Applied Optimization and Game Theory Linear Programming Exercises and Solutions

Gábor Rétvári retvari@tmit.bme.hu
English translation by:
Miklós Tulics, Czentye János, Zsolt Krämer, and Eszter Virágh

Exercises

Word Problems

1. Four types of hollow structural sections (HSS, a special type of metal bar or tube) are manufactured in a steel mill: small, medium, large and extra large. There are three types of machines available: A, B, and C. The following table specifies the quantity of HSS types (in terms of length, in meters) produced per hour, depending on the type of machine.

	Machine		
Hollow structural section (HSS) type	A	B	C
Small	3	6	8
Medium	2	4	7
Large	2	3	6
Extra large	1	2	3

The machines can operate 50 hours a week and the operational cost of each machine (in units of money) is: 3,5 and 8 . According to the business plan, 200, 80, 60 , and 60 meters per week are needed of each of the HSS types A, B, C, and respectively D.
a) Define the above machine scheduling problem as a linear program!
b) Find an initial basis!
c) Would you solve the problem with the primal or the dual simplex algorithm? (No need to solve it!)

Solving Linear Programs: The Graphical Method

2. Consider the following linear program (Warning: There are no non-negativity constraints!):

$$
\begin{array}{cc}
\max & x_{1}+x_{2} \\
\text { s.t. } & x_{1}+2 x_{2} \leq 4 \\
& 2 x_{1}-x_{2} \leq 3 \\
& x_{1}-2 x_{2} \leq 3
\end{array}
$$

a) Solve the linear program graphically!
b) Solve the linear program (also graphically), when the objective function is changed to max $-x_{1}+$ x_{2} !
c) Is there a unique optimal solution, if the objective function is max $2 x_{1}-x_{2}$? Verify your answer graphically!
3. Consider the following linear program:

$$
\begin{array}{cccl}
\min & -x_{1} & +2 x_{2} & \\
\mathrm{s.t.} & x_{1} & +2 x_{2} & \leq \\
& 2 x_{1} & - & x_{2}
\end{array} \leq \begin{aligned}
& \leq \\
& \\
& \\
& x_{1}
\end{aligned}
$$

a) Illustrate the feasible region graphically!
b) Give the extreme points of the feasible region!
c) Give the optimal value of the objective function and an optimal solution!
d) Is the solution unique? Justify your answer!
e) How do the optimal value of the objective function and the corresponding solution change if we modify the objective function to $\min x_{1}+x_{2}$? Justify your answer graphically as well!

Solving Linear Programs: The Simplex Method

4. Solve the following linear program with the simplex method:

$$
\begin{array}{ccccccc}
\max & 3 x_{1}+8 x_{2}-5 x_{3}+8 x_{4} & \\
\text { s.t. } & 2 x_{1}+x_{2}+x_{3}+3 x_{4} \leq & 7 \\
& -x_{1}-2 x_{2}-x_{3}-x_{4} \geq & -2 \\
& x_{1} & x_{2}, & x_{3}, & x_{4} & \geq & 0
\end{array}
$$

a) Is there a bounded optimal solution? If not, give a radius, along which the unboundedness is provable.
b) If a bounded optimal solution exists, give an optimal solution and the corresponding objective function value.
c) Is the optimum unique? Justify your answer. If it is not, give alternative optimal solutions.
d) How does the optimal objective function value change if we modify the coefficients in the objective function in the following way:

- decrease the coefficient of x_{4} to 3 ,
- decrease the coefficient of x_{1} to 1 ,
- increase the coefficient of x_{1} to 9 ,
- after this last change, increase the coefficient of x_{2} to 9 ?

5. Solve the following linear program using the simplex method:

$$
\begin{array}{cccccc}
\max & x_{1} & -2 x_{2}+x_{3} & \\
\mathrm{s.t.} & x_{1} & +x_{2}+x_{3} \leq & \leq 12 \\
& 2 x_{1} & +x_{2}-x_{3} \leq 6 \\
& -x_{1}+3 x_{2} & & \leq 9 \\
& x_{1}, & x_{2}, & x_{3} \geq 0
\end{array}
$$

a) Is the optimal objective function value of the linear program bounded? If not, give a ray causing the unboundedness!
b) If it exists, provide an optimal solution with the corresponding objective function value.
c) Is the optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.
d) How do the optimal solution and the objective function change, if we

- decrease the objective function coefficient for x_{1} to -1 ,
- increase the objective function coefficient for x_{1} to 2 ,
- decrease the objective function coefficient for x_{2} to -4 ,
- increase the objective function coefficient for x_{2} to 3 ?

6. Solve the following linear program using the simplex method:

$$
\begin{array}{ccccccc}
\min & -2 x_{1} & -2 x_{2} & +3 x_{3}-5 x_{4} & \\
\mathrm{s.t.} & x_{1} & +2 x_{2}+4 x_{3}-x_{4} & \leq & 6 \\
& -2 x_{1} & -3 x_{2} & +x_{3}-x_{4} & \geq & -12 \\
& x_{1} & & +x_{3}+x_{4} & \leq 4 \\
& x_{1}, & x_{2}, & & x_{3}, & & x_{4}
\end{array} \geq 0
$$

a) Is the optimal objective function value of the linear program bounded? If not, give a ray causing the unboundedness!
b) If it exists, provide an optimal solution with the corresponding objective function value.
c) Is the optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.
7. Solve the following linear program using the simplex method:

$$
\begin{array}{ccccccccc}
\max & 3 x_{1} & +2 x_{2} & -x_{3} & + & x_{4} & & \\
\text { s.t. } & 2 x_{1} & -4 x_{2} & - & x_{3} & + & x_{4} & \leq & 8 \\
& x_{1} & + & x_{2} & + & 2 x_{3} & - & 3 x_{4} & \leq \\
& x_{1} & - & x_{2} & -4 x_{3} & + & x_{4} & \leq & 4 \\
& r_{1} & & r_{0} & & & &
\end{array}
$$

a) Is the optimal objective function value of the linear program bounded? If not, give a ray causing the unboundedness!
b) If it exists, provide an optimal solution with the corresponding objective function value.
c) Is the optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.
8. Solve the following linear program using the simplex method:

$$
\begin{array}{ccccc}
\min & 3 x_{1} & -x_{2} & \\
\text { s.t. } & x_{1} & -3 x_{2} \geq-3 \\
& 2 x_{1} & +3 x_{2} \geq-6 \\
& 2 x_{1} & +x_{2} \leq 8 \\
& 4 x_{1} & -x_{2} \leq 16
\end{array}
$$

a) Is the optimal objective function value of the linear program bounded? If not, give a ray causing the unboundedness!
b) If it exists, provide an optimal solution with the corresponding objective function value.
c) Is the optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.
9. Solve the following linear program using the simplex method. Take note of the equality- and inequality-types of constraints.

$$
\begin{array}{cccccc}
\max & 3 x_{1} & +4 x_{2}+3 x_{3}+5 x_{4} \\
\text { s.t. } & 2 x_{1} & +x_{2}-x_{3}+x_{4} \geq 11 \\
& x_{1} & +x_{2}+x_{3}+x_{4}=8 \\
& & -x_{2}+2 x_{3}+x_{4} \leq 10 \\
& x_{1}, & x_{2}, & x_{3}, & x_{4} \geq 0
\end{array}
$$

a) Find an initial basis! Introduce artificial variables, if necessary.
b) Solve the linear program with corresponding simplex method. Is the optimal objective function value of the linear program bounded? If not, give a ray causing the unboundedness! If the optimal objective function value is bounded, is the corresponding optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.
c) Do the optimal solution and the objective function value change, if we

- decrease the objective function coefficient for x_{3} to 1 ,
- increase the objective function coefficient for x_{3} to 12 ,
- decrease the objective function coefficient for x_{1} to 1 ,
- increase the objective function coefficient for x_{1} to 7 ?

