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Exercises

Word Problems

1. Four types of hollow structural sections (HSS, a special type of metal bar or tube) are manufactured
in a steel mill: small, medium, large and extra large. There are three types of machines available:
A, B, and C. The following table specifies the quantity of HSS types (in terms of length, in meters)
produced per hour, depending on the type of machine.

Machine

Hollow structural section (HSS) type A B C

Small 3 6 8

Medium 2 4 7

Large 2 3 6

Extra large 1 2 3

The machines can operate 50 hours a week and the operational cost of each machine (in units of
money) is: 3, 5 and 8. According to the business plan, 200, 80, 60, and 60 meters per week are
needed of each of the HSS types A, B, C, and respectively D.

a) Define the above machine scheduling problem as a linear program!

b) Find an initial basis!

c) Would you solve the problem with the primal or the dual simplex algorithm? (No need to solve
it!)

Solving Linear Programs: The Graphical Method

2. Consider the following linear program (Warning: There are no non-negativity constraints!):

max x1 + x2
s.t. x1 + 2x2 ≤ 4

2x1 − x2 ≤ 3
x1 − 2x2 ≤ 3

a) Solve the linear program graphically !

b) Solve the linear program (also graphically), when the objective function is changed to max−x1+
x2!

c) Is there a unique optimal solution, if the objective function is max 2x1−x2? Verify your answer
graphically!
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3. Consider the following linear program:

min −x1 + 2x2
s.t. x1 + 2x2 ≤ 4

2x1 − x2 ≤ 3
x1 ≥ −1

x2 ≥ −1

a) Illustrate the feasible region graphically!

b) Give the extreme points of the feasible region!

c) Give the optimal value of the objective function and an optimal solution!

d) Is the solution unique? Justify your answer!

e) How do the optimal value of the objective function and the corresponding solution change if we
modify the objective function to minx1 + x2? Justify your answer graphically as well!

Solving Linear Programs: The Simplex Method

4. Solve the following linear program with the simplex method:

max 3x1 + 8x2 − 5x3 + 8x4
s.t. 2x1 + x2 + x3 + 3x4 ≤ 7

−x1 − 2x2 − x3 − x4 ≥ −2
x1 x2, x3, x4 ≥ 0

a) Is there a bounded optimal solution? If not, give a radius, along which the unboundedness is
provable.

b) If a bounded optimal solution exists, give an optimal solution and the corresponding objective
function value.

c) Is the optimum unique? Justify your answer. If it is not, give alternative optimal solutions.

d) How does the optimal objective function value change if we modify the coefficients in the objec-
tive function in the following way:

• decrease the coefficient of x4 to 3,

• decrease the coefficient of x1 to 1,

• increase the coefficient of x1 to 9,

• after this last change, increase the coefficient of x2 to 9?

5. Solve the following linear program using the simplex method:

max x1 − 2x2 + x3
s.t. x1 + x2 + x3 ≤ 12

2x1 + x2 − x3 ≤ 6
−x1 + 3x2 ≤ 9
x1, x2, x3 ≥ 0

a) Is the optimal objective function value of the linear program bounded? If not, give a ray causing
the unboundedness!

b) If it exists, provide an optimal solution with the corresponding objective function value.

c) Is the optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.

d) How do the optimal solution and the objective function change, if we

• decrease the objective function coefficient for x1 to −1,

• increase the objective function coefficient for x1 to 2,
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• decrease the objective function coefficient for x2 to −4,

• increase the objective function coefficient for x2 to 3?

6. Solve the following linear program using the simplex method:

min −2x1 − 2x2 + 3x3 − 5x4
s.t. x1 + 2x2 + 4x3 − x4 ≤ 6

−2x1 − 3x2 + x3 − x4 ≥ −12
x1 + x3 + x4 ≤ 4
x1, x2, x3, x4 ≥ 0

a) Is the optimal objective function value of the linear program bounded? If not, give a ray causing
the unboundedness!

b) If it exists, provide an optimal solution with the corresponding objective function value.

c) Is the optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.

7. Solve the following linear program using the simplex method:

max 3x1 + 2x2 − x3 + x4
s.t. 2x1 − 4x2 − x3 + x4 ≤ 8

x1 + x2 + 2x3 − 3x4 ≤ 10
x1 − x2 − 4x3 + x4 ≤ 4
x1, x2, x3, x4 ≥ 0

a) Is the optimal objective function value of the linear program bounded? If not, give a ray causing
the unboundedness!

b) If it exists, provide an optimal solution with the corresponding objective function value.

c) Is the optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.

8. Solve the following linear program using the simplex method:

min 3x1 − x2
s.t. x1 − 3x2 ≥ −3

2x1 + 3x2 ≥ −6
2x1 + x2 ≤ 8
4x1 − x2 ≤ 16

a) Is the optimal objective function value of the linear program bounded? If not, give a ray causing
the unboundedness!

b) If it exists, provide an optimal solution with the corresponding objective function value.

c) Is the optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.

9. Solve the following linear program using the simplex method. Take note of the equality- and
inequality-types of constraints.

max 3x1 + 4x2 + 3x3 + 5x4
s.t. 2x1 + x2 − x3 + x4 ≥ 11

x1 + x2 + x3 + x4 = 8
− x2 + 2x3 + x4 ≤ 10

x1, x2, x3, x4 ≥ 0

a) Find an initial basis! Introduce artificial variables, if necessary.

b) Solve the linear program with corresponding simplex method. Is the optimal objective function
value of the linear program bounded? If not, give a ray causing the unboundedness! If the
optimal objective function value is bounded, is the corresponding optimal solution unique? If it
is, provide a proof. If not, give alternative optimal solutions.
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c) Do the optimal solution and the objective function value change, if we

• decrease the objective function coefficient for x3 to 1,

• increase the objective function coefficient for x3 to 12,

• decrease the objective function coefficient for x1 to 1,

• increase the objective function coefficient for x1 to 7?

