Nonlinear Programming 1

- General form of nonlinear programs, constrained and unconstrained optimization, convex programs, local and global optimal solution for nonconvex feasible region and/or objective function, complexity
- Optimality conditions, smoothness, the concept of improving directions and improving feasible directions, characterizing the optimality of convex programs in terms of improving feasible directions
- Solving simple nonlinear programs using successive linear programming, the Method of Zoutendijk, finding improving feasible directions, line search problems, choosing the step size

Nonlinear Programming

- Linear programming is widely used in practice
- Sophisticated modeling frameworks, efficient solvers, build-in from the basic level (Excel!)
- Even problems of enormous size (hundreds of thousands of variables, millions of constraints) can be solved by computer-aided tools
- Unfortunately, the world is highly nonlinear: in many cases either the constraints or the objective function (or both) may be nonlinear
- In lucky cases the problem can be linearized without too much loss of precision
- In more complex cases, however, linear programming is of limited use

Nonlinear Programs

- Consider the below nonlinear program:

$$
\begin{array}{cl}
\min & f(\boldsymbol{x}) \\
\text { s.t. } & g_{i}(\boldsymbol{x}) \leq 0 \quad i \in I=\{1, \ldots, m\}
\end{array}
$$

where $\boldsymbol{x} \in \mathbb{R}^{n}$ is a real-valued column n-vector and f and g_{i} are continuously differentiable $\mathbb{R}^{n} \mapsto \mathbb{R}$ functions

- If $I=\emptyset$ then the nonlinear program is unconstrained, otherwise it is constrained
- If the feasible region $X=\left\{\boldsymbol{x}: g_{i}(\boldsymbol{x}) \leq 0, i \in\{1, \ldots, m\}\right\}$ is convex and f is convex on X, then the problem is a convex program
- For this, it is enough that all $g_{i}: i \in\{1, \ldots, m\}$ be convex (we omit the proof)

Nonlinear Programs

- The form min $\left\{f(\boldsymbol{x}): g_{i}(\boldsymbol{x}) \leq 0, i \in\{1, \ldots, m\}\right\}$ is a generalization of linear programs to the nonlinear case
- A linear program $\min \left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\right\}$ can easily be written in the general form with the choice:

$$
f(\boldsymbol{x})=\boldsymbol{c}^{T} \boldsymbol{x} \text { és } \quad g_{i}(\boldsymbol{x})=\boldsymbol{a}^{i} \boldsymbol{x}-b_{i} \quad i \in\{1, \ldots, m\}
$$

- Unfortunately, nonlinear programs lack the appealing simplicity of linear programs
- local optimum \neq global optimum
- the optimum might not necessarily occur at an extreme point of the feasible region
- not even on the boundary of the feasible region
- the simplex method cannot be used
- the concept of duality is less overarching

Nonconvex Feasible Region

- Minimization of a Convex objective function over a convex region: local optima correspond to global optima (recall the Fundamental Theorem of Convex Programming)
- In general this is not the case
- Consider the nonlinear program

$$
\begin{aligned}
\max & 3 x_{1}+5 x_{2} \\
\text { s.t. } & x_{1} \leq 4 \\
& x_{2} \leq 7 \\
& 4 x_{2} \leq\left(x_{1}-4\right)^{2}+8 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- In the general form, converting to minimization:

$$
f\left(x_{1}, x_{2}\right)=-3 x_{1}-5 x_{2}, \quad g_{1}\left(x_{1}, x_{2}\right)=x_{1}-4, \ldots
$$

Nonconvex Feasible Region

- The objective function is linear (thus convex) but the feasible region is nonconvex

- The contours of the objective function are the straight lines $-3 x_{1}-5 x_{2}=c$
- $\boldsymbol{x}_{1}=\left[\begin{array}{ll}4 & 2\end{array}\right]^{T}$ is a local optimum, objective: 22
- $\boldsymbol{x}_{2}=\left[\begin{array}{ll}0 & 6\end{array}\right]^{T}$ is both locally and globally optimal, objective: 30
- Global optimization is difficult, since a local check cannot decide whether a point is local or global optimum

Nonconvex Objective Function

- Consider the nonlinear program

$$
\begin{array}{cl}
\min & -x_{1}^{2}-x_{2}^{2} \\
\text { s.t. } & x_{1}^{2}-x_{2}-3 \leq 0 \\
& x_{2}-1 \leq 0 \\
& -x_{1} \leq 0
\end{array}
$$

- In general form:

$$
\begin{aligned}
f\left(x_{1}, x_{2}\right) & =-x_{1}^{2}-x_{2}^{2} \\
g_{1}\left(x_{1}, x_{2}\right) & =x_{1}^{2}-x_{2}-3 \\
g_{2}\left(x_{1}, x_{2}\right) & =x_{2}-1 \\
g_{3}\left(x_{1}, x_{2}\right) & =-x_{1}
\end{aligned}
$$

Nonconvex Objective Function

- The feasible region is convex but the objective function is not (concave)

- The contours of the objective function $-x_{1}^{2}-x_{2}^{2}=c$ are origin-centered cycles
- $\boldsymbol{x}_{1}=\left[\begin{array}{ll}2 & 1\end{array}\right]^{T}$ is a local optimum, objective: -5
- $\boldsymbol{x}_{x}=\left[\begin{array}{ll}0 & -3\end{array}\right]^{T}$ is both a local and a global optimum, objective: -9
- Again, no local check can establish this

Nonconvex Objective on Convex Region

- If we change the objective function to the convex function $f\left(x_{1}, x_{2}\right)=\left(x_{1}-2\right)^{2}+\left(x_{2}-2\right)^{2}$
- The objective contours are concentric cycles centered at $\left[\begin{array}{ll}2 & 2\end{array}\right]^{T}$
- $\boldsymbol{x}=\left[\begin{array}{ll}2 & 1\end{array}\right]^{T}$ is local and global optimum, objective: 1
- Convex feasible region + convex objective function + minimization $=$ each local optimum is global optimum
- Convex programming is much simpler than generic nonlinear programming

