mov-
ing the vswitch, deployed into the vswitch VM, to the user
space. Hence, at least two independent security mechanisms
need to fail (user-kernel separation and VM-isolation) for the
untrusted tenant code to gain access to the Host.

Interestingly, we are able to show the resultant secure
vswitch design, which we call the single vswitch VM de-
sign, does not come at the cost of performance; just the con-
trary, our evaluations show that we can considerably improve
throughput and latency, for a relatively small price in re-
sources. Finally, we introduce a “hardened” MTS design that
we call the multiple vswitch VMs design (Fig. 1(c)), whereby,
in line with the principle of the least common mechanism,
we further separate the vswitch by creating multiple sepa-
rate vswitch VMs, one for each tenant (or based on security
zones/classes). This way, we can maintain full network iso-
lation for multiple tenants.
Contributions. Our main contributions in this paper are:

• We identify requirements and design principles that can
prevent the virtual switch from being a liability to vir-
tualization in the cloud, and we carefully apply these
principles to revisit multi-tenancy in virtual networking.

• We present MTS, a secure vswitch design whereby the
vswitch is moved into a separate VM that prevents ma-
licious tenants from compromising the Host via the vir-
tual switch, and we also show a “hardened” MTS design
that also prevents compromising other tenants’ virtual

522 2019 USENIX Annual Technical Conference USENIX Association

networks through the vswitch. All our designs are in-
crementally deployable, providing an inexpensive de-
ployment experience for cloud operators.

• We report on extensive experiments with our MTS pro-
totype and we find a noteworthy improvement (1.5-2x)
in throughput compared to the Baseline, with similar or
better latency for an extra CPU. We build our prototype
from off-the-shelf commodity components and existing
software; MTS and the data from this paper are available
at:

https://www.github.com/securedataplane

Organization. We dive deeper into designing a secure
vswitch in Section 2. In Section 3 we elaborate on MTS
and report on two evaluations in Sections 4 and 5. We en-
ter a discussion of MTS in Section 6, review related work in
Section 7 and finally draw conclusions in Section 8.

2 Securing Virtual Switches

As demonstrated in previous work [15, 69], the current state-
of-the-art in virtual switch design can be exploited to not
only break network isolation, but also to break out of a virtual
machine. This motivates us to identify requirements and de-
sign principles that make virtual switches a dependable com-
ponent of the data center [68].

2.1 State-of-the-Art
Virtual networks in cloud systems using virtual switches typ-
ically follow a monolithic architecture, where a single con-
troller programs a single vswitch running in the Host OS
with per-tenant logical datapaths in the vswitch. Isolation
between tenants is at the level of flow-tables [38, 33, 54]: the
controller populates the flow tables in each per-tenant logi-
cal datapath with sufficient flow rules to connect the tenant’s
Host-based VMs to the rest of the data center and the public
Internet. Those sets of flow rules are complex: with a small
error in one rule potentially having security consequences,
e.g., making intra-tenant traffic visible to other tenants.

As shown in Table 1, nearly all vswitches are monolithic
in nature. A single vswitch is installed with flow rules for
all the tenants hosted on the respective server. This increases
the trusted computing base (TCB) of the single vswitch, as it
is responsible for Layer 2-7 of the virtual networking stack.
Next, nearly 80% of the surveyed vswitches are co-located
with the Host virtualization layer. This increases the TCB
of the server since a vswitch is a complex piece of soft-
ware, consisting of tens of thousands of lines of code. The
complexity of network virtualization is further increased by
the fact that packet processing for roughly 70% of the vir-
tual switches is spread across user space and the kernel (see
last two columns in Table 1). These concerns are partially

Table 1: Design characteristics of virtual switches.

Name Ref. Year Emphasis M
on

oli
thic

Co-L
oc

ati
on

Kern
el

User

OvS [55] 2009 Flexibility
Cisco NexusV [71] 2009 Flexibility 7
VMware vSwitch [72] 2009 Centralized

control
7

Vale [59] 2012 Performance 7
Research prototype [34] 2012 Isolation 7
Hyper-Switch [57] 2013 Performance
MS HyperV-Switch [44] 2013 Centralized

control
7

NetVM [29] 2014 Performance,
NFV

7

sv3 [65] 2014 Security 7 7
fd.io [67] 2015 Performance 7
mSwitch [28] 2015 Performance 7
BESS [8] 2015 Programmability,

NFV
7

PISCES [63] 2016 Programmability
OvS with DPDK [60] 2016 Performance 7
ESwitch [46] 2016 Performance 7
MS VFP [21] 2017 Performance,

flexibility
7

Mellanox BlueField [42] 2017 CPU offload 7
Liquid IO [52] 2017 CPU offload 7
Stingray [27] 2017 CPU offload 7
GPU-based OvS [70] 2017 Acceleration
MS AccelNet [22] 2018 Performance,

flexibility
7

Google Andromeda [16] 2018 Flexibility and
performance

7

addressed by the current industry trend towards offloading
vswitches to smart NICs [35, 52, 27, 42]. Indeed consoli-
dating the vswitch into the NIC can improve the security as
it reduces the TCB of the Host. These burgeoning architec-
tures, however, share the main trait that the per-tenant logical
datapaths are monolithic, often with full privilege and direct
access to the Host OS, which when compromised can break
network isolation and be used as a stepping-stone to the Host.

2.2 Threat Model
We assume the attacker’s goal is to either escape network
virtualization by compromising the virtual switch, or to tam-
per with other tenant’s network traffic by controlling the vir-
tual switch [69]. Hence, she can affordably rent a VM in
an Infrastructure-as-a-Service (IaaS) cloud, or has somehow
managed to compromise a VM, e.g., by exploiting a web-
server vulnerability [14]. From the VM she can send arbi-
trary packets, make arbitrary computations, and store arbi-
trary data. However, she does not have direct control to con-
figure the Host OS and hardware: all configuration access
happens through a dedicated cloud management system.

The defender is a public cloud provider who wants to pre-
vent the attacker from compromising virtual network iso-
lation; in particular, the cloud provider wants to maintain
tenant-isolation even when the vswitch is compromised. We
assume that the cloud provider already supports SR-IOV at
NICs [4, 35, 22] and the underlying virtualization and net-

USENIX Association 2019 USENIX Annual Technical Conference 523

work infrastructure is trusted, including the hypervisor layer,
NICs, firmware, drivers, core switches, and so on.

2.3 Design Principles and Security Levels

Our MTS design is based on the application of the secure
system design principles, established by Saltzer et al. [61]
(see also Bishop [9] and Colp et al. [12]), to the problem
space of virtual switches.
Least privilege vswitch. The vswitch should have the min-
imal privileges sufficient to complete its task, which is to
process packets to and from the tenant VMs. Doing so limits
the damage that can result from a system compromise or mis-
configuration. Current best-practice is, however, to run the
vswitch co-located with the Host OS and with elevated privi-
leges; prior work has shown the types and severity of attacks
that can happen when this principle fails [69]. A well-known
means to the principle of least privilege is compartmental-
ization: execute the vswitch in an isolated environment with
limited privileges and minimal access to the rest of the sys-
tem. In the next section, we will show how MTS implements
compartmentalization by committing the vswitches into one
or more dedicated vswitch VMs.
Complete mediation of tenant-to-tenant and tenant-to-
host networking. This principle requires that the network
communication between the untrusted tenants and the trusted
Host is completely mediated by a trusted intermediary to
prevent undesired communication. This principle, when
systematically applied, may go a long way towards reduc-
ing the vswitch attack surface. By channeling all network
communication between untrusted and trusted components
via a trusted intermediary (a so called reference monitor),
the communication can be validated, monitored and logged
based on security policies. In the next section, we show how
complete mediation is realized in MTS using a secure SR-
IOV channel between the tenant VMs, vswitches and Host.
Extra security boundary between the tenant and the host.
This security principle, widely deployed at Google [1], re-
quires that between any untrusted and trusted component
there has to be at least two distinct security boundaries, so at
least two independent security mechanisms need to fail for
the untrusted component to gain access to the sensitive com-
ponent [7]. We establish this extra layer of security in MTS
by moving the vswitch to user space. This also contributes to
implementing the “least privilege” principle: the user-space
vswitch can drop administrator privileges after initialization.
Least common mechanisms. This principle addresses the
amount of infrastructure shared between tenants; applied to
the context of vswitches this principle requires that the net-
work resources (code paths, configuration, caches) common
to more than one tenant should be minimized. Indeed, every
shared resource may become a covert channel [9]. Corre-
spondingly, decomposing the vswitches themselves into mul-
tiple compartments could lead to hardened vswitch designs.

Security levels. From these principles, we can obtain differ-
ent levels of security:

• Baseline: The per-tenant logical datapaths are consoli-
dated into a single physical or software vswitch that is
co-located with the Host OS.

• Level-1: Placing the vswitch in a dedicated compart-
ment provides a first level of security by protecting from
malicious tenants to compromise the Host OS via the
vswitch (“single vswitch VM” in Fig. 1b).

• Level-2: Splitting the vswitches into multiple compart-
ments (based on security zones or on a per-tenant ba-
sis) adds another level of security, by isolating tenants’
vswitches from each other (“multiple vswitch VMs” in
Fig. 1c).

• Level-3: Moving the vswitches into user space, com-
bined with Baseline or Level-1 or -2, reduces the impact
of a compromise and further reduces the attack surface.