Linear Programming Duality

10. Consider the linear program given in Exercise 4:

max 3x1 + 8x2 − 5x3 + 8x4
s.t. 2x1 + x2 + x3 + 3x4 ≤ 7

−x1 − 2x2 − x3 − x4 ≥ −2
x1 x2, x3, x4 ≥ 0

a) Write the dual of the linear program and convert to standard form! The following table sum-
marizes the rules for obtaining the dual linear program:

Maximization

problem

Minimization

problem

C
o
n
s
t
r
a
in

t ≥ ←→ ≤ 0

V
a
r
ia

b
le

≤ ←→ ≥ 0

= ←→ arbitrary

V
a
r
ia

b
le

≥ 0 ←→ ≥

C
o
n
s
t
r
a
in

t

≤ 0 ←→ ≤

arbitrary ←→ =

b) Find an initial basis! Introduce artificial variables, if necessary.

c) Solve the linear program using the corresponding simplex method. Is the optimal objective
function value of the linear program bounded? If not, give a ray causing the unboundedness! If
the optimal objective function value is bounded, is the corresponding optimal solution unique?
If it is, provide a proof. If not, give alternative optimal solutions.

d) Compare the resultant optimal solution with the solution of Exercise 4. What is the relationship
between the primal and dual optimal solutions?

Solving Word Problems with the Simplex Algorithm

11. In a paper mill, the machines are being replaced. Two types of cardboard-cutting machines can be
purchased: machine A can cut 3 boxes per one minute, one person is needed to operate it, and it
costs 15,000 units of money; machine B machine can make 5 boxes per minute, but it requeres two
people to supervise it, and it costs 20,000 units of money. The production plan is to produce at
least 32 boxes per minute with at most 12 workers involved.

How many A and B machines needs to be purchased to fit the production plan with minimized
costs?

a) Define the above “resource acquisition” problem as a linear program!

b) Find an initial basis!

c) Solve the linear program with the primal or the dual simplex algorithm!

d) Got an integer as a result? If so, is integrality of the results guaranteed?
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Solutions

Word Problems

1. Four types of hollow structural sections (HSS, a special type of metal bar or tube) are manufactured
in a steel mill: small, medium, large and extra large. There are three types of machines available:
A, B, and C. The following table specifies the quantity of HSS types (in terms of length, in meters)
produced per hour, depending on the type of machine.

Machine

Hollow structural section (HSS) type A B C

Small 3 6 8

Medium 2 4 7

Large 2 3 6

Extra large 1 2 3

The machines can operate 50 hours a week and the operational cost of each machine (in units of
money) is: 3, 5 and 8. According to the business plan, 200, 80, 60, and 60 meters per week are
needed of each of the HSS types A, B, C, and respectively D.

a) Define the above machine scheduling problem as a linear program!

b) Find an initial basis!

c) Would you solve the problem with the primal or the dual simplex algorithm? (No need to solve
it!)

Solution:

a) Let xij mark the number of hours spent by machine i (i ∈ {1, 2, 3}) to produce HSSes of type j

(j ∈ {1, 2, 3, 4}). Using this notation, the linear program is the following:

min 3x11 +3x12 +3x13 +3x14 +5x21 +5x22 +5x23 +5x24 +8x31 +8x32 +8x33 +8x34

s.t. x11 +x12 +x13 +x14 ≤ 50

x21 +x22 +x23 +x24 ≤ 50

+x31 +x32 +x33 +x34 ≤ 50

3x11 +6x21 +8x31 = 200

2x12 +4x22 +7x32 = 80

2x13 +3x23 +6x33 = 60

x14 +2x24 +3x34 = 60

x11, x12, x13, x14, x21, x22, x23, x24, x31, x32, x33, x34 ≥ 0

b) The fourth, fifth, sixth and seventh condition could be rewritten into ≥-form, the optimal
objective function value would not change because the goal is to minimize costs. Inverting these
conditions to ≤-form and rewriting the objective into maximization:
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max −3x11 −3x12 −3x13 −3x14 −5x21 −5x22 −5x23 −5x24 −8x31 −8x32 −8x33 −8x34

s.t. x11 +x12 +x13 +x14 ≤ 50

x21 +x22 +x23 +x24 ≤ 50

+x31 +x32 +x33 +x34 ≤ 50

−3x11 −6x21 −8x31 ≤ −200

−2x12 −4x22 −7x32 ≤ −80

−2x13 −3x23 −6x33 ≤ −60

−x14 −2x24 −3x34 ≤ −60

x11, x12, x13, x14, x21, x22, x23, x24, x31, x32, x33, x34 ≥ 0

We got a canonical problem that should be brought to standard form by introducing slack
variables. The coefficients of the objective function are all negative, so the slack variables form
a dual-feasible (but not dual-optimal) initial basis.

c) Due to the above, the dual simplex algorithm is recommended.

Solving Linear Programs: The Graphical Method

2. Consider the following linear program (Warning: There are no non-negativity constraints!):

max x1 + x2
s.t. x1 + 2x2 ≤ 4

2x1 − x2 ≤ 3
x1 − 2x2 ≤ 3

a) Solve the linear program graphically !

b) Solve the linear program (also graphically), when the objective function is changed to max−x1+
x2!

c) Is there a unique optimal solution, if the objective function is max 2x1−x2? Verify your answer
graphically!

Solution: The feasible region of the given linear program represented graphically:

x1

x2

−2 −1 1 2 3

−2

−1

1

2

x1 + 2x2 ≤ 4

2x1 − x2 ≤ 3

x1 − 2x2 ≤ 3

a) The normal vector of the objective function is the

[

1
1

]

vector, which gives us the following

extreme point: x =

[

x1
x2

]

=

[

2
1

]

as the unique optimal solution.

b) In this case the normal vector of the objective function changes to

[

−1
1

]

, so the optimal solution

of the linear program is unbounded. For example, along the ray

[

x1
x2

]

=

[

0
0

]

+ λ

[

−1
1

2

]

, λ ≥ 0

the objective function value grows without limit as 3

2
λ.
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c) No, the linear program has multiple alternative optimal solutions as follows:

[

x1
x2

]

=

[

1
−1

]

+

λ

[

1
2

]

, λ ∈ [0, 1].

3. Consider the following linear program:

min −x1 + 2x2
s.t. x1 + 2x2 ≤ 4

2x1 − x2 ≤ 3
x1 ≥ −1

x2 ≥ −1

a) Illustrate the feasible region graphically!

b) Give the extreme points of the feasible region!

c) Give the optimal value of the objective function and an optimal solution!

d) Is the solution unique? Justify your answer!

e) How do the optimal value of the objective function and the corresponding solution change if we
modify the objective function to minx1 + x2? Justify your answer graphically as well!

