
Nonlinear Programming 2

• Unconstrained Optimization 1: line search, search interval,
extreme values of convex functions, smooth and nonsmooth
line search

• Unconstrained Optimization 2: multivariable unconstrained
optimization, steepest descent method

• Solving a constrained nonlinear program using
unconstrained optimization: exterior penalty function
methods, (interior) barrier function methods, choosing
penalty and barrier functions, comparison, examples

– p. 1



Recall: Feasible Directions

• Given a nonlinear program min f(x) : x ∈ X , where

X =
{

x : gi(x) ≤ 0, i ∈ {1, . . . ,m}
}

and f and gi are

smooth (continuously differentiable) functions on X

• We use the fact that if x̄ is a local minimum then there is no
(improving) feasible direction d at x̄ and δ > 0 so that

∀λ ∈ (0, δ) : f(x̄+ λd) < f(x̄)

x̄+ λd ∈ X

• Only necessary, but for convex programs also sufficient
(subject to certain constraint qualifications we do not
discuss here)

• We solve the nonlinear program by iteratively moving along
feasible directions

– p. 2



Recall: Feasible Directions

• Seek a point where there is no improving feasible direction

• Let J ⊆ I be the set of tight constraints at x̄

∀i ∈ J : gi(x̄) = 0, ∀i ∈ I \ J : gi(x̄) < 0

• An improving feasible direction is the below (if exists):

d : ∇f(x̄)Td < 0, ∇gi(x̄)
Td < 0 ∀i ∈ J

• We can find such d by solving the below problem:

zopt = min∇f(x̄)Td : |d| ≤ 1, ∇gi(x̄)
Td < 0 ∀i ∈ J

• Linear objective function, linear (linearizable) constraints

• Successive linear programming
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Recall: Line Search

• If zopt ∼0 then x̄ is (probably) a local minimum: in some

pathological cases the condition might not be sufficient

• If zopt < 0 then d is an improving feasible direction

• Line search along the ray x̄+ λd : λ > 0 so that

◦ the feasible region is not left and

◦ the objective function is minimized along d

• Simple nonlinear program with a single unknown, where the

feasible region is an interval (or the entire R)

min f(x̄+ λd) : x̄+ λd ∈ X, λ ≥ 0

• Interior point methods often work this way: find a “good”
direction and perform line search to find the ideal step size

• We need an efficient algorithm to perform line search
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Line Search

• Find the optimal solution of the optimization problem

min θ(λ) : λ ∈ [a, b] where θ is convex and smooth

• We concentrate on convex functions: the ideas can be
generalized to the nonconvex case as well

• We rely on the assumption that θ is differentiable: for the
convex nonsmooth case, one can use dichotomous search
for instance

• The interval [a, b] is called the search interval

– p. 5



Smooth Convex Line Search

• Theorem: a smooth function f is convex on some set X if
and only if

∀x,y ∈ X : f(y) ≥ f(x) +∇f(x)T (y − x) (1)

• Geometrically: the tangent space at x bounds f from below

x

f(x)

f(x) + f ′(x)(y − x)

• Useful for outer linearization: approximating a nonlinear

constraint system X = {x : gi(x) ≤ 0, i = 1, . . . ,m} at x̄

with X̄ = {x : gi(x̄) +∇gi(x̄)
T (x− x̄) ≤ 0, i = 1, . . . ,m}
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Smooth Convex Line Search

• Proof: supposing first that f is convex, we show that (1)
holds

• f is convex: the line segment between f(x) and f(y)
upper bounds the function of f between points x and y

∀λ ∈ [0, 1] : f(λy + (1− λ)x) ≤ λf(y) + (1− λ)f(x)

• Using that µa+ (1− µ)b = b+ µ(a− b):

f(x+ λ(y − x)) ≤ f(x) + λ(f(y)− f(x))

• Bringing f(x) to the left-hand side and dividing by λ:

f(x+ λ(y − x))− f(x)

λ
≤ f(y)− f(x)
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Smooth Convex Line Search

• Taking the limit λ → 0 gives the desired inequality:

∇f(x)T (y − x) ≤ f(y)− f(x)

since the directional derivative of f in the direction (y − x):

lim
λ→0

f(x+ λ(y − x))− f(x)

λ
= ∇Tf(x)(y − x)

• In the other direction: we show that from (1) the convexity of
f follows

• Let x1,x2 ∈ X by two arbitrary points in X and let x be a
convex combination of x1 and x2

x = λx1 + (1− λ)x2, λ ∈ [0, 1]
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Smooth Convex Line Search