Convex Programs: Optima

- If the objective is the convex $f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+x_{2}^{2}$ function

- Objective contours are concentric cycles around $\left[\begin{array}{ll}1 & 0\end{array}\right]^{T}$
- Convex program, but the optimum lies in the interior of the feasible region!
- Boundary point methods (like the simplex) cannot be used
- Interior point solvers are needed

Complexity

- Solving a nonconvex nonlinear program is difficult even when the feasible region is a polyhedron (i.e., constraints are linear)
- For instance, the well-known (and notoriously difficult) Boolean 3-satisfiability problem (3SAT) can easily be formulated in such a form
- We seek the logical variables A, B, C, and D can be set so that the below Boolean function evaluates to true

$$
(A \text { OR } \neg B \text { OR } C) \text { AND }(\neg A \text { OR } C \text { OR } \neg D)=\mathrm{TRUE}
$$

- For instance, $C=$ TRUE is such a choice

Complexity

- 3SAT: decide whether an assignment of TRUE or FALSE values to logical variables $X_{i}: i \in\{1, \ldots, n\}$ exists so that the logical function
$f\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\bigwedge_{i=1}^{m}\left((\neg) X_{i_{1}} \vee(\neg) X_{i_{2}} \vee(\neg) X_{i_{3}}\right)=$ TRUE
in conjunctive normal form (CNF) consisting of m clauses evaluates to TRUE
- Propositional logic:
- \wedge : logical AND operation (conjunction)
- V : logical OR operation (disjunction)
- $(\neg) X_{i_{j}}$: variable j in clause i, may be negated (literal)
- $(\neg) X_{i_{1}} \vee(\neg) X_{i_{2}} \vee(\neg) X_{i_{3}}$: clause

Complexity

- Define the $m \times n$ clause matrix:
- $a_{i j}=-1$, if variable X_{j} occurs negated in clause i
- $a_{i j}=1$, if variable X_{j} occurs non-negated in clause i
- $a_{i j}=0$ otherwise
- Any 3SAT instance can be equivalently formulated as a nonlinear program using the clause matrix
- Let x_{j} be a continuous variable for logical variable X_{j} :

$$
\begin{aligned}
z= & \max \sum_{j=1}^{n} x_{j}^{2} \\
& \sum_{j=1}^{n} a_{i j} x_{j} \geq-1
\end{aligned} \quad \forall i=1, \ldots, m
$$

Complexity

- Theorem: a 3SAT instance is satisfiable, if and only the optimal objective function value of the equivalent nonlinear program is $z=n$ (n is the number of variables)
- If this is the case, then from $-1 \leq x_{j} \leq 1$ and $z=\max \sum_{j} x_{j}^{2}=n$ it follows that x_{j} may either take value 1 (X_{j} : TRUE) or $-1\left(X_{j}\right.$: FALSE $)$

$$
\neg X_{5} \vee X_{12} \vee \neg X_{19}=\text { TRUE } \Leftrightarrow-x_{5}+x_{12}-x_{19} \geq-1
$$

- The constraint $\sum_{j} a_{i j} x_{j} \geq-1$ holds only if at least one literal in clause i evaluates to true

$$
\begin{aligned}
& \circ X_{5}=X_{12}=X_{19}=\text { TRUE, then }-1+1-1=-1 \\
& \circ X_{5}=\neg X_{12}=X_{19}=\text { TRUE, then }-1-1-1=-3
\end{aligned}
$$

- Corollary: nonconvex programming is NP-hard

Nonlinear Programming: Optimality

- In the sequel we consider the below nonlinear program:

$$
\min f(\boldsymbol{x}): \boldsymbol{x} \in X
$$

$$
X=\left\{\boldsymbol{x}: g_{i}(\boldsymbol{x}) \leq 0 \quad i \in I=\{1, \ldots, m\}\right\}
$$

where f and g_{i} are continuously differentiable functions

- Smoothness (differentiability) is important as we want to use the gradient
- We seek conditions for given $\overline{\boldsymbol{x}} \in \mathbb{R}^{n}$ to be optimal
- if $I=\emptyset$ (unconstrained problem) and $\overline{\boldsymbol{x}}$ is local minimum, then $\nabla f(\overline{\boldsymbol{x}})=\mathbf{0}$ (proved below)
- if f is convex and $I=\emptyset$ then this is also sufficient (next lecture)
- if, on the other hand, $I \neq \emptyset$, then we can use the Karush-Kuhn-Tucker conditions or the below method

Improving Directions

- Definition: some $\boldsymbol{d} \in \mathbb{R}^{n}$ is an improving direction of function f at point $\overline{\boldsymbol{x}} \in X$ if there exists $\delta>0$ so that

$$
f(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d})<f(\overline{\boldsymbol{x}}) \quad \forall \lambda \in(0, \delta)
$$

- Moving along the improving direction we obtain better solutions
- Such directions can be characterized using the gradient of f
- Theorem: is f is smooth at point \bar{x} and there is d so that $\nabla f(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}<0$, then \boldsymbol{d} is an improving direction of f in $\overline{\boldsymbol{x}}$
- Proof: the gradient characterizes the change in the value of function f while we move from point $\overline{\boldsymbol{x}}$ to $\overline{\boldsymbol{x}}+\lambda \boldsymbol{d}$

$$
\begin{equation*}
f(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d})-f(\overline{\boldsymbol{x}}) \approx \nabla f(\overline{\boldsymbol{x}})^{T}(\lambda \boldsymbol{d})<0 \tag{ㅁ}
\end{equation*}
$$