Linear Programming Duality

10. Consider the linear program given in Exercise 4:

$$
\begin{array}{ccccccccc}
\max & 3 x_{1} & +8 x_{2} & -5 x_{3} & +8 x_{4} & & \\
\mathrm{s.t.} & 2 x_{1} & + & x_{2} & + & x_{3} & + & 3 x_{4} & \leq \\
& -x_{1} & -2 x_{2} & - & x_{3} & - & x_{4} & \geq & -2 \\
& x_{1} & & x_{2}, & & x_{3}, & & x_{4} & \geq
\end{array}
$$

a) Write the dual of the linear program and convert to standard form! The following table summarizes the rules for obtaining the dual linear program:

b) Find an initial basis! Introduce artificial variables, if necessary.
c) Solve the linear program using the corresponding simplex method. Is the optimal objective function value of the linear program bounded? If not, give a ray causing the unboundedness! If the optimal objective function value is bounded, is the corresponding optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.
d) Compare the resultant optimal solution with the solution of Exercise 4. What is the relationship between the primal and dual optimal solutions?

Solving Word Problems with the Simplex Algorithm

11. In a paper mill, the machines are being replaced. Two types of cardboard-cutting machines can be purchased: machine A can cut 3 boxes per one minute, one person is needed to operate it, and it costs 15,000 units of money; machine B machine can make 5 boxes per minute, but it requeres two people to supervise it, and it costs 20,000 units of money. The production plan is to produce at least 32 boxes per minute with at most 12 workers involved.
How many A and B machines needs to be purchased to fit the production plan with minimized costs?
a) Define the above "resource acquisition" problem as a linear program!
b) Find an initial basis!
c) Solve the linear program with the primal or the dual simplex algorithm!
d) Got an integer as a result? If so, is integrality of the results guaranteed?

Solutions

Word Problems

1. Four types of hollow structural sections (HSS, a special type of metal bar or tube) are manufactured in a steel mill: small, medium, large and extra large. There are three types of machines available: A, B, and C. The following table specifies the quantity of HSS types (in terms of length, in meters) produced per hour, depending on the type of machine.

	Machine		
Hollow structural section (HSS) type	A	B	C
Small	3	6	8
Medium	2	4	7
Large	2	3	6
Extra large	1	2	3

The machines can operate 50 hours a week and the operational cost of each machine (in units of money) is: 3,5 and 8 . According to the business plan, 200, 80,60 , and 60 meters per week are needed of each of the HSS types A, B, C, and respectively D.
a) Define the above machine scheduling problem as a linear program!
b) Find an initial basis!
c) Would you solve the problem with the primal or the dual simplex algorithm? (No need to solve it!)

Solution:

a) Let $x_{i j}$ mark the number of hours spent by machine $i(i \in\{1,2,3\})$ to produce HSSes of type j $(j \in\{1,2,3,4\})$. Using this notation, the linear program is the following:

$$
\begin{aligned}
& \min 3 x_{11}+3 x_{12}+3 x_{13}+3 x_{14}+5 x_{21}+5 x_{22}+5 x_{23}+5 x_{24}+8 x_{31} \quad+8 x_{32}+8 x_{33} \quad+8 x_{34}
\end{aligned}
$$

b) The fourth, fifth, sixth and seventh condition could be rewritten into \geq-form, the optimal objective function value would not change because the goal is to minimize costs. Inverting these conditions to \leq-form and rewriting the objective into maximization:

$$
\begin{aligned}
& \max \quad-3 x_{11} \quad-3 x_{12} \quad-3 x_{13} \quad-3 x_{14} \quad-5 x_{21} \quad-5 x_{22} \quad-5 x_{23} \quad-5 x_{24} \quad-8 x_{31} \quad-8 x_{32} \quad-8 x_{33} \quad-8 x_{34} \\
& \text { s.t. } x_{11}+x_{12}+x_{13}+x_{14} \leq 50 \\
& \begin{array}{cccccccccc}
x_{21} & +x_{22} & +x_{23} & +x_{24} & & & & & & \leq 50 \\
& & & & +x_{31} & +x_{32} & +x_{33} & +x_{34} & \leq 50 \\
& & & & \\
-6 x_{21} & & & & & -7 x_{32} & & & & \leq-200 \\
& -4 x_{22} & & & & & & & & \\
& & -3 x_{23} & & & & -6 x_{33} & & \leq-60 \\
& & & -2 x_{24} & & & & -3 x_{34} & \leq-60 \\
x_{21}, & x_{22}, & x_{23}, & x_{24}, & x_{31}, & x_{32}, & x_{33}, & x_{34} & \geq 0
\end{array}
\end{aligned}
$$

We got a canonical problem that should be brought to standard form by introducing slack variables. The coefficients of the objective function are all negative, so the slack variables form a dual-feasible (but not dual-optimal) initial basis.
c) Due to the above, the dual simplex algorithm is recommended.

Solving Linear Programs: The Graphical Method

2. Consider the following linear program (Warning: There are no non-negativity constraints!):

$$
\begin{array}{cc}
\max & x_{1}+x_{2} \\
\text { s.t. } & x_{1}+2 x_{2} \leq 4 \\
& 2 x_{1}-x_{2} \leq 3 \\
& x_{1}-2 x_{2} \leq 3
\end{array}
$$

a) Solve the linear program graphically!
b) Solve the linear program (also graphically), when the objective function is changed to max $-x_{1}+$ x_{2} !
c) Is there a unique optimal solution, if the objective function is max $2 x_{1}-x_{2}$? Verify your answer graphically!

Solution: The feasible region of the given linear program represented graphically:

a) The normal vector of the objective function is the $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ vector, which gives us the following extreme point: $\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ as the unique optimal solution.
b) In this case the normal vector of the objective function changes to $\left[\begin{array}{r}-1 \\ 1\end{array}\right]$, so the optimal solution of the linear program is unbounded. For example, along the ray $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]+\lambda\left[\begin{array}{r}-1 \\ \frac{1}{2}\end{array}\right], \lambda \geq 0$ the objective function value grows without limit as $\frac{3}{2} \lambda$.
c) No, the linear program has multiple alternative optimal solutions as follows: $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{r}1 \\ -1\end{array}\right]+$ $\lambda\left[\begin{array}{l}1 \\ 2\end{array}\right], \lambda \in[0,1]$.
3. Consider the following linear program:

$$
\begin{array}{cccl}
\min & -x_{1} & +2 x_{2} & \\
\text { s.t. } & x_{1} & +2 x_{2} & \leq \\
& 2 x_{1} & - & x_{2} \\
& x_{1} & & \leq \\
& & & \geq \\
& x_{2} & \geq & -1
\end{array}
$$

a) Illustrate the feasible region graphically!
b) Give the extreme points of the feasible region!
c) Give the optimal value of the objective function and an optimal solution!
d) Is the solution unique? Justify your answer!
e) How do the optimal value of the objective function and the corresponding solution change if we modify the objective function to $\min x_{1}+x_{2}$? Justify your answer graphically as well!