• First, write (1) for the case when y = x1

f(x1) ≥ f(x) +∇f(x)T (x1 − x) (2)

• Second, write (1) for the case when y = x2

f(x2) ≥ f(x) +∇f(x)T (x2 − x) (3)

• Multiply (2) by λ and (3) by 1− λ and sum the two:

λf(x1) ≥ λf(x) + λ∇f(x)T (x1 − x)

(1− λ)f(x2) ≥ (1− λ)f(x) + (1− λ)∇f(x)T (x2 − x)

λf(x1) + (1− λ)f(x2) ≥ f(x) +∇f(x)T (λx1 + (1− λ)x2 − x)
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Smooth Convex Line Search

• Since x is a convex combination of x1 and x2 we can:

◦ on the right-hand side substitute f(x) with

f(λx1 + (1− λ)x2)

◦ rewrite the gradient for the expression in parentheses:

λx1 + (1− λ)x2 − x =

λx1 + (1− λ)x2 − (λx1 + (1− λ)x2) = 0

• We obtain precisely the definition of convexity of f :

λf(x1) + (1− λ)f(x2) ≥ f(λx1 + (1− λ)x2)

• Holds for any x1, x2, and x, which concludes the proof

• One of the cornerstone theorems of convex analysis
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Smooth Convex Line Search

• Corollary: given f be smooth and convex and x̄ ∈ Rn,

f(x̄) is a global minimum of f if and only if ∇f(x̄) = 0

• Proof: earlier, we have seen that ∇f(x̄) = 0 is necessary

for f(x̄) to be a minimum

• In the general case ∇f(x̄) = 0 is not sufficient though (it

also holds at inflection points, saddle points, etc.)

• For convex functions, however, it is also sufficient

• To see this, suppose ∇f(x̄) = 0 and use the previous

theorem for x̄ and arbitrary y:

f(y) ≥ f(x̄) +∇f(x̄)T (y − x̄) = f(x̄) + 0

• So f(x̄) is a global minimum
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Smooth Convex Line Search

• In single dimension, the finding extreme values is much
simpler

• A function θ(λ) : R 7→ R is convex if and only if

∀µ, ν : θ(µ) ≥ θ(ν) + θ′(ν)(µ− ν) (4)

• For finding the minimum, simply find λ : θ′(λ) = 0

• We can find the minimum for a smooth convex function
efficiently using the above two results

• We can use simple binary search for finding λ : θ′(λ) = 0
and it is enough to evaluate θ only once in each iteration
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Smooth Convex Line Search

• Solve min θ(λ) : λ ∈ [a, b], where θ is a smooth convex

function on the search interval [a, b]

• Take any point λ ∈ [a, b] and evaluate θ′(λ)-t

• One of three cases can occur:

◦ θ′(λ) = 0: by the above, θ attains the minimum at λ

◦ θ′(λ) > 0: for any ∀µ > λ : θ′(λ)(µ− λ) > 0, so by (4)

we obtain θ(µ) > θ(λ) and therefore the minimum

cannot occur in the interval [λ, b] and thus the search

interval can be narrowed down to [a, λ]

◦ θ′(λ) < 0: just the opposite, ∀µ < λ : θ(µ) > θ(λ) since

θ′(λ)(µ− λ) > 0 by θ′(λ) < 0 and µ− λ < 0, and the

new search interval is [λ, b]
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Smooth Convex Line Search

• Choose λ so that the narrowed down search interval
max{λ− a, b− λ} is minimal in the worst-case

• It is easy to see that this occurs at the middle point

λ = 1
2
(a+ b) of the interval [a, b]

• Simple binary search:

◦ Initialization: choose search precision l > 0, let a1 = a,
b1 = b, and let k = 1

1. let λk =
1
2
(ak + bk) and evalutate θ′(λk)

2. if θ′(λ) = 0 or bk − ak < l then halt: the minimum occurs

in the interval [ak, bk]

3. if θ′(λ) > 0 then ak+1 = ak and bk+1 = λk, otherwise

ak+1 = λk and bk+1 = bk, and go to step (1)
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Smooth Convex Line Search

• The size of the search interval at step k: 1
2k
(b− a)

• The number of steps to reach precision l: k ≥ log2
b−a
l

• Example: find the minimum of the function θ(λ) = λ2 + 2λ
on the interval [−5, 15] with precision l = 2 · 10−2

• We seek λ that satisfies θ′(λ) = 2λ+ 2 = 0, but very often

the algebraic equation θ′(λ) = 0 cannot be solved directly

• Using our numeric method (binary search) instead:

k a b λ θ′(λ) θ(λ) b− a

1 -5.0000 15.0000 5.0000 12.0000 35.0000 20.0000

2 -5.0000 5.0000 0.0000 2.0000 0.0000 10.0000

3 -5.0000 0.0000 -2.5000 -3.0000 1.2500 5.0000

.