Unconstrained Programs: Optimum

- Corollary: if f is differentiable at $\overline{\boldsymbol{x}}$ and $\overline{\boldsymbol{x}}$ is a local optimum of f, then $\nabla f(\overline{\boldsymbol{x}})=\mathbf{0}$
- Proof: suppose that $\nabla f(\overline{\boldsymbol{x}}) \neq \mathbf{0}$, then the choice $\boldsymbol{d}=-\nabla f(\overline{\boldsymbol{x}})$ gives an improving direction, since

$$
\nabla f(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}=\nabla f(\overline{\boldsymbol{x}})^{T}(-\nabla f(\overline{\boldsymbol{x}}))=-\|\nabla f(\overline{\boldsymbol{x}})\|^{2}<0
$$

- So we have found a direction \boldsymbol{d} so that moving along \boldsymbol{d} we obtain smaller values for f, which is a contradiction
- Cannot be used for solving nonlinear programs in general
- since it is only a necessary condition, not sufficient
- since the algebraic equation $\nabla f(\boldsymbol{x})=\mathbf{0}$ usually cannot be solved directly
- or because we may exit the feasible region along d

Improving Feasible Directions

- Definition: $\boldsymbol{d} \in \mathbb{R}^{n}$ is a feasible direction of some set X at point $\overline{\boldsymbol{x}} \in X$, if there is $\delta>0$ so that

$$
\forall \lambda \in(0, \delta): \overline{\boldsymbol{x}}+\lambda \boldsymbol{d} \in X
$$

- Definition: \boldsymbol{d} is an improving feasible direction at \boldsymbol{x} if it is both a feasible and an improving direction
- We can move some nonzero distance along the improving feasible direction to get all feasible solutions that improve the objective function
- Theorem: if $\overline{\boldsymbol{x}} \in X$ is a local minimum of the nonlinear program $\min f(\boldsymbol{x}): \boldsymbol{x} \in X$ then there is no improving feasible direction at $\overline{\boldsymbol{x}}$
- Proof: suppose otherwise and obtain a contradiction
- The condition is again only necessary, not sufficient

Improving Directions: Example

- The running example:

$$
\begin{gathered}
\min -x_{1}^{2}-x_{2}^{2} \\
x_{1}^{2}-x_{2}-3 \leq 0 \\
x_{2}-1 \leq 0 \\
-x_{1} \leq 0
\end{gathered}
$$

- $\nabla f(\boldsymbol{x})^{T}=\left[\begin{array}{ll}-2 x_{1} & -2 x_{2}\end{array}\right]$
- Consider the local minimum $\overline{\boldsymbol{x}}_{1}=\left[\begin{array}{ll}2 & 1\end{array}\right]^{T}$
- Improving directions lie in the open half-space $\nabla f(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}=$ $-4 d_{1}-2 d_{2}<0$, neither of which is feasible
- Similarly for local minimum \boldsymbol{x}_{2}

Improving Directions: Example

- Consider the nonlinear program $\min \left\{x_{2}: x_{2}=x_{1}^{2}\right\}$
- Point $\overline{\boldsymbol{x}}=\left[\begin{array}{ll}1 & 1\end{array}\right]^{T}$ is not optimal, since x_{2} decreases with decreasing x_{1}
- Yet there is no feasible direction at point $\overline{\boldsymbol{x}}$
- Since we cannot move along a straight line and still remain inside the feasible region
- So it does not follow from the lack of an improving feasible direction that a point is a local optimum
- The condition is only necessary

The Method of Feasible Directions

- We have seen that if some $\overline{\boldsymbol{x}}$ is local minimum of the nonlinear program min $f(\boldsymbol{x}): \boldsymbol{x} \in X$ then there is no improving feasible direction at $\overline{\boldsymbol{x}}$
- The condition is only necessary but not sufficient, since in pathological cases it can happen that there is no feasible direction at all at a point
- This cannot happen for "well-behaved" (e.g., convex) feasible regions
- The method of feasible directions due to Zoutendijk is a simple iterative algorithm to find a point where there is no improving feasible direction
- Traces back the solution of a nonlinear program to the sequential solution of simple linear programs (successive linear programming)
- Can be used for simpler convex programs

The Method of Feasible Directions

- Consider the following convex program, characterized by a linear constraint system:

$$
\begin{aligned}
\min & f(\boldsymbol{x}) \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\
& \boldsymbol{Q} \boldsymbol{x}=\boldsymbol{q}
\end{aligned}
$$

where $\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{A}$ is an $m \times n$ and \boldsymbol{Q} is an $l \times n$ matrix, \boldsymbol{b} is a column m-vector and \boldsymbol{q} is a column l-vector, and f is a smooth convex function

- Let $\overline{\boldsymbol{x}}$ be a feasible solution and separate the constraint system to two groups:
- denote by $\boldsymbol{A}_{1} \boldsymbol{x} \leq \boldsymbol{b}_{1}$ the tight (or active) constraints at $\overline{\boldsymbol{x}}: \boldsymbol{A}_{1} \overline{\boldsymbol{x}}=\boldsymbol{b}_{1}$
- let $\boldsymbol{A}_{2} \boldsymbol{x} \leq \boldsymbol{b}_{2}$ be the inactive constraints: $\boldsymbol{A}_{2} \overline{\boldsymbol{x}}<\boldsymbol{b}_{2}$

The Method of Feasible Directions

- In what follows the term "feasible direction" will mean "improving feasible direction" where no ambiguity arises
- An algebraic characterization for feasible directions
- Theorem: some $d \neq 0$ is a feasible direction at $\overline{\boldsymbol{x}}$ if

$$
\begin{gather*}
\nabla f(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}<0 \tag{1}\\
\boldsymbol{A}_{1} \boldsymbol{d} \leq \mathbf{0} \text { és } \boldsymbol{Q} \boldsymbol{d}=\mathbf{0} \tag{2}
\end{gather*}
$$

