Nonlinear Programming 2

- Unconstrained Optimization 1: line search, search interval, extreme values of convex functions, smooth and nonsmooth line search
- Unconstrained Optimization 2: multivariable unconstrained optimization, steepest descent method
- Solving a constrained nonlinear program using unconstrained optimization: exterior penalty function methods, (interior) barrier function methods, choosing penalty and barrier functions, comparison, examples

Recall: Feasible Directions

- Given a nonlinear program min $f(\boldsymbol{x}): \boldsymbol{x} \in X$, where $X=\left\{\boldsymbol{x}: g_{i}(\boldsymbol{x}) \leq 0, i \in\{1, \ldots, m\}\right\}$ and f and g_{i} are smooth (continuously differentiable) functions on X
- We use the fact that if $\overline{\boldsymbol{x}}$ is a local minimum then there is no (improving) feasible direction \boldsymbol{d} at $\overline{\boldsymbol{x}}$ and $\delta>0$ so that

$$
\begin{aligned}
\forall \lambda \in(0, \delta): & f(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d})<f(\overline{\boldsymbol{x}}) \\
& \overline{\boldsymbol{x}}+\lambda \boldsymbol{d} \in X
\end{aligned}
$$

- Only necessary, but for convex programs also sufficient (subject to certain constraint qualifications we do not discuss here)
- We solve the nonlinear program by iteratively moving along feasible directions

Recall: Feasible Directions

- Seek a point where there is no improving feasible direction
- Let $J \subseteq I$ be the set of tight constraints at $\overline{\boldsymbol{x}}$

$$
\forall i \in J: g_{i}(\overline{\boldsymbol{x}})=0, \quad \forall i \in I \backslash J: g_{i}(\overline{\boldsymbol{x}})<0
$$

- An improving feasible direction is the below (if exists):

$$
\boldsymbol{d}: \nabla f(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}<0, \nabla g_{i}(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}<0 \quad \forall i \in J
$$

- We can find such \boldsymbol{d} by solving the below problem:

$$
z_{o p t}=\min \nabla f(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}:|\boldsymbol{d}| \leq 1, \nabla g_{i}(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}<0 \quad \forall i \in J
$$

- Linear objective function, linear (linearizable) constraints
- Successive linear programming

Recall: Line Search

- If $z_{\text {opt }} \sim 0$ then $\overline{\boldsymbol{x}}$ is (probably) a local minimum: in some pathological cases the condition might not be sufficient
- If $z_{\text {opt }}<0$ then \boldsymbol{d} is an improving feasible direction
- Line search along the ray $\overline{\boldsymbol{x}}+\lambda \boldsymbol{d}: \lambda>0$ so that
- the feasible region is not left and
- the objective function is minimized along d
- Simple nonlinear program with a single unknown, where the feasible region is an interval (or the entire \mathbb{R})

$$
\min f(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d}): \overline{\boldsymbol{x}}+\lambda \boldsymbol{d} \in X, \lambda \geq 0
$$

- Interior point methods often work this way: find a "good" direction and perform line search to find the ideal step size
- We need an efficient algorithm to perform line search

Line Search

- Find the optimal solution of the optimization problem $\min \theta(\lambda): \lambda \in[a, b]$ where θ is convex and smooth
- We concentrate on convex functions: the ideas can be generalized to the nonconvex case as well
- We rely on the assumption that θ is differentiable: for the convex nonsmooth case, one can use dichotomous search for instance
- The interval $[a, b]$ is called the search interval

Smooth Convex Line Search

- Theorem: a smooth function f is convex on some set X if and only if

$$
\begin{equation*}
\forall \boldsymbol{x}, \boldsymbol{y} \in X: \quad f(\boldsymbol{y}) \geq f(\boldsymbol{x})+\nabla f(\boldsymbol{x})^{T}(\boldsymbol{y}-\boldsymbol{x}) \tag{1}
\end{equation*}
$$