Solution:

a) The graphical representation of the feasible region:

b) The extreme points can be derived easily from the graphical representation:

$$
\boldsymbol{x}_{1}=\left[\begin{array}{l}
-1 \\
-1
\end{array}\right], \quad \boldsymbol{x}_{2}=\left[\begin{array}{r}
-1 \\
2.5
\end{array}\right], \quad \boldsymbol{x}_{3}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \quad \boldsymbol{x}_{4}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

c) The feasible region is bounded, thus it is guaranteed that at least one optimal solution will occur at extreme point. The optimal solution is going to be the extreme point where the product $\boldsymbol{c}^{T} \boldsymbol{x}_{e}$ takes its minimum value over the set of extreme points $\left\{\boldsymbol{x}_{e}\right\}$:

$$
\begin{aligned}
\boldsymbol{c}^{T} \boldsymbol{x}_{1}=\left[\begin{array}{ll}
-1 & 2
\end{array}\right]\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]=-1, & \boldsymbol{c}^{T} \boldsymbol{x}_{2}=\left[\begin{array}{ll}
-1 & 2
\end{array}\right]\left[\begin{array}{l}
-1 \\
2.5
\end{array}\right]=6, \\
& \boldsymbol{c}^{T} \boldsymbol{x}_{3}
\end{aligned}=\left[\begin{array}{ll}
-1 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=0, \quad \boldsymbol{c}^{T} \boldsymbol{x}_{4}=\left[\begin{array}{ll}
-1 & 2
\end{array}\right]\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=-3-3 .
$$

From this the optimal solution is -3 , which corresponds to the extreme point $\boldsymbol{x}_{4}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
d) The solution is unique because the intersection of the objective function contour $-x_{1}+2 x_{2}=-3$ and the feasible region contains a single point only: $\boldsymbol{x}_{4}=\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
e) After changing the objective function from $\boldsymbol{c}^{T}=\left[\begin{array}{ll}-1 & 2\end{array}\right]$ to $\boldsymbol{c}^{T}=\left[\begin{array}{ll}1 & 1\end{array}\right]$, the new products $\boldsymbol{c}^{T} \boldsymbol{x}_{e}$ are as follows:

$$
\begin{aligned}
& \boldsymbol{c}^{\prime T} \boldsymbol{x}_{1}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]=-2, \boldsymbol{c}^{\prime T} \boldsymbol{x}_{2}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
-1 \\
2.5
\end{array}\right]=1.5, \\
& \boldsymbol{c}^{\prime T} \boldsymbol{x}_{3}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=3, \quad \boldsymbol{c}^{T} \boldsymbol{x}_{4}=\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=0
\end{aligned}
$$

From this, the optimal solution is -2 , which corresponds to the extreme point $\boldsymbol{x}_{1}=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$. Graphically,the optimization of the new objective function means finding the intersection of the feasible region polyhedron and the hyperplane with the normal vector $\left[\begin{array}{l}-1 \\ -1\end{array}\right]$.

Solving Linear Programs: The Simplex Method

4. Solve the following linear program with the simplex method:

$$
\begin{array}{cccccc}
\max & 3 x_{1}+8 x_{2}-5 x_{3}+8 x_{4} & \\
\text { s.t. } & 2 x_{1}+x_{2}+x_{3}+3 x_{4} \leq & 7 \\
& -x_{1}-2 x_{2}-x_{3}-x_{4} \geq & -2 \\
& x_{1} & x_{2}, & x_{3}, & x_{4} & \geq
\end{array}
$$

a) Is there a bounded optimal solution? If not, give a radius, along which the unboundedness is provable.
b) If a bounded optimal solution exists, give an optimal solution and the corresponding objective function value.
c) Is the optimum unique? Justify your answer. If it is not, give alternative optimal solutions.
d) How does the optimal objective function value change if we modify the coefficients in the objective function in the following way:

- decrease the coefficient of x_{4} to 3 ,
- decrease the coefficient of x_{1} to 1 ,
- increase the coefficient of x_{1} to 9 ,
- after this last change, increase the coefficient of x_{2} to 9 ?

Solution: After inverting the second condition and introducing the slack variables x_{5} and x_{6}, the a slack variables form a trivial initial basis. Because of this, we use the primal simplex algorithm. The initial simplex tableau:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	-3	-8	5	-8	0	0	0
x_{5}	0	2	1	1	3	1	0	7
x_{6}	0	1	2	1	1	0	1	2

x_{2} enters the basis, x_{6} leaves.

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	1	0	9	-4	0	4	8
x_{5}	0	$\frac{3}{2}$	0	$\frac{1}{2}$	$\frac{5}{2}$	1	$-\frac{1}{2}$	6
x_{2}	0	$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$	1

x_{4} enters the basis, x_{2} leaves.

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	5	8	13	0	0	8	16
x_{5}	0	-1	-5	-2	0	1	-3	1
x_{4}	0	1	2	1	1	0	1	2

Optimal simplex tableau. The solution is $\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 2\end{array}\right]$, the objective function value is 16 . The solution thus exists, and it is bounded and unique.

To solve d), we have to perform sensitivity analysis on the optimal simplex tableau with the new objective function.

- the coefficient of x_{4} in the objective function is decreased to 3 : x_{4} is a basic variable in the optimal simplex tableau, so in order to perform sensitivity analysis we have to modify the simplex tableau in the following way. We have to multiply the row of x_{4} by $c_{4}^{\prime}-c_{4}=3-8=-5$ and add that to the 0th row. In addition, we need to make sure that the reduced cost corresponding to x_{4} is zero.
The resultant tableau is not primal optimal:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	0	-2	8	0	0	3	6
x_{5}	0	-1	-5	-2	0	1	-3	1
x_{4}	0	1	2	1	1	0	1	2

x_{4} leaves the basis, x_{2} enters; the resultant tableau is optimal:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	1	0	9	1	0	4	8
x_{5}	0	$\frac{3}{2}$	0	$\frac{1}{2}$	$\frac{5}{2}$	1	$-\frac{1}{2}$	6
x_{2}	0	$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$	1

The result of the sensitivity analysis: if the coefficient of x_{2} in the objective function is decreased to 3, the optimal solution is $\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$ (bounded and unique), and the new objective function value is 8 .

- the coefficient of x_{1} in the objective function decreases to $1: x_{1}$ is a nonbasic variable in the optimal simplex tableau, thus changing its coefficient results in increased reduced cost $\left(z_{1}^{\prime}=z_{1}-\left(c_{1}^{\prime}-c_{1}\right)=5-(1-3)=7 \geq 0\right)$, and the tableau is guaranteed to remain optimal. This means that the solution does not change.
- the coefficient of x_{1} in the objective function increases to 9 : in this case the reduced cost of the nonbasic variable x_{1} decreases: $z_{1}^{\prime}=z_{1}-\left(c_{1}^{\prime}-c_{1}\right)=5-(9-3)=-1$. Since z_{1}^{\prime} has become negative, the tableau is no longer optimal and we have to optimize it again using the primal simplex algorithm.
The new simplex tableau:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	-1	8	13	0	0	8	16
x_{5}	0	-1	-5	-2	0	1	-3	1
x_{4}	0	1	2	1	1	0	1	2

x_{1} enters the basis, x_{4} leaves, the tableau after the pivot is optimal:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	0	10	14	1	0	9	18
x_{5}	0	0	-3	-1	1	1	-2	3
x_{1}	0	1	2	1	1	0	1	2

The result of the sensitivity analysis: increasing the coefficient of x_{1} to 9 results in the optimal solution $\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 0\end{array}\right]$ (bounded and unique), and the new objective function value is 18 .

- After this last change, the coefficient of x_{2} increases to 9: x_{2} is a nonbasic variable in the resultant optimal tableau, its cost decreases after the change: $z_{2}^{\prime}=z_{2}-\left(c_{2}^{\prime}-c_{2}\right)=10-(9-8)=$ $9>0$, thus the tableau remains optimal.

5. Solve the following linear program using the simplex method:

$$
\begin{array}{ccccc}
\max & x_{1}-2 x_{2}+x_{3} \\
\mathrm{s.t.} & x_{1}+x_{2}+x_{3} \leq 12 \\
& 2 x_{1}+x_{2}-x_{3} \leq 6 \\
& -x_{1}+3 x_{2} & & \leq 9 \\
& x_{1}, & x_{2}, & x_{3} \geq 0
\end{array}
$$

a) Is the optimal objective function value of the linear program bounded? If not, give a ray causing the unboundedness!
b) If it exists, provide an optimal solution with the corresponding objective function value.
c) Is the optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.
d) How do the optimal solution and the objective function change, if we

- decrease the objective function coefficient for x_{1} to -1 ,
- increase the objective function coefficient for x_{1} to 2 ,
- decrease the objective function coefficient for x_{2} to -4 ,
- increase the objective function coefficient for x_{2} to 3 ?