- Proof: by (1) \boldsymbol{d} is improving
- We show that it is a feasible direction as well
- Equality constraints hold for any $\boldsymbol{x}=\overline{\boldsymbol{x}}+\lambda \boldsymbol{d}: \lambda \in \mathbb{R}$, since

$$
\boldsymbol{Q} \boldsymbol{x}=\boldsymbol{Q}(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d})=\boldsymbol{Q} \overline{\boldsymbol{x}}+\lambda \boldsymbol{Q} \boldsymbol{d}=\boldsymbol{q}+\lambda \boldsymbol{0}=\boldsymbol{q}
$$

due to the assumption of the theorem that $Q d=\mathbf{0}$

The Method of Feasible Directions

- Tight constraints hold for any $\overline{\boldsymbol{x}}+\lambda \boldsymbol{d}: \lambda \geq 0$, since

$$
\boldsymbol{A}_{1}(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d})=\boldsymbol{A}_{1} \overline{\boldsymbol{x}}+\lambda \boldsymbol{A}_{1} \boldsymbol{d}=\boldsymbol{b}_{1}+\lambda \boldsymbol{A}_{1} \boldsymbol{d} \leq \boldsymbol{b}_{1}
$$

and, by assumption, $\boldsymbol{A}_{1} \boldsymbol{d} \leq \mathbf{0}$

- To show that the inactive constraints hold as well, choose $\delta>0$ small enough so that in the δ-neighborhood of $\overline{\boldsymbol{x}}$ the condition $\boldsymbol{A}_{2} \boldsymbol{x} \leq \boldsymbol{b}_{2}$ is satisfied
- This can always be done
- We conclude that there is $\delta>0$ so that $\overline{\boldsymbol{x}}+\lambda \boldsymbol{d}$ is both feasible and improving for any $\lambda \in(0, \delta)$
- By the claim of the theorem, linear programming can be used to seek feasible directions
- The minimum can be iteratively found along such feasible directions

Finding a Feasible Direction: Example

- Consider the convex program

$$
\begin{aligned}
& \min \left(x_{1}-6\right)^{2}+\left(x_{2}-2\right)^{2} \\
& \text { s.t. }-x_{1}+2 x_{2} \leq 4 \\
& 3 x_{1}+2 x_{2} \leq 12 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- The tight conditions at $\overline{\boldsymbol{x}}=\left[\begin{array}{ll}2 & 3\end{array}\right]^{T}$

$$
\boldsymbol{A}_{1}=\left[\begin{array}{rr}
-1 & 2 \\
3 & 2
\end{array}\right], \quad \boldsymbol{b}_{1}=\left[\begin{array}{r}
4 \\
12
\end{array}\right]
$$

- The gradient of the objective function is $\nabla f(\overline{\boldsymbol{x}})^{T}=\left[\begin{array}{ll}-8 & 2\end{array}\right]$ at point $\overline{\boldsymbol{x}}$, since $\nabla f(\boldsymbol{x})^{T}=\left[\begin{array}{ll}2\left(x_{1}-6\right) & 2\left(x_{2}-2\right)\end{array}\right]$

Finding a Feasible Direction: Example

- Feasible directions are characterized by linear constraints
- Can be solved by linear programming

Finding a Feasible Direction

- Let $\min \{f(\boldsymbol{x}): \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{Q} \boldsymbol{x}=\boldsymbol{q}\}$ be a convex program, let $\overline{\boldsymbol{x}}$ be a feasible solution, and denote by $\boldsymbol{A}_{1} \boldsymbol{x} \leq \boldsymbol{b}_{1}$ the tight and by $\boldsymbol{A}_{2} \boldsymbol{x} \leq \boldsymbol{b}_{2}$ the inactive constraints at $\overline{\boldsymbol{x}}$
- We search for \boldsymbol{d} so that $\nabla f(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}<0, \boldsymbol{A}_{1} \boldsymbol{d} \leq \mathbf{0}$ and $Q d=0$
- Solve the below linear program in variables \boldsymbol{d} :

$$
\begin{align*}
& z=\min \quad \nabla f(\overline{\boldsymbol{x}})^{T} \boldsymbol{d} \tag{1}\\
& \text { s.t. } \quad \boldsymbol{A}_{1} \boldsymbol{d} \leq \mathbf{0} \tag{2}\\
& \boldsymbol{Q} \boldsymbol{d}=\mathbf{0} \tag{3}\\
& \nabla f(\overline{\boldsymbol{x}})^{T} \boldsymbol{d} \geq-1 \tag{4}
\end{align*}
$$

- Linear program because $\nabla f(\overline{\boldsymbol{x}})^{T}$ is a constant row-vector

Finding a Feasible Direction

- Let the optimal solution to the linear program be d
- \boldsymbol{d} is feasible by (2) and (3), and by (1) it is also improving
- Without (4) we would get unbounded minimum, since if for any \boldsymbol{d} it holds that $\nabla f(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}<0, \boldsymbol{A}_{1} \boldsymbol{d} \leq \mathbf{0}$, and $\boldsymbol{Q} \boldsymbol{d}=\mathbf{0}$, then it also holds for any $\lambda \boldsymbol{d}, \lambda>0$ too
- (4) normalizes the resultant vector \boldsymbol{d}
- It is easy to see that $\boldsymbol{d}=\mathbf{0}$ is always feasible, therefore the optimal objective function value is guaranteed to be nonpositive
- if $z<0$ then it must hold that $z=-1$ by (4) and $\boldsymbol{d} \neq \mathbf{0}$ is an improving feasible direction at $\overline{\boldsymbol{x}}$
- if $z=0$ then there is no improving feasible direction at $\overline{\boldsymbol{x}}$ and so $\overline{\boldsymbol{x}}$ may be a local minimum

Finding a Feasible Direction: Example

- Find an improving feasible direction in the running example at point $\overline{\boldsymbol{x}}=\left[\begin{array}{ll}2 & 3\end{array}\right]^{T}$
- Solve the below linear program:

$$
\begin{aligned}
\min & -8 d_{1}+2 d_{2} \\
-d_{1} & +2 d_{2} \leq 0 \\
3 d_{1} & +2 d_{2} \leq 0 \\
-8 d_{1} & +2 d_{2} \geq-1
\end{aligned}
$$