- Geometrically: the tangent space at \boldsymbol{x} bounds f from below

- Useful for outer linearization: approximating a nonlinear constraint system $X=\left\{\boldsymbol{x}: g_{i}(\boldsymbol{x}) \leq 0, i=1, \ldots, m\right\}$ at $\overline{\boldsymbol{x}}$ with $\bar{X}=\left\{\boldsymbol{x}: g_{i}(\overline{\boldsymbol{x}})+\nabla g_{i}(\overline{\boldsymbol{x}})^{T}(\boldsymbol{x}-\overline{\boldsymbol{x}}) \leq 0, i=1, \ldots, m\right\}$

Smooth Convex Line Search

- Proof: supposing first that f is convex, we show that (1) holds
- f is convex: the line segment between $f(\boldsymbol{x})$ and $f(\boldsymbol{y})$ upper bounds the function of f between points \boldsymbol{x} and \boldsymbol{y}

$$
\forall \lambda \in[0,1]: f(\lambda \boldsymbol{y}+(1-\lambda) \boldsymbol{x}) \leq \lambda f(\boldsymbol{y})+(1-\lambda) f(\boldsymbol{x})
$$

- Using that $\mu a+(1-\mu) b=b+\mu(a-b)$:

$$
f(\boldsymbol{x}+\lambda(\boldsymbol{y}-\boldsymbol{x})) \leq f(\boldsymbol{x})+\lambda(f(\boldsymbol{y})-f(\boldsymbol{x}))
$$

- Bringing $f(\boldsymbol{x})$ to the left-hand side and dividing by λ :

$$
\frac{f(\boldsymbol{x}+\lambda(\boldsymbol{y}-\boldsymbol{x}))-f(\boldsymbol{x})}{\lambda} \leq f(\boldsymbol{y})-f(\boldsymbol{x})
$$

Smooth Convex Line Search

- Taking the limit $\lambda \rightarrow 0$ gives the desired inequality:

$$
\nabla f(\boldsymbol{x})^{T}(\boldsymbol{y}-\boldsymbol{x}) \leq f(\boldsymbol{y})-f(\boldsymbol{x})
$$

since the directional derivative of f in the direction $(\boldsymbol{y}-\boldsymbol{x})$:

$$
\lim _{\lambda \rightarrow 0} \frac{f(\boldsymbol{x}+\lambda(\boldsymbol{y}-\boldsymbol{x}))-f(\boldsymbol{x})}{\lambda}=\nabla^{T} f(\boldsymbol{x})(\boldsymbol{y}-\boldsymbol{x})
$$

- In the other direction: we show that from (1) the convexity of f follows
- Let $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in X$ by two arbitrary points in X and let \boldsymbol{x} be a convex combination of \boldsymbol{x}_{1} and \boldsymbol{x}_{2}

$$
\boldsymbol{x}=\lambda \boldsymbol{x}_{1}+(1-\lambda) \boldsymbol{x}_{2}, \quad \lambda \in[0,1]
$$

Smooth Convex Line Search

- First, write (1) for the case when $\boldsymbol{y}=\boldsymbol{x}_{1}$

$$
\begin{equation*}
f\left(\boldsymbol{x}_{1}\right) \geq f(\boldsymbol{x})+\nabla f(\boldsymbol{x})^{T}\left(\boldsymbol{x}_{1}-\boldsymbol{x}\right) \tag{2}
\end{equation*}
$$

- Second, write (1) for the case when $\boldsymbol{y}=\boldsymbol{x}_{2}$

$$
\begin{equation*}
f\left(\boldsymbol{x}_{2}\right) \geq f(\boldsymbol{x})+\nabla f(\boldsymbol{x})^{T}\left(\boldsymbol{x}_{2}-\boldsymbol{x}\right) \tag{3}
\end{equation*}
$$