3 The MTS Architecture

We designed MTS with secure design principles from Sec-
tion 2.3. We first provide an overview and then present our
architecture in detail.

3.1 Overview

Compartmentalization. There are many ways in which iso-
lated vswitch compartments can be implemented: full-blown
VMs, OS-level sandboxes (jails, zones, containers, plain-old
user-space processes [23], and exotic combinations of these
[36, 26]), hardware-supported enclaves (Intel’s SGX) [50, 3],
or even safe programming language compilers (Rust), run-
times (eBPF), and instruction sets (Intel MPX). For flexibil-
ity, simplicity, and ease of deployment, MTS relies on con-
ventional VMs as the main unit of compartmentalization.

VMs provide a rather strong level of isolation and are
widely supported in hardware, software, and management
systems. This in no way means that VM-based vswitches are
mandatory for MTS, just that this approach offers the high-
est flexibility for prototyping. For simplicity, Fig. 2 depicts
two vswitch compartments (Red and Blue solid boxes) run-
ning independent vswitches in their isolated VMs. The mul-
tiple compartments further reduce the common mechanisms
between the vswitch and the connected tenants, achieving
security Level-2. Security Level-1, although not depicted,
would involve only a single vswitch VM.
Complete mediation. To mediate all interactions between
untrusted tenant code and the Host OS through the vswitch,
we need a secure and high-performance communication
medium between the corresponding compartments/VMs. In

524 2019 USENIX Annual Technical Conference USENIX Association

MTS we use Single Root IO Virtualization (SR-IOV) to inter-
connect the vswitch compartments (see Figure 2).

SR-IOV is a PCI-SIG standard to make a single PCIe de-
vice, e.g., a NIC, appear as multiple PCIe devices that can
then be attached to multiple VMs. An SR-IOV device has
one or more physical functions (PFs) and one or more vir-
tual functions (VFs), where the PFs are typically attached to
the Host and the VFs to the VMs. Only the Host OS driver
has privileges to configure the PFs and VFs. The NIC driver
in the VMs in turn have restricted access to VF configura-
tion. Only via the Host, VFs and PFs can be configured with
unique MAC addresses and Vlan tags. Network communi-
cation between the PFs and VFs occurs via an L2 switch
implemented in the NIC based on the IEEE Virtual Ethernet
Bridging standard [37]. This enables Ethernet communica-
tion not only from and to the respective VMs (vswitch and
tenants) based on the destination VF’s MAC address but also
to the external networks.

Sharing the NIC SR-IOV VF driver and the Layer 2 net-
work virtualization mechanism implemented by the SR-IOV
NIC is considerably simpler than including the NIC driver
and the entire network virtualization stack (Layer 2-7) in the
TCB. Tenants already share SR-IOV NIC drivers in public
clouds [4, 35, 5]. Virtual networks can be built as we will
see next, as per-tenant user-space applications implementing
Layer 3-7 of the virtual networking stack.

Thanks to the use of SR-IOV in MTS, packets to and from
tenant VMs completely bypass the Host OS; instead, all po-
tentially malicious traffic is channeled through the trusted
hardware medium (SR-IOV NIC) to the vswitch VM(s). Fur-
thermore, using SR-IOV reduces CPU overhead and im-
proves performance (see Section 4). Finally, SR-IOV pro-
vides an attractive upgrade path towards fully offloaded,
smart-NIC based virtual networking: chip [39] and OS ven-
dors [74, 66] have been supporting SR-IOV for many years
now at a reasonable price, major cloud providers already
have SR-IOV NICs deployed in their data centers [4, 35, 5],
and, perhaps most importantly, this design choice liberates us
from having to re-implement low-level and complex network
components [34]: we can simply use any desired vswitch,
deploy it into a vswitch VM, configure and attach VFs to
route tenants’ traffic through the vswitch, and start process-
ing packets right away.
User-space packet processing. As discussed previously,
we may choose to deploy the vswitches into the vswitch
VM user-space to establish an extra security boundary be-
tween the tenant and the Host OS (Level-3 design). Thanks
to the advances in kernel bypass techniques, several high-
performance and feature-rich user-space packet process-
ing frameworks are available today, such as Netmap [58],
FD.IO [67], or Intel’s DPDK [30]. Our current design of
MTS leverages OvS with the DPDK datapath for implement-
ing the vswitches [60]. DPDK is widely supported, it has al-
ready been integrated with popular virtual switch products,

Tenant
(TRed)

Host

SR-IOV NIC Switch

PF In/Out
VF

Gw
VF

Gw
VF

T
VF

Tenant
(TBlue)

In/Out
VF

T
VF

VSRed VSBlue

Figure 2: High-level overview of MTS in security Level-2.
The Red and Blue vswitch compartments (VMs) are allo-
cated dedicated virtual functions (VFs) to communicate with
external networks using the In/Out VF, their respective ten-
ants using the Gw VF and T VF. Communication between
the vswitches, tenants and the Host physical function (PF)
are mediated via the SR-IOV NIC switch.

and extensive operational experience is available regarding
the expected performance and resource footprint [40]. Note,
however, that using DPDK and OvS is not mandatory in
MTS; in fact, thanks to the flexibility provided by our VM-
compartments and SR-IOV, we can deploy essentially any
user-space vswitch to support MTS.

3.2 Detailed Architecture
For the below discussion, we consider the operation of MTS
for one vswitch compartment and its corresponding tenant
VMs from the Level-2 design shown in Fig. 2. The case
when only a single compartment (Level-1) is used is simi-
lar in vein: the flow table entries installed into the vswitch
and the VFs attached to the vswitch compartment need to be
modified somewhat; for lack of space we do not detail the
Level-1 design any further.
Connectivity. Each vswitch VM is allocated at least one
VF (In/Out VF) for external (inter-server) connectivity and
another as a gateway (Gw VF) for vswitch-VM-to-tenant-
VM connectivity as shown in Fig. 2. Isolation between the
external and the tenant network (tenant VF shown as T VF
in the Figure) is enforced at the NIC-level by configuring
the Gw VF and the tenant VFs with a Vlan tag specific to
the tenant. Different Vlan tags are used to further isolate
the multiple vswitch compartments and their resp. tenants
on that server.

The packets between VFs/PFs in the NIC are forwarded
based on the destination MAC address and securely isolated
using Vlan tags (the same security model as provided by en-
terprise Ethernet switches). For all packets to and from the
tenant VMs to pass through the vswitch-VM, the destination
MAC address of each packet entering and leaving the NIC
needs to be accurately set, otherwise packets will not reach
the correct destination. This can be addressed by introducing
minor configuration changes to the normal operation of the
tenant and the vswitches, detailed below.
Ingress chain. Fig. 3 a illustrates the process by which
packets from an external network reach the tenant VMs. In
step 1 a packet enters the server through the NIC fabric

USENIX Association 2019 USENIX Annual Technical Conference 525

VSRed
In VF
VSRed

Dmac: VSRed
Dmac: VSRed

Vlan: 0
Gw VF
VSRed

Dmac: TRed
Vlan: 0

VF
TRed

Dmac: TRed
Vlan: 1 Dmac: TRed

TRed

VF
TRed

Dmac: Gw VFRed
Dmac: Gw VFRed

Vlan: 1

Gw VF
VSRed

Dmac: Gw VFRed
Vlan: 0

Out VF
VSRed

Dmac: TExt
Vlan: 0Dmac: TExt

VSRed

1 2 3 4 5

In
gr

es
s

E
gr

es
s

10 9 8 7 6

a

b

Figure 3: A step-by-step illustration of how packets enter and leave the Red tenant from Figure 2 in MTS. a shows how ingress
packets reach TenantRed . b shows how TenantRed packets reach an external system TenantExt .

port having the Red vswitch’s In/Out VF MAC address as the
destination MAC address (Dmac). The NIC switch will de-
liver the packet to the vswitch VM untagged (Vlan 0) in 2 .
The Red vswitch then uses the destination IP address in the
packet to identify the correct tenant VM to send the packet
to, changes the destination MAC address to that of the Red
tenant’s VF (VF TRed), and emits the packet to the Gw VF in
the NIC in 3 . This ensures accurate packet delivery to and
from tenant VMs and the complete isolation of the tenant-
vswitch traffic from other traffic instances. In 4 and 5 ,
the NIC tags the packet with the Red tenant’s specific Vlan
tag (Vlan 1 in the figure), uses the built-in switch function-
ality to make a lookup in the MAC learning table for the
Vlan, pops the Vlan tag and finally forwards the packet to
the Red tenant’s VM. The NIC forwarding process is com-
pletely transparent to the vswitch and tenant VMs, the only
downside is the extra round-trip to the NIC. Later we show
that this round-trip introduces negligible latency overhead.

Egress chain. The reverse direction shown in Fig. 3 b ,
sending a packet from the tenant VM through the vswitch
to the external network goes in similar vein. In 6 the Red
tenant VM TRed sends a packet through its VF (TRed) with the
destination MAC address set to the MAC address of the Red
tenant’s Gw VF; in the next subsection we describe two ways
to achieve this. In 7 the NIC switch tags the packet (Vlan
1), looks-up the destination MAC address which results in
sending the packet to the Gw VF. At the gateway VF 8 , the
NIC switch pops the Vlan tag and delivers the packet to the
Red vswitch VM. The vswitch receives the packet, looks up
the destination IP address, rewrites the MAC address to the
actual (external) gateway’s MAC address, and then sends the
packet out to the In/Out VF in 9 . Finally in 10 , the NIC
will in turn send the packet out the physical fabric port.