Solution: Convert the constraint system to standard form, introduce the slack variables, and use the primal simplex method. Choose the identity matrix introduced by the slack variables as the initial basis. After the simplex iteration steps, the optimal simplex tableau is the following:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	0	3	0	1	0	0	12
x_{3}	0	0	$\frac{1}{3}$	1	$\frac{2}{3}$	$-\frac{1}{3}$	0	6
x_{1}	0	1	$\frac{2}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$	0	6
x_{6}	0	0	$\frac{11}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$	1	15

This tableau gives us the optimal basic feasible solution: $\left[\begin{array}{llllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6}\end{array}\right]^{T}=\left[\begin{array}{llllll}6 & 0 & 6 & 0 & 0 & 15\end{array}\right]^{T}$. The optimal solution in the original variable space: $\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T}=\left[\begin{array}{lll}6 & 0 & 6\end{array}\right]^{T}$, and the objective function value is 12 .
The non-basic variable x_{5} get the reduced cost coefficient $z_{5}=0$ in row 0 and the basis is nondegenerate, therefore the optimal solution is not unique. For example, one definition for the alternative optimal solutions:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6}
\end{array}\right]=\left[\begin{array}{c}
6 \\
0 \\
6 \\
0 \\
0 \\
15
\end{array}\right]-\lambda\left[\begin{array}{r}
\frac{1}{3} \\
0 \\
-\frac{1}{3} \\
0 \\
-1 \\
\frac{1}{3}
\end{array}\right], \quad 0 \leq \lambda \leq 18
$$

The same ray in the space of the original variables:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
6 \\
0 \\
6
\end{array}\right]+\lambda\left[\begin{array}{r}
-\frac{1}{3} \\
0 \\
\frac{1}{3}
\end{array}\right], \quad 0 \leq \lambda \leq 18
$$

To answer d) we have to perform sensitivity analysis on the optimal simplex tableau by changing the objective function.

- The objective coefficient of x_{1} is decreased to -1 : In the optimal simplex tableau x_{1} is a basic variable, so to perform the analysis we have to add the row that belongs to x_{1} exactly $c_{1}^{\prime}-c_{1}=-1-1=-2$ times to row 0 and set the reduced cost for x_{1} to zero. The resultant tableau is not optimal:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	0	$\frac{5}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	0
x_{3}	0	0	$\frac{1}{3}$	1	$\frac{2}{3}$	$-\frac{1}{3}$	0	6
x_{1}	0	1	$\frac{2}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$	0	6
x_{6}	0	0	$\frac{11}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$	1	15

Using the primal simplex, x_{5} enters the basis and x_{1} leaves it.

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	2	3	0	1	0	0	12
x_{3}	0	1	1	1	1	0	0	12
x_{5}	0	3	2	0	1	1	0	18
x_{6}	0	-1	3	0	0	0	1	9

The new tableau is optimal. The result of the sensitivity analysis: Reducing the objective function coefficient of x_{1} to -1 , the optimal solution becomes $\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}0 \\ 0 \\ 12\end{array}\right]$, (bounded and unique), and the objective function value remains 12 . Observe that we'd get the same x point as an alternative optimal solution in the original linear program for the choice $\lambda=18$.

- The objective coefficient of x_{1} is increased to 2 : In this case we add the row corresponding to $x_{1} c_{1}^{\prime}-c_{1}=2-1=1$ times to row 0 .

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	0	$\frac{11}{3}$	0	$\frac{4}{3}$	$\frac{1}{3}$	0	18
x_{3}	0	0	$\frac{1}{3}$	1	$\frac{2}{3}$	$-\frac{1}{3}$	0	6
x_{1}	0	1	$\frac{2}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$	0	6
x_{6}	0	0	$\frac{11}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$	1	15

The resultant tableau is optimal. The solution does not change, but the objective function value does: doubling the "value" of x_{1} increases the optimum to 18 . The solution becomes unique, in contrast to the original linear programban.

- The objective coefficient of x_{2} is decreased to -4 : Since changing a non-basic objective function coefficient never changes the optimal solution, the tableau remains optimal.
- The objective coefficient of x_{2} is increased to 3: In row 0 the reduced cost value for x_{2} becomes negative, because $z_{2}^{\prime}=z_{2}-\left(c_{2}^{\prime}-c_{2}\right)=3-(3-(-2))=-2<0$. Therefore the solution is no longer optimal. The changed tableau:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	0	-2	0	1	0	0	12
x_{3}	0	0	$\frac{1}{3}$	1	$\frac{2}{3}$	$-\frac{1}{3}$	0	6
x_{1}	0	1	$\frac{2}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$	0	6
x_{6}	0	0	$\frac{11}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$	1	15

The optimal tableau:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	0	0	0	$\frac{33}{11}$	$\frac{2}{11}$	$\frac{6}{11}$	$\frac{222}{11}$
x_{3}	0	0	0	1	$\frac{7}{11}$	$-\frac{4}{11}$	$-\frac{1}{11}$	$\frac{51}{11}$
x_{1}	0	1	0	0	$\frac{3}{11}$	$\frac{3}{11}$	$-\frac{2}{11}$	$\frac{36}{11}$
x_{2}	0	0	1	0	$\frac{1}{11}$	$\frac{1}{11}$	$\frac{3}{11}$	$\frac{45}{11}$

The result of the sensitivity analysis: Reducing the objective function coefficient of x_{1} to -1 , the optimal solution becomes $\boldsymbol{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}\frac{36}{11} \\ \frac{45}{11} \\ \frac{51}{11}\end{array}\right]$, (bounded and unique) and the new objective function value is $\frac{222}{11}$.
6. Solve the following linear program using the simplex method:

$$
\begin{array}{cccccc}
\min & -2 x_{1} & -2 x_{2} & +3 x_{3}-5 x_{4} \\
\text { s.t. } & x_{1} & +2 x_{2}+4 x_{3}-x_{4} \leq & \\
& -2 x_{1} & -3 x_{2} & +x_{3}-x_{4} \geq & -12 \\
& x_{1} & & +x_{3}+x_{4} \leq & 4 \\
& x_{1}, & x_{2}, & x_{3}, & x_{4} & \geq 0
\end{array}
$$

a) Is the optimal objective function value of the linear program bounded? If not, give a ray causing the unboundedness!
b) If it exists, provide an optimal solution with the corresponding objective function value.
c) Is the optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.

Solution: Convert the linear program to maximization form by inverting the objective function. Invert the second constraint as well to get a primal feasible identity matrix formed by the slack variables. Using the primal simplex algorithm, the optimal simplex tableau is the following:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	RHS
z	1	$\frac{11}{3}$	0	$\frac{20}{3}$	0	0	$\frac{2}{3}$	$\frac{13}{3}$	$\frac{76}{3}$
x_{5}	0	$\frac{4}{3}$	0	$\frac{19}{3}$	0	1	$-\frac{2}{3}$	$\frac{5}{3}$	$\frac{14}{3}$
x_{2}	0	$\frac{1}{3}$	1	$-\frac{2}{3}$	0	0	$\frac{1}{3}$	$-\frac{1}{3}$	$\frac{8}{3}$
x_{4}	0	1	0	1	1	0	0	1	4

Because the original objective function was a minimization, we have to invert the result. Therefore, the optimal solution arises at $\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]^{T}=\left[\begin{array}{llll}0 & -\frac{8}{3} & 0 & -4\end{array}\right]^{T}$ where the objective function value is $-\frac{76}{3}$. The optimal solution is unique.
7. Solve the following linear program using the simplex method:

$$
\begin{array}{cccccc}
\max & 3 x_{1} & +2 x_{2}-x_{3}+x_{4} & \\
\text { s.t. } & 2 x_{1}-4 x_{2}-x_{3}+x_{4} \leq & 8 \\
& x_{1}+x_{2}+2 x_{3}-3 x_{4} \leq & 10 \\
& x_{1}-x_{2}-4 x_{3}+x_{4} \leq 4 \\
& x_{1}, & x_{2}, & x_{3}, & x_{4} \geq 0
\end{array}
$$

a) Is the optimal objective function value of the linear program bounded? If not, give a ray causing the unboundedness!
b) If it exists, provide an optimal solution with the corresponding objective function value.
c) Is the optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.