- Multiply the third constraint by -1 , introduce slack variables s_{1}, s_{2}, and s_{3}, and convert to maximization (note the eventual inversion!)
- Still not in standard form as variables d_{1} and d_{2} are free, whereas the simplex method requires nonegative variables

Finding a Feasible Direction: Example

- Substitute nonnegative variables according to $d_{i}=d_{i}^{\prime \prime}-d_{i}^{\prime \prime}$: $d_{i}^{\prime} \geq 0, d_{i}^{\prime \prime} \geq 0$
$\max \quad 8 d_{1}^{\prime} \quad-8 d_{1}^{\prime \prime} \quad-2 d_{2}^{\prime} \quad+2 d_{2}^{\prime \prime}$

- Initial simplex tableau with the slack variables as basis:

	z	d_{1}^{\prime}	$d_{1}^{\prime \prime}$	d_{2}^{\prime}	$d_{2}^{\prime \prime}$	s_{1}	s_{2}	s_{3}	RHS
z	1	-8	8	2	-2	0	0	0	0
s_{1}	0	-1	1	2	-2	1	0	0	0
s_{2}	0	3	-3	2	-2	0	1	0	0
s_{3}	0	8	-8	-2	2	0	0	1	1

Finding a Feasible Direction: Example

	z	d_{1}^{\prime}	$d_{1}^{\prime \prime}$	d_{2}^{\prime}	$d_{2}^{\prime \prime}$	s_{1}	s_{2}	s_{3}	RHS
z	1	0	0	$\frac{22}{3}$	$-\frac{22}{3}$	0	$\frac{8}{3}$	0	0
s_{1}	0	0	0	$\frac{8}{3}$	$-\frac{8}{3}$	1	$\frac{1}{3}$	0	0
d_{1}^{\prime}	0	1	-1	$\frac{2}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	0	0
s_{3}	0	0	0	$-\frac{22}{3}$	$\frac{22}{3}$	0	$-\frac{8}{3}$	1	1

	z	d_{1}^{\prime}	$d_{1}^{\prime \prime}$	d_{2}^{\prime}	$d_{2}^{\prime \prime}$	s_{1}	s_{2}	s_{3}	RHS
z	1	0	0	0	0	0	0	1	1
s_{1}	0	0	0	0	0	1	$-\frac{7}{11}$	$\frac{4}{11}$	$\frac{4}{11}$
d_{1}^{\prime}	0	1	-1	0	0	0	$\frac{1}{11}$	$\frac{1}{11}$	$\frac{1}{11}$
$d_{2}^{\prime \prime}$	0	0	0	-1	1	0	$-\frac{4}{11}$	$\frac{3}{22}$	$\frac{3}{22}$

- We have found an improving feasible direction: $\left[\begin{array}{cc}\frac{1}{11} & -\frac{3}{22}\end{array}\right]^{T}$

Choosing the Step Size

- Suppose that we have found a feasible direction d at some point $\overline{\boldsymbol{x}} \in X$ so that $\nabla f(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}<0, \boldsymbol{A}_{1} \boldsymbol{d} \leq \mathbf{0}$ and $\boldsymbol{Q} \boldsymbol{d}=\mathbf{0}$
- Question is, how much to move along d
- on the one hand, we must remain in the feasible region
- on the other hand, we can go only as far as the objective function keeps on dropping and we must stop before it may start to increase again
- Thus, we need to solve the below convex program for λ :

$$
\begin{array}{cc}
\min & f(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d}) \\
\text { s.t. } & \boldsymbol{A}(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d}) \leq \boldsymbol{b} \\
\boldsymbol{Q}(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d})=\boldsymbol{q} \\
& \lambda \geq 0 \tag{4}
\end{array}
$$

Choosing the Step Size

- (3) is redundant because $\boldsymbol{Q} \overline{\boldsymbol{x}}=\boldsymbol{q}$ and $\boldsymbol{Q d}=\mathbf{0}$
- (1) can be replaced by the constraints $\boldsymbol{A}_{1}(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d}) \leq \boldsymbol{b}_{1}$ and $\boldsymbol{A}_{2}(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d}) \leq \boldsymbol{b}_{2}$
- From these $\boldsymbol{A}_{1}(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d}) \leq \boldsymbol{b}_{1}$ trivially holds for each $\lambda>0$, since $\boldsymbol{A}_{1} \overline{\boldsymbol{x}}=\boldsymbol{b}_{1}$ and $\boldsymbol{A}_{1} \boldsymbol{d} \leq \mathbf{0}$
- What remains are the inactive constraints $\boldsymbol{A}_{2}(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d}) \leq \boldsymbol{b}_{2}$
- Simple convex program for λ :

$$
\begin{aligned}
\min & f(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d}) \\
\text { s.t. } & \left(\boldsymbol{A}_{2} \boldsymbol{d}\right) \lambda \leq \boldsymbol{b}_{2}-\boldsymbol{A}_{2} \overline{\boldsymbol{x}} \\
& \lambda \geq 0
\end{aligned}
$$

- Here, $\boldsymbol{A}_{2} \boldsymbol{d}$ and $\boldsymbol{b}_{2}-\boldsymbol{A}_{2} \overline{\boldsymbol{x}}$ are constant column vectors with as many components as there are inactive constraints at $\overline{\boldsymbol{x}}$