Solution:

a) The graphical representation of the feasible region:

x1

x2

−1 1 2

−1

1

2

x1 + 2x2 ≤ 4

2x1 − x2 ≤ 3

x1 ≥ −1

x2 ≥ −1

b) The extreme points can be derived easily from the graphical representation:

x1 =

[

−1
−1

]

, x2 =

[

−1
2.5

]

, x3 =

[

2
1

]

, x4 =

[

1
−1

]

c) The feasible region is bounded, thus it is guaranteed that at least one optimal solution will occur
at extreme point. The optimal solution is going to be the extreme point where the product cTxe

takes its minimum value over the set of extreme points {xe}:

c
T
x1 =

[

−1 2
]

[

−1
−1

]

= −1, c
T
x2 =

[

−1 2
]

[

−1
2.5

]

= 6,

c
T
x3 =

[

−1 2
]

[

2
1

]

= 0, c
T
x4 =

[

−1 2
]

[

1
−1

]

= −3

From this the optimal solution is −3, which corresponds to the extreme point x4 =

[

1
−1

]

.

d) The solution is unique because the intersection of the objective function contour −x1+2x2 = −3

and the feasible region contains a single point only: x4 =

[

1
−1

]

.
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e) After changing the objective function from c
T =

[

−1 2
]

to c
′T =

[

1 1
]

, the new products

c
′T
xe are as follows:

c
′T
x1 =

[

1 1
]

[

−1
−1

]

= −2, c
′T
x2 =

[

1 1
]

[

−1
2.5

]

= 1.5,

c
′T
x3 =

[

1 1
]

[

2
1

]

= 3, c
T
x4 =

[

1 1
]

[

1
−1

]

= 0

From this, the optimal solution is −2, which corresponds to the extreme point x1 =

[

−1
−1

]

.

Graphically,the optimization of the new objective function means finding the intersection of the

feasible region polyhedron and the hyperplane with the normal vector

[

−1
−1

]

.

x1

x2

−1 1 2

−1

1

2

x1 + 2x2 ≤ 4

2x1 − x2 ≤ 3

x1 ≥ −1

x2 ≥ −1

minx1 + x2

Solving Linear Programs: The Simplex Method

4. Solve the following linear program with the simplex method:

max 3x1 + 8x2 − 5x3 + 8x4
s.t. 2x1 + x2 + x3 + 3x4 ≤ 7

−x1 − 2x2 − x3 − x4 ≥ −2
x1 x2, x3, x4 ≥ 0

a) Is there a bounded optimal solution? If not, give a radius, along which the unboundedness is
provable.

b) If a bounded optimal solution exists, give an optimal solution and the corresponding objective
function value.

c) Is the optimum unique? Justify your answer. If it is not, give alternative optimal solutions.

d) How does the optimal objective function value change if we modify the coefficients in the objec-
tive function in the following way:

• decrease the coefficient of x4 to 3,

• decrease the coefficient of x1 to 1,

• increase the coefficient of x1 to 9,

• after this last change, increase the coefficient of x2 to 9?

Solution: After inverting the second condition and introducing the slack variables x5 and x6, the
a slack variables form a trivial initial basis. Because of this, we use the primal simplex algorithm.
The initial simplex tableau:
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z x1 x2 x3 x4 x5 x6 RHS

z 1 −3 −8 5 −8 0 0 0

x5 0 2 1 1 3 1 0 7

x6 0 1 2 1 1 0 1 2

x2 enters the basis, x6 leaves.

z x1 x2 x3 x4 x5 x6 RHS

z 1 1 0 9 −4 0 4 8

x5 0 3

2
0 1

2

5

2
1 −1

2
6

x2 0 1

2
1 1

2

1

2
0 1

2
1

x4 enters the basis, x2 leaves.

z x1 x2 x3 x4 x5 x6 RHS

z 1 5 8 13 0 0 8 16

x5 0 −1 −5 −2 0 1 −3 1

x4 0 1 2 1 1 0 1 2

Optimal simplex tableau. The solution is x =









x1
x2
x3
x4









=









0
0
0
2









, the objective function value is 16. The

solution thus exists, and it is bounded and unique.

To solve d), we have to perform sensitivity analysis on the optimal simplex tableau with the new
objective function.

• the coefficient of x4 in the objective function is decreased to 3: x4 is a basic variable in
the optimal simplex tableau, so in order to perform sensitivity analysis we have to modify the
simplex tableau in the following way. We have to multiply the row of x4 by c′

4
−c4 = 3−8 = −5

and add that to the 0th row. In addition, we need to make sure that the reduced cost
corresponding to x4 is zero.

The resultant tableau is not primal optimal:

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 −2 8 0 0 3 6

x5 0 −1 −5 −2 0 1 −3 1

x4 0 1 2 1 1 0 1 2

x4 leaves the basis, x2 enters; the resultant tableau is optimal:

z x1 x2 x3 x4 x5 x6 RHS

z 1 1 0 9 1 0 4 8

x5 0 3

2
0 1

2

5

2
1 −1

2
6

x2 0 1

2
1 1

2

1

2
0 1

2
1
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The result of the sensitivity analysis: if the coefficient of x2 in the objective function is

decreased to 3, the optimal solution is x =









x1
x2
x3
x4









=









0
1
0
0









(bounded and unique), and the new

objective function value is 8.

• the coefficient of x1 in the objective function decreases to 1: x1 is a nonbasic variable in
the optimal simplex tableau, thus changing its coefficient results in increased reduced cost
(z′

1
= z1 − (c′

1
− c1) = 5− (1− 3) = 7 ≥ 0), and the tableau is guaranteed to remain optimal.

This means that the solution does not change.

• the coefficient of x1 in the objective function increases to 9: in this case the reduced cost of
the nonbasic variable x1 decreases: z′

1
= z1−(c′

1
−c1) = 5−(9−3) = −1. Since z′

1
has become

negative, the tableau is no longer optimal and we have to optimize it again using the primal
simplex algorithm.

