Nonlinear Programming 1

- General form of nonlinear programs, constrained and unconstrained optimization, convex programs, local and global optimal solution for nonconvex feasible region and/or objective function, complexity
- Optimality conditions, smoothness, the concept of improving directions and improving feasible directions, characterizing the optimality of convex programs in terms of improving feasible directions
- Solving simple nonlinear programs using successive linear programming, the Method of Zoutendijk, finding improving feasible directions, line search problems, choosing the step size

Nonlinear Programming

- Linear programming is widely used in practice
- Sophisticated modeling frameworks, efficient solvers, build-in from the basic level (Excel!)
- Even problems of enormous size (hundreds of thousands of variables, millions of constraints) can be solved by computer-aided tools
- Unfortunately, the world is highly nonlinear: in many cases either the constraints or the objective function (or both) may be nonlinear
- In lucky cases the problem can be linearized without too much loss of precision
- In more complex cases, however, linear programming is of limited use

Nonlinear Programs

• Consider the below **nonlinear program**:

min
$$f(\boldsymbol{x})$$

s.t. $g_i(\boldsymbol{x}) \leq 0$ $i \in I = \{1, \dots, m\}$

where $x \in \mathbb{R}^n$ is a real-valued column *n*-vector and *f* and g_i are continuously differentiable $\mathbb{R}^n \mapsto \mathbb{R}$ functions

- If I = ∅ then the nonlinear program is unconstrained, otherwise it is constrained
- If the feasible region $X = \{ x : g_i(x) \le 0, i \in \{1, ..., m\} \}$ is convex and f is convex on X, then the problem is a **convex program**
- For this, it is enough that all $g_i : i \in \{1, \ldots, m\}$ be convex (we omit the proof)

Nonlinear Programs

- The form $\min \{f(\boldsymbol{x}) : g_i(\boldsymbol{x}) \le 0, i \in \{1, \dots, m\}\}$ is a generalization of linear programs to the nonlinear case
- A linear program min{c^Tx : Ax ≤ b} can easily be written in the general form with the choice:

$$f(\boldsymbol{x}) = \boldsymbol{c}^T \boldsymbol{x} \text{ és } g_i(\boldsymbol{x}) = \boldsymbol{a}^i \boldsymbol{x} - b_i \quad i \in \{1, \dots, m\}$$

- Unfortunately, nonlinear programs lack the appealing simplicity of linear programs
 - \circ local optimum \neq global optimum
 - the optimum might not necessarily occur at an extreme point of the feasible region
 - not even on the boundary of the feasible region
 - the simplex method cannot be used
 - the concept of duality is less overarching

Nonconvex Feasible Region

- Minimization of a Convex objective function over a convex region: local optima correspond to global optima (recall the Fundamental Theorem of Convex Programming)
- In general this is not the case
- Consider the nonlinear program

$$\max \quad 3x_1 + 5x_2$$

s.t. $x_1 \le 4$
 $x_2 \le 7$
 $4x_2 \le (x_1 - 4)^2 + 8$
 $x_1, x_2 \ge 0$

• In the general form, converting to minimization:

$$f(x_1, x_2) = -3x_1 - 5x_2, \quad g_1(x_1, x_2) = x_1 - 4, \dots$$

Nonconvex Feasible Region

• The objective function is linear (thus convex) but the feasible region is nonconvex

- The contours of the objective function are the straight lines $-3x_1 5x_2 = c$
- $\boldsymbol{x}_1 = \begin{bmatrix} 4 & 2 \end{bmatrix}^T$ is a local optimum, objective: 22
- $\boldsymbol{x}_2 = \begin{bmatrix} 0 & 6 \end{bmatrix}^T$ is both locally and globally optimal, objective: 30
 - Global optimization is difficult, since a local check cannot decide whether a point is local or global optimum

Nonconvex Objective Function

• Consider the nonlinear program

$$\min -x_1^2 - x_2^2 \\ \text{s.t.} \ x_1^2 - x_2 - 3 \le 0 \\ x_2 - 1 \le 0 \\ -x_1 \le 0$$

• In general form:

$$f(x_1, x_2) = -x_1^2 - x_2^2$$
$$g_1(x_1, x_2) = x_1^2 - x_2 - 3$$
$$g_2(x_1, x_2) = x_2 - 1$$
$$g_3(x_1, x_2) = -x_1$$

Nonconvex Objective Function

• The feasible region is convex but the objective function is not (concave)

- The contours of the objective function $-x_1^2 x_2^2 = c$ are origin-centered cycles
- $\boldsymbol{x}_1 = \begin{bmatrix} 2 & 1 \end{bmatrix}^T$ is a local optimum, objective: -5
- $\boldsymbol{x}_x = [0 \ -3]^T$ is both a local and a global optimum, objective: -9
- Again, no local check can establish this