Communication between the two VMs of a single tenant
inside the server goes similarly, with the additional complex-
ity that packets now take two extra round-trips to the NIC:
once on the way from the sender VM to vswitch, and once on
the way from the vswitch to the destination VM. Again, our
evaluations in the next sections will show that the induced
latency overhead for such a traffic scenario is low.

System support. Next, we detail the modifications the cloud
operator needs to apply to the conventional vswitch setup to
support MTS. The primary requirement is to modify the cen-
tralized controllers to appropriately configure tenant specific
VFs with Vlan tags and MAC addresses, and insert correct
flow rules to ensure the vswitch-tenant connectivity. Sec-
ond, advanced multi-tenant cloud systems rely on tunneling
protocols to support L2 virtual networks. This is also sup-
ported by MTS, by modifying the flow tables to pop/insert the
appropriate headers whenever packets need to be decapsu-
lated/encapsulated. Note that after decapsulation the tunnel
id can be used in conjunction with the destination IP address
to identify the appropriate tenant VM. Third, the ARP entry
for the default gateway must be appropriately set in each ten-
ant VM so that packets from the tenant VM go to the vswitch
VM. To this end, the tenant VMs can be configured with a
static ARP entry pointing to the appropriate Gw VF, or us-
ing the centralized controller and vswitch as a proxy-ARP/
ARP-responder [47]. Finally, to prevent malicious tenants
from launching an attack on the system, the cloud opera-
tor needs to deploy security filters in the NIC. In particular,
source MAC address spoofing prevention must be enabled
on all tenant VMs’ VFs. Furthermore, flow-based wildcard
filters can also be applied in the NIC for additional secu-
rity, e.g., to drop packets not destined to the vswitch com-
partment, to prevent the Host from receiving packets from
the tenant VMs, etc. Our MTS implementation, described in
Section 4, takes care of removing the manual management
burden in applying the above steps.
Resource allocation. Additional levels of security usually
come with increased resource requirement, needed to run the
security/isolation infrastructure. Below, we describe two re-
source sharing strategies and how the VFs are allocated to
the vswitch compartments. However, due to the sheer quan-
tity and diversity in cloud setups, we restrict the discussion
to plain compute and memory resources and the number of
SR-IOV VFs for the different MTS security levels.

We consider two modes for compute and memory re-
sources. A shared mode where tenants’ vswitches share a
single physical CPU core, while in the isolated mode each
tenant’s vswitch is pinned to a different core. However, we

526 2019 USENIX Annual Technical Conference USENIX Association

assume that each vswitch compartment gets an equal share
of main memory (ram) and this is inexpensive compared to
physical CPU cores. Dedicating compute and memory re-
sources for vswitching is not uncommon among cloud op-
erators [22, 16]. Note that the shared and isolated resource
allocations are merely two ends of the resource allocation
spectrum, different sets of vswitch VMs could be allocated
resources differently, e.g., based on application or customer
requirements. In the next section we will see that the re-
source requirement for multiple vswitch VM compartments,
i.e., Level-2 alone, is not resource prohibitive in the shared
mode, however, Level-2 and Level-3 can be.

Regarding the number of SR-IOV VFs needed, the cur-
rent standard allows each SR-IOV device to have up to 64
VFs per PF. For Level-1, the total number of VFs is given by
the sum of i) the number of VFs allocated for external con-
nectivity (In/Out VF); ii) the total number of tenant-specific
gateway VFs; and iii) tenant-specific VM VFs hosted on the
server. In a basic Level-1 setup hosting 1 tenant, with 1 In/
Out VF and 1 gateway VF and 1 VF for the tenant VM, the
total VFs is 3. Similarly for 4 tenants, the total VFs is 9.
For Level-2, the total number of VFs is given by the sum of
i) the tenant-specific VFs allocated for external connectivity;
ii) the tenant-specific gateway VFs; and iii) tenant-specific
VM VFs hosted on the server. For a basic Level-2 setup
hosting 2 tenants, with 1 In/Out VF, 1 gateway VF per ten-
ant vswitch and 1 VF for each tenant VM, the total VFs is 6.
Similarly for 4 tenants, the total VFs is 12.

4 Evaluating Tradeoffs

We designed a set of experiments to empirically evaluate the
security-performance-resource tradeoff of MTS. To this end,
we measure MTS’s performance for different security lev-
els under different resource allocation strategies, in canon-
ical cloud traffic scenarios [19]. The focus is on through-
put and latency performance metrics, and physical cores and
memory for resources. In particular, the experiments serve
to verify our expectation that our design does not introduce a
considerable overhead in performance. However, we do ex-
pect the amount of resources consumed to increase; our aim
is to quantify this increase in different realistic setups.
Prototype framework. We took a programmatic ap-
proach to our design and evaluation, hence, we devel-
oped a set of primitives that can be composed to config-
ure MTS to conduct all the experiments described in this
paper. Hence, as a first step we do not consider com-
plex cloud management systems (CMS) such as Open-
Stack; this way we can conduct self-contained experiments
without the possible interference cause by a CMS. Our
framework is written in Python and currently supports OvS
and ovs-DPDK as the base virtual switch, Mellanox NIC,
and the libvirt virtualization framework. Our frame-
work and data are available on-line at the following URL:

https://www.github.com/securedataplane

Methodology. We chose a set of standard cloud traffic sce-
narios (see Fig. 4) and a fixed number of tenants (4). For
each of those scenarios, we allocated the necessary resources
(Sec. 3) and then configured the vswitch either in its default
configuration (Baseline) or one of the three security levels
(Sec. 2.3). The system was then connected in a measurement
setup to measure the one-way forwarding performance. Im-
portant details on the topology, resources, security levels and
the hardware and software used are described next.
Traffic scenarios. The three scenarios evaluated are shown
in Fig. 4. Physical-to-physical (p2p): Packets are forwarded
by the vswitch from the ingress physical port to the egress.
This is meant to shed light on basic vswitch forwarding per-
formance. Physical-to-virtual (p2v): Packets are forwarded
by the vswitch from one physical port to a tenant VM, and
then back from the tenant VM to the other physical port.
Compared to the p2p, this will show the overhead to forward
to and from the tenant VM. Virtual-to-virtual (v2v): Similar
to the p2v, however, when the packets return from the ten-
ant to the vswitch, the vswitch sends the packet to another
tenant which then sends it back to the vswitch and then out
the egress port. This scenario emulates service chains in net-
work function virtualization. Since the path length increases
from p2p to p2v to v2v, we expect the latency to increase
and the throughput to decrease when going from p2p to p2v
to v2v.
Resources. We allocated compute resources in the follow-
ing two ways. Shared: All vswitch compartments share 1
physical CPU core and their associated cache levels. Iso-
lated: Each vswitch compartment is allocated 1 physical
CPU core and their associated cache levels. In case of
the Baseline, we allocated cores proportional to the number
of vswitch compartments, e.g., 2 cores to compare with 2
vswitch VMs. For main memory, each VM (vswitch and
tenant) was allocated 4 GB of which 1 GB is reserved as
one 1GB Huge page. Similarly, for the Baseline, a propor-
tional amount of Huge pages was allocated. When using
MTS, each vswitch VM was allocated 2 In/Out VFs (1 per
physical port), and 2 appropriately Vlan tagged Gw VFs per
tenant (1 per physical port). When DPDK was used in Level-
3: one physical core needs to allocated for each ovs-DPDK
compartment (including the Baseline), hence, only the iso-
lated mode was used; all In/Out, gateway and tenant ports
connected to OvS were assigned DPDK ports (in the case
of the Baseline, the tenant port type was the dpdkvhostuser-
client [18]). All the tenant VMs got two physical cores and
two VFs, 1 per port (these are VMs the tenant would use
to run her application) so that the forwarding app (l2 f wd)
could run without being a bottleneck.
Security levels and tenants. For each resource allocation
mode, we configured our setup either in Baseline or one of
the three MTS security levels (Section 2.3). In the Base-
line and Level-1, there were 4 tenant VMs connected to the

USENIX Association 2019 USENIX Annual Technical Conference 527

NICIN OUT

VM

NICIN OUT

VMVM

NICIN OUT

p2p p2v v2v

Figure 4: Traffic scenarios evaluated.

vswitch. For Level-2, we configured 2 vswitch VMs and
each vswitch had 2 tenant VMs, and then we configured 4
vswitch VMs where each vswitch VM had 1 tenant VM. We
repeated Level-3 with Baseline, Level-1 and the two Level-2
configurations.
Setup. To accurately measure the one-way forwarding
performance (throughput and latency), we used two servers
connected to each other via 10G short range optical links.
The device under test (DUT) server was an Intel(R) Xeon(R)
CPU E5-2683 v4 @ 2.10GHz with 64 GB of RAM with the
IOMMU enabled but hyper-threading and energy efficiency
disabled, and a 2x10G Mellanox ConnectX4-LN NIC with
adaptive interrupt moderation and irq balancing disabled.
The other server was the packet/load generator (LG), sink
and monitor, with an Endace Dag 10X4-P card (which gives
us accurate and precise hardware timestamps) [20]. The link
between the LG and DUT, and DUT and sink were moni-
tored via a passive optical network tap connected to the Dag
card. Each receive stream of the Dag card was allocated
4 GB to receive packets. The Host, vswitch VM and ten-
ant VMs used the Linux kernel 4.4.0-116-generic, Mellanox
OFED linux driver 4.3-1.0.1.0, OvS-2.9.0 and DPDK 17.11.
Libvirt 1.3.1 was used with QEMU 2.5.0. In the tenant VMs,
we adapted the DPDK-17.11 l2 f wd app to rewrite the cor-
rect destination MAC address when using MTS, and used the
default l2 f wd drain-interval (100 microseconds) and burst
size (32) parameters. For the Baseline, we used the default
linux bridge in the tenant VMs as using DPDK in the tenant
without being backed by QEMU and OvS (e.g., dpdkvhos-
tuserclient) is not a recommended configuration [41]. For
network performance measurements, we used Endace dag-
5.6.0 software tools (dagflood, dagbits, and dagsnap).