The new simplex tableau:

z x1 x2 x3 x4 x5 x6 RHS

z 1 −1 8 13 0 0 8 16

x5 0 −1 −5 −2 0 1 −3 1

x4 0 1 2 1 1 0 1 2

x1 enters the basis, x4 leaves, the tableau after the pivot is optimal:

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 10 14 1 0 9 18

x5 0 0 −3 −1 1 1 −2 3

x1 0 1 2 1 1 0 1 2

The result of the sensitivity analysis: increasing the coefficient of x1 to 9 results in the optimal

solution x =









x1
x2
x3
x4









=









2
0
0
0









(bounded and unique), and the new objective function value is 18.

• After this last change, the coefficient of x2 increases to 9: x2 is a nonbasic variable in the
resultant optimal tableau, its cost decreases after the change: z′

2
= z2−(c

′

2
−c2) = 10−(9−8) =

9 > 0, thus the tableau remains optimal.

5. Solve the following linear program using the simplex method:

max x1 − 2x2 + x3
s.t. x1 + x2 + x3 ≤ 12

2x1 + x2 − x3 ≤ 6
−x1 + 3x2 ≤ 9
x1, x2, x3 ≥ 0

a) Is the optimal objective function value of the linear program bounded? If not, give a ray causing
the unboundedness!

b) If it exists, provide an optimal solution with the corresponding objective function value.

c) Is the optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.

d) How do the optimal solution and the objective function change, if we

• decrease the objective function coefficient for x1 to −1,
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• increase the objective function coefficient for x1 to 2,

• decrease the objective function coefficient for x2 to −4,

• increase the objective function coefficient for x2 to 3?

Solution: Convert the constraint system to standard form, introduce the slack variables, and use
the primal simplex method. Choose the identity matrix introduced by the slack variables as the
initial basis. After the simplex iteration steps, the optimal simplex tableau is the following:

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 3 0 1 0 0 12

x3 0 0 1

3
1 2

3
−1

3
0 6

x1 0 1 2

3
0 1

3

1

3
0 6

x6 0 0 11

3
0 1

3

1

3
1 15

This tableau gives us the optimal basic feasible solution:
[

x1 x2 x3 x4 x5 x6
]T

=
[

6 0 6 0 0 15
]T

.

The optimal solution in the original variable space:
[

x1 x2 x3
]T

=
[

6 0 6
]T

, and the objective
function value is 12.

The non-basic variable x5 get the reduced cost coefficient z5 = 0 in row 0 and the basis is non-
degenerate, therefore the optimal solution is not unique. For example, one definition for the alter-
native optimal solutions:

















x1
x2
x3
x4
x5
x6

















=

















6
0
6
0
0
15

















− λ

















1

3

0
−1

3

0
−1

1

3

















, 0 ≤ λ ≤ 18

The same ray in the space of the original variables:





x1
x2
x3



 =





6
0
6



+ λ





−1

3

0
1

3



 , 0 ≤ λ ≤ 18

To answer d) we have to perform sensitivity analysis on the optimal simplex tableau by changing
the objective function.

• The objective coefficient of x1 is decreased to −1: In the optimal simplex tableau x1 is a
basic variable, so to perform the analysis we have to add the row that belongs to x1 exactly
c′
1
− c1 = −1− 1 = −2 times to row 0 and set the reduced cost for x1 to zero.

The resultant tableau is not optimal:

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 5

3
0 1

3
−2

3
0 0

x3 0 0 1

3
1 2

3
−1

3
0 6

x1 0 1 2

3
0 1

3

1

3
0 6

x6 0 0 11

3
0 1

3

1

3
1 15
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Using the primal simplex, x5 enters the basis and x1 leaves it.

z x1 x2 x3 x4 x5 x6 RHS

z 1 2 3 0 1 0 0 12

x3 0 1 1 1 1 0 0 12

x5 0 3 2 0 1 1 0 18

x6 0 −1 3 0 0 0 1 9

The new tableau is optimal. The result of the sensitivity analysis: Reducing the objective

function coefficient of x1 to −1, the optimal solution becomes x =





x1
x2
x3



 =





0
0
12



, (bounded

and unique), and the objective function value remains 12. Observe that we’d get the same x

point as an alternative optimal solution in the original linear program for the choice λ = 18.

• The objective coefficient of x1 is increased to 2: In this case we add the row corresponding to
x1 c′

1
− c1 = 2− 1 = 1 times to row 0.

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 11

3
0 4

3

1

3
0 18

x3 0 0 1

3
1 2

3
−1

3
0 6

x1 0 1 2

3
0 1

3

1

3
0 6

x6 0 0 11

3
0 1

3

1

3
1 15

The resultant tableau is optimal. The solution does not change, but the objective function
value does: doubling the “value” of x1 increases the optimum to 18. The solution becomes
unique, in contrast to the original linear programban.

• The objective coefficient of x2 is decreased to−4: Since changing a non-basic objective function
coefficient never changes the optimal solution, the tableau remains optimal.

• The objective coefficient of x2 is increased to 3: In row 0 the reduced cost value for x2 becomes
negative, because z′

2
= z2 − (c′

2
− c2) = 3− (3− (−2)) = −2 < 0. Therefore the solution is no

longer optimal. The changed tableau:

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 −2 0 1 0 0 12

x3 0 0 1

3
1 2

3
−1

3
0 6

x1 0 1 2

3
0 1

3

1

3
0 6

x6 0 0 11

3
0 1

3

1

3
1 15

The optimal tableau:

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 0 0 13

11

2

11

6

11

222

11

x3 0 0 0 1 7

11
− 4

11
− 1

11

51

11

x1 0 1 0 0 3

11

3

11
− 2

11

36

11

x2 0 0 1 0 1

11

1

11

3

11

45

11

12



The result of the sensitivity analysis: Reducing the objective function coefficient of x1 to −1,

the optimal solution becomes x =





x1
x2
x3



 =





36

11
45

11
51

11



, (bounded and unique) and the new objective

function value is 222

11
.

6. Solve the following linear program using the simplex method:

min −2x1 − 2x2 + 3x3 − 5x4
s.t. x1 + 2x2 + 4x3 − x4 ≤ 6

−2x1 − 3x2 + x3 − x4 ≥ −12
x1 + x3 + x4 ≤ 4
x1, x2, x3, x4 ≥ 0

a) Is the optimal objective function value of the linear program bounded? If not, give a ray causing
the unboundedness!

b) If it exists, provide an optimal solution with the corresponding objective function value.

c) Is the optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.