Nonconvex Objective on Convex Region

• If we change the objective function to the convex function $f(x_1, x_2) = (x_1 - 2)^2 + (x_2 - 2)^2$

- The objective contours are concentric cycles centered at $\begin{bmatrix} 2 & 2 \end{bmatrix}^T$
- $\boldsymbol{x} = \begin{bmatrix} 2 & 1 \end{bmatrix}^T$ is local and global optimum, objective: 1
- x_1 Convex feasible region + convex objective function + minimization = each local optimum is global optimum
 - Convex programming is much simpler than generic nonlinear programming

Convex Programs: Optima

• If the objective is the convex $f(x_1, x_2) = (x_1 - 1)^2 + x_2^2$ function

- Objective contours are concentric cycles around $\begin{bmatrix} 1 & 0 \end{bmatrix}^T$
- Convex program, but the optimum lies in the interior of the feasible region!
- Boundary point methods (like the simplex) cannot be used
- Interior point solvers are needed

- Solving a nonconvex nonlinear program is difficult even when the feasible region is a polyhedron (i.e., constraints are linear)
- For instance, the well-known (and notoriously difficult)
 Boolean 3-satisfiability problem (3SAT) can easily be formulated in such a form
- We seek the logical variables *A*, *B*, *C*, and *D* can be set so that the below Boolean function evaluates to true

 $(A \ \mathsf{OR} \ \neg B \ \mathsf{OR} \ C) \ \mathsf{AND} \ (\neg A \ \mathsf{OR} \ C \ \mathsf{OR} \ \neg D) = \ \mathsf{TRUE}$

• For instance, $C = \mathsf{TRUE}$ is such a choice

3SAT: decide whether an assignment of TRUE or FALSE values to logical variables X_i : i ∈ {1,...,n} exists so that the logical function

$$f(X_1, X_2, \dots, X_n) = \bigwedge_{i=1}^m \left((\neg) X_{i_1} \lor (\neg) X_{i_2} \lor (\neg) X_{i_3} \right) = \mathsf{TRUE}$$

in conjunctive normal form (CNF) consisting of $m\ {\rm clauses}$ evaluates to TRUE

- Propositional logic:
 - \circ \wedge : logical AND operation (conjunction)
 - $\circ \lor$: logical OR operation (disjunction)
 - $(\neg)X_{i_j}$: variable *j* in clause *i*, may be negated (literal)

$$\circ (\neg) X_{i_1} \lor (\neg) X_{i_2} \lor (\neg) X_{i_3}$$
: clause

- Define the $m \times n$ clause matrix:
 - $\circ a_{ij} = -1$, if variable X_j occurs negated in clause i
 - $\circ a_{ij} = 1$, if variable X_j occurs non-negated in clause i
 - $\circ a_{ij} = 0$ otherwise
- Any 3SAT instance can be equivalently formulated as a nonlinear program using the clause matrix
- Let x_j be a continuous variable for logical variable X_j :

$$z = \max \sum_{j=1}^{n} x_j^2$$

$$\sum_{j=1}^{n} a_{ij} x_j \ge -1 \qquad \forall i = 1, \dots, m$$

$$-1 \le x_j \le 1 \qquad \forall j = 1, \dots, n$$

- **Theorem:** a 3SAT instance is satisfiable, if and only the optimal objective function value of the equivalent nonlinear program is z = n (*n* is the number of variables)
- If this is the case, then from $-1 \le x_j \le 1$ and $z = \max \sum_j x_j^2 = n$ it follows that x_j may either take value $1 (X_j: \text{TRUE})$ or $-1 (X_j: \text{FALSE})$

 $\neg X_5 \lor X_{12} \lor \neg X_{19} = \mathsf{TRUE} \Leftrightarrow -x_5 + x_{12} - x_{19} \ge -1$

- The constraint $\sum_{j} a_{ij} x_j \ge -1$ holds only if at least one literal in clause *i* evaluates to true $\circ X_5 = X_{12} = X_{19} = \text{TRUE}$, then -1 + 1 - 1 = -1 $\circ X_5 = \neg X_{12} = X_{19} = \text{TRUE}$, then -1 - 1 - 1 = -3
- Corollary: nonconvex programming is NP-hard