- Multiply (2) by λ and (3) by $1-\lambda$ and sum the two:

$$
\begin{aligned}
\lambda f\left(\boldsymbol{x}_{1}\right) & \geq \lambda f(\boldsymbol{x})+\lambda \nabla f(\boldsymbol{x})^{T}\left(\boldsymbol{x}_{1}-\boldsymbol{x}\right) \\
(1-\lambda) f\left(\boldsymbol{x}_{2}\right) & \geq(1-\lambda) f(\boldsymbol{x})+(1-\lambda) \nabla f(\boldsymbol{x})^{T}\left(\boldsymbol{x}_{2}-\boldsymbol{x}\right)
\end{aligned}
$$

$\lambda f\left(\boldsymbol{x}_{1}\right)+(1-\lambda) f\left(\boldsymbol{x}_{2}\right) \geq f(\boldsymbol{x})+\nabla f(\boldsymbol{x})^{T}\left(\lambda \boldsymbol{x}_{1}+(1-\lambda) \boldsymbol{x}_{2}-\boldsymbol{x}\right)$

Smooth Convex Line Search

- Since \boldsymbol{x} is a convex combination of \boldsymbol{x}_{1} and \boldsymbol{x}_{2} we can:
- on the right-hand side substitute $f(\boldsymbol{x})$ with

$$
f\left(\lambda \boldsymbol{x}_{1}+(1-\lambda) \boldsymbol{x}_{2}\right)
$$

- rewrite the gradient for the expression in parentheses:

$$
\begin{aligned}
& \lambda \boldsymbol{x}_{1}+(1-\lambda) \boldsymbol{x}_{2}-\boldsymbol{x}= \\
& \quad \lambda \boldsymbol{x}_{1}+(1-\lambda) \boldsymbol{x}_{2}-\left(\lambda \boldsymbol{x}_{1}+(1-\lambda) \boldsymbol{x}_{2}\right)=0
\end{aligned}
$$

- We obtain precisely the definition of convexity of f :

$$
\lambda f\left(\boldsymbol{x}_{1}\right)+(1-\lambda) f\left(\boldsymbol{x}_{2}\right) \geq f\left(\lambda \boldsymbol{x}_{1}+(1-\lambda) \boldsymbol{x}_{2}\right)
$$

- Holds for any $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$, and \boldsymbol{x}, which concludes the proof
- One of the cornerstone theorems of convex analysis

Smooth Convex Line Search

- Corollary: given f be smooth and convex and $\overline{\boldsymbol{x}} \in \mathbb{R}^{n}$, $f(\overline{\boldsymbol{x}})$ is a global minimum of f if and only if $\nabla f(\overline{\boldsymbol{x}})=\mathbf{0}$
- Proof: earlier, we have seen that $\nabla f(\overline{\boldsymbol{x}})=\mathbf{0}$ is necessary for $f(\overline{\boldsymbol{x}})$ to be a minimum
- In the general case $\nabla f(\overline{\boldsymbol{x}})=\mathbf{0}$ is not sufficient though (it also holds at inflection points, saddle points, etc.)
- For convex functions, however, it is also sufficient
- To see this, suppose $\nabla f(\overline{\boldsymbol{x}})=0$ and use the previous theorem for $\overline{\boldsymbol{x}}$ and arbitrary \boldsymbol{y} :

$$
f(\boldsymbol{y}) \geq f(\overline{\boldsymbol{x}})+\nabla f(\overline{\boldsymbol{x}})^{T}(\boldsymbol{y}-\overline{\boldsymbol{x}})=f(\overline{\boldsymbol{x}})+0
$$

- So $f(\overline{\boldsymbol{x}})$ is a global minimum

Smooth Convex Line Search

- In single dimension, the finding extreme values is much simpler
- A function $\theta(\lambda): \mathbb{R} \mapsto \mathbb{R}$ is convex if and only if

$$
\begin{equation*}
\forall \mu, \nu: \quad \theta(\mu) \geq \theta(\nu)+\theta^{\prime}(\nu)(\mu-\nu) \tag{4}
\end{equation*}
$$

- For finding the minimum, simply find $\lambda: \theta^{\prime}(\lambda)=0$
- We can find the minimum for a smooth convex function efficiently using the above two results
- We can use simple binary search for finding $\lambda: \theta^{\prime}(\lambda)=0$ and it is enough to evaluate θ only once in each iteration