4.1 Throughput

Our first performance tradeoff is evaluating the forwarding
throughput. This will shed light on the packets per second
(pps) processing performance of MTS compared to the Base-
line. It also uncovers packet loss sooner than measuring the
bandwidth [32]. We measure the aggregate throughput with
a constant stream of 64 B packets replayed at line rate (14
Mpps) by the LG and collected at the sink. Since we fixed
the number of tenants to 4, the stream of packets comprises
4 flows, each to a respective tenant VM identified by the des-
tination MAC and IP address. At the monitor we collect the

packets forwarded to report the aggregate throughput. Each
experimental run lasts for 110 seconds and measurements are
made from the 10-100 second marks.
Results. The throughput measurement data for the shared
mode is shown in Fig. 5(a). In Fig. 5(d) we can see the data
for the isolated mode and in Fig. 5(g) the data for Level-
3 in the isolated mode is shown. From Figures 5(a) and
(d) we can see that nearly always MTS had either the same
or higher aggregate throughput than the Baseline. The im-
provement in throughput is most obvious in the p2v and
v2v topologies as vswitch-to-tenant communication is via
the PCIe bus and NIC switch, which turns out to be faster
than Baseline’s memory bus and software approach. Sharing
the physical core for multiple compartments (Fig. 5(a)) in the
p2v and v2v scenarios can offer 4x isolation (Level-2 with
4 compartments) and a 2x increase in throughput (nearly
.4 Mpps and .2 Mpps) compared to the Baseline (nearly .2
Mpps and .1 Mpps).

Fig. 5(d) is noteworthy as multiple cores for vswitch VMs
and the Baseline functions as a load-balancer when isolating
the CPU cores. In the p2p scenario, the aggregate throughput
increases roughly from 1 Mpps to 2 Mpps to 4 Mpps as the
number of cores increase. We observe that MTS is slightly
more than the Baseline in the p2p, however, in the p2v and
v2v scenarios MTS offers higher aggregate throughput. As
expected, using DPDK can offer an order of magnitude bet-
ter throughput (Fig. 5(g)). In the p2p topology, we were able
to nearly reach line rate (14.4 Mpps) with four DPDK com-
partments as the packets were load-balanced across the mul-
tiple vswitch VMs, while the Baseline was able to saturate
the link with 2 cores. With MTS, the throughput saturates
(at around 2.3 Mpps) in the p2v and v2v topologies because
several ports are polled using a single core and packets have
to bounce off the NIC twice as much compared to the Base-
line where we observe nearly twice the throughput for 2 and
4 cores. Nevertheless, we can see a slight increase in the
throughput of MTS as the vswitch VMs increase, because the
number of ports per vswitch VM decreases as the number of
vswitch VMs increase. Due to the limited physical cores on
the DUT, we could not evaluate 4 vswitch VMs in the v2v
topology as it required more cores and ram than available.
Key findings. The key result here is that MTS offers in-
creasing levels of security with comparable, if not increas-
ing levels of throughput in the shared and isolated resource
modes, however, the Baseline’s throughput with user-space
packet processing (DPDK) is better than MTS.

4.2 Latency

The second performance tradeoff we evaluated was the for-
warding latency, in particular, we studied the impact of
packet size on forwarding. We selected 64B (minimum IPv4
UDP packet size), 512B (average packet), 1500B (maximum
MTU) packets and 2048B packets (small jumbo frame). As

528 2019 USENIX Annual Technical Conference USENIX Association

Figure 5: The security, throughput, latency and resource tradeoff comparison of MTS. The rows indicate the resource mode.
The columns are ordered as throughput, latency and resources. The security levels used are shown in the legend. Note the
bottom row is for security Level-3 in the isolated resource mode combined with other security levels.

in the throughput experiments, we used 4 flows, one to each
tenant. For each experimental run, we continuously sent
packets from the LG to the sink via the DUT at 10 kpps
for 30 seconds. Note that is the aggregate throughput sent
to the NIC and not to the vswitch VM. To eliminate possi-
ble warm-up effects, we only evaluated the packets from the
10-20 second mark.
Results. For brevity the latency distribution only for 64
B packets is reported here. Fig. 5(b) shows the data for the
shared mode, while Fig. 5(e) is for the isolated mode. Level-
3 latency data is shown in Fig. 5(h). Although the p2p sce-
narios shows that MTS increases the latency (Fig. 5(b), (e)
and (h)), the p2v and v2v scenarios show that MTS is slightly
faster than the Baseline. This is for two reasons. First, pack-
ets between the vswitch and the tenant VMs pass through the
SR-IOV NIC (PCIe bus) rather than a software only vswitch
(memory bus). Second, when using the Baseline the tenant
uses the Linux bridge. The exception to this can be seen with
user-space packet processing (Fig. 5(h)), where the Baseline
with a single core for dpdk (2 in total) is always faster than
MTS. As mentioned in Section. 4.1, due to resource limita-
tions we could not evaluate the 4 vswitch VMs in v2v.

The variance in latency increases as more compartments
share the same physical core (Fig. 5(b)). Isolating the

vswitch VM cores leads to more predictable latency as seen
in Fig. 5(e). When using DPDK (Fig. 5(h)) we make two
observations: i) MTS takes longer to forward packets than
without using DPDK; ii) the latency for Baseline with 2
and 4 cores for dpdk (3 and 5 in total) is unexpectedly high
(around 1 ms). Regarding the former, we conclude that MTS
with OvS and DPDK requires further tuning as we used
the default OvS-DPDK parameters for the drain interval,
batch size and huge pages: There is an inherent tradeoff be-
tween high throughput and average per-packet latency when
using a shared memory model where a core is constantly
polling [17]. For the latter, we observe that the throughput of
10 kpps is too low to drain the multiple queues on the DPDK
ports. At 100 kpps and 1 Mpps, we measured an approxi-
mately 2 microsecond latency for the p2p scenario.
Key findings. We observe that for the shared mode, and 4x
compartmentalization (Level-2), the latency is comparable
to the Baseline (p2v) with a lot of variance whereas when
isolated the latency is more predictable.

4.3 Resources

In Fig. 5(c), (f) and (i) we see the total CPU and memory
consumption for Baseline and MTS. Note that across all the

USENIX Association 2019 USENIX Annual Technical Conference 529

figures, one core and at least one Huge page is always dedi-
cated for the Host OS. In the case of the (single core) Base-
line, the vswitch (OvS) runs in the Host OS and hence shares
the Host’s core and ram. However, for the single vswitch
VM in the shared, isolated and DPDK modes, the Host OS
consumes one core and the vswitch VM consumes another
core making the total CPU cores two. Similarly, the 2 and
4 vswitch VMs in the shared mode, also consume the same
number of cores as the single vswitch VM but a linear in-
crease in ram. In the isolated mode, MTS consumes only one
extra physical core relative to the Baseline, and in DPDK,
MTS and Baseline consume equal number of cores. With re-
spect to the memory consumption, we note that MTS’s and
Baseline’s memory consumption in the isolated and DPDK
modes are the same.

Hence, we conclude that for one extra physical core, MTS
offers multiple compartments, making the shared resource
allocation economically attractive. The resource cost goes
up when user-space packet processing is introduced or isolat-
ing cores, making it relatively expensive for multiple vswitch
VMs.
Key findings. (i) High levels (2x/4x) of virtual network iso-
lation per server can be achieved with an increase in aggre-
gate throughput (2x) in the shared mode; (ii) for applications
that require low and predictable latency, vswitch compart-
ments should use the isolated mode; (iii) although user-space
packet processing using DPDK offers high throughput, it is
expensive (physical CPU and energy costs).

5 Workload-based Evaluation

We also conducted experiments with real workloads, to gain
insights on how cloud applications such as web servers and
key-value stores will perform as tenant applications are the
end hosts of the virtual networks.
Methodology. For simplicity we focus our workload-
based evaluation only on TCP applications as our previous
measurements dealt with UDP. In general, we use a similar
methodology to the one described in Section 4. For all the
TCP-based measurements, we configured the tenant VMs to
run the respective TCP server and from the client (LG) we
benchmark the server to measure the throughput and/or re-
sponse time. The topologies, resources and setup used to
make these measurements are slightly nuanced which we
highlight next.
Traffic scenarios. Only the p2v and v2v patterns are eval-
uated with workloads as we want to understand the perfor-
mance of applications hosted in the server.
Resources. The ingress and egress ports for all the traf-
fic are on the same physical NIC port unlike in the previous
section where the ingress and egress ports were on separated
physical ports of the NIC. Hence, each tenant’s vswitch VM
was given 1 VF for In/Out and 1 tagged Gw VF. Each tenant
VM was given 1 VF.