Solution: The optimal solution of the linear program is unbounded. The initial simplex tableau:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	RHS
z	1	-3	-2	1	-1	0	0	0	0
x_{5}	0	2	-4	-1	1	1	0	0	8
x_{6}	0	1	1	2	-3	0	1	0	10
x_{7}	0	1	-1	-4	1	0	0	1	4

Variable x_{1} enters, and variable x_{7} leaves the basis (x_{5} could also be the leaving variable).

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	RHS
z	1	0	-5	-11	2	0	0	3	12
x_{5}	0	0	-2	7	-1	1	0	-2	0
x_{6}	0	0	2	6	-4	0	1	-1	6
x_{1}	0	1	-1	-4	1	0	0	1	4

After a degenerate pivot:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	RHS
z	1	0	$-\frac{57}{7}$	0	$\frac{3}{7}$	$\frac{11}{7}$	0	$-\frac{1}{7}$	12
x_{3}	0	0	$-\frac{2}{7}$	1	$-\frac{1}{7}$	$\frac{1}{7}$	0	$-\frac{2}{7}$	0
x_{6}	0	0	$\frac{26}{7}$	0	$-\frac{22}{7}$	$-\frac{6}{7}$	1	$\frac{5}{7}$	6
x_{1}	0	1	$-\frac{15}{7}$	0	$\frac{3}{7}$	$\frac{4}{7}$	0	$-\frac{1}{7}$	4

The final tableau of the primal simplex:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	RHS
z	1	0	0	0	$-\frac{84}{13}$	$-\frac{4}{13}$	$\frac{57}{26}$	$\frac{37}{26}$	$\frac{327}{13}$
x_{3}	0	0	0	1	$-\frac{5}{13}$	$\frac{1}{13}$	$\frac{1}{13}$	$-\frac{3}{13}$	$\frac{6}{13}$
x_{2}	0	0	1	0	$-\frac{11}{13}$	$-\frac{3}{13}$	$\frac{7}{26}$	$\frac{5}{26}$	$\frac{21}{13}$
x_{1}	0	1	0	0	$-\frac{18}{13}$	$\frac{1}{13}$	$\frac{15}{26}$	$\frac{7}{26}$	$\frac{97}{13}$

The tableau shows that x_{4} can be increased without limit. The ray causing the unboundedness in the space of the original variables (without the slack variables):

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right]=\left[\begin{array}{c}
\frac{97}{13} \\
\frac{21}{13} \\
\frac{6}{13} \\
0 \\
0 \\
0 \\
0
\end{array}\right]+\lambda\left[\begin{array}{c}
\frac{18}{13} \\
\frac{11}{13} \\
\frac{5}{13} \\
1 \\
0 \\
0 \\
0
\end{array}\right], \lambda \geq 0 \quad\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
\frac{97}{213} \\
\frac{21}{13} \\
\frac{6}{13} \\
0
\end{array}\right]+\lambda\left[\begin{array}{c}
\frac{18}{13} \\
\frac{11}{13} \\
\frac{5}{13} \\
1
\end{array}\right], \lambda \geq 0
$$

Meanwhile, the objective function grows according to $\frac{327}{13}+\lambda \frac{84}{13}, \lambda \geq 0$.
8. Solve the following linear program using the simplex method:

$$
\begin{array}{ccc}
\min & 3 x_{1}-x_{2} \\
\text { s.t. } & x_{1}-3 x_{2} \geq-3 \\
& 2 x_{1}+3 x_{2} \geq-6 \\
& 2 x_{1}+x_{2} \leq 8 \\
& 4 x_{1}-x_{2} \leq 16
\end{array}
$$

a) Is the optimal objective function value of the linear program bounded? If not, give a ray causing the unboundedness!
b) If it exists, provide an optimal solution with the corresponding objective function value.
c) Is the optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.

Solution: Observe that there is no non-negativity/non-positivity constraints! Substituting $x_{1}=$ $y_{1}-y_{2}, y_{1} \geq 0, y_{2} \geq 0$ and $x_{2}=y_{3}-y_{4}, y_{3} \geq 0, y_{4} \geq 0$, the maximization problem in canonical form is the following:

$$
\begin{array}{cccccc}
\max & -3 y_{1} & +3 y_{2}+y_{3}-y_{4} & \\
\text { s.t. } & -y_{1}+y_{2}+3 y_{3}-3 y_{4} \leq 3 \\
& -2 y_{1}+2 y_{2}-3 y_{3}+3 y_{4} \leq 6 \\
& 2 y_{1}-2 y_{2}+y_{3}-y_{4} \leq 8 \\
& 4 y_{1}-4 y_{2}-y_{3}+y_{4} \leq 16 \\
& y_{1}, & y_{2}, & y_{3}, & y_{4} & \geq 0
\end{array}
$$

Introduce slack variables to bring the problem into standard form. After executing the primal simplex, the optimal simplex tableau is the following:

	z	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	y_{8}	RHS
z	1	0	0	0	0	$\frac{11}{9}$	$\frac{8}{9}$	0	0	9
y_{2}	0	-1	1	0	0	$\frac{1}{3}$	$\frac{1}{3}$	0	0	3
y_{4}	0	0	0	-1	1	$-\frac{2}{9}$	$\frac{1}{9}$	0	0	0
y_{7}	0	0	0	0	0	$\frac{4}{9}$	$\frac{7}{9}$	1	0	14
y_{8}	0	0	0	0	0	$\frac{14}{9}$	$\frac{11}{9}$	0	1	28

The optimum of the original minimization problem is -9 , which arises at the point $x_{1}=y_{1}-y_{2}=$ $-3, x_{2}=y_{3}-y_{4}=0$. Observe in the optimal simplex tableau that in the column corresponding to y_{1} (which is the first column) the value corresponding to y_{2} is -1 . Therefore, increasing y_{1} would increase the value of y_{2} by the same quantity and $x_{1}=y_{1}-y_{2}$ would remain the same. This is also true for the variables y_{3} and y_{4}. Accordingly, such substitutions for free variables usually yield an optimal tableau with alternative optimal solutions. In this case, we see that the linear program has infinite number of solutions but all solutions effectively belong to the same point $\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T}$ in the original linear program.
9. Solve the following linear program using the simplex method. Take note of the equality- and inequality-types of constraints.

$$
\begin{array}{ccccc}
\max & 3 x_{1} & +4 x_{2}+3 x_{3}+5 x_{4} \\
\text { s.t. } & 2 x_{1} & +x_{2}-x_{3}+x_{4} \geq & \\
& x_{1} & +x_{2}+x_{3}+x_{4}=8 \\
& -x_{2}+2 x_{3}+x_{4} \leq 10 \\
& x_{1}, & x_{2}, & x_{3}, & x_{4} \geq 0
\end{array}
$$

a) Find an initial basis! Introduce artificial variables, if necessary.
b) Solve the linear program with corresponding simplex method. Is the optimal objective function value of the linear program bounded? If not, give a ray causing the unboundedness! If the optimal objective function value is bounded, is the corresponding optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.
c) Do the optimal solution and the objective function value change, if we

- decrease the objective function coefficient for x_{3} to 1 ,
- increase the objective function coefficient for x_{3} to 12 ,
- decrease the objective function coefficient for x_{1} to 1 ,
- increase the objective function coefficient for x_{1} to 7 ?