Smooth Convex Line Search

- Solve $\min \theta(\lambda): \lambda \in[a, b]$, where θ is a smooth convex function on the search interval $[a, b]$
- Take any point $\lambda \in[a, b]$ and evaluate $\theta^{\prime}(\lambda)-\mathrm{t}$
- One of three cases can occur:
- $\theta^{\prime}(\lambda)=0$: by the above, θ attains the minimum at λ
- $\theta^{\prime}(\lambda)>0$: for any $\forall \mu>\lambda: \theta^{\prime}(\lambda)(\mu-\lambda)>0$, so by (4) we obtain $\theta(\mu)>\theta(\lambda)$ and therefore the minimum cannot occur in the interval $[\lambda, b]$ and thus the search interval can be narrowed down to $[a, \lambda]$
- $\theta^{\prime}(\lambda)<0$: just the opposite, $\forall \mu<\lambda: \theta(\mu)>\theta(\lambda)$ since $\theta^{\prime}(\lambda)(\mu-\lambda)>0$ by $\theta^{\prime}(\lambda)<0$ and $\mu-\lambda<0$, and the new search interval is $[\lambda, b]$

Smooth Convex Line Search

- Choose λ so that the narrowed down search interval $\max \{\lambda-a, b-\lambda\}$ is minimal in the worst-case
- It is easy to see that this occurs at the middle point
$\lambda=\frac{1}{2}(a+b)$ of the interval $[a, b]$
- Simple binary search:
- Initialization: choose search precision $l>0$, let $a_{1}=a$, $b_{1}=b$, and let $k=1$

1. let $\lambda_{k}=\frac{1}{2}\left(a_{k}+b_{k}\right)$ and evalutate $\theta^{\prime}\left(\lambda_{k}\right)$
2. if $\theta^{\prime}(\lambda)=0$ or $b_{k}-a_{k}<l$ then halt: the minimum occurs in the interval $\left[a_{k}, b_{k}\right]$
3. if $\theta^{\prime}(\lambda)>0$ then $a_{k+1}=a_{k}$ and $b_{k+1}=\lambda_{k}$, otherwise $a_{k+1}=\lambda_{k}$ and $b_{k+1}=b_{k}$, and go to step (1)

Smooth Convex Line Search

- The size of the search interval at step $k: \frac{1}{2^{k}}(b-a)$
- The number of steps to reach precision $l: k \geq \log _{2} \frac{b-a}{l}$
- Example: find the minimum of the function $\theta(\lambda)=\lambda^{2}+2 \lambda$ on the interval $[-5,15]$ with precision $l=2 \cdot 10^{-2}$
- We seek λ that satisfies $\theta^{\prime}(\lambda)=2 \lambda+2=0$, but very often the algebraic equation $\theta^{\prime}(\lambda)=0$ cannot be solved directly
- Using our numeric method (binary search) instead:

k	a	b	λ	$\theta^{\prime}(\lambda)$	$\theta(\lambda)$	$b-a$
1	-5.0000	15.0000	5.0000	12.0000	35.0000	20.0000
2	-5.0000	5.0000	0.0000	2.0000	0.0000	10.0000
3	-5.0000	0.0000	-2.5000	-3.0000	1.2500	5.0000
\vdots	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
11	-1.0156	-0.9961	-1.0059	0.0118	-1.0000	0.0195

Unconstrained Optimization

- In practice we often need to move beyond single-dimension line search and minimize multivariable $\mathbb{R}^{n} \mapsto \mathbb{R}$ functions
- Given a nonlinear program min $f(\boldsymbol{x}): \boldsymbol{x} \in X$, let $X=\mathbb{R}^{n}$
- Suppose that f is smooth and convex
- The minimum occurs at point $\overline{\boldsymbol{x}}$ where $\nabla f(\overline{\boldsymbol{x}})=\mathbf{0}$
- Usually this cannot be solved analytically, we need numeric methods and approximations
- We already have a method to optimize convex programs: the method of feasible directions due to Zoutendijk
- Much simpler in our case since now all directions are feasible ($X=\mathbb{R}^{n}$)
- We only need to take care of ensuring that the direction we find be improving

