
Nonlinear Programming 1

• General form of nonlinear programs, constrained and
unconstrained optimization, convex programs, local and
global optimal solution for nonconvex feasible region and/or
objective function, complexity

• Optimality conditions, smoothness, the concept of improving
directions and improving feasible directions, characterizing
the optimality of convex programs in terms of improving
feasible directions

• Solving simple nonlinear programs using successive linear
programming, the Method of Zoutendijk, finding improving
feasible directions, line search problems, choosing the step
size
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Nonlinear Programming

• Linear programming is widely used in practice

• Sophisticated modeling frameworks, efficient solvers,
build-in from the basic level (Excel!)

• Even problems of enormous size (hundreds of thousands of
variables, millions of constraints) can be solved by
computer-aided tools

• Unfortunately, the world is highly nonlinear: in many cases
either the constraints or the objective function (or both) may
be nonlinear

• In lucky cases the problem can be linearized without too
much loss of precision

• In more complex cases, however, linear programming is of
limited use
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Nonlinear Programs

• Consider the below nonlinear program:

min f(x)

s.t. gi(x) ≤ 0 i ∈ I = {1, . . . ,m}

where x ∈ Rn is a real-valued column n-vector and f and

gi are continuously differentiable Rn 7→ R functions

• If I = ∅ then the nonlinear program is unconstrained,
otherwise it is constrained

• If the feasible region X =
{

x : gi(x) ≤ 0, i ∈ {1, . . . ,m}
}

is convex and f is convex on X , then the problem is a
convex program

• For this, it is enough that all gi : i ∈ {1, . . . ,m} be convex

(we omit the proof)
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Nonlinear Programs

• The form min
{

f(x) : gi(x) ≤ 0, i ∈ {1, . . . ,m}
}

is a

generalization of linear programs to the nonlinear case

• A linear program min{cTx : Ax ≤ b} can easily be written

in the general form with the choice:

f(x) = cTx és gi(x) = aix− bi i ∈ {1, . . . ,m}

• Unfortunately, nonlinear programs lack the appealing
simplicity of linear programs

◦ local optimum 6= global optimum

◦ the optimum might not necessarily occur at an extreme
point of the feasible region

◦ not even on the boundary of the feasible region

◦ the simplex method cannot be used

◦ the concept of duality is less overarching
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Nonconvex Feasible Region

• Minimization of a Convex objective function over a convex
region: local optima correspond to global optima (recall the
Fundamental Theorem of Convex Programming)

• In general this is not the case

• Consider the nonlinear program

max 3x1 + 5x2

s.t. x1 ≤ 4

x2 ≤ 7

4x2 ≤ (x1 − 4)2 + 8

x1,x2 ≥ 0

• In the general form, converting to minimization:

f(x1, x2) = −3x1 − 5x2, g1(x1, x2) = x1 − 4, . . .
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Nonconvex Feasible Region

• The objective function is linear (thus convex) but the feasible
region is nonconvex
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• The contours of the objective
function are the straight lines
−3x1 − 5x2 = c

• x1 = [4 2]T is a local

optimum, objective: 22

• x2 = [0 6]T is both locally

and globally optimal,
objective: 30

• Global optimization is diffi-
cult, since a local check can-
not decide whether a point is
local or global optimum
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Nonconvex Objective Function

• Consider the nonlinear program

min − x2
1 − x2

2

s.t. x2
1 − x2 − 3 ≤ 0

x2 − 1 ≤ 0

− x1 ≤ 0

• In general form:

f(x1, x2) =− x2
1 − x2

2

g1(x1, x2) = x2
1 − x2 − 3

g2(x1, x2) = x2 − 1

g3(x1, x2) =− x1
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Nonconvex Objective Function

• The feasible region is convex but the objective function is
not (concave)
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• The contours of the objective

function −x2
1 − x2

2 = c are

origin-centered cycles

• x1 = [2 1]T is a local

optimum, objective: −5

• xx = [0 − 3]T is both a local

and a global optimum,
objective: −9

• Again, no local check can es-
tablish this
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Nonconvex Objective on Convex Region