Solution: Convert the linear program to maximization form by inverting the objective function.
Invert the second constraint as well to get a primal feasible identity matrix formed by the slack
variables. Using the primal simplex algorithm, the optimal simplex tableau is the following:

z x1 x2 x3 x4 x5 x6 x7 RHS

z 1 11

3
0 20

3
0 0 2

3

13

3

76

3

x5 0 4

3
0 19

3
0 1 −2

3

5

3

14

3

x2 0 1

3
1 −2

3
0 0 1

3
−1

3

8

3

x4 0 1 0 1 1 0 0 1 4

Because the original objective function was a minimization, we have to invert the result. Therefore,

the optimal solution arises at
[

x1 x2 x3 x4
]T

=
[

0 −8

3
0 −4

]T
where the objective function

value is −76

3
. The optimal solution is unique.

7. Solve the following linear program using the simplex method:

max 3x1 + 2x2 − x3 + x4
s.t. 2x1 − 4x2 − x3 + x4 ≤ 8

x1 + x2 + 2x3 − 3x4 ≤ 10
x1 − x2 − 4x3 + x4 ≤ 4
x1, x2, x3, x4 ≥ 0

a) Is the optimal objective function value of the linear program bounded? If not, give a ray causing
the unboundedness!

b) If it exists, provide an optimal solution with the corresponding objective function value.

c) Is the optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.

Solution: The optimal solution of the linear program is unbounded. The initial simplex tableau:

z x1 x2 x3 x4 x5 x6 x7 RHS

z 1 −3 −2 1 −1 0 0 0 0

x5 0 2 −4 −1 1 1 0 0 8

x6 0 1 1 2 −3 0 1 0 10

x7 0 1 −1 −4 1 0 0 1 4
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Variable x1 enters, and variable x7 leaves the basis (x5 could also be the leaving variable).

z x1 x2 x3 x4 x5 x6 x7 RHS

z 1 0 −5 −11 2 0 0 3 12

x5 0 0 −2 7 −1 1 0 −2 0

x6 0 0 2 6 −4 0 1 −1 6

x1 0 1 −1 −4 1 0 0 1 4

After a degenerate pivot:

z x1 x2 x3 x4 x5 x6 x7 RHS

z 1 0 −57

7
0 3

7

11

7
0 −1

7
12

x3 0 0 −2

7
1 −1

7

1

7
0 −2

7
0

x6 0 0 26

7
0 −22

7
−6

7
1 5

7
6

x1 0 1 −15

7
0 3

7

4

7
0 −1

7
4

The final tableau of the primal simplex:

z x1 x2 x3 x4 x5 x6 x7 RHS

z 1 0 0 0 −84

13
− 4

13

57

26

37

26

327

13

x3 0 0 0 1 − 5

13

1

13

1

13
− 3

13

6

13

x2 0 0 1 0 −11

13
− 3

13

7

26

5

26

21

13

x1 0 1 0 0 −18

13

1

13

15

26

7

26

97

13

The tableau shows that x4 can be increased without limit. The ray causing the unboundedness in
the space of the original variables (without the slack variables):































x1

x2

x3

x4

x5

x6

x7
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97

13

21

13

6

13

0

0

0

0































+ λ































18

13

11

13

5

13

1

0

0

0































, λ ≥ 0















x1

x2

x3

x4















=















97

213

21

13

6

13

0















+ λ















18

13

11

13

5

13

1















, λ ≥ 0

Meanwhile, the objective function grows according to 327

13
+ λ84

13
, λ ≥ 0.

8. Solve the following linear program using the simplex method:

min 3x1 − x2
s.t. x1 − 3x2 ≥ −3

2x1 + 3x2 ≥ −6
2x1 + x2 ≤ 8
4x1 − x2 ≤ 16

a) Is the optimal objective function value of the linear program bounded? If not, give a ray causing
the unboundedness!
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b) If it exists, provide an optimal solution with the corresponding objective function value.

c) Is the optimal solution unique? If it is, provide a proof. If not, give alternative optimal solutions.

Solution: Observe that there is no non-negativity/non-positivity constraints! Substituting x1 =
y1 − y2, y1 ≥ 0, y2 ≥ 0 and x2 = y3 − y4, y3 ≥ 0, y4 ≥ 0, the maximization problem in canonical
form is the following:

max −3y1 + 3y2 + y3 − y4
s.t. −y1 + y2 + 3y3 − 3y4 ≤ 3

−2y1 + 2y2 − 3y3 + 3y4 ≤ 6
2y1 − 2y2 + y3 − y4 ≤ 8
4y1 − 4y2 − y3 + y4 ≤ 16
y1, y2, y3, y4 ≥ 0

Introduce slack variables to bring the problem into standard form. After executing the primal
simplex, the optimal simplex tableau is the following:

z y1 y2 y3 y4 y5 y6 y7 y8 RHS

z 1 0 0 0 0 11

9

8

9
0 0 9

y2 0 −1 1 0 0 1

3

1

3
0 0 3

y4 0 0 0 −1 1 −2

9

1

9
0 0 0

y7 0 0 0 0 0 4

9

7

9
1 0 14

y8 0 0 0 0 0 14

9

11

9
0 1 28

The optimum of the original minimization problem is −9, which arises at the point x1 = y1− y2 =
−3, x2 = y3− y4 = 0. Observe in the optimal simplex tableau that in the column corresponding to
y1 (which is the first column) the value corresponding to y2 is −1. Therefore, increasing y1 would
increase the value of y2 by the same quantity and x1 = y1 − y2 would remain the same. This is
also true for the variables y3 and y4. Accordingly, such substitutions for free variables usually yield
an optimal tableau with alternative optimal solutions. In this case, we see that the linear program

has infinite number of solutions but all solutions effectively belong to the same point
[

x1 x2
]T

in
the original linear program.