The Steepest Descent Method

- Some \boldsymbol{d} is an improving direction at $\overline{\boldsymbol{x}}$ if $\nabla f(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}<0$
- Steepest descent: the unit vector $\hat{\boldsymbol{d}}$ moving along which we experience the largest drop in the value of f
- Theorem: $\underset{\hat{d}:\|\hat{\boldsymbol{d}}\|=1}{\operatorname{argmin}} \nabla f(\overline{\boldsymbol{x}})^{T} \hat{\boldsymbol{d}}=-\frac{\nabla f(\overline{\boldsymbol{x}})}{\|\nabla f(\overline{\boldsymbol{x}})\|}$
- Proof: using the Cauchy-Schwarz Inequality and $\|\hat{d}\|=1$:

$$
\nabla f(\overline{\boldsymbol{x}})^{T} \hat{\boldsymbol{d}} \geq-\|\nabla f(\overline{\boldsymbol{x}})\|\|\hat{\boldsymbol{d}}\| \geq-\|\nabla f(\overline{\boldsymbol{x}})\|
$$

- Holds with equality if and only if $\hat{\boldsymbol{d}}=\frac{-\nabla f(\overline{\boldsymbol{x}})}{\|\nabla f(\overline{\boldsymbol{x}})\|}$
- So the best improving direction is $\hat{\boldsymbol{d}}=\frac{-\nabla f(\overline{\boldsymbol{x}})}{\|\nabla f(\overline{\boldsymbol{x}})\|}$, then we can again use line search to find the ideal step size along \hat{d}

The Steepest Descent Method

- Solve the unconstrained nonlinear optimization problem $\min f(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{n}$ where f is smooth and convex
- Initialization: choose precision $\epsilon>0$ and x_{1} initial point, and let $k=1$
1 Of $\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|<\epsilon$ then halt, \boldsymbol{x}_{k} is minimal
2 Otherwise $\boldsymbol{d}_{k}=-\nabla f\left(\boldsymbol{x}_{k}\right)$
3 Line search: solve the unconstrained search problem

$$
\lambda_{k}=\min f\left(\boldsymbol{x}_{k}+\lambda \boldsymbol{d}_{k}\right): \lambda \geq 0
$$

4 Let $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\lambda_{k} \boldsymbol{d}_{k}$ and go to step (2)

The Steepest Descent Method

- Simple and, theoretically, it converges in finite steps, but hardly usable in practice due to zig-zagging

- Higher-order methods can avoid this: Newton's method, conjugate gradient, etc.

Penalty and Barrier Functions

- We have seen that constraints make the optimization much more difficult: improving directions are easy to find, feasible directions may be more difficult
- It would be nice to trace back constrained nonlinear programming to unconstrained optimization
- The idea is to enforce constraints via the objective function, by adding a term to the objective to penalize any violation of the constraints and to remove the constraints themselves
- Minimization of the resultant unconstrained problem will try to remove the penalty and thereby to satisfy the constraints
- (exterior) penalty functions: infeasible points are penalized, the further the point from the feasible region the larger the penalty
- (interior) barrier functions: even approaching the boundary of the feasible region already carries a penalty

Penalty Function Methods

- Consider the simple constrained nonlinear optimization problem

$$
\min f(\boldsymbol{x}): h(\boldsymbol{x})=0
$$

where f and h are $\mathbb{R}^{n} \mapsto \mathbb{R}$ functions and $\boldsymbol{x} \in \mathbb{R}^{n}$