Setup. The applications generating the load are standard
TCP, Apache and Memcached benchmarking tools respec-
tively Iperf3 v3.0.11 [31], ApacheBench v2.3 (ab) [2] and
libMemcached v1.0.15 (memslap) [43]. Instead of the En-
dace card we used a similar Mellanox card at the LG.

5.1 Workloads and Results

Iperf: To compare the maximum achievable TCP through-
put, we ran Iperf clients for 100 s with a single stream from
the LG to the respective Iperf servers in the DUT’s tenant
VM. The aggregate throughput was then reported as the sum
of throughput for each client-server. We collected 5 such
measurements for each experimental configuration and re-
port the mean with 95% confidence.
Webserver: To study workloads from webservers (a very
common cloud application), we consider the open-source
Apache web server. Using the ApacheBench tool from the
LG, we benchmarked the respective tenant webservers by re-
questing a static 11.3 KB web page from four clients (one
for each webserver). Each client made up to 1,000 con-
current connections for 100 s after which we collected the
throughput and latency statistics reported by ApacheBench.
In the v2v scenario, we used only two client-servers as one of
the tenant VMs simply forwarded packets using the DPDK
l2 f wd app. We collected 5 such repetitions to finally re-
port the average throughput and latency for each experimen-
tal configuration with 95% confidence.
Key-value store: Key-value stores are also commonly used
cloud applications (e.g., with with webservers). We opted
for the open-source Memcached key-value store as it also has
an open-source benchmarking tool libMemcached-memslap.
We used the default Set/Get ratio of 90/10 for the measure-
ments. The methodology and reporting of the measurements
are the same as the webserver.
Results. The data for the Iperf measurements in the shared
mode is shown Fig. 6(a). The data for the isolated mode is
shown in Fig. 6(f) and Fig. 6(k) depicts the throughput for
Level-3. As seen in Section 4.1, here too we observe that
MTS has a higher throughput (more than 2x in the shared
mode) than the Baseline except when DPDK is used in the
v2v topology. MTS saturated the 10G link in the p2v scenario
when isolated and DPDK modes were used.

The data from the throughput measurements for the
Apache webserver and Memcached key-value store are first
reported in the shared mode in Fig. 6(b) and (c) respectively.
For the isolated mode they are shown in Fig. 6(g) and (h).
Level-3 throughput is shown in Fig. 6(l) and (m). The three
main results from the throughput measurements for Apache
and Memcached are the following. MTS can offer nearly 2x
throughput and 4x isolation (Level-2) in the shared mode.
Apache’s and Memcached’s throughput saturated with MTS:
we expected the throughput to increase as the vswitch VMs
increase when the compartments have isolated cores, how-

530 2019 USENIX Annual Technical Conference USENIX Association

B MTS
p2v

B MTS
v2v

(a)

0

2

4

6

8

10

sh
ar

ed
Ip

er
f(

G
bp

s)

B MTS
p2v

B MTS
v2v

(b)

0

5

10

15

20

25

A
pc

h
(K

R
eq

s/
s)

B MTS
p2v

B MTS
v2v

(c)

0

100

200

300

M
ch

d
(K

O
ps

/s
)

B MTS
p2v

B MTS
v2v

(d)

0

50

100

150

200

250

300

A
pc

h
re

sp
.

tim
e

(m
s)

B MTS
p2v

B MTS
v2v

(e)

0

5

10

15

20

25

M
ch

d
re

sp
.

tim
e

(m
s)

B MTS
p2v

B MTS
v2v

(f)

0

2

4

6

8

10

is
ol

at
ed

Ip
er

f(
G

bp
s)

B MTS
p2v

B MTS
v2v

(g)

0

5

10

15

20

25
A

pc
h

(K
R

eq
s/

s)

B MTS
p2v

B MTS
v2v

(h)

0

100

200

300

M
ch

d
(K

O
ps

/s
)

B MTS
p2v

B MTS
v2v

(i)

0

50

100

150

200

250

300

A
pc

h
re

sp
.

tim
e

(m
s)

B MTS
p2v

B MTS
v2v

(j)

0

5

10

15

20

25

M
ch

d
re

sp
.

tim
e

(m
s)

B MTS
p2v

B MTS
v2v

(k)

0

2

4

6

8

10

dp
dk

Ip
er

f(
G

bp
s)

B MTS
p2v

B MTS
v2v

(l)

0

5

10

15

20

25

A
pc

h
(K

R
eq

s/
s)

B MTS
p2v

B MTS
v2v

(m)

0

100

200

300

M
ch

d
(K

O
ps

/s
)

B MTS
p2v

B MTS
v2v

(n)

0

50

100

150

200

250

300

A
pc

h
re

sp
.

tim
e

(m
s)

B MTS
p2v

B MTS
v2v

(o)

0

5

10

15

20

25

M
ch

d
re

sp
.

tim
e

(m
s)

Figure 6: Iperf throughput, Apache and Memcached throughput and latency (shown in the columns) comparison of MTS. The
rows indicate the resource mode where the bottom row is for security Level-3 in the isolated resource mode combined with the
other security levels. The legend is the same as in Figure 5.

ever, we do not observe that. This is further validated when
using DPDK. Apache’s and Memcached’s throughput are
highly sensitive when the Baseline uses multiple cores in
the isolated and DPDK modes which means that using 2 or
more cores requires workload specific tuning to the Host:
the DPDK parameters, e.g., drain interval, and the workload
VMs, e.g., allocating more cores, which may not always be
necessary with MTS.

The data from the response time measurements for the
Apache webserver and Memcached key-value store are first
reported in the shared mode in Fig. 6(d) and (e) respectively.
For the isolated mode they are shown in Fig. 6(i) and (j).
Level-3 throughput is shown in Fig. 6(n) and (o). Regard-
ing the latency, we again discern that MTS can offer multiple
levels of isolation and maintain a lower response time (ap-
proximately twice as fast) than the Baseline.

Key findings. Our webserver and key-value store bench-
marks reveal that application throughput and latency of real
application are improved by MTS. However, for user-space
packet processing, the resource costs go up for a fractional
benefit in throughput or latency. Hence, biting the bullet for
shared resources, offers 4x isolation and approximately 1.5-
2x application performance compared to the Baseline.

6 Discussion

Centralized control, accounting and monitoring. MTS
introduces the possibility to realize multi-tenant virtual net-
works which can expose tenant/compartment specific inter-
faces to a logically centralized control/management plane.
This opens up possibilities for full network virtualization,
how to expose the interface, and also how to integrate MTS
into existing cloud management systems in an easy and us-
able way. Furthermore, controllers may need to manage
more device, topology and forwarding information, however,
the computations (e.g., routing) should remain the same.
From an accounting and billing perspective, we strongly be-
lieve that MTS is a new way to bill and monitor virtual net-
works at granularity more than a simple flow rule [24]: CPU,
memory and I/O for virtual networking can be charged.
SR-IOV: a double-edged sword. If an attacker can com-
promise SR-IOV, she could violate isolation and in the worst
case get access to the Host OS via the PF driver. Hence, a
rigorous security analysis of the SR-IOV standard, imple-
mentations and SR-IOV-NIC drivers can reduce the chance
of a security vulnerability. Compartmentalizing the PF driver
is a promising approach [10]. Furthermore, when a vswitch
VM is shared among tenants, performance isolation issues

USENIX Association 2019 USENIX Annual Technical Conference 531

could lead to covert channels [6] or denial-of-service at-
tacks [64, 75]. Although not yet widely supported, VM mi-
gration with SR-IOV can be introduced [45]. SR-IOV NICs
have limited VFs and MAC addresses which could limit the
scaling properties of MTS, e.g., when using containers as
compartments instead of VMs.
Evaluation limitations. The results from our experiments
are from a network and application performance perspective
using a 10 Gbps NIC. For a deeper understanding of the per-
formance improvement we obtained in this paper using SR-
IOV, further measurements are necessary, e.g., using the per-
formance monitoring unit (PMU) to collect a breakdown of
the packet processing latencies. Such an understanding is
important and relevant when dealing with data center appli-
cations that require high NIC bandwidth, e.g., 40/100 Gbps.

As described by Neugebauer et al. [48], the PCIe bus can
be a bottleneck for special data center applications (e.g., ML
applications): A typical x8 PCIe 3.0 NIC (with a maximum
payload size of 256 bytes and maximum read request of 4096
bytes) has an effective (usable) bi-directional bandwidth of
approximately 50 Gbps. Hence, the usability of MTS with
PCIe 3.0 and 8 lanes can indeed be a limitation which we
did not observe in this paper. Nevertheless, increasing the
lanes to x16 is one potential workaround to double the ef-
fective bandwidth to around 100 Gbps. Furthermore, with
chip vendors initiating PCIe 4.0 devices [11], the PCIe bus
bandwidth will increase to support intense I/O applications.

7 Related Work

There has been noteworthy research and development on
isolating multi-tenant virtual networks in cloud (datacen-
ter) networks: tunneling protocols have been standard-
ized [73, 25], multi-tenant datacenter architectures have been
proposed [38], and real cloud systems have been built by
many companies [22, 16]. However, most of the previous
work still co-locates the vswitch with the Host as we dis-
cussed in Section 2.1. Hence, here we discuss previous and
existing attempts specifically addressing the security weak-
ness of vswitches.