9. Solve the following linear program using the simplex method. Take note of the equality- and
inequality-types of constraints.

max 3x1 + 4x2 + 3x3 + 5x4
s.t. 2x1 + x2 − x3 + x4 ≥ 11

x1 + x2 + x3 + x4 = 8
− x2 + 2x3 + x4 ≤ 10

x1, x2, x3, x4 ≥ 0

a) Find an initial basis! Introduce artificial variables, if necessary.

b) Solve the linear program with corresponding simplex method. Is the optimal objective function
value of the linear program bounded? If not, give a ray causing the unboundedness! If the
optimal objective function value is bounded, is the corresponding optimal solution unique? If it
is, provide a proof. If not, give alternative optimal solutions.

c) Do the optimal solution and the objective function value change, if we

• decrease the objective function coefficient for x3 to 1,

• increase the objective function coefficient for x3 to 12,

• decrease the objective function coefficient for x1 to 1,

• increase the objective function coefficient for x1 to 7?
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Solution:

a) Transform to standard form with introducing slack-variables:

max 3x1 + 4x2 + 3x3 + 5x4
s.t. 2x1 + x2 − x3 + x4 − x5 = 11

x1 + x2 + x3 + x4 = 8
− x2 + 2x3 + x4 + x6 = 10

x1, x2, x3, x4, x5, x6 ≥ 0

There is no trivial initial unit basis, but we can use the slack-variable for the third constraint
(x6) as one candidate basic variable. To obtain the remaining two basic variables, we introduce
the artificial variables x7 and x8.

max 3x1 + 4x2 + 3x3 + 5x4
s.t. 2x1 + x2 − x3 + x4 − x5 + x7 = 11

x1 + x2 + x3 + x4 + x8 = 8
− x2 + 2x3 + x4 + x6 = 10

x1, x2, x3, x4, x5, x6, x7, x8 ≥ 0

So, in the first phase the primal simplex method is used for the initial unit basis formed by the
columns of x6, x7 and x8. The objective is to remove the artificial variables x7 and x8 from the
basis.

min x7 + x8
s.t. 2x1 + x2 − x3 + x4 − x5 + x7 = 11

x1 + x2 + x3 + x4 + x8 = 8
− x2 + 2x3 + x4 + x6 = 10

x1, x2, x3, x4, x5, x6, x7, x8 ≥ 0

Change the direction of the optimization to maximization (do not forget to multiply with −1
at the end). The tableau of the first phase in the (unit) basis given by B = {x7, x8, x6} is as
follows:

z x1 x2 x3 x4 x5 x6 x7 x8 RHS

z 1 0 0 0 0 0 0 1 1 0

x7 0 2 1 −1 1 −1 0 1 0 11

x8 0 1 1 1 1 0 0 0 1 8

x6 0 0 −1 2 1 0 1 0 0 10

At this point this is still not a valid simplex tableau; for this the framed reduced cost coefficients
must be reset in row zero using elementary row operations (adding/subtracting rows). The
resultant tableau is as follows:

z x1 x2 x3 x4 x5 x6 x7 x8 RHS

z 1 −3 −2 0 −2 1 0 0 0 −19

x7 0 2 1 −1 1 −1 0 1 0 11

x8 0 1 1 1 1 0 0 0 1 8

x6 0 0 −1 2 1 0 1 0 0 10

b) Apply the primal simplex method for solving the first phase. At the first pivot iteration, x1
enters basis and x7 leaves, etc. The optimal tableau for the first phase of the simplex is as
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follows:

z x1 x2 x3 x4 x5 x6 x7 x8 RHS

z 1 0 0 0 0 0 0 1 1 0

x1 0 1 2

3
0 2

3
−1

3
0 1

3

1

3

19

3

x3 0 0 1

3
1 1

3

1

3
0 −1

3

2

3

5

3

x6 0 0 −5

3
0 1

3
−2

3
1 2

3
−4

3

20

3

The optimal objective function value for the first phase is 0, so the original problem is feasible.
The artificial have left the basis, thus the columns of x7 and x8 can be removed and columns
for x1, x3 and x6 are available as an initial basis in the second phase.

Restoring the original objective function (do not forget invert the coefficients):

z x1 x2 x3 x4 x5 x6 RHS

z 1 −3 −4 −3 −5 0 0 0

x1 0 1 2

3
0 2

3
−1

3
0 19

3

x3 0 0 1

3
1 1

3

1

3
0 5

3

x6 0 0 −5

3
0 1

3
−2

3
1 20

3

Reset the framed reduced coefficient to get a valid simplex tableau:

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 −1 0 −2 0 0 24

x1 0 1 2

3
0 2

3
−1

3
0 19

3

x3 0 0 1

3
1 1

3

1

3
0 5

3

x6 0 0 −5

3
0 1

3
−2

3
1 20

3

The second phase starts, x4 enters the basis and x3 leaves.

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 1 6 0 2 0 34

x1 0 1 0 −2 0 −1 0 3

x4 0 0 1 3 1 1 0 5

x6 0 0 −2 −1 0 −1 1 5

The resultant tableau is optimal. The optimal objective function value is 34 (bounded) and the
solution is unique, because the reduced cost coefficients for all nonbasic variables are strictly
positive in row zero.

c) We have to perform sensitivity analysis on the optimal simplex tableau by changing the objective
function.

• the objective function coefficient of x3 is decreased to 1: decreasing of the objective coeffi-
cient of any nonbasic variable does not modify the solution, so the tableau remains optimal.

• the objective function coefficient of x3 is increased to 12: the reduced cost of x3 becomes
negative in row zero, because z′

3
= z3 − (c′

3
− c3) = 6− (12 − 3) = −3 < 0. Therefore, the

solution is no longer optimal. The modified tableau is:

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 1 −3 0 2 0 34

x1 0 1 0 −2 0 −1 0 3

x4 0 0 1 3 1 1 0 5

x6 0 0 −2 −1 0 −1 1 5
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x3 enters and x4 leaves the basis, and the resultant simplex tableau is optimal:

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 2 0 1 3 0 39

x1 0 1 2

3
0 2

3
−1

3
0 19

3

x3 0 0 1

3
1 1

3

1

3
0 5

3

x6 0 0 −5

3
0 1

3
−2

3
1 20

3

The result of the sensitivity analysis: by increasing the objective function coefficient of x3
to −1, x3 and x4 change place in the optimal basis and so the new optimal solution is








x1
x2
x3
x4









=









19

3

0
5

3

0









. The objective function value increases to 39.

• the objective function coefficient of x1 is decreased to 1: x1 is a basic variable in the
optimal solution, so we need to modify the tableau as follows: row of x1 is multiplied with
c′
1
− c1 = 1− 3 = −2 and added to row zero, and the coefficient for x1 is reset in row zero.