- Replace this constrained problem with the below unconstrained one:

$$
\min f(\boldsymbol{x})+\mu h^{2}(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{n}
$$

where $\mu>0$ is some large scalar

- Intuitively, at optimum the (external) penalty function $\mu h^{2}(\boldsymbol{x})$ will take a value close to zero, otherwise the penalty would prohibitively increase the objective value
- Choosing μ large enough ensures that the minimum of the original problem and the unconstrained problem coincide

Penalty Function Methods

- Nonlinear programs containing inequality constraints need a different penalty function

$$
\min f(\boldsymbol{x}): g(\boldsymbol{x}) \leq 0
$$

- The penalty function $\mu g^{2}(\boldsymbol{x})$ would not work since it would penalize both $g(\boldsymbol{x})<0$ and $g(\boldsymbol{x})>0$ whereas we need to penalize only the latter
- Consider the below unconstrained problem instead:

$$
\min f(\boldsymbol{x})+\mu \max \{0, g(\boldsymbol{x})\}: \boldsymbol{x} \in \mathbb{R}^{n}
$$

- Penalty is applied only if $g(\boldsymbol{x})>0$, since for $g(\boldsymbol{x})<0$ the penalty disappears by $\max \{0, g(\boldsymbol{x})\}=0$
- Even better penalty function is $\mu(\max \{0, g(\boldsymbol{x})\})^{2}$: smooth!

Penalty Function Methods

- For the generic case when the nonlinear program contains both equality and inequality constraints:

$$
\begin{array}{llr}
\min & f(\boldsymbol{x}) & \\
\text { s.t. } & g_{i}(\boldsymbol{x}) \leq 0 & i \in\{1, \ldots, m\} \\
& h_{i}(\boldsymbol{x})=0 & i \in\{1, \ldots, n\}
\end{array}
$$

- The external penalty functions:

$$
\begin{aligned}
& \alpha(\boldsymbol{x})=\sum_{i=1}^{m} \Phi\left(g_{i}(\boldsymbol{x})\right)+\sum_{i=1}^{n} \Psi\left(h_{i}(\boldsymbol{x})\right) \\
& \Phi(y)=(\max \{0, y\})^{p}, \quad \Psi(y)=|y|^{p}
\end{aligned}
$$

for some $p>0$ integer

Penalty Function Methods

- We obtain the below unconstrained nonlinear program:

$$
\begin{array}{r}
\min f(\boldsymbol{x})+\mu\left(\sum_{i=1}^{m}\left(\max \left\{0, g_{i}(\boldsymbol{x})\right\}\right)^{p}+\sum_{i=1}^{n}\left|h_{i}(\boldsymbol{x})\right|^{p}\right): \\
\boldsymbol{x} \in \mathbb{R}^{n}
\end{array}
$$

- Can be solved using the unconstrained optimization methods discussed previously
- Can be started from arbitrary, even from an infeasible point
- Drawback is that the search enters into the feasible region only in the vicinity of the optimum, exactly where zig-zagging is most prominent
- Large μ needed for reliable result: numeric instability

Penalty Function Methods: Example

- Consider the constrained (non)linear program

$$
\begin{aligned}
\min & x \\
\text { s.t. } & -x+2 \leq 0
\end{aligned}
$$

- Optimum at $\bar{x}=2: f(\bar{x})=2$
- Solve the problem using penalty functions
- Using the penalty function $\alpha(x)=(\max \{0, g(x)\})^{2}$ the constrained problem as an unconstrained nonlinear program:

$$
\alpha(x)= \begin{cases}0 & \text { ha } x \geq 2 \\ (-x+2)^{2} & \text { ha } x<2\end{cases}
$$

Penalty Function Methods: Example

- $f(x)+\mu \alpha(x)$ is convex, so we can find the minimum easily
- The derivative for $x<2$:

$$
(f(x)+\mu \alpha(x))^{\prime}=1+2 \mu(x-2)=0
$$

- The optimal solution:

$$
\bar{x}=2-\frac{1}{2 \mu}
$$

- Approximates the real optimum as $\mu \rightarrow \infty$
- In general, guaranteed to converge in finite steps