.

. . . . . . . . . . . . . . . . . . .

11 -1.0156 -0.9961 -1.0059 0.0118 -1.0000 0.0195
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Unconstrained Optimization

• In practice we often need to move beyond single-dimension

line search and minimize multivariable Rn 7→ R functions

• Given a nonlinear program min f(x) : x ∈ X , let X = Rn

• Suppose that f is smooth and convex

• The minimum occurs at point x̄ where ∇f(x̄) = 0

• Usually this cannot be solved analytically, we need numeric
methods and approximations

• We already have a method to optimize convex programs:
the method of feasible directions due to Zoutendijk

• Much simpler in our case since now all directions are

feasible (X = Rn)

• We only need to take care of ensuring that the direction we
find be improving
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The Steepest Descent Method

• Some d is an improving direction at x̄ if ∇f(x̄)Td < 0

• Steepest descent: the unit vector d̂ moving along which

we experience the largest drop in the value of f

• Theorem: argmin
d̂:‖d̂‖=1

∇f(x̄)T d̂ = − ∇f(x̄)

‖∇f(x̄)‖

• Proof: using the Cauchy–Schwarz Inequality and ‖d̂‖ = 1:

∇f(x̄)T d̂ ≥ −‖∇f(x̄)‖‖d̂‖ ≥ −‖∇f(x̄)‖

• Holds with equality if and only if d̂ = −∇f(x̄)
‖∇f(x̄)‖

• So the best improving direction is d̂ = −∇f(x̄)
‖∇f(x̄)‖

, then we can

again use line search to find the ideal step size along d̂
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The Steepest Descent Method

• Solve the unconstrained nonlinear optimization problem

min f(x) : x ∈ Rn where f is smooth and convex

• Initialization: choose precision ǫ > 0 and x1 initial point, and
let k = 1

1 Of ‖∇f(xk)‖ < ǫ then halt, xk is minimal

2 Otherwise dk = −∇f(xk)

3 Line search: solve the unconstrained search problem

λk = min f(xk + λdk) : λ ≥ 0

4 Let xk+1 = xk + λkdk and go to step (2)
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The Steepest Descent Method

• Simple and, theoretically, it converges in finite steps, but
hardly usable in practice due to zig-zagging

• Higher-order methods can avoid this: Newton’s method,
conjugate gradient, etc.
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Penalty and Barrier Functions

• We have seen that constraints make the optimization much
more difficult: improving directions are easy to find, feasible
directions may be more difficult

• It would be nice to trace back constrained nonlinear
programming to unconstrained optimization

• The idea is to enforce constraints via the objective function,
by adding a term to the objective to penalize any violation of
the constraints and to remove the constraints themselves

• Minimization of the resultant unconstrained problem will try
to remove the penalty and thereby to satisfy the constraints

◦ (exterior) penalty functions: infeasible points are
penalized, the further the point from the feasible region
the larger the penalty

◦ (interior) barrier functions: even approaching the
boundary of the feasible region already carries a penalty
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Penalty Function Methods

• Consider the simple constrained nonlinear optimization
problem

min f(x) : h(x) = 0

where f and h are Rn 7→ R functions and x ∈ Rn

• Replace this constrained problem with the below
unconstrained one:

min f(x) + µh2(x) : x ∈ R
n

where µ > 0 is some large scalar

• Intuitively, at optimum the (external) penalty function

µh2(x) will take a value close to zero, otherwise the penalty

would prohibitively increase the objective value

• Choosing µ large enough ensures that the minimum of the
original problem and the unconstrained problem coincide
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Penalty Function Methods

• Nonlinear programs containing inequality constraints need a
different penalty function

min f(x) : g(x) ≤ 0

• The penalty function µg2(x) would not work since it would

penalize both g(x) < 0 and g(x) > 0 whereas we need to

penalize only the latter

• Consider the below unconstrained problem instead:

min f(x) + µmax{0, g(x)} : x ∈ R
n

• Penalty is applied only if g(x) > 0, since for g(x) < 0 the

penalty disappears by max{0, g(x)} = 0

• Even better penalty function is µ(max{0, g(x)})2: smooth!
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Penalty Function Methods

• For the generic case when the nonlinear program contains
both equality and inequality constraints:

min f(x)

s.t. gi(x) ≤ 0 i ∈ {1, . . . ,m}
hi(x) = 0 i ∈ {1, . . . , n}

• The external penalty functions:

α(x) =

m
∑

i=1

Φ(gi(x)) +

n
∑

i=1

Ψ(hi(x))

Φ(y) = (max{0, y})p, Ψ(y) = |y|p

for some p > 0 integer
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Penalty Function Methods

• We obtain the below unconstrained nonlinear program:

min f(x) + µ

(

m
∑

i=1

(max{0, gi(x)})p +
n
∑

i=1

|hi(x)|p
)

:

x ∈ R
n

• Can be solved using the unconstrained optimization
methods discussed previously

• Can be started from arbitrary, even from an infeasible point

• Drawback is that the search enters into the feasible region
only in the vicinity of the optimum, exactly where
zig-zagging is most prominent

• Large µ needed for reliable result: numeric instability
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Penalty Function Methods: Example

• Consider the constrained (non)linear program

min x

s.t. − x+ 2 ≤ 0

• Optimum at x̄ = 2: f(x̄) = 2

• Solve the problem using penalty functions

• Using the penalty function α(x) = (max{0, g(x)})2 the

constrained problem as an unconstrained nonlinear
program:

α(x) =

{

0 ha x ≥ 2
(−x+ 2)2 ha x < 2
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Penalty Function Methods: Example

x
0 2

α(x)

f(x) + µα(x)

• f(x) + µα(x) is convex, so we

can find the minimum easily

• The derivative for x < 2:

(f(x) + µα(x))′ = 1+2µ(x−2) = 0

• The optimal solution:

x̄ = 2− 1

2µ

• Approximates the real optimum
as µ → ∞

• In general, guaranteed to con-
verge in finite steps
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Penalty Function Methods: Example

• Solve the constrained optimization problem

min x2
1 + x2

2 : x1 + x2 − 1 = 0

• Optimal solution:
[

x1 x2

]T
=
[

1
2

1
2

]T
, optimum: 1

2

• Apply the penalty function α(y) = |y|2:

min x2
1 + x2

2 + µ(x1 + x2 − 1)2 : x1, x2 ∈ R

• Convex for ∀µ ≥ 0, so the minimum occurs where:

2x1 + 2µ(x1 + x2 − 1) = 0

2x2 + 2µ(x1 + x2 − 1) = 0

• From the two equations: x1 = x2 =
1

2+
1
µ

, optimal if µ → ∞
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Barrier Function Methods

• External penalty function methods converge through a
sequence of infeasible points

• Internal barrier functions do not allow the search to leave
the feasible region in the first place

• Given a linear program with inequality constraints:

min f(x)

s.t. gi(x) ≤ 0 i ∈ {1, . . . ,m}

• Instead, solve the unconstrained problem

min f(x) + µβ(x) : x ∈ R
n
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Barrier Function Methods

• The internal barrier function β takes nonnegative values in
the interior of the feasible region and tends to infinity at the
boundary:

β(x) =

m
∑

i=1

Φ(gi(x))

where barrier function Φ has the following properties:

Φ(y) ≥ 0 if y < 0, lim
y→0−

Φ(y) = ∞

• The barrier function prohibits passing the boundary of the
feasible region

• Equality conditions are more involving to handle here
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Barrier Function Methods

• Typical internal barrier functions:

β(x) =

m
∑

i=1

−1

gi(x)
, β(x) = −

m
∑

i=1

ln (min {1,−gi(x)})

• The augmented objective function can be optimized using
unconstrained methods and we never step out of the
feasible region

• Drawback is that the penalty appears even at the optimum
and the optimum cannot occur at a boundary point

• Plus the iteration must start from a feasible point, otherwise
we never get to the other “good” side of the barrier

• Works reliably when µ is small, but too small value for µ
again causes numerical instability and badly conditioned
problems
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Barrier Function Methods: Example

• Consider the nonlinear program

min x

s.t. − x+ 1 ≤ 0

• The optimum is 1, attained by the objective at x̄ = 1

• Let the internal barrier function be as follows:

β(x) =
−1

−x+ 1
=

1

x− 1
x 6= 1

• The resultant unconstrained problem:

min x+
µ

x− 1
: x ∈ R
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Barrier Function Methods: Example

• Solving min x+ µ

x−1
: x ∈ R only makes sense of x > 1,

we need to take care of this ourselves

• The objective function is convex, the minimum occurs at
d
dx
(f(x) + µβ(x)) = 0 from which we obtain x̄ = 1 +

√
µ,

optimal for µ → 0

x
0 1

β(x)

1
2
β(x)

1
5
β(x)

x
0 1

f(x) + µβ(x)

1 +
√
µ
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