Nonlinear Programming: Optimality

• In the sequel we consider the below nonlinear program:

min
$$f(\boldsymbol{x}) : \boldsymbol{x} \in X$$

$$X = \left\{ \boldsymbol{x} : g_i(\boldsymbol{x}) \le 0 \qquad i \in I = \{1, \dots, m\} \right\}$$

where f and g_i are **continuously differentiable** functions

- Smoothness (differentiability) is important as we want to use the gradient
- We seek conditions for given $ar{m{x}} \in \mathbb{R}^n$ to be optimal
 - $\circ~$ if $I=\emptyset$ (unconstrained problem) and $\bar{\bm{x}}$ is local minimum, then $\nabla f(\bar{\bm{x}})=\bm{0}$ (proved below)
 - if f is convex and $I = \emptyset$ then this is also sufficient (next lecture)
 - if, on the other hand, $I \neq \emptyset$, then we can use the Karush-Kuhn-Tucker conditions or the below method

Improving Directions

• **Definition:** some $d \in \mathbb{R}^n$ is an **improving direction** of function f at point $\bar{x} \in X$ if there exists $\delta > 0$ so that

 $f(\bar{\boldsymbol{x}} + \lambda \boldsymbol{d}) < f(\bar{\boldsymbol{x}}) \qquad \forall \lambda \in (0, \delta)$

- Moving along the improving direction we obtain better solutions
- Such directions can be characterized using the gradient of f
- **Theorem:** is *f* is smooth at point \bar{x} and there is *d* so that $\nabla f(\bar{x})^T d < 0$, then *d* is an improving direction of *f* in \bar{x}
- **Proof:** the gradient characterizes the change in the value of function f while we move from point \bar{x} to $\bar{x} + \lambda d$

$$f(\bar{\boldsymbol{x}} + \lambda \boldsymbol{d}) - f(\bar{\boldsymbol{x}}) \approx \nabla f(\bar{\boldsymbol{x}})^T (\lambda \boldsymbol{d}) < 0$$

Unconstrained Programs: Optimum

- Corollary: if f is differentiable at \bar{x} and \bar{x} is a local optimum of f, then $\nabla f(\bar{x}) = 0$
- **Proof:** suppose that $\nabla f(\bar{x}) \neq 0$, then the choice $d = -\nabla f(\bar{x})$ gives an improving direction, since

$$\nabla f(\bar{\boldsymbol{x}})^T \boldsymbol{d} = \nabla f(\bar{\boldsymbol{x}})^T (-\nabla f(\bar{\boldsymbol{x}})) = -\|\nabla f(\bar{\boldsymbol{x}})\|^2 < 0$$

- So we have found a direction d so that moving along d we obtain smaller values for f, which is a contradiction
- Cannot be used for solving nonlinear programs in general
 - $\circ~$ since it is only a necessary condition, not sufficient
 - $\circ~$ since the algebraic equation $\nabla f({\bm x}) = {\bm 0}$ usually cannot be solved directly
 - $\circ\,$ or because we may exit the feasible region along $d\,$

Improving Feasible Directions

• Definition: $d \in \mathbb{R}^n$ is a feasible direction of some set X at point $\bar{x} \in X$, if there is $\delta > 0$ so that

 $\forall \lambda \in (0, \delta) : \bar{\boldsymbol{x}} + \lambda \boldsymbol{d} \in X$

- Definition: d is an improving feasible direction at x if it is both a feasible and an improving direction
- We can move some nonzero distance along the improving feasible direction to get all feasible solutions that improve the objective function
- Theorem: if $\bar{x} \in X$ is a local minimum of the nonlinear program $\min f(x) : x \in X$ then there is no improving feasible direction at \bar{x}
- **Proof:** suppose otherwise and obtain a contradiction
- The condition is again only necessary, not sufficient

Improving Directions: Example

• The running example:

$$\min -x_1^2 - x_2^2 x_1^2 - x_2 - 3 \le 0 x_2 - 1 \le 0 -x_1 \le 0$$

- $\nabla f(\boldsymbol{x})^T = \begin{bmatrix} -2x_1 & -2x_2 \end{bmatrix}$
- Consider the local minimum $ar{m{x}}_1 = [2 \quad 1]^T$
- Improving directions lie in the open half-space $\nabla f(\bar{x})^T d = -4d_1 2d_2 < 0$, neither of which is feasible
- Similarly for local minimum $oldsymbol{x}_2$

Improving Directions: Example

- Consider the nonlinear program $\min\{x_2 : x_2 = x_1^2\}$
- Point $\bar{x} = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ is not optimal, since x_2 decreases with decreasing x_1

- Yet there is no feasible direction at point \bar{x}
- Since we cannot move along a straight line *and* still remain inside the feasible region
- So it does not follow from the lack of an improving feasible direction that a point is a local optimum
- The condition is only necessary

- We have seen that if some \bar{x} is local minimum of the nonlinear program $\min f(x) : x \in X$ then there is no improving feasible direction at \bar{x}
- The condition is only necessary but not sufficient, since in pathological cases it can happen that there is no feasible direction at all at a point
- This cannot happen for "well-behaved" (e.g., convex) feasible regions
- The method of feasible directions due to Zoutendijk is a simple iterative algorithm to find a point where there is no improving feasible direction
- Traces back the solution of a nonlinear program to the sequential solution of simple linear programs (successive linear programming)
- Can be used for simpler convex programs