Penalty Function Methods: Example

- Solve the constrained optimization problem

$$
\min x_{1}^{2}+x_{2}^{2}: x_{1}+x_{2}-1=0
$$

- Optimal solution: $\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T}=\left[\begin{array}{ll}\frac{1}{2} & \frac{1}{2}\end{array}\right]^{T}$, optimum: $\frac{1}{2}$
- Apply the penalty function $\alpha(y)=|y|^{2}$:

$$
\min x_{1}^{2}+x_{2}^{2}+\mu\left(x_{1}+x_{2}-1\right)^{2}: x_{1}, x_{2} \in \mathbb{R}
$$

- Convex for $\forall \mu \geq 0$, so the minimum occurs where:

$$
\begin{aligned}
& 2 x_{1}+2 \mu\left(x_{1}+x_{2}-1\right)=0 \\
& 2 x_{2}+2 \mu\left(x_{1}+x_{2}-1\right)=0
\end{aligned}
$$

- From the two equations: $x_{1}=x_{2}=\frac{1}{2+\frac{1}{\mu}}$, optimal if $\mu \rightarrow \infty$

Barrier Function Methods

- External penalty function methods converge through a sequence of infeasible points
- Internal barrier functions do not allow the search to leave the feasible region in the first place
- Given a linear program with inequality constraints:

$$
\begin{array}{cl}
\min & f(\boldsymbol{x}) \\
\text { s.t. } & g_{i}(\boldsymbol{x}) \leq 0 \quad i \in\{1, \ldots, m\}
\end{array}
$$

- Instead, solve the unconstrained problem

$$
\min f(\boldsymbol{x})+\mu \beta(\boldsymbol{x}): \boldsymbol{x} \in \mathbb{R}^{n}
$$

Barrier Function Methods

- The internal barrier function β takes nonnegative values in the interior of the feasible region and tends to infinity at the boundary:

$$
\beta(\boldsymbol{x})=\sum_{i=1}^{m} \Phi\left(g_{i}(\boldsymbol{x})\right)
$$

where barrier function Φ has the following properties:

$$
\Phi(y) \geq 0 \text { if } y<0, \quad \lim _{y \rightarrow 0^{-}} \Phi(y)=\infty
$$

- The barrier function prohibits passing the boundary of the feasible region
- Equality conditions are more involving to handle here

Barrier Function Methods

- Typical internal barrier functions:

$$
\beta(\boldsymbol{x})=\sum_{i=1}^{m} \frac{-1}{g_{i}(\boldsymbol{x})}, \quad \beta(\boldsymbol{x})=-\sum_{i=1}^{m} \ln \left(\min \left\{1,-g_{i}(\boldsymbol{x})\right\}\right)
$$

- The augmented objective function can be optimized using unconstrained methods and we never step out of the feasible region
- Drawback is that the penalty appears even at the optimum and the optimum cannot occur at a boundary point
- Plus the iteration must start from a feasible point, otherwise we never get to the other "good" side of the barrier
- Works reliably when μ is small, but too small value for μ again causes numerical instability and badly conditioned problems

Barrier Function Methods: Example

- Consider the nonlinear program

$$
\begin{aligned}
\min & x \\
\text { s.t. } & -x+1 \leq 0
\end{aligned}
$$

- The optimum is 1 , attained by the objective at $\bar{x}=1$
- Let the internal barrier function be as follows:

$$
\beta(x)=\frac{-1}{-x+1}=\frac{1}{x-1} \quad x \neq 1
$$

- The resultant unconstrained problem:

$$
\min x+\frac{\mu}{x-1}: x \in \mathbb{R}
$$

Barrier Function Methods: Example

- Solving $\min x+\frac{\mu}{x-1}: x \in \mathbb{R}$ only makes sense of $x>1$, we need to take care of this ourselves
- The objective function is convex, the minimum occurs at $\frac{d}{d x}(f(x)+\mu \beta(x))=0$ from which we obtain $\bar{x}=1+\sqrt{\mu}$, optimal for $\mu \rightarrow 0$