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 1 10 0 4 0 28

x1 0 1 0 −2 0 −1 0 3

x4 0 0 1 3 1 1 0 5

x6 0 0 −2 −1 0 −1 1 5

The tableau remains optimal, however the optimal objective function value decreases to 28.

• the objective function coefficient of x1 is increased to 7: now, c′
1
− c1 = 7− 3 = 4 times the

row of x1 is added to row zero.

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 1 −2 0 −2 0 46

x1 0 1 0 −2 0 −1 0 3

x4 0 0 1 3 1 1 0 5

x6 0 0 −2 −1 0 −1 1 5

x3 enters the basis and x4 leaves. The final optimal simplex tableau is:

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 3 4 2 0 0 56

x1 0 1 1 1 1 0 0 8

x5 0 0 1 3 1 1 0 5

x6 0 0 −1 2 1 0 1 10

The result of the sensitivity analysis: the new optimal solution is









x1
x2
x3
x4









=









8
0
0
0









and the

optimal objective function value increases to 56.
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Linear Programming Duality

10. Consider the linear program given in Exercise 4:

max 3x1 + 8x2 − 5x3 + 8x4
s.t. 2x1 + x2 + x3 + 3x4 ≤ 7

−x1 − 2x2 − x3 − x4 ≥ −2
x1 x2, x3, x4 ≥ 0

a) Write the dual of the linear program and convert to standard form! The following table sum-
marizes the rules for obtaining the dual linear program:

Maximization

problem

Minimization

problem

C
o
n
s
t
r
a
in

t ≥ ←→ ≤ 0

V
a
r
ia

b
le

≤ ←→ ≥ 0

= ←→ arbitrary

V
a
r
ia

b
le

≥ 0 ←→ ≥

C
o
n
s
t
r
a
in

t

≤ 0 ←→ ≤

arbitrary ←→ =

b) Find an initial basis! Introduce artificial variables, if necessary.

c) Solve the linear program using the corresponding simplex method. Is the optimal objective
function value of the linear program bounded? If not, give a ray causing the unboundedness! If
the optimal objective function value is bounded, is the corresponding optimal solution unique?
If it is, provide a proof. If not, give alternative optimal solutions.

d) Compare the resultant optimal solution with the solution of Exercise 4. What is the relationship
between the primal and dual optimal solutions?

Solution:

a) Using dual variables w1 and w′

2
, the dual linear program is as follows:

min 7w1 − 2w′

2

s.t. 2w1 − w′

2
≥ 3

w1 − 2w′

2
≥ 8

w1 − w′

2
≥ −5

3w1 − w′

2
≥ 8

w1 ≥ 0
w′

2
≤ 0

To obtain the standard form, we need to perform the following changes:

• we must change the optimization direction to maximization with inverting the objective
function (the resultant solution will need to be multiplied by −1),

• now w′

2
is nonpositive, so it must be converted to nonnegative variable using the substitution

w2 = −w
′

2
(the sign of the coefficients also change),

• finally, slack-variables must be introduced for all rows.
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The given standard form:

max −7w1 − 2w2

s.t. 2w1 + w2 − w3 = 3
w1 + 2w2 − w4 = 8
w1 + w2 − w5 = −5
3w1 + w2 − w6 = 8
w1, w2, w3 w4 w5 w6 ≥ 0

b) The slack-variables give initial dual-feasible (primal-optimal) basis.

c) Due to the above we could use the dual simplex method right away. Still, for the sake of the
exercise, let us introduce artificial variables so that we can use the primal simplex.

In the first step, the coefficients in the RHS column must be made positive. Thus, invert the
third condition to obtain:

max −7w1 − 2w2

s.t. 2w1 + w2 − w3 = 3
w1 + 2w2 − w4 = 8
−w1 − w2 + w5 = 5
3w1 + w2 − w6 = 8
w1, w2, w3 w4 w5 w6 ≥ 0

The slack-variable w5 can be used as one basic variable, for the rest introduce the artificial
variables w7, w8 and w9. The objective function is modified to eliminate the artificial variables:
minw7+w8+w9 = −max−w7−w8−w9. (Do not forget to invert the objective function values
at the end!):

max −1 − 1 − 1
s.t. 2w1 + w2 − w3 + w7 = 3

w1 + 2w2 − w4 + w8 = 8
−w1 − w2 + w5 = 5
3w1 + w2 − w6 + w9 = 8
w1, w2, w3, w4, w5, w6, w7, w8, w9 ≥ 0

The initial basis is the identity matrix for the columns of variables w5, w7, w8 and w9.

d) In tabular form (do not forget to invert row zero):

z w1 w2 w3 w4 w5 w6 w7 w8 w9 RHS

z 1 0 0 0 0 0 0 1 1 1 0

w7 0 2 1 −1 0 0 0 1 0 0 3

w8 0 1 2 0 −1 0 0 0 1 0 8

w5 0 −1 −1 0 0 1 0 0 0 0 5

w9 0 3 1 0 0 0 −1 0 0 1 8

The resultant form is still not a simplex tableau, because the framed elements in row zero are
non-zero. Subtract rows of w7, w8 and w9 from row zero to obtain a valid tableau:

z w1 w2 w3 w4 w5 w6 w7 w8 w9 RHS

z 1 −6 −4 1 1 0 1 0 0 0 −19

w7 0 2 1 −1 0 0 0 1 0 0 3

w8 0 1 2 0 −1 0 0 0 1 0 8

w5 0 −1 −1 0 0 1 0 0 0 0 5

w9 0 3 1 0 0 0 −1 0 0 1 8
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First phase starts, w1 enters the basis and w7 leaves.

z w1 w2 w3 w4 w5 w6 w7 w8 w9 RHS

z 1 0 −1 −2 1 0 1 3 0 0 −10

w1 0 1 1

2
−1

2
0 0 0 1

2
0 0 3

2

w8 0 0 3

2

1

2
−1 0 0 −1

2
1 0 13

2

w5 0 0 −1

2
−1

2
0 1 0 1

2
0 0 13

2

w9 0 0 −1

2

3

2
0 0 −1 −3

2
0 1 7

2

w3 enters and w9 leaves the basis.