• Consider the following convex program, characterized by a linear constraint system:

 $\begin{array}{ll} \min \ f(\boldsymbol{x}) \\ \text{s.t.} \ \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b} \\ \boldsymbol{Q}\boldsymbol{x} = \boldsymbol{q} \end{array}$

where $x \in \mathbb{R}^n$, A is an $m \times n$ and Q is an $l \times n$ matrix, b is a column *m*-vector and q is a column *l*-vector, and f is a smooth convex function

- Let \bar{x} be a feasible solution and separate the constraint system to two groups:
 - \circ denote by $A_1x \leq b_1$ the **tight** (or active) constraints at $ar{x}$: $A_1ar{x} = b_1$
 - \circ let $A_2 x \leq b_2$ be the inactive constraints: $A_2 ar{x} < b_2$

- In what follows the term "feasible direction" will mean "improving feasible direction" where no ambiguity arises
- An algebraic characterization for feasible directions
- Theorem: some d
 eq 0 is a feasible direction at $ar{x}$ if

$$\nabla f(\bar{\boldsymbol{x}})^T \boldsymbol{d} < 0 \tag{1}$$

$$oldsymbol{A}_1oldsymbol{d} \leq \mathbf{0}$$
 és $oldsymbol{Q}oldsymbol{d} = \mathbf{0}$ (2)

- **Proof:** by (1) *d* is improving
- We show that it is a feasible direction as well
- Equality constraints hold for any $\boldsymbol{x} = \bar{\boldsymbol{x}} + \lambda \boldsymbol{d} : \lambda \in \mathbb{R}$, since

$$Qx = Q(\bar{x} + \lambda d) = Q\bar{x} + \lambda Qd = q + \lambda 0 = q$$

due to the assumption of the theorem that Qd=0

• Tight constraints hold for any $\bar{x} + \lambda d : \lambda \ge 0$, since

 $A_1(\bar{x} + \lambda d) = A_1\bar{x} + \lambda A_1d = b_1 + \lambda A_1d \le b_1$

and, by assumption, $oldsymbol{A}_1oldsymbol{d} \leq oldsymbol{0}$

- To show that the inactive constraints hold as well, choose $\delta > 0$ small enough so that in the δ -neighborhood of \bar{x} the condition $A_2x \leq b_2$ is satisfied
- This can always be done
- We conclude that there is $\delta > 0$ so that $\bar{x} + \lambda d$ is both feasible and improving for any $\lambda \in (0, \delta)$
- By the claim of the theorem, linear programming can be used to seek feasible directions
- The minimum can be iteratively found along such feasible directions

Consider the convex program

min
$$(x_1 - 6)^2 + (x_2 - 2)^2$$

s.t. $-x_1 + 2x_2 \le 4$
 $3x_1 + 2x_2 \le 12$
 $x_1, x_2 \ge 0$

• The tight conditions at $\bar{\boldsymbol{x}} = \begin{bmatrix} 2 & 3 \end{bmatrix}^T$

$$oldsymbol{A}_1 = egin{bmatrix} -1 & 2 \ 3 & 2 \end{bmatrix}, \quad oldsymbol{b}_1 = egin{bmatrix} 4 \ 12 \end{bmatrix}$$

• The gradient of the objective function is $\nabla f(\bar{x})^T = \begin{bmatrix} -8 & 2 \end{bmatrix}$ at point \bar{x} , since $\nabla f(x)^T = \begin{bmatrix} 2(x_1 - 6) & 2(x_2 - 2) \end{bmatrix}$

improving feasible directions

- Feasible directions are characterized by linear constraints
- Can be solved by linear programming

Finding a Feasible Direction

- Let $\min\{f(x) : Ax \leq b, Qx = q\}$ be a convex program, let \bar{x} be a feasible solution, and denote by $A_1x \leq b_1$ the tight and by $A_2x \leq b_2$ the inactive constraints at \bar{x}
- We search for \boldsymbol{d} so that $\nabla f(\bar{\boldsymbol{x}})^T \boldsymbol{d} < 0$, $\boldsymbol{A}_1 \boldsymbol{d} \leq \boldsymbol{0}$ and $\boldsymbol{Q} \boldsymbol{d} = \boldsymbol{0}$
- Solve the below linear program in variables *d*:

$$z = \min \nabla f(\bar{\boldsymbol{x}})^T \boldsymbol{d}$$
 (1)

s.t. $A_1 d \leq 0$ (2)

$$oldsymbol{Q} d=0$$
 (3)