To the best of our knowledge, in 2012 Jin et al. [34]
(see Research prototype in Table 1) were the first to point
out the security weakness of co-locating the virtual switch
with the hypervisor. However, the proposed design, while
ahead of its time, (i) lacks a principled approach which
this paper proposes; (ii) has only a single vswitch VM
whereas MTS supports multiple vswitch compartments mak-
ing it more robust; (iii) is resource (compute and memory)
intensive as the design used shared memory between the
vswitch VM and all the tenant VMs while MTS uses an inex-
pensive interrupt-based SR-IOV network card for complete
mediation of tenant-vswitch-VM and tenant-host network-
ing; (iv) requires considerable effort, expertise and tuning to
integrate into virtualization system whereas MTS can easily

be scripted into existing cloud systems.
In 2014 Stecklina [65] followed up on this work and pro-

posed sv3, a user-space switch, which can enable multi-
tenant virtual switches (see sv3 in Table 1). sv3 adopts user-
space packet processing and also supports compartmental-
ization, i.e., the Host can run multiple vswitches. However,
it is still co-located with the Host, partially adopts the secu-
rity principles outlined in this paper, lacks support for real
cloud virtual networking, and requires changes to QEMU.
Our system on the other hand moves the vswitch out of the
Host, supports production vswitches such as OvS and does
not require any changes to QEMU.

Between 2016 and 2017, Panda et al. [51] and Neves et
al. [49] took a language-centric approach to enforce data
plane isolation for virtual networks. However, language-
centric approaches require existing vswitches to be repro-
grammed/annotated which reduces adoption. Hence the so-
lution of using compartments and SR-IOV in MTS allows
existing users to easily migrate using their existing software.
Shahbaz et al. [63] reduced the attack surface of OvS by in-
troducing support for the P4 domain specific language which
reduces potentially vulnerable protocol parsing logic.

In 2018, Pettit et al. [53] proposed to isolate virtual switch
packet processing using eBPF: which is conceptually iso-
lating potentially vulnerable parsing code in a kernel-based
runtime environment. However, the design still co-locates
the virtual switch and the runtime with the Host.

8 Conclusion

This paper was motivated by the observation that while
vswitches have been designed to enable multi-tenancy, to-
day’s vswitch designs lack strong isolation between tenant
virtual networks. Accordingly, we presented a novel vswitch
architecture which extends the benefits of multi-tenancy to
the virtual switch, offering improved isolation and perfor-
mance, at a modest additional resource cost. When used in
the shared mode (only one extra core), with four vswitch
compartments the forwarding throughput (in pps) is 1.5-2
times better than the Baseline. The tenant workloads (web-
server and key-value stores) we evaluated also receive a 1.5-2
times performance (throughput and response time) improve-
ment with MTS.

We believe that MTS is a pragmatic solution that can en-
hance the security and performance of virtual networking in
the cloud. In particular, MTS introduces a way to sched-
ule an entire core for tenant-specific network virtualization
which has three benefits: (i) application and packet process-
ing performance is improved; (ii) this could be integrated
into pricing models to appropriately charge customers on-
demand and generate revenue from virtual networking for
example; (iii) virtual network and Host isolation is main-
tained even when the vswitch is compromised.

532 2019 USENIX Annual Technical Conference USENIX Association

9 Acknowledgments

We thank our shepherd Leonid Ryzhyk and our anonymous
reviewers for their valuable feedback and comments. We
thank Ben Pfaff, Justin Pettit, Marcel Winandy, Hagen Woes-
ner, Jean-Pierre Seifert and the Security in Telecommunica-
tions (SecT) team from TU Berlin for valuable discussions
at various stages of this paper. The first author (K. T.) ac-
knowledges the financial support by the Federal Ministry of
Education and Research of Germany in the framework of the
Software Campus 2.0 project nos. 01IS17052 and 01IS1705,
and the “API Assistant” activity of EIT Digital. The third
author (G. R.) is with the MTA-BME Information Systems
Research Group.

References

[1] ALLCLAIR, T. Secure Container Isola-
tion: Problem Statement & Solution Space.
https://docs.google.com/document/d/
1QQ5u1RBDLXWvC8K3pscTtTRThsOeBSts imYEoRyw8A,
2018. Accessed: 05-01-2019.

[2] APACHE. ab - Apache HTTP server benchmark-
ing tool. https://httpd.apache.org/docs/2.2/
en/programs/ab.html. Accessed: 07-01-2019.

[3] ARNAUTOV, S., TRACH, B., GREGOR, F., KNAUTH,
T., MARTIN, A., PRIEBE, C., LIND, J., MUTHUKU-
MARAN, D., O’KEEFFE, D., STILLWELL, M. L.,
GOLTZSCHE, D., EYERS, D., KAPITZA, R., PIET-
ZUCH, P., AND FETZER, C. SCONE: Secure linux
containers with intel SGX. In Proc. Usenix Operating
Systems Design Principles (OSDI) (2016).

[4] AWS. Enhanced Networking on Linux.
https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/enhanced-networking.html, 2018.
Accessed: 24-01-2018.

[5] AZURE, M. Create a Linux virtual ma-
chine with Accelerated Networking. https:

//docs.microsoft.com/en-us/azure/virtual-
network/create-vm-accelerated-networking-

cli, 2018. Accessed: 24-01-2018.

[6] BATES, A., MOOD, B., PLETCHER, J., PRUSE, H.,
VALAFAR, M., AND BUTLER, K. On detecting co-
resident cloud instances using network flow water-
marking techniques. Springer International Journal of
Information Security (2014).

[7] BEAUPRÉ, A. Updates in container isolation. https:
//lwn.net/Articles/754433, 2018. Accessed: 09-
01-2019.

[8] BESS COMITTERS. BESS (Berkeley Extensible Soft-
ware Switch). https://github.com/NetSys/bess,
2017. Accessed: 09-05-2017.

[9] BISHOP, M. A. Introduction to computer security,
vol. 50. Addison-Wesley Boston, 2005.

[10] BOYD-WICKIZER, S., AND ZELDOVICH, N. Tolerat-
ing malicious device drivers in linux. In Proc. Usenix
Annual Technical Conference (ATC) (2010).

[11] Broadcom Samples Thor, World’s First 200G Eth-
ernet Controller with 50G PAM-4 and PCIe 4.0.
https://www.broadcom.com/company/news/
product-releases/2367107. Accessed: 06-05-
2019.

[12] COLP, P., NANAVATI, M., ZHU, J., AIELLO, W.,
COKER, G., DEEGAN, T., LOSCOCCO, P., AND
WARFIELD, A. Breaking up is hard to do: Secu-
rity and Functionality in a Commodity Hypervisor. In
Proc. ACM Symposium on Operating System Principles
(SOSP) (2011).

[13] COLUMBUS, L. Roundup Of Cloud Comput-
ing Forecasts And Market Estimates. https:

//www.forbes.com/sites/louiscolumbus/
2018/09/23/roundup-of-cloud-computing-

forecasts-and-market-estimates-2018/, 2017.
Accessed: 09-01-2019.

[14] COSTIN, A. All your cluster-grids are belong to us:
Monitoring the (in)security of infrastructure monitor-
ing systems. In Proc. IEEE Communications and Net-
work Security (CNS) (Sept 2015).

[15] CSIKOR, L., ROTHENBERG, C., PEZAROS, D. P.,
SCHMID, S., TOKA, L., AND RÉTVÁRI, G. Policy
injection: A cloud dataplane dos attack. In Proc. ACM
SIGCOMM Posters and Demos (2018).

[16] DALTON, M., SCHULTZ, D., ADRIAENS, J., ARE-
FIN, A., GUPTA, A., FAHS, B., RUBINSTEIN, D.,
ZERMENO, E. C., RUBOW, E., DOCAUER, J. A.,
ALPERT, J., AI, J., OLSON, J., DECABOOTER, K.,
DE KRUIJF, M., HUA, N., LEWIS, N., KASINAD-
HUNI, N., CREPALDI, R., KRISHNAN, S., VENKATA,
S., RICHTER, Y., NAIK, U., AND VAHDAT, A. An-
dromeda: Performance, isolation, and velocity at scale
in cloud network virtualization. In Proc. Usenix Net-
worked Systems Design and Implementation (NSDI)
(2018).

[17] DPDK. Writing Efficient Code. https:

//doc.dpdk.org/guides/prog guide/

writing efficient code.html. Accessed: 06-
01-2019.

USENIX Association 2019 USENIX Annual Technical Conference 533

https://docs.google.com/document/d/1QQ5u1RBDLXWvC8K3pscTtTRThsOeBSts_imYEoRyw8A
https://docs.google.com/document/d/1QQ5u1RBDLXWvC8K3pscTtTRThsOeBSts_imYEoRyw8A
https://httpd.apache.org/docs/2.2/en/programs/ab.html
https://httpd.apache.org/docs/2.2/en/programs/ab.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://docs.microsoft.com/en-us/azure/virtual-network/create-vm-accelerated-networking-cli
https://lwn.net/Articles/754433
https://lwn.net/Articles/754433
https://github.com/NetSys/bess
https://www.broadcom.com/company/news/product-releases/2367107
https://www.broadcom.com/company/news/product-releases/2367107
https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/
https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/
https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/
https://www.forbes.com/sites/louiscolumbus/2018/09/23/roundup-of-cloud-computing-forecasts-and-market-estimates-2018/
https://doc.dpdk.org/guides/prog_guide/writing_efficient_code.html
https://doc.dpdk.org/guides/prog_guide/writing_efficient_code.html
https://doc.dpdk.org/guides/prog_guide/writing_efficient_code.html

[18] [PATCH] netdev-dpdk: Add new ’dpdkvhostuser-
client’ port type. https://mail.openvswitch.org/
pipermail/ovs-dev/2016-August/321742.html.
Accessed: 29-04-2019.