Choosing the Step Size

- Let $\boldsymbol{s}=\boldsymbol{A}_{2} \boldsymbol{d}$ and $\boldsymbol{t}=\boldsymbol{b}_{2}-\boldsymbol{A}_{2} \overline{\boldsymbol{x}}$ be column r-vectors
- We know that $\boldsymbol{t}>\mathbf{0}$, as $\boldsymbol{A}_{2} \overline{\boldsymbol{x}}<\boldsymbol{b}_{2}$ is precisely the set of inactive constraints at $\overline{\boldsymbol{x}}$
- Our convex program can be written equivalently as

$$
\begin{aligned}
& \min f(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d}): \lambda \in L \\
& L=\left\{\lambda: \quad s_{1} \lambda \leq t_{1}\right. \\
& s_{2} \lambda \leq t_{2} \\
& \vdots \quad \vdots \\
& \left.\begin{array}{cc}
s_{r} \lambda & \leq t_{r} \\
0 & \leq \lambda
\end{array}\right\}
\end{aligned}
$$

- Convex program with a single unknown and simple structure
- Can be simplified even further

Choosing the Step Size

- The constraints are of the general form $s_{i} \lambda \leq t_{i}$, where $t_{i}>0$ for each i

$$
\min f(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d}): \lambda \geq 0, s_{i} \lambda \leq t_{i}, i=1, \ldots, r
$$

1. for $s_{i}<0$ we get a redundant constraint $-\left|s_{i}\right| \lambda \leq t_{i}$, or equivalently $\lambda \geq-\frac{t_{i}}{\left|s_{i}\right|}(<0)$ (redundant as $\lambda \geq 0$)
2. for $s_{i}=0$ we get the trivial $0 \lambda \leq t_{i}(>0)$
3. $s_{i}>0$ yields the irredundant constraint $\lambda \leq \frac{t_{i}}{s_{i}}(>0)$

- We obtain the simplified form:

$$
\begin{aligned}
\min f(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d}) & : 0 \leq \lambda \leq \lambda_{\max } \\
\lambda_{\max } & = \begin{cases}\min _{i \in\{1, \ldots, r\}}\left(\frac{t_{i}}{s_{i}}: s_{i}>0\right) & \text { ha } \boldsymbol{s} \not \leq \mathbf{0} \\
\infty & \text { ha } s \leq \mathbf{0}\end{cases}
\end{aligned}
$$

Choosing the Step Size

- Simple convex program with a single unknown

$$
\min f(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d}): 0 \leq \lambda \leq \lambda_{\max }
$$

- If $\lambda_{\max }=\infty$ then $\boldsymbol{x}+\lambda \boldsymbol{d}$ remains feasible for any λ : unconstrained line search
- Otherwise the search interval: $\lambda \in\left[0, \lambda_{\max }\right]$
- Convex program, can also be solved using the method of feasible directions
- Or use a direct line search method (next lecture)

Choosing the Step Size: Example

- Consider the running example:

$$
\begin{aligned}
& \min \left(x_{1}-6\right)^{2}+\left(x_{2}-2\right)^{2} \\
& \text { s.t. }-x_{1}+2 x_{2} \leq 4 \\
& 3 x_{1}+2 x_{2} \leq 12 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- After solving the respective linear program, we obtained the feasible direction $\boldsymbol{d}=\left[\begin{array}{ll}\frac{1}{11} & -\frac{3}{22}\end{array}\right]^{T}$ at $\overline{\boldsymbol{x}}=\left[\begin{array}{ll}2 & 3\end{array}\right]^{T}$
- We need to find the best step size to move along d
- It is worth scaling d in a way that the components become integer-valued (the norm of \boldsymbol{d} does not matter)
- So let $\boldsymbol{d}=\left[\begin{array}{ll}2 & -3\end{array}\right]^{T}$

Choosing the Step Size: Example

- Solve min $\left\{f(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d}): s_{i} \lambda \leq t_{i}, i=1, \ldots, r\right\}$ to find the optimal step size, where $s=\boldsymbol{A}_{2} \boldsymbol{d}$ and $\boldsymbol{t}=\boldsymbol{b}_{2}-\boldsymbol{A}_{2} \overline{\boldsymbol{x}}$ are column r-vectors and $\boldsymbol{A}_{2} \boldsymbol{x} \leq \boldsymbol{b}_{2}$ are the inactive constraints
- At $\overline{\boldsymbol{x}}=\left[\begin{array}{ll}2 & 3\end{array}\right]^{T}$ the first two conditions are tight, the nonnegativity constraints ($x_{1} \geq 0, x_{2} \geq 0$) are inactive
- From this \boldsymbol{A}_{2} and \boldsymbol{b}_{2}, and s and t

$$
\begin{aligned}
& \boldsymbol{A}_{2}=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right], \quad \boldsymbol{b}_{2}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \boldsymbol{s}=\boldsymbol{A}_{2} \boldsymbol{d}=\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{r}
2 \\
-3
\end{array}\right]=\left[\begin{array}{r}
-2 \\
3
\end{array}\right] \\
& \boldsymbol{t}=\boldsymbol{b}_{2}-\boldsymbol{A}_{2} \overline{\boldsymbol{x}}=\left[\begin{array}{l}
0 \\
0
\end{array}\right]-\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
3
\end{array}\right]
\end{aligned}
$$

Choosing the Step Size: Example

- Write the objective function as the function of λ :

$$
\begin{array}{r}
\theta(\lambda)=f(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d})=\left(\left(\bar{x}_{1}+\lambda d_{1}\right)-6\right)^{2}+\left(\left(\bar{x}_{2}+\lambda d_{2}\right)-2\right)^{2}= \\
((2+2 \lambda)-6)^{2}+((3-3 \lambda)-2)^{2}=(2 \lambda-4)^{2}+(1-3 \lambda)^{2}= \\
13 \lambda^{2}-22 \lambda+17
\end{array}
$$

- To find the optimal step size λ, we need to solve the below convex program:

$$
\begin{aligned}
& \min 13 \lambda^{2}-22 \lambda+17 \\
& \text { s.t. }-2 \lambda \leq 2 \\
& 3 \lambda \leq 3 \\
& \lambda \geq 0
\end{aligned}
$$