$$\nabla f(\bar{\boldsymbol{x}})^T \boldsymbol{d} \ge -1 \tag{4}$$

• Linear program because $abla f(ar{m{x}})^T$ is a constant row-vector

Finding a Feasible Direction

- Let the optimal solution to the linear program be d
- d is feasible by (2) and (3), and by (1) it is also improving
- Without (4) we would get unbounded minimum, since if for any d it holds that $\nabla f(\bar{x})^T d < 0$, $A_1 d \leq 0$, and Qd = 0, then it also holds for any λd , $\lambda > 0$ too
- (4) normalizes the resultant vector d
- It is easy to see that d = 0 is always feasible, therefore the optimal objective function value is guaranteed to be nonpositive
 - $\circ~$ if z<0 then it must hold that z=-1 by (4) and $d\neq 0$ is an improving feasible direction at \bar{x}
 - $\circ~$ if z=0 then there is no improving feasible direction at $\bar{\bm{x}}$ and so $\bar{\bm{x}}$ may be a local minimum

- Find an improving feasible direction in the running example at point $\bar{x} = \begin{bmatrix} 2 & 3 \end{bmatrix}^T$
- Solve the below linear program:

- Multiply the third constraint by -1, introduce slack variables s₁, s₂, and s₃, and convert to maximization (note the eventual inversion!)
- Still not in standard form as variables d_1 and d_2 are free, whereas the simplex method requires nonegative variables

• Substitute nonnegative variables according to $d_i = d'_i - d''_i$: $d'_i \ge 0, \, d''_i \ge 0$

• Initial simplex tableau with the slack variables as basis:

	z	d'_1	d_1''	d'_2	d_2''	s_1	s_2	s_3	RHS
z	1	-8	8	2	-2	0	0	0	0
s_1	0	-1	1	2	-2	1	0	0	0
s_2	0	3	-3	2	-2	0	1	0	0
$ s_3 $	0	8	-8	-2	2	0	0	1	1

	z	d'_1	d_1''	d'_2	d_2''	s_1	s_2	s_3	RHS
\mathcal{Z}	1	0	0	$\frac{22}{3}$	$-\frac{22}{3}$	0	$\frac{8}{3}$	0	0
s_1	0	0	0	$\frac{8}{3}$	$-\frac{8}{3}$	1	$\frac{1}{3}$	0	0
d'_1	0	1	-1	$\frac{2}{3}$	$-\frac{2}{3}$	0	$\frac{1}{3}$	0	0
s_3	0	0	0	$-\frac{22}{3}$	$\frac{22}{3}$	0	$-\frac{8}{3}$	1	1

	\mathcal{Z}	d'_1	d_1''	d'_2	d_2''	s_1	s_2	s_3	RHS
z	1	0	0	0	0	0	0	1	1
s_1	0	0	0	0	0	1	$-\frac{7}{11}$	$\frac{4}{11}$	$\frac{4}{11}$
d'_1	0	1	-1	0	0	0	$\frac{1}{11}$	$\frac{1}{11}$	$\frac{1}{11}$
d_2''	0	0	0	-1	1	0	$-\frac{4}{11}$	$\frac{\overline{3}}{22}$	$\frac{\frac{3}{3}}{22}$

• We have found an improving feasible direction: $\begin{bmatrix} \frac{1}{11} & -\frac{3}{22} \end{bmatrix}^T$

- Suppose that we have found a feasible direction d at some point $\bar{x} \in X$ so that $\nabla f(\bar{x})^T d < 0$, $A_1 d \leq 0$ and Qd = 0
- Question is, how much to move along \boldsymbol{d}
 - $\circ\;$ on the one hand, we must remain in the feasible region
 - on the other hand, we can go only as far as the objective function keeps on dropping and we must stop before it may start to increase again
- Thus, we need to solve the below convex program for λ :

$$\min f(\bar{\boldsymbol{x}} + \lambda \boldsymbol{d}) \tag{1}$$

s.t.
$$\boldsymbol{A}(\bar{\boldsymbol{x}} + \lambda \boldsymbol{d}) \leq \boldsymbol{b}$$
 (2)

$$oldsymbol{Q}(ar{oldsymbol{x}}+\lambdaoldsymbol{d})=oldsymbol{q}$$
 (3)

 $\lambda \ge 0 \tag{4}$

- (3) is redundant because $Q ar{x} = q$ and Q d = 0
- (1) can be replaced by the constraints $A_1(\bar{x} + \lambda d) \leq b_1$ and $A_2(\bar{x} + \lambda d) \leq b_2$
- From these $A_1(\bar{x} + \lambda d) \le b_1$ trivially holds for each $\lambda > 0$, since $A_1\bar{x} = b_1$ and $A_1d \le 0$
- What remains are the inactive constraints $oldsymbol{A}_2(ar{oldsymbol{x}}+\lambdaoldsymbol{d})\leqoldsymbol{b}_2$
- Simple convex program for λ :

min
$$f(\bar{\boldsymbol{x}} + \lambda \boldsymbol{d})$$

s.t. $(\boldsymbol{A}_2 \boldsymbol{d})\lambda \leq \boldsymbol{b}_2 - \boldsymbol{A}_2 \bar{\boldsymbol{x}}$
 $\lambda \geq 0$