Solution:

a) Transform to standard form with introducing slack-variables:

$$
\begin{aligned}
& \max 3 x_{1}+4 x_{2}+3 x_{3}+5 x_{4} \\
& \text { s.t. } 2 x_{1}+x_{2}-x_{3}+x_{4}-x_{5}=11 \\
& x_{1}+x_{2}+x_{3}+x_{4}=8 \\
& \begin{aligned}
-x_{2} \\
x_{1},
\end{aligned} \begin{array}{l}
2 x_{3} \\
x_{2},
\end{array} \quad \begin{array}{l}
x_{4} \\
x_{3},
\end{array} \quad \begin{array}{l}
x_{4},
\end{array} \quad \begin{array}{l}
x_{5},
\end{array} \begin{array}{l}
x_{6}=10 \\
x_{6} \geq 0
\end{array}
\end{aligned}
$$

There is no trivial initial unit basis, but we can use the slack-variable for the third constraint $\left(x_{6}\right)$ as one candidate basic variable. To obtain the remaining two basic variables, we introduce the artificial variables x_{7} and x_{8}.

$$
\begin{aligned}
& \max 3 x_{1}+4 x_{2}+3 x_{3}+5 x_{4} \\
& \text { s.t. } \begin{array}{c}
2 x_{1}+x_{2}-x_{3}+x_{4}-x_{5}+x_{7} \\
x_{1}+x_{2}+x_{3}+x_{4}
\end{array}
\end{aligned}
$$

So, in the first phase the primal simplex method is used for the initial unit basis formed by the columns of x_{6}, x_{7} and x_{8}. The objective is to remove the artificial variables x_{7} and x_{8} from the basis.

$$
\begin{aligned}
& \begin{array}{c}
\text { min } \\
\text { s.t. } 2 x_{1}+x_{2}-x_{3}+x_{4}-x_{5}+x_{7}+x_{8}=11
\end{array} \\
& x_{1}+x_{2}+x_{3}+x_{4}+x_{8}=8
\end{aligned}
$$

Change the direction of the optimization to maximization (do not forget to multiply with -1 at the end). The tableau of the first phase in the (unit) basis given by $B=\left\{x_{7}, x_{8}, x_{6}\right\}$ is as follows:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	RHS
z	1	0	0	0	0	0	0	1	1	0
x_{7}	0	2	1	-1	1	-1	0	1	0	11
x_{8}	0	1	1	1	1	0	0	0	1	8
x_{6}	0	0	-1	2	1	0	1	0	0	10

At this point this is still not a valid simplex tableau; for this the framed reduced cost coefficients must be reset in row zero using elementary row operations (adding/subtracting rows). The resultant tableau is as follows:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	RHS
z	1	-3	-2	0	-2	1	0	0	0	-19
x_{7}	0	2	1	-1	1	-1	0	1	0	11
x_{8}	0	1	1	1	1	0	0	0	1	8
x_{6}	0	0	-1	2	1	0	1	0	0	10

b) Apply the primal simplex method for solving the first phase. At the first pivot iteration, x_{1} enters basis and x_{7} leaves, etc. The optimal tableau for the first phase of the simplex is as
follows:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	x_{8}	RHS
z	1	0	0	0	0	0	0	1	1	0
x_{1}	0	1	$\frac{2}{3}$	0	$\frac{2}{3}$	$-\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{19}{3}$
x_{3}	0	0	$\frac{1}{3}$	1	$\frac{1}{3}$	$\frac{1}{3}$	0	$-\frac{1}{3}$	$\frac{2}{3}$	$\frac{5}{3}$
x_{6}	0	0	$-\frac{5}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	1	$\frac{2}{3}$	$-\frac{4}{3}$	$\frac{20}{3}$

The optimal objective function value for the first phase is 0 , so the original problem is feasible. The artificial have left the basis, thus the columns of x_{7} and x_{8} can be removed and columns for x_{1}, x_{3} and x_{6} are available as an initial basis in the second phase.
Restoring the original objective function (do not forget invert the coefficients):

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	$\boxed{-3}$	-4	$\boxed{-3}$	-5	0	0	0
x_{1}	0	1	$\frac{2}{3}$	0	$\frac{2}{3}$	$-\frac{1}{3}$	0	$\frac{19}{3}$
x_{3}	0	0	$\frac{1}{3}$	1	$\frac{1}{3}$	$\frac{1}{3}$	0	$\frac{5}{3}$
x_{6}	0	0	$-\frac{5}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	1	$\frac{20}{3}$

Reset the framed reduced coefficient to get a valid simplex tableau:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	0	-1	0	-2	0	0	24
x_{1}	0	1	$\frac{2}{3}$	0	$\frac{2}{3}$	$-\frac{1}{3}$	0	$\frac{19}{3}$
x_{3}	0	0	$\frac{1}{3}$	1	$\frac{1}{3}$	$\frac{1}{3}$	0	$\frac{5}{3}$
x_{6}	0	0	$-\frac{5}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	1	$\frac{20}{3}$

The second phase starts, x_{4} enters the basis and x_{3} leaves.

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	0	1	6	0	2	0	34
x_{1}	0	1	0	-2	0	-1	0	3
x_{4}	0	0	1	3	1	1	0	5
x_{6}	0	0	-2	-1	0	-1	1	5

The resultant tableau is optimal. The optimal objective function value is 34 (bounded) and the solution is unique, because the reduced cost coefficients for all nonbasic variables are strictly positive in row zero.
c) We have to perform sensitivity analysis on the optimal simplex tableau by changing the objective function.

- the objective function coefficient of x_{3} is decreased to 1 : decreasing of the objective coefficient of any nonbasic variable does not modify the solution, so the tableau remains optimal.
- the objective function coefficient of x_{3} is increased to 12 : the reduced cost of x_{3} becomes negative in row zero, because $z_{3}^{\prime}=z_{3}-\left(c_{3}^{\prime}-c_{3}\right)=6-(12-3)=-3<0$. Therefore, the solution is no longer optimal. The modified tableau is:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	0	1	-3	0	2	0	34
x_{1}	0	1	0	-2	0	-1	0	3
x_{4}	0	0	1	3	1	1	0	5
x_{6}	0	0	-2	-1	0	-1	1	5

x_{3} enters and x_{4} leaves the basis, and the resultant simplex tableau is optimal:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	0	2	0	1	3	0	39
x_{1}	0	1	$\frac{2}{3}$	0	$\frac{2}{3}$	$-\frac{1}{3}$	0	$\frac{19}{3}$
x_{3}	0	0	$\frac{1}{3}$	1	$\frac{1}{3}$	$\frac{1}{3}$	0	$\frac{5}{3}$
x_{6}	0	0	$-\frac{5}{3}$	0	$\frac{1}{3}$	$-\frac{2}{3}$	1	$\frac{20}{3}$

The result of the sensitivity analysis: by increasing the objective function coefficient of x_{3} to $-1, x_{3}$ and x_{4} change place in the optimal basis and so the new optimal solution is $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}\frac{19}{3} \\ 0 \\ \frac{5}{3} \\ 0\end{array}\right]$. The objective function value increases to 39.

- the objective function coefficient of x_{1} is decreased to $1: x_{1}$ is a basic variable in the optimal solution, so we need to modify the tableau as follows: row of x_{1} is multiplied with $c_{1}^{\prime}-c_{1}=1-3=-2$ and added to row zero, and the coefficient for x_{1} is reset in row zero.

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	0	1	10	0	4	0	28
x_{1}	0	1	0	-2	0	-1	0	3
x_{4}	0	0	1	3	1	1	0	5
x_{6}	0	0	-2	-1	0	-1	1	5

The tableau remains optimal, however the optimal objective function value decreases to 28 .