Choosing the Step Size: Example

- The first constraint $\lambda \geq-1$ is redundant, there remains the second constraint:

$$
\min 13 \lambda^{2}-22 \lambda+17: 0 \leq \lambda \leq 1
$$

- The objective (a parabola) attains its minimum at $\frac{11}{13}<1$
- So $\lambda \leq 1$ is not tight, the optimal step size is $\bar{\lambda}=\frac{11}{13}$
- Consequently, from point $\left[\begin{array}{ll}2 & 3\end{array}\right]^{T}$ we move along direction $\boldsymbol{d}=\left[\begin{array}{ll}2 & -3\end{array}\right]^{T}$ to a distance $\bar{\lambda}=\frac{11}{13}$ to arrive to the new point $\overline{\boldsymbol{x}}=\left[\begin{array}{ll}\frac{48}{13} & \frac{6}{13}\end{array}\right]^{T}$
- Here it was easy to solve the line search problem directly, in the general case it may be more difficult (next lecture)
- To solve the original convex program, we now need to find a feasible direction at point $\overline{\boldsymbol{x}}=\left[\begin{array}{cc}\frac{48}{13} & \frac{6}{13}\end{array}\right]^{T}$

Finding a Feasible Direction: Example

- Solve min $\left\{\nabla f(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}: \boldsymbol{A}_{1} \boldsymbol{d} \leq \mathbf{0}, \nabla f(\overline{\boldsymbol{x}})^{T} \boldsymbol{d} \geq-1\right\}$ to find the new feasible direction
- At $\overline{\boldsymbol{x}}=\left[\begin{array}{ll}\frac{48}{13} & \frac{6}{13}\end{array}\right]^{T}$ only the first constraint is tight, so $A_{1}=\left[\begin{array}{ll}3 & 2\end{array}\right]$
- The gradient: $\nabla f(\overline{\boldsymbol{x}})=\left[\begin{array}{ll}-\frac{60}{13} & -\frac{40}{13}\end{array}\right]^{T}$
- We can again scale the gradient freely, only the direction matters
- So consider the gradient $\left[\begin{array}{cc}-3 & -2\end{array}\right]^{T}$ (multiply $\nabla f(\overline{\boldsymbol{x}})$ by $\frac{20}{13}$), from which we obtain:

$$
\begin{array}{cc}
\min & -3 d_{1} \\
\text { s.t. } & 3 d_{1}
\end{array}+2 d_{2} \leq \begin{array}{r}
\\
\\
\\
-3 d_{1}
\end{array}-2 d_{2} \geq-1
$$

Finding a Feasible Direction: Example

- After inverting the second constraint, as maximization:

$$
\begin{array}{cl}
\max & 3 d_{1}+2 d_{2} \\
\mathrm{s.t.} & 3 d_{1}+2 d_{2} \leq 0 \\
& 3 d_{1}+2 d_{2} \leq 1
\end{array}
$$

- Second constraint redundant,
 the optimum is 0
- The gradient is orthogonal to the boundary of the set of feasible directions
- No improving feasible direction at $\overline{\boldsymbol{x}}=\left[\begin{array}{ll}\frac{48}{13} & \frac{6}{13}\end{array}\right]^{T}$
- (Probably) optimal solution

Finding a Feasible Direction: Example

- Now suppose that we wish to solve the same nonlinear program, but this time starting from the point $\overline{\boldsymbol{x}}=\left[\begin{array}{ll}4 & 0\end{array}\right]^{T}$

$$
\begin{aligned}
& \min \left(x_{1}-6\right)^{2}+\left(x_{2}-2\right)^{2} \\
& \text { s.t. }-x_{1}+2 x_{2} \leq 4 \\
& 3 x_{1}+2 x_{2} \leq 12 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

- To find a feasible direction, we need the set of inactive constraints and the gradient at $\overline{\boldsymbol{x}}$

$$
\boldsymbol{A}_{1}=\left[\begin{array}{rr}
3 & 2 \\
0 & -1
\end{array}\right], \quad \nabla f(\overline{\boldsymbol{x}})=\left[\begin{array}{ll}
-4 & -4
\end{array}\right]^{T}
$$

Finding a Feasible Direction: Example

- The linear program to find the feasible direction:

$$
\begin{array}{cccc}
\min & -4 d_{1} & -4 d_{2} \\
\mathrm{s.t.} & 3 d_{1} & +2 d_{2} \leq & \\
& & -d_{2} & \leq 0 \\
& -4 d_{1} & -4 d_{2} \geq-1
\end{array}
$$

- From the second constraint $d_{2} \geq 0$, no need to substitute
- Inverting the third condition, substituting $d_{1}=d_{1}^{\prime}-d_{1}^{\prime \prime}$: $d_{1}^{\prime} \geq 0, d_{1}^{\prime \prime} \geq 0$, introducing slack variables, and converting to maximization:

$$
\begin{array}{cccccc}
\max & 4 d_{1}^{\prime}-4 d_{1}^{\prime \prime}+4 d_{2} & & \\
\text { s.t. } & 3 d_{1}^{\prime}-3 d_{1}^{\prime \prime}+2 d_{2}+s_{1} & \\
& 4 d_{1}^{\prime}-4 d_{1}^{\prime \prime}+4 d_{2} & & \\
& d_{1}^{\prime}, & d_{1}^{\prime \prime}, & d_{2}, & s_{1}, & s_{2} \geq \\
& \geq
\end{array}
$$

Finding a Feasible Direction: Example

- Initial simplex tableau (primal feasible):

	z	d_{1}^{\prime}	$d_{1}^{\prime \prime}$	d_{2}	s_{1}	s_{2}	RHS
z	1	-4	4	-4	0	0	0
s_{1}	0	3	-3	2	1	0	0
s_{2}	0	4	-4	4	0	1	1