• Here, A_2d and $b_2 - A_2\bar{x}$ are constant column vectors with as many components as there are inactive constraints at \bar{x}

- Let $m{s} = m{A}_2 m{d}$ and $m{t} = m{b}_2 m{A}_2 ar{m{x}}$ be column r-vectors
- We know that t > 0, as $A_2 \bar{x} < b_2$ is precisely the set of inactive constraints at \bar{x}
- Our convex program can be written equivalently as

$$\min f(\bar{\boldsymbol{x}} + \lambda \boldsymbol{d}) : \lambda \in L$$
$$L = \{ \lambda : s_1 \lambda \leq t_1 \\ s_2 \lambda \leq t_2 \\ \vdots \\ s_r \lambda \leq t_r \\ 0 \leq \lambda \}$$

- Convex program with a single unknown and simple structure
- Can be simplified even further

• The constraints are of the general form $s_i \lambda \leq t_i$, where $t_i > 0$ for each i

 $\min f(\bar{\boldsymbol{x}} + \lambda \boldsymbol{d}) : \lambda \ge 0, \ s_i \lambda \le t_i, i = 1, \dots, r$

1. for $s_i < 0$ we get a redundant constraint $-|s_i|\lambda \le t_i$, or equivalently $\lambda \ge -\frac{t_i}{|s_i|}(<0)$ (redundant as $\lambda \ge 0$)

2. for $s_i = 0$ we get the trivial $0\lambda \leq t_i (> 0)$

- 3. $s_i > 0$ yields the irredundant constraint $\lambda \leq \frac{t_i}{s_i} (> 0)$
- We obtain the simplified form:

$$\begin{split} \min f(\bar{\boldsymbol{x}} + \lambda \boldsymbol{d}) &: 0 \leq \lambda \leq \lambda_{\max} \\ \lambda_{\max} &= \begin{cases} \min_{i \in \{1, \dots, r\}} (\frac{t_i}{s_i} : s_i > 0) & \text{ha } \boldsymbol{s} \nleq \boldsymbol{0} \\ \infty & \text{ha } \boldsymbol{s} \leq \boldsymbol{0} \end{cases} \end{split}$$

• Simple convex program with a single unknown

 $\min f(\bar{\boldsymbol{x}} + \lambda \boldsymbol{d}) : 0 \le \lambda \le \lambda_{\max}$

- If $\lambda_{\max} = \infty$ then $x + \lambda d$ remains feasible for any λ : unconstrained line search
- Otherwise the search interval: $\lambda \in [0, \lambda_{\max}]$
- Convex program, can also be solved using the method of feasible directions
- Or use a direct line search method (next lecture)

• Consider the running example:

min
$$(x_1 - 6)^2 + (x_2 - 2)^2$$

s.t. $-x_1 + 2x_2 \le 4$
 $3x_1 + 2x_2 \le 12$
 $x_1, x_2 \ge 0$

- After solving the respective linear program, we obtained the feasible direction $d = [\frac{1}{11} \frac{3}{22}]^T$ at $\bar{x} = [2 \quad 3]^T$
- We need to find the best step size to move along d
- It is worth scaling *d* in a way that the components become integer-valued (the norm of *d* does not matter)

• So let
$$d = [2 - 3]^T$$

- Solve $\min \{f(\bar{x} + \lambda d) : s_i \lambda \leq t_i, i = 1, ..., r\}$ to find the optimal step size, where $s = A_2 d$ and $t = b_2 A_2 \bar{x}$ are column *r*-vectors and $A_2 x \leq b_2$ are the inactive constraints
- At $\bar{x} = \begin{bmatrix} 2 & 3 \end{bmatrix}^T$ the first two conditions are tight, the nonnegativity constraints ($x_1 \ge 0, x_2 \ge 0$) are inactive
- From this A_2 and b_2 , and s and t

$$\boldsymbol{A}_{2} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \boldsymbol{b}_{2} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\boldsymbol{s} = \boldsymbol{A}_{2}\boldsymbol{d} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$$
$$\boldsymbol{t} = \boldsymbol{b}_{2} - \boldsymbol{A}_{2}\bar{\boldsymbol{x}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} - \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