- the objective function coefficient of x_{1} is increased to 7 : now, $c_{1}^{\prime}-c_{1}=7-3=4$ times the row of x_{1} is added to row zero.

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	0	1	-2	0	-2	0	46
x_{1}	0	1	0	-2	0	-1	0	3
x_{4}	0	0	1	3	1	1	0	5
x_{6}	0	0	-2	-1	0	-1	1	5

x_{3} enters the basis and x_{4} leaves. The final optimal simplex tableau is:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	0	3	4	2	0	0	56
x_{1}	0	1	1	1	1	0	0	8
x_{5}	0	0	1	3	1	1	0	5
x_{6}	0	0	-1	2	1	0	1	10

The result of the sensitivity analysis: the new optimal solution is $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}8 \\ 0 \\ 0 \\ 0\end{array}\right]$ and the optimal objective function value increases to 56 .

Linear Programming Duality

10. Consider the linear program given in Exercise 4:

$$
\begin{array}{ccccccr}
\max & 3 x_{1}+8 x_{2}-5 x_{3}+8 x_{4} & \\
\text { s.t. } & 2 x_{1}+x_{2}+x_{3}+3 x_{4} \leq & 7 \\
& -x_{1}-2 x_{2}-x_{3}-x_{4} \geq & -2 \\
& x_{1} & x_{2}, & x_{3}, & x_{4} \geq & \geq
\end{array}
$$

a) Write the dual of the linear program and convert to standard form! The following table summarizes the rules for obtaining the dual linear program:

b) Find an initial basis! Introduce artificial variables, if necessary.
c) Solve the linear program using the corresponding simplex method. Is the optimal objective function value of the linear program bounded? If not, give a ray causing the unboundedness! If the optimal objective function value is bounded, is the corresponding optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.
d) Compare the resultant optimal solution with the solution of Exercise 4. What is the relationship between the primal and dual optimal solutions?

Solution:

a) Using dual variables w_{1} and w_{2}^{\prime}, the dual linear program is as follows:

$$
\begin{aligned}
& \min 7 w_{1}-2 w_{2}^{\prime} \\
& \text { s.t. } 2 w_{1}-w_{2}^{\prime} \geq 3 \\
& w_{1}-2 w_{2}^{\prime} \geq 8 \\
& w_{1}-w_{2}^{\prime} \geq-5 \\
& 3 w_{1}-w_{2}^{\prime} \geq 8 \\
& w_{1} \quad w_{2}^{\prime} \leq 00
\end{aligned}
$$

To obtain the standard form, we need to perform the following changes:

- we must change the optimization direction to maximization with inverting the objective function (the resultant solution will need to be multiplied by -1),
- now w_{2}^{\prime} is nonpositive, so it must be converted to nonnegative variable using the substitution $w_{2}=-w_{2}^{\prime}$ (the sign of the coefficients also change),
- finally, slack-variables must be introduced for all rows.

The given standard form:

$$
\begin{aligned}
& \max -7 w_{1}-2 w_{2} \\
& \text { s.t. } 2 w_{1}+w_{2}-w_{3}=3 \\
& w_{1}+2 w_{2}-w_{4} \quad=8 \\
& w_{1}+w_{2}-w_{5} \quad=-5 \\
& \begin{array}{llllll}
3 w_{1} & + \\
w_{2} \\
w_{2},
\end{array} \quad w_{3} \quad w_{4} \quad w_{5} \begin{array}{l}
-w_{6}=8 \\
w_{6}
\end{array}
\end{aligned}
$$

b) The slack-variables give initial dual-feasible (primal-optimal) basis.
c) Due to the above we could use the dual simplex method right away. Still, for the sake of the exercise, let us introduce artificial variables so that we can use the primal simplex.
In the first step, the coefficients in the RHS column must be made positive. Thus, invert the third condition to obtain:

$$
\begin{aligned}
& \max -7 w_{1}-2 w_{2} \\
& \text { s.t. } 2 w_{1}+w_{2}-w_{3}=3 \\
& w_{1}+2 w_{2}-w_{4} \quad=8 \\
& -w_{1}-w_{2}+w_{5} \quad=5 \\
& \begin{array}{llllll}
3 w_{1} & + \\
w_{2} \\
w_{2},
\end{array} \quad w_{3} \quad w_{4} \quad w_{5} \begin{array}{l}
w_{6}=8 \\
w_{6} \geq
\end{array}
\end{aligned}
$$

The slack-variable w_{5} can be used as one basic variable, for the rest introduce the artificial variables w_{7}, w_{8} and w_{9}. The objective function is modified to eliminate the artificial variables: $\min w_{7}+w_{8}+w_{9}=-\max -w_{7}-w_{8}-w_{9}$. (Do not forget to invert the objective function values at the end!):

$$
\begin{aligned}
& \max \quad-1-1-1
\end{aligned}
$$

The initial basis is the identity matrix for the columns of variables w_{5}, w_{7}, w_{8} and w_{9}.
d) In tabular form (do not forget to invert row zero):

	z	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	w_{7}	w_{8}	w_{9}	RHS
z	1	0	0	0	0	0	0	$\boxed{1}$	1	1	0
w_{7}	0	2	1	-1	0	0	0	1	0	0	3
w_{8}	0	1	2	0	-1	0	0	0	1	0	8
w_{5}	0	-1	-1	0	0	1	0	0	0	0	5
w_{9}	0	3	1	0	0	0	-1	0	0	1	8

The resultant form is still not a simplex tableau, because the framed elements in row zero are non-zero. Subtract rows of w_{7}, w_{8} and w_{9} from row zero to obtain a valid tableau:

	z	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	w_{7}	w_{8}	w_{9}	RHS
z	1	-6	-4	1	1	0	1	0	0	0	-19
w_{7}	0	2	1	-1	0	0	0	1	0	0	3
w_{8}	0	1	2	0	-1	0	0	0	1	0	8
w_{5}	0	-1	-1	0	0	1	0	0	0	0	5
w_{9}	0	3	1	0	0	0	-1	0	0	1	8

First phase starts, w_{1} enters the basis and w_{7} leaves.

	z	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	w_{7}	w_{8}	w_{9}	RHS
z	1	0	-1	-2	1	0	1	3	0	0	-10
w_{1}	0	1	$\frac{1}{2}$	$-\frac{1}{2}$	0	0	0	$\frac{1}{2}$	0	0	$\frac{3}{2}$
w_{8}	0	0	$\frac{3}{2}$	$\frac{1}{2}$	-1	0	0	$-\frac{1}{2}$	1	0	$\frac{13}{2}$
w_{5}	0	0	$-\frac{1}{2}$	$-\frac{1}{2}$	0	1	0	$\frac{1}{2}$	0	0	$\frac{13}{2}$
w_{9}	0	0	$-\frac{1}{2}$	$\frac{3}{2}$	0	0	-1	$-\frac{3}{2}$	0	1	$\frac{7}{2}$

w_{3} enters and w_{9} leaves the basis.

	z	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	w_{7}	w_{8}	w_{9}	RHS
z	1	0	$-\frac{5}{3}$	0	1	0	$-\frac{1}{3}$	1	0	$\frac{4}{3}$	$-\frac{16}{3}$
w_{1}	0	1	$\frac{1}{3}$	0	0	0	$-\frac{1}{3}$	0	0	$\frac{1}{3}$	$\frac{8}{3}$
w_{8}	0	0	$\frac{5}{3}$	0	-1	0	$\frac{1}{3}$	0	1	$-\frac{1}{3}$	$\frac{16}{3}$
w_{5}	0	0	$-\frac{2}{3}$	0	0	1	$-\frac{1}{3}$	0	0	$\frac{1}{3}$	$\frac{23}{3}$
w_{3}	0	0	$-\frac{1}{3}$	1	0	0	$-\frac{2}{3}$	-1	0	$\frac{2}{3}$	$\frac{7}{3}$

w_{2} enters the basis and w_{8} leaves.