[19] EMMERICH, P., RAUMER, D., WOHLFART, F., AND
CARLE, G. Performance characteristics of virtual
switching. In Proc. IEEE Conference on Cloud Net-
working (2014).

[20] Endace DAG 10X4-P Datasheet. https:

//www.endace.com/dag-10x4-p-datasheet.pdf.
Accessed: 07-01-2019.

[21] FIRESTONE, D. Vfp: A virtual switch platform for
host sdn in the public cloud. In Proc. Usenix Networked
Systems Design and Implementation (NSDI) (2017),
pp. 315–328.

[22] FIRESTONE, D., PUTNAM, A., MUNDKUR, S.,
CHIOU, D., DABAGH, A., ANDREWARTHA, M.,
ANGEPAT, H., BHANU, V., CAULFIELD, A., CHUNG,
E., CHANDRAPPA, H. K., CHATURMOHTA, S.,
HUMPHREY, M., LAVIER, J., LAM, N., LIU, F.,
OVTCHAROV, K., PADHYE, J., POPURI, G., RAIN-
DEL, S., SAPRE, T., SHAW, M., SILVA, G., SIVAKU-
MAR, M., SRIVASTAVA, N., VERMA, A., ZUHAIR,
Q., BANSAL, D., BURGER, D., VAID, K., MALTZ,
D. A., AND GREENBERG, A. Azure accelerated net-
working: Smartnics in the public cloud. In Proc.
Usenix Networked Systems Design and Implementation
(NSDI) (2018).

[23] FRAZELLE, J. Hard multi-tenancy in kuber-
netes. https://blog.jessfraz.com/post/hard-
multi-tenancy-in-kubernetes, 2018. Accessed:
09-01-2019.

[24] Google Compute Engine Pricing. https:

//cloud.google.com/compute/pricing#network,
2018. Accessed: 03-01-2019.

[25] Geneve: Generic Network Virtualization Encap-
sulation. https://tools.ietf.org/html/draft-
ietf-nvo3-geneve-08. Accessed: 03-01-2019.

[26] The gVisor project. https://github.com/google/
gvisor, 2018. Accessed: 09-01-2019.

[27] GOSPODAREK, A. The Rise of SmartNICs – of-
floading dataplane traffic to...software. https://

youtu.be/AGSy51VlKaM, 2017. Open vSwitch Con-
ference.

[28] HONDA, M., HUICI, F., LETTIERI, G., AND RIZZO,
L. mswitch: a highly-scalable, modular software
switch. In Proc. ACM Symposium on SDN Research
(SOSR) (2015).

[29] HWANG, J., RAMAKRISHNAN, K., AND WOOD, T.
Netvm: high performance and flexible networking us-
ing virtualization on commodity platforms. In Proc.
Usenix Networked Systems Design and Implementation
(NSDI) (2014).

[30] INTEL. Enabling NFV to deliver on its promise.
https://www-ssl.intel.com/content/www/us/
en/communications/nfv-packet-processing-

brief.html, 2015.

[31] iPerf - The ultimate speed test tool for TCP, UDP and
SCTP. https://iperf.fr/. Accessed: 07-01-2019.

[32] JACOBSON, V. Congestion avoidance and control. In
ACM Computer Communication Review (CCR) (1988).

[33] JAIN, R., AND PAUL, S. Network virtualization and
software defined networking for cloud computing: a
survey. IEEE Communication Magazine 51, 11 (2013).

[34] JIN, X., KELLER, E., AND REXFORD, J. Virtual
switching without a hypervisor for a more secure cloud.
In Proc. USENIX Workshop on Hot Topics in Manage-
ment of Internet, Cloud, and Enterprise Networks and
Services (HotICE) (2012).

[35] JING, C. Zero-Copy Optimization for Al-
ibaba Cloud Smart NIC Solution. http:

//www.alibabacloud.com/blog/zero-copy-
optimization-for-alibaba-cloud-smart-nic-

solution 593986, 2018. Accessed: 03-01-2019.

[36] The Kata Containers project. https:

//katacontainers.io, 2018. Accessed: 09-01-
2019.

[37] KO, M., AND RECIO, R. Virtual ethernet
bridging. http://www.ieee802.org/1/files/
public/docs2009/new-hudson-vepa seminar-

20090514d.pdf. Accessed: 06-01-2019.

[38] KOPONEN, T., AMIDON, K., BALLAND, P.,
CASADO, M., CHANDA, A., FULTON, B.,
GANICHEV, I., GROSS, J., INGRAM, P., JACK-
SON, E., LAMBETH, A., LENGLET, R., LI, S.-H.,
PADMANABHAN, A., PETTIT, J., PFAFF, B.,
RAMANATHAN, R., SHENKER, S., SHIEH, A.,
STRIBLING, J., THAKKAR, P., WENDLANDT, D.,
YIP, A., AND ZHANG, R. Network virtualization in
multi-tenant datacenters. In Proc. Usenix Networked
Systems Design and Implementation (NSDI) (2014).

[39] KUTCH, P. PCI-SIG SR-IOV primer: An introduction
to SR-IOV technology. Intel application note (2011),
321211–002.

534 2019 USENIX Annual Technical Conference USENIX Association

https://mail.openvswitch.org/pipermail/ovs-dev/2016-August/321742.html
https://mail.openvswitch.org/pipermail/ovs-dev/2016-August/321742.html
https://www.endace.com/dag-10x4-p-datasheet.pdf
https://www.endace.com/dag-10x4-p-datasheet.pdf
https://blog.jessfraz.com/post/hard-multi-tenancy-in-kubernetes
https://blog.jessfraz.com/post/hard-multi-tenancy-in-kubernetes
https://cloud.google.com/compute/pricing#network
https://cloud.google.com/compute/pricing#network
https://tools.ietf.org/html/draft-ietf-nvo3-geneve-08
https://tools.ietf.org/html/draft-ietf-nvo3-geneve-08
https://github.com/google/gvisor
https://github.com/google/gvisor
https://youtu.be/AGSy51VlKaM
https://youtu.be/AGSy51VlKaM
https://www-ssl.intel.com/content/www/us/en/communications/nfv-packet-processing-brief.html
https://www-ssl.intel.com/content/www/us/en/communications/nfv-packet-processing-brief.html
https://www-ssl.intel.com/content/www/us/en/communications/nfv-packet-processing-brief.html
https://iperf.fr/
http://www.alibabacloud.com/blog/zero-copy-optimization-for-alibaba-cloud-smart-nic-solution_593986
http://www.alibabacloud.com/blog/zero-copy-optimization-for-alibaba-cloud-smart-nic-solution_593986
http://www.alibabacloud.com/blog/zero-copy-optimization-for-alibaba-cloud-smart-nic-solution_593986
http://www.alibabacloud.com/blog/zero-copy-optimization-for-alibaba-cloud-smart-nic-solution_593986
https://katacontainers.io
https://katacontainers.io
http://www.ieee802.org/1/files/public/docs2009/new-hudson-vepa_seminar-20090514d.pdf
http://www.ieee802.org/1/files/public/docs2009/new-hudson-vepa_seminar-20090514d.pdf
http://www.ieee802.org/1/files/public/docs2009/new-hudson-vepa_seminar-20090514d.pdf

[40] LÉVAI, T., PONGRÁCZ, G., MEGYESI, P., VÖRÖS,
P., LAKI, S., NÉMETH, F., AND RÉTVÁRI, G. The
Price for Programmability in the Software Data Plane:
The Vendor Perspective. IEEE J. Selected Areas in
Communications (2018).

[41] HowTo Launch VM over OVS-DPDK-17.11
Using Mellanox ConnectX-4 and ConnectX-5.
https://community.mellanox.com/s/article/
howto-launch-vm-over-ovs-dpdk-17-11-

using-mellanox-connectx-4-and-connectx-5.
Accessed: 09-01-2019.

[42] MELLANOX. Mellanox BlueField SmartNIC. https:
//bit.ly/2JaMitA, 2017. Accessed: 05-06-2018.

[43] Memcached. https://libmemcached.org/
libMemcached.html. Accessed: 07-01-2019.

[44] MICROSOFT. Hyper-V Virtual Switch Overview.
https://technet.microsoft.com/en-us/
library/hh831823(v=ws.11).aspx, 2013. Ac-
cessed: 27-01-2017.

[45] MICROSOFT. SR-IOV VF Failover and Live Migration
Support. https://docs.microsoft.com/en-us/
windows-hardware/drivers/network/sr-iov-

vf-failover-and-live-migration-support,
2017. Accessed: 03-01-2019.

[46] MOLNÁR, L., PONGRÁCZ, G., ENYEDI, G., KIS,
Z. L., CSIKOR, L., JUHÁSZ, F., KŐRÖSI, A., AND
RÉTVÁRI, G. Dataplane specialization for high-
performance openflow software switching. In Proc.
ACM SIGCOMM (2016).