• Write the objective function as the function of λ :

$$\theta(\lambda) = f(\bar{\boldsymbol{x}} + \lambda \boldsymbol{d}) = ((\bar{\boldsymbol{x}}_1 + \lambda d_1) - 6)^2 + ((\bar{\boldsymbol{x}}_2 + \lambda d_2) - 2)^2 = ((2 + 2\lambda) - 6)^2 + ((3 - 3\lambda) - 2)^2 = (2\lambda - 4)^2 + (1 - 3\lambda)^2 = (1 - 3\lambda)^2 - (1 - 3\lambda)^2 - (1 - 3\lambda)^2 = (1 - 3\lambda)^2 - (1 - 3\lambda)^2 = (1 - 3\lambda)^2 - (1 - 3\lambda)^2 = (1 - 3\lambda)^2 - (1 - 3\lambda)^2 - (1 - 3\lambda)^2 = (1 - 3\lambda)^2 - (1 - 3\lambda)^2 - (1 - 3\lambda)^2 = (1 - 3\lambda)^2 - (1 - 3\lambda)^2 - (1 - 3\lambda)^2 = (1 - 3\lambda)^2 - (1 - 3\lambda)^2 - (1 - 3\lambda)^2 - (1 - 3\lambda)^2 = (1 - 3\lambda)^2 - (1 - 3$$

 To find the optimal step size λ, we need to solve the below convex program:

$$\begin{array}{ll} \min & 13\lambda^2 - 22\lambda + 17 \\ \text{s.t.} & -2\lambda \leq 2 \\ & 3\lambda \leq 3 \\ & \lambda \geq 0 \end{array}$$

- The first constraint $\lambda \geq -1$ is redundant, there remains the second constraint:

$$\min 13\lambda^2 - 22\lambda + 17: 0 \le \lambda \le 1$$

- The objective (a parabola) attains its minimum at $\frac{11}{13} < 1$
- So $\lambda \leq 1$ is not tight, the optimal step size is $\overline{\lambda} = \frac{11}{13}$
- Consequently, from point $\begin{bmatrix} 2 & 3 \end{bmatrix}^T$ we move along direction $d = \begin{bmatrix} 2 & -3 \end{bmatrix}^T$ to a distance $\bar{\lambda} = \frac{11}{13}$ to arrive to the new point $\bar{x} = \begin{bmatrix} \frac{48}{13} & \frac{6}{13} \end{bmatrix}^T$
- Here it was easy to solve the line search problem directly, in the general case it may be more difficult (next lecture)
- To solve the original convex program, we now need to find a feasible direction at point $\bar{x} = [rac{48}{13} \quad rac{6}{13}]^T$

- Solve min { $\nabla f(\bar{x})^T d : A_1 d \leq 0, \nabla f(\bar{x})^T d \geq -1$ } to find the new feasible direction
- At $\bar{x} = \begin{bmatrix} \frac{48}{13} & \frac{6}{13} \end{bmatrix}^T$ only the first constraint is tight, so $A_1 = \begin{bmatrix} 3 & 2 \end{bmatrix}$
- The gradient: $\nabla f(\bar{\boldsymbol{x}}) = [-\frac{60}{13} \frac{40}{13}]^T$
- We can again scale the gradient freely, only the direction matters
- So consider the gradient $[-3 2]^T$ (multiply $\nabla f(\bar{x})$ by $\frac{20}{13}$), from which we obtain:

• After inverting the second constraint, as maximization:

- Second constraint redundant, the optimum is 0
- The gradient is orthogonal to the boundary of the set of feasible directions
- No improving feasible direction at $\bar{\boldsymbol{x}} = [\frac{48}{13} \quad \frac{6}{13}]^T$
- (Probably) optimal solution

• Now suppose that we wish to solve the same nonlinear program, but this time starting from the point $\bar{x} = \begin{bmatrix} 4 & 0 \end{bmatrix}^T$

min
$$(x_1 - 6)^2 + (x_2 - 2)^2$$

s.t. $-x_1 + 2x_2 \le 4$
 $3x_1 + 2x_2 \le 12$
 $x_1, x_2 \ge 0$

• To find a feasible direction, we need the set of inactive constraints and the gradient at \bar{x}

$$\boldsymbol{A}_1 = \begin{bmatrix} 3 & 2 \\ 0 & -1 \end{bmatrix}, \quad \nabla f(\bar{\boldsymbol{x}}) = \begin{bmatrix} -4 & -4 \end{bmatrix}^T$$

• The linear program to find the feasible direction:

]

- From the second constraint $d_2 \ge 0$, no need to substitute
- Inverting the third condition, substituting d₁ = d'₁ d''₁: d'₁ ≥ 0, d''₁ ≥ 0, introducing slack variables, and converting to maximization:

• Initial simplex tableau (primal feasible):

	z	d'_1	d_1''	d_2	s_1	s_2	RHS
z	1	-4	4	-4	0	0	0
s_1	0	3	-3	2	1	0	0
s_2	0	4	-4	4	0	1	1

• The optimal tableau:

	z	d'_1	d_1''	d_2	s_1	s_2	RHS
z	1	0	0	0	0	1	1
d_2	0	0	0	1	-1	$\frac{3}{4}$	$\frac{3}{4}$
d_1''	0	-1	1	0	-1	$\frac{1}{2}$	$\frac{1}{2}$

• The improving feasible direction: $oldsymbol{d} = [-rac{1}{2} \quad rac{3}{4}]^T$

- Rescaling yields $\boldsymbol{d} = [-2 \quad 3]^T$
- Parameters for computing the optimal step size:

$$A_{2} = \begin{bmatrix} -1 & 2 \\ -1 & 0 \end{bmatrix}, \quad b_{2} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$$
$$s = A_{2}d = \begin{bmatrix} -1 & 2 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 8 \\ 2 \end{bmatrix}$$
$$t = b_{2} - A_{2}\bar{x} = \begin{bmatrix} 4 \\ 0 \end{bmatrix} - \begin{bmatrix} -1 & 2 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$$
$$\theta(\lambda) = f(\bar{x} + \lambda d) = ((4 - 2\lambda) - 6)^{2} + ((0 + 3\lambda) - 2)^{2} =$$
$$= (2\lambda - 4)^{2} + (1 - 3\lambda)^{2} = 13\lambda^{2} - 4\lambda + 8$$

• The optimal step size:

$$\begin{array}{ll} \min & 13\lambda^2 - 4\lambda + 8 \\ \text{s.t.} & 8\lambda \leq 2 \\ & 8\lambda \leq 4 \\ & \lambda \geq 0 \end{array}$$

- Simplified: min $13\lambda^2 4\lambda + 8: 0 \le \lambda \le \frac{1}{4}$
- Solution at the minimum of the parabola: $\overline{\lambda} = \frac{2}{13} < \frac{1}{4}$

$$\bar{\boldsymbol{x}} + \bar{\lambda}\boldsymbol{d} = \begin{bmatrix} 4\\ 0 \end{bmatrix} + \frac{2}{13} \begin{bmatrix} -2\\ 3 \end{bmatrix} = \begin{bmatrix} \frac{48}{13}\\ \frac{6}{13} \end{bmatrix}$$

• We returned to the same optimal point $\begin{bmatrix} \frac{48}{13} & \frac{6}{13} \end{bmatrix}^T$ as before

Method of Feasible Directions: Summary

- Given a convex program $\min f(x) : Ax \le b, Qx = q$, an initial feasible solution x_1 , and let k = 1
- 1. Find an improving feasible direction at x_k : decompose $Ax \leq b$ to tight $A_1x_k = b_1$ and inactive $A_2x_k < b_2$ constraints at x_k
- Let d_k be the optimal solution to the below linear program:

$$egin{aligned} z &= \min \ &
abla f(oldsymbol{x}_k)^T oldsymbol{d} \ & ext{ s.t. } oldsymbol{A}_1 oldsymbol{d} &\leq oldsymbol{0} \ & oldsymbol{Q} oldsymbol{d} &= oldsymbol{0} \ &
abla oldsymbol{f}(oldsymbol{x}_k)^T oldsymbol{d} &\geq -1 \end{aligned}$$

- If the optimal objective $z_{\mathrm{opt}} = 0$ then halt, \boldsymbol{x}_k is optimal
- Otherwise, $z_{\text{opt}} = -1$ and $d_k \neq 0$: line search along d_k

Method of Feasible Directions: Summary

2. Let
$$oldsymbol{s} = oldsymbol{A}_2 oldsymbol{d}$$
 and $oldsymbol{t} = oldsymbol{b}_2 - oldsymbol{A}_2 oldsymbol{x}_k$

• Let λ_k be the optimal solution to the below convex program:

$$\begin{split} \min f(\boldsymbol{x}_k + \lambda \boldsymbol{d}) &: 0 \leq \lambda \leq \lambda_{\max} \\ \lambda_{\max} &= \begin{cases} \min_{i \in \{1, \dots, r\}} (\frac{t_i}{s_i} : s_i > 0) & \text{ha } \boldsymbol{s} \nleq \boldsymbol{0} \\ \infty & \text{ha } \boldsymbol{s} \leq \boldsymbol{0} \end{cases} \end{split}$$

- Let $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \lambda_k \boldsymbol{d}_k$, k = k+1 and go to (1)
- Can also be modified for convex programs over nonlinear constraints, and also for nonconvex programs
- Globally non-convergent (zig-zagging), for convergence we'd need a second-order method
- Uses line search as a subroutine