	z	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	w_{7}	w_{8}	w_{9}	RHS
z	1	0	0	0	0	0	0	1	1	1	0
w_{1}	0	1	0	0	$\frac{1}{5}$	0	$-\frac{2}{5}$	0	$-\frac{1}{5}$	$\frac{2}{5}$	$\frac{8}{5}$
w_{2}	0	0	1	0	$-\frac{3}{5}$	0	$\frac{1}{5}$	0	$\frac{3}{5}$	$-\frac{1}{5}$	$\frac{16}{5}$
w_{5}	0	0	0	0	$-\frac{2}{5}$	1	$-\frac{1}{5}$	0	$\frac{2}{5}$	$\frac{1}{5}$	$\frac{49}{5}$
w_{3}	0	0	0	1	$-\frac{1}{5}$	0	$-\frac{3}{5}$	-1	$\frac{1}{5}$	$\frac{3}{5}$	$\frac{17}{5}$

At this point we get the optimal tableau for phase 1. The objective function value is 0 , so the original problem is feasible, and the artificial variables have left the basis so columns for w_{7}, w_{8} and w_{9} can be removed.
Restore the objective function to the objective of the dual (do not forget invert the coefficients):

	z	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	RHS
z	1	7	$\boxed{2}$	0	0	0	0	0
w_{1}	0	1	0	0	$\frac{1}{5}$	0	$-\frac{2}{5}$	$\frac{8}{5}$
w_{2}	0	0	1	0	$-\frac{3}{5}$	0	$\frac{1}{5}$	$\frac{16}{5}$
w_{5}	0	0	0	0	$-\frac{2}{5}$	1	$-\frac{1}{5}$	$\frac{49}{5}$
w_{3}	0	0	0	1	$-\frac{1}{5}$	0	$-\frac{3}{5}$	$\frac{17}{5}$

Now this is again not a valid simplex tableau; for this we must reset the framed elements in row zero:

	z	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	RHS
z	1	0	0	0	$-\frac{1}{5}$	0	$\frac{12}{5}$	$-\frac{88}{5}$
w_{1}	0	1	0	0	$\frac{1}{5}$	0	$-\frac{2}{5}$	$\frac{8}{5}$
w_{2}	0	0	1	0	$-\frac{3}{5}$	0	$\frac{1}{5}$	$\frac{16}{5}$
w_{5}	0	0	0	0	$-\frac{2}{5}$	1	$-\frac{1}{5}$	$\frac{49}{5}$
w_{3}	0	0	0	1	$-\frac{1}{5}$	0	$-\frac{3}{5}$	$\frac{17}{5}$

Second phase starts, w_{4} enters the basis and w_{1} leaves.

	z	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	RHS
z	1	1	0	0	0	0	2	-16
w_{4}	0	5	0	0	1	0	-2	8
w_{2}	0	3	1	0	0	0	-1	8
w_{5}	0	2	0	0	0	1	-1	13
w_{3}	0	1	0	1	0	0	-1	5

We get the optimal simplex tableau; end of the second phase. The optimal objective function value is -16 , so the objective function value of the original (minimization) dual problem is 16 . The optimal solution is $\boldsymbol{w}=\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 8\end{array}\right]$. The solution is unique.
e) Due to the Strong Theorem of Duality, the optimal objective function value of the primal problem (16) equals the optimal objective function value of the dual (also 16).

Using complementary slackness, further relationships can be observed: for example, it is wellknown that whenever the optimal value of a dual variable is strictly positive then the corresponding constraint is tight in the primal:

$$
w_{2}>0 \Rightarrow-x_{1}-2 x_{2}-x_{3}-x_{4}=-2
$$

Similarly, if a constraint in the primal is not tight then the value of the corresponding dual variable is guaranteed to be zero:

$$
2 x_{1}+x_{2}+x_{3}+3 x_{4}<7 \Rightarrow w_{1}=0
$$

Furthermore: a positive primal variable yields that the corresponding dual constraint is tight, and contrarily, a loose (not tight) dual constraint yields that the corresponding optimal primal solution is zero:

$$
\begin{aligned}
& x_{4}>0 \Rightarrow 3 w_{1}-w_{2}^{\prime}=3 w_{1}+w_{2}=8 \\
& 2 w_{1}-w_{2}^{\prime}=2 w_{1}+w_{2}>3 \Rightarrow x_{1}=0
\end{aligned}
$$

Solving Word Problems with the Simplex Algorithm

11. In a paper mill, the machines are being replaced. Two types of cardboard-cutting machines can be purchased: machine A can cut 3 boxes per one minute, one person is needed to operate it, and it costs 15,000 units of money; machine B machine can make 5 boxes per minute, but it requeres two people to supervise it, and it costs 20,000 units of money. The production plan is to produce at least 32 boxes per minute with at most 12 workers involved.
How many A and B machines needs to be purchased to fit the production plan with minimized costs?
a) Define the above "resource acquisition" problem as a linear program!
b) Find an initial basis!
c) Solve the linear program with the primal or the dual simplex algorithm!
d) Got an integer as a result? If so, is integrality of the results guaranteed?

Solution:

a) Mark the amount of A-type machines purchased with x_{A}, and mark the amount of B-type machines purchased with x_{B}. The workforce constraints:

$$
x_{A}+2 x_{B} \leq 12 .
$$

The plan is to produce 32 boxes, which provides the following condition:

$$
3 x_{A}+5 x_{B} \geq 32 .
$$

Capital expenditures, i.e., the amount of money needed to purchase the machines:

$$
15 x_{A}+20 x_{B} .
$$

The variables are non-negative. From this, the linear program:

$$
\begin{array}{cc}
\min & 15 x_{A}+20 x_{B} \\
\text { s.t. } & x_{A}+2 x_{B} \leq 12 \\
& 3 x_{A}+5 x_{B} \geq 32 \\
& x_{A},
\end{array} x_{B} \geq 0
$$

b) Converting the linear program to standard form by (1) introducing slack variables to bring all conditions to $\mathrm{a}=$-form, (2) inverting the second condition, and (3) rewriting the objective into maximization form:

$$
\begin{array}{cccccc}
\max & -15 x_{A}-20 x_{B} \\
\text { s.t. } & x_{A} & +2 x_{B}+s_{1} & & \\
& -3 x_{A} & -5 x_{B} & \\
& x_{A}, & x_{B}, & s_{1}, & s_{2} & =-32 \\
s_{2} & \geq 0
\end{array}
$$

The slack variables form an initial unit base.
c) We will use the dual simplex algorithm. The initial simplex table:

	z	x_{A}	x_{B}	s_{1}	s_{2}	RHS
z	1	15	20	0	0	0
s_{1}	0	1	2	1	0	12
s_{2}	0	-3	-5	0	1	-32

Further iterations of the dual simplex algorithm:

	z	x_{A}	x_{B}	s_{1}	s_{2}	RHS
z	1	3	0	0	4	-128
s_{1}	0	$-\frac{1}{5}$	0	1	$\frac{2}{5}$	$-\frac{4}{5}$
x_{B}	0	$\frac{3}{5}$	1	0	$-\frac{1}{5}$	$\frac{32}{5}$

Finally, the optimal table:

	z	x_{A}	x_{B}	s_{1}	s_{2}	RHS
z	1	0	0	15	10	-140
x_{A}	0	1	0	-5	-2	4
x_{B}	0	0	1	3	1	4

The management of the paper mill needs to buy 4-4 machines for 140,000 units of money, and a total of $4+2 * 4=12$ workers must be employed.
d) The result an integral, but this is not guaranteed. For that we'd need to introduce an explicit integrality condition, yielding an Integer Linear Program.