[47] MULLER, A. OVS ARP Responder – Theory and
Practice. https://assafmuller.com/2014/05/21/
ovs-arp-responder-theory-and-practice/.
Accessed: 06-01-2019.

[48] NEUGEBAUER, R., ANTICHI, G., ZAZO, J. F., AU-
DZEVICH, Y., LÓPEZ-BUEDO, S., AND MOORE,
A. W. Understanding pcie performance for end host
networking. In Proc. ACM SIGCOMM (2018).

[49] NEVES, M., LEVCHENKO, K., AND BARCELLOS, M.
Sandboxing data plane programs for fun and profit. In
Proc. ACM SIGCOMM Posters and Demos (2017).

[50] PALADI, N., AND GEHRMANN, C. Sdn access control
for the masses. Elsevier Computers & Security (2019).

[51] PANDA, A., HAN, S., JANG, K., WALLS, M., RAT-
NASAMY, S., AND SHENKER, S. Netbricks: Taking
the v out of nfv. In Proc. Usenix Operating Systems
Design Principles (OSDI) (2016).

[52] PANICKER, M. Enabling Hardware Offload of OVS
Control & Data plane using LiquidIO. https://

youtu.be/qjXBRCFhbqU, 2017. Open vSwitch Con-
ference.

[53] PETTIT, J., PFAFF, B., STRINGER, J., TU, C.-C.,
BLANCO, B., AND TESSMER, A. Bringing platform
harmony to vmware nsx. ACM SIGOPS Operating Sys-
tem Review (2018).

[54] PETTIT, J., PFAFF, B., WRIGHT, C., AND VENU-
GOPAL, M. OVN, Bringing Native Virtual Net-
working to OVS. https://networkheresy.com/
2015/01/13/ovn-bringing-native-virtual-

networking-to-ovs/, 2015. Accessed: 27-01-2017.

[55] PFAFF, B. Open vSwitch: Past, Present, and Future.
http://openvswitch.org/slides/ppf.pdf, 2013.
Accessed: 27-01-2017.

[56] PFAFF, B., PETTIT, J., KOPONEN, T., JACKSON,
E., ZHOU, A., RAJAHALME, J., GROSS, J., WANG,
A., STRINGER, J., SHELAR, P., AMIDON, K., AND
CASADO, M. The design and implementation of Open
vSwitch. In Proc. Usenix Networked Systems Design
and Implementation (NSDI) (2015).

[57] RAM, K. K., COX, A. L., CHADHA, M., RIXNER,
S., AND BARR, T. Hyper-switch: A scalable software
virtual switching architecture. In Proc. Usenix Annual
Technical Conference (ATC) (2013).

[58] RIZZO, L. Netmap: a novel framework for fast packet
I/O. In Proc. Usenix Annual Technical Conference
(ATC) (2012).

[59] RIZZO, L., AND LETTIERI, G. VALE, a switched
ethernet for virtual machines. In Proc. ACM CoNEXT
(2012).

[60] ROBIN G. Open vSwitch with DPDK Overview.
https://software.intel.com/en-us/articles/
open-vswitch-with-dpdk-overview, 2016.
Accessed: 27-01-2017.

[61] SALTZER, J. H., AND SCHROEDER, M. D. The pro-
tection of information in computer systems. Proceed-
ings of the IEEE 63, 9 (1975), 1278–1308.

[62] SECURITYTWEEK. CSA’s cloud adop-
tion, practices and priorities survey report.
http://www.securityweek.com/data-security-
concerns-still-challenge, 2015. Accessed:
09-01-2019.

[63] SHAHBAZ, M., CHOI, S., PFAFF, B., KIM, C.,
FEAMSTER, N., MCKEOWN, N., AND REXFORD, J.
Pisces: A programmable, protocol-independent soft-
ware switch. In Proc. ACM SIGCOMM (2016).

USENIX Association 2019 USENIX Annual Technical Conference 535

https://community.mellanox.com/s/article/howto-launch-vm-over-ovs-dpdk-17-11-using-mellanox-connectx-4-and-connectx-5
https://community.mellanox.com/s/article/howto-launch-vm-over-ovs-dpdk-17-11-using-mellanox-connectx-4-and-connectx-5
https://community.mellanox.com/s/article/howto-launch-vm-over-ovs-dpdk-17-11-using-mellanox-connectx-4-and-connectx-5
https://bit.ly/2JaMitA
https://bit.ly/2JaMitA
https://libmemcached.org/libMemcached.html
https://libmemcached.org/libMemcached.html
https://technet.microsoft.com/en-us/library/hh831823(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831823(v=ws.11).aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/sr-iov-vf-failover-and-live-migration-support
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/sr-iov-vf-failover-and-live-migration-support
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/sr-iov-vf-failover-and-live-migration-support
https://assafmuller.com/2014/05/21/ovs-arp-responder-theory-and-practice/
https://assafmuller.com/2014/05/21/ovs-arp-responder-theory-and-practice/
https://youtu.be/qjXBRCFhbqU
https://youtu.be/qjXBRCFhbqU
https://networkheresy.com/2015/01/13/ovn-bringing-native-virtual-networking-to-ovs/
https://networkheresy.com/2015/01/13/ovn-bringing-native-virtual-networking-to-ovs/
https://networkheresy.com/2015/01/13/ovn-bringing-native-virtual-networking-to-ovs/
http://openvswitch.org/slides/ppf.pdf
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
https://software.intel.com/en-us/articles/open-vswitch-with-dpdk-overview
http://www.securityweek.com/data-security-concerns-still-challenge
http://www.securityweek.com/data-security-concerns-still-challenge

[64] SMOLYAR, I., BEN-YEHUDA, M., AND TSAFRIR, D.
Securing self-virtualizing ethernet devices. In Proc.
Usenix Security Symp. (2015).

[65] STECKLINA, J. Shrinking the hypervisor one subsys-
tem at a time: A userspace packet switch for virtual
machines. In Proc. ACM SIGPLAN/SIGOPS Confer-
ence on Virtual Execution Environments (VEE) (2014).

[66] STONE, R. PCI SR-IOV on FreeBSD. https://

people.freebsd.org/~rstone/BSDCan SRIOV.pdf.
Accessed: 06-01-2019.

[67] THE FAST DATA PROJECT. What is the Fast Data
Project (FD.io)? https://fd.io/about, 2017. Ac-
cessed: 05-06-2018.

[68] THIMMARAJU, K., RÉTVÁRI, G., AND SCHMID, S.
Virtual network isolation: Are we there yet? In Proc.
ACM Workshop on Security in Softwarized Networks:
Prospects and Challenges (2018).

[69] THIMMARAJU, K., SHASTRY, B., FIEBIG, T., HET-
ZELT, F., SEIFERT, J.-P., FELDMANN, A., AND
SCHMID, S. Taking control of sdn-based cloud sys-
tems via the data plane. In Proc. ACM Symposium on
SDN Research (SOSR) (2018).

[70] TSENG, J., ET AL. Accelerating open vswitch with
integrated gpu. In Proc. ACM Workshop on Kernel-
Bypass Networks (2017).

[71] VANOVER, R. Virtual switching to become enhanced
with Cisco and VMware announcement. http:

//www.techrepublic.com/blog/data-center/
virtual-switching-to-become-enhanced-

with-cisco-and-vmware-announcement, 2008.
Accessed: 27-01-2017.

[72] VMWARE. VMware ESX 4.0 Update 1 Release Notes.
https://bit.ly/2sFTuTy, 2009. Accessed: 05-06-
2018.

[73] Virtual extensible local area network (VXLAN): A
framework for overlaying virtualized layer 2 networks
over layer 3 network. https://tools.ietf.org/
html/rfc7348. Accessed: 01-06-2016.

[74] ZHAO, Y. PCI: Linux kernel SR-IOV support. https:
//lwn.net/Articles/319651/, 2009. Accessed:
06-01-2019.

[75] ZHOU, Z., LI, Z., AND ZHANG, K. All your vms are
disconnected: Attacking hardware virtualized network.
In Proc. ACM Conference on Data and Application Se-
curity and Privacy (CODASPY) (2017).

536 2019 USENIX Annual Technical Conference USENIX Association

https://people.freebsd.org/~rstone/BSDCan_SRIOV.pdf
https://people.freebsd.org/~rstone/BSDCan_SRIOV.pdf
https://fd.io/about
http://www.techrepublic.com/blog/data-center/virtual-switching-to-become-enhanced-with-cisco-and-vmware-announcement
http://www.techrepublic.com/blog/data-center/virtual-switching-to-become-enhanced-with-cisco-and-vmware-announcement
http://www.techrepublic.com/blog/data-center/virtual-switching-to-become-enhanced-with-cisco-and-vmware-announcement
http://www.techrepublic.com/blog/data-center/virtual-switching-to-become-enhanced-with-cisco-and-vmware-announcement
https://bit.ly/2sFTuTy
https://tools.ietf.org/html/rfc7348
https://tools.ietf.org/html/rfc7348
https://lwn.net/Articles/319651/
https://lwn.net/Articles/319651/

	Introduction
	Securing Virtual Switches
	State-of-the-Art
	Threat Model
	Design Principles and Security Levels

	The MTS Architecture
	Overview
	Detailed Architecture

	Evaluating Tradeoffs
	Throughput
	Latency
	Resources

	Workload-based Evaluation
	Workloads and Results

	Discussion
	Related Work
	Conclusion
	Acknowledgments