- The optimal tableau:

	z	d_{1}^{\prime}	$d_{1}^{\prime \prime}$	d_{2}	s_{1}	s_{2}	RHS
z	1	0	0	0	0	1	1
d_{2}	0	0	0	1	-1	$\frac{3}{4}$	$\frac{3}{4}$
$d_{1}^{\prime \prime}$	0	-1	1	0	-1	$\frac{1}{2}$	$\frac{1}{2}$

- The improving feasible direction: $\boldsymbol{d}=\left[\begin{array}{ll}-\frac{1}{2} & \frac{3}{4}\end{array}\right]^{T}$

Finding a Feasible Direction: Example

- Rescaling yields $\boldsymbol{d}=\left[\begin{array}{ll}-2 & 3\end{array}\right]^{T}$
- Parameters for computing the optimal step size:

$$
\begin{aligned}
& \boldsymbol{A}_{2}=\left[\begin{array}{ll}
-1 & 2 \\
-1 & 0
\end{array}\right], \quad \boldsymbol{b}_{2}=\left[\begin{array}{l}
4 \\
0
\end{array}\right] \\
& \boldsymbol{s}=\boldsymbol{A}_{2} \boldsymbol{d}=\left[\begin{array}{ll}
-1 & 2 \\
-1 & 0
\end{array}\right]\left[\begin{array}{r}
-2 \\
3
\end{array}\right]=\left[\begin{array}{l}
8 \\
2
\end{array}\right] \\
& \boldsymbol{t}=\boldsymbol{b}_{2}-\boldsymbol{A}_{2} \overline{\boldsymbol{x}}=\left[\begin{array}{l}
4 \\
0
\end{array}\right]-\left[\begin{array}{rr}
-1 & 2 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
4 \\
0
\end{array}\right]=\left[\begin{array}{l}
8 \\
4
\end{array}\right] \\
& \theta(\lambda)=f(\overline{\boldsymbol{x}}+\lambda \boldsymbol{d})=((4-2 \lambda)-6)^{2}+((0+3 \lambda)-2)^{2}= \\
& \\
& =(2 \lambda-4)^{2}+(1-3 \lambda)^{2}=13 \lambda^{2}-4 \lambda+8
\end{aligned}
$$

Finding a Feasible Direction: Example

- The optimal step size:

$$
\begin{aligned}
\min 13 \lambda^{2} & -4 \lambda+8 \\
\text { s.t. } 8 \lambda & \leq 2 \\
8 \lambda & \leq 4 \\
\lambda & \geq 0
\end{aligned}
$$

- Simplified: $\min 13 \lambda^{2}-4 \lambda+8: 0 \leq \lambda \leq \frac{1}{4}$
- Solution at the minimum of the parabola: $\bar{\lambda}=\frac{2}{13}<\frac{1}{4}$

$$
\overline{\boldsymbol{x}}+\bar{\lambda} \boldsymbol{d}=\left[\begin{array}{l}
4 \\
0
\end{array}\right]+\frac{2}{13}\left[\begin{array}{r}
-2 \\
3
\end{array}\right]=\left[\begin{array}{c}
\frac{48}{13} \\
\frac{6}{13}
\end{array}\right]
$$

- We returned to the same optimal point $\left[\begin{array}{ll}\frac{48}{13} & \frac{6}{13}\end{array}\right]^{T}$ as before

Method of Feasible Directions: Summary

- Given a convex program min $f(\boldsymbol{x}): \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{Q} \boldsymbol{x}=\boldsymbol{q}$, an initial feasible solution \boldsymbol{x}_{1}, and let $k=1$

1. Find an improving feasible direction at \boldsymbol{x}_{k} : decompose $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ to tight $\boldsymbol{A}_{1} \boldsymbol{x}_{k}=\boldsymbol{b}_{1}$ and inactive $\boldsymbol{A}_{2} \boldsymbol{x}_{k}<\boldsymbol{b}_{2}$ constraints at \boldsymbol{x}_{k}

- Let \boldsymbol{d}_{k} be the optimal solution to the below linear program:

$$
\begin{aligned}
& z=\min \quad \nabla f\left(\boldsymbol{x}_{k}\right)^{T} \boldsymbol{d} \\
& \text { s.t. } \quad \boldsymbol{A}_{1} \boldsymbol{d} \leq \mathbf{0} \\
& \boldsymbol{Q} \boldsymbol{d}=\mathbf{0} \\
& \nabla f\left(\boldsymbol{x}_{k}\right)^{T} \boldsymbol{d} \geq-1
\end{aligned}
$$

- If the optimal objective $z_{\mathrm{opt}}=0$ then halt, \boldsymbol{x}_{k} is optimal
- Otherwise, $z_{\mathrm{opt}}=-1$ and $\boldsymbol{d}_{k} \neq \mathbf{0}$: line search along \boldsymbol{d}_{k}

Method of Feasible Directions: Summary

2. Let $\boldsymbol{s}=\boldsymbol{A}_{2} \boldsymbol{d}$ and $\boldsymbol{t}=\boldsymbol{b}_{2}-\boldsymbol{A}_{2} \boldsymbol{x}_{k}$

- Let λ_{k} be the optimal solution to the below convex program:

$$
\begin{aligned}
\min f\left(\boldsymbol{x}_{k}+\lambda \boldsymbol{d}\right) & : 0 \leq \lambda \leq \lambda_{\max } \\
\lambda_{\max } & = \begin{cases}\min _{i \in\{1, \ldots, r\}}\left(\frac{t_{i}}{s_{i}}: s_{i}>0\right) & \text { ha } s \not \leq \mathbf{0} \\
\infty & \text { ha } s \leq \mathbf{0}\end{cases}
\end{aligned}
$$

- Let $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\lambda_{k} \boldsymbol{d}_{k}, k=k+1$ and go to (1)
- Can also be modified for convex programs over nonlinear constraints, and also for nonconvex programs
- Globally non-convergent (zig-zagging), for convergence we'd need a second-order method
- Uses line search as a subroutine