z w1 w2 w3 w4 w5 w6 w7 w8 w9 RHS

z 1 0 −5

3
0 1 0 −1

3
1 0 4

3
−16

3

w1 0 1 1

3
0 0 0 −1

3
0 0 1

3

8

3

w8 0 0 5

3
0 −1 0 1

3
0 1 −1

3

16

3

w5 0 0 −2

3
0 0 1 −1

3
0 0 1

3

23

3

w3 0 0 −1

3
1 0 0 −2

3
−1 0 2

3

7

3

w2 enters the basis and w8 leaves.

z w1 w2 w3 w4 w5 w6 w7 w8 w9 RHS

z 1 0 0 0 0 0 0 1 1 1 0

w1 0 1 0 0 1

5
0 −2

5
0 −1

5

2

5

8

5

w2 0 0 1 0 −3

5
0 1

5
0 3

5
−1

5

16

5

w5 0 0 0 0 −2

5
1 −1

5
0 2

5

1

5

49

5

w3 0 0 0 1 −1

5
0 −3

5
−1 1

5

3

5

17

5

At this point we get the optimal tableau for phase 1. The objective function value is 0, so the
original problem is feasible, and the artificial variables have left the basis so columns for w7, w8

and w9 can be removed.

Restore the objective function to the objective of the dual (do not forget invert the coefficients):

z w1 w2 w3 w4 w5 w6 RHS

z 1 7 2 0 0 0 0 0

w1 0 1 0 0 1

5
0 −2

5

8

5

w2 0 0 1 0 −3

5
0 1

5

16

5

w5 0 0 0 0 −2

5
1 −1

5

49

5

w3 0 0 0 1 −1

5
0 −3

5

17

5

Now this is again not a valid simplex tableau; for this we must reset the framed elements in row
zero:

z w1 w2 w3 w4 w5 w6 RHS

z 1 0 0 0 −1

5
0 12

5
−88

5

w1 0 1 0 0 1

5
0 −2

5

8

5

w2 0 0 1 0 −3

5
0 1

5

16

5

w5 0 0 0 0 −2

5
1 −1

5

49

5

w3 0 0 0 1 −1

5
0 −3

5

17

5
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Second phase starts, w4 enters the basis and w1 leaves.

z w1 w2 w3 w4 w5 w6 RHS

z 1 1 0 0 0 0 2 −16

w4 0 5 0 0 1 0 −2 8

w2 0 3 1 0 0 0 −1 8

w5 0 2 0 0 0 1 −1 13

w3 0 1 0 1 0 0 −1 5

We get the optimal simplex tableau; end of the second phase. The optimal objective function
value is −16, so the objective function value of the original (minimization) dual problem is 16.

The optimal solution is w =

[

w1

w2

]

=

[

0
8

]

. The solution is unique.

e) Due to the Strong Theorem of Duality, the optimal objective function value of the primal problem
(16) equals the optimal objective function value of the dual (also 16).

Using complementary slackness, further relationships can be observed: for example, it is well-
known that whenever the optimal value of a dual variable is strictly positive then the corre-
sponding constraint is tight in the primal:

w2 > 0⇒ −x1 − 2x2 − x3 − x4=− 2

Similarly, if a constraint in the primal is not tight then the value of the corresponding dual
variable is guaranteed to be zero:

2x1 + x2 + x3 + 3x4<7⇒ w1 = 0

Furthermore: a positive primal variable yields that the corresponding dual constraint is tight,
and contrarily, a loose (not tight) dual constraint yields that the corresponding optimal primal
solution is zero:

x4 > 0⇒ 3w1 − w′

2 = 3w1 + w2=8

2w1 − w′

2 = 2w1 + w2>3⇒ x1 = 0

Solving Word Problems with the Simplex Algorithm

11. In a paper mill, the machines are being replaced. Two types of cardboard-cutting machines can be
purchased: machine A can cut 3 boxes per one minute, one person is needed to operate it, and it
costs 15,000 units of money; machine B machine can make 5 boxes per minute, but it requeres two
people to supervise it, and it costs 20,000 units of money. The production plan is to produce at
least 32 boxes per minute with at most 12 workers involved.

How many A and B machines needs to be purchased to fit the production plan with minimized
costs?

a) Define the above “resource acquisition” problem as a linear program!

b) Find an initial basis!

c) Solve the linear program with the primal or the dual simplex algorithm!

d) Got an integer as a result? If so, is integrality of the results guaranteed?

Solution:

22



a) Mark the amount of A-type machines purchased with xA, and mark the amount of B -type
machines purchased with xB. The workforce constraints:

xA + 2xB ≤ 12 .

The plan is to produce 32 boxes, which provides the following condition:

3xA + 5xB ≥ 32 .

Capital expenditures, i.e., the amount of money needed to purchase the machines:

15xA + 20xB .

The variables are non-negative. From this, the linear program:

min 15xA + 20xB
s.t. xA + 2xB ≤ 12

3xA + 5xB ≥ 32
xA, xB ≥ 0

b) Converting the linear program to standard form by (1) introducing slack variables to bring all
conditions to a =-form, (2) inverting the second condition, and (3) rewriting the objective into
maximization form:

max −15xA − 20xB
s.t. xA + 2xB + s1 = 12

−3xA − 5xB + s2 = −32
xA, xB, s1, s2 ≥ 0

The slack variables form an initial unit base.

c) We will use the dual simplex algorithm. The initial simplex table:

z xA xB s1 s2 RHS

z 1 15 20 0 0 0

s1 0 1 2 1 0 12

s2 0 −3 −5 0 1 −32

Further iterations of the dual simplex algorithm:

z xA xB s1 s2 RHS

z 1 3 0 0 4 −128

s1 0 −1

5
0 1 2

5
−4

5

xB 0 3

5
1 0 −1

5

32

5

Finally, the optimal table:

z xA xB s1 s2 RHS

z 1 0 0 15 10 −140

xA 0 1 0 −5 −2 4

xB 0 0 1 3 1 4

The management of the paper mill needs to buy 4-4 machines for 140,000 units of money, and
a total of 4 + 2 ∗ 4 = 12 workers must be employed.

d) The result an integral, but this is not guaranteed. For that we’d need to introduce an explicit
integrality condition, yielding an Integer Linear Program.
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