• If we change the objective function to the convex function

f(x1, x2) = (x1 − 2)2 + (x2 − 2)2
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• The objective contours are
concentric cycles centered

at [2 2]T

• x = [2 1]T is local and

global optimum, objective: 1

• Convex feasible region +
convex objective function +
minimization = each local
optimum is global optimum

• Convex programming is
much simpler than generic
nonlinear programming
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Convex Programs: Optima

• If the objective is the convex f(x1, x2) = (x1 − 1)2 + x2
2

function
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• Objective contours are
concentric cycles around
[

1 0
]T

• Convex program, but the
optimum lies in the interior of
the feasible region!

• Boundary point methods
(like the simplex) cannot be
used

• Interior point solvers are
needed
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Complexity

• Solving a nonconvex nonlinear program is difficult even
when the feasible region is a polyhedron (i.e., constraints
are linear)

• For instance, the well-known (and notoriously difficult)
Boolean 3-satisfiability problem (3SAT) can easily be
formulated in such a form

• We seek the logical variables A, B, C, and D can be set so
that the below Boolean function evaluates to true

(A OR ¬B OR C) AND (¬A OR C OR ¬D) = TRUE

• For instance, C = TRUE is such a choice
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Complexity

• 3SAT: decide whether an assignment of TRUE or FALSE

values to logical variables Xi : i ∈ {1, . . . , n} exists so that

the logical function

f(X1, X2, . . . , Xn) =

m
∧

i=1

(

(¬)Xi1∨(¬)Xi2∨(¬)Xi3

)

= TRUE

in conjunctive normal form (CNF) consisting of m clauses
evaluates to TRUE

• Propositional logic:

◦ ∧: logical AND operation (conjunction)

◦ ∨: logical OR operation (disjunction)

◦ (¬)Xij
: variable j in clause i, may be negated (literal)

◦ (¬)Xi1 ∨ (¬)Xi2 ∨ (¬)Xi3 : clause
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Complexity

• Define the m× n clause matrix:

◦ aij = −1, if variable Xj occurs negated in clause i

◦ aij = 1, if variable Xj occurs non-negated in clause i

◦ aij = 0 otherwise

• Any 3SAT instance can be equivalently formulated as a
nonlinear program using the clause matrix

• Let xj be a continuous variable for logical variable Xj :

z = max

n
∑

j=1

x2
j

n
∑

j=1

aijxj ≥ −1 ∀i = 1, . . . ,m

−1 ≤ xj ≤ 1 ∀j = 1, . . . , n
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Complexity

• Theorem: a 3SAT instance is satisfiable, if and only the
optimal objective function value of the equivalent nonlinear
program is z = n (n is the number of variables)

• If this is the case, then from −1 ≤ xj ≤ 1 and

z = max
∑

j
x2
j = n it follows that xj may either take value

1 (Xj : TRUE) or −1 (Xj : FALSE)

¬X5 ∨X12 ∨ ¬X19 = TRUE ⇔ −x5 + x12 − x19 ≥ −1

• The constraint
∑

j
aijxj ≥ −1 holds only if at least one

literal in clause i evaluates to true

◦ X5 = X12 = X19 = TRUE, then −1 + 1− 1 = −1
◦ X5 = ¬X12 = X19 = TRUE, then −1− 1− 1 = −3

• Corollary: nonconvex programming is NP-hard
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Nonlinear Programming: Optimality

• In the sequel we consider the below nonlinear program:

min f(x) : x ∈ X

X =
{

x : gi(x) ≤ 0 i ∈ I = {1, . . . ,m}
}

where f and gi are continuously differentiable functions

• Smoothness (differentiability) is important as we want to use
the gradient

• We seek conditions for given x̄ ∈ Rn to be optimal

◦ if I = ∅ (unconstrained problem) and x̄ is local

minimum, then ∇f(x̄) = 0 (proved below)

◦ if f is convex and I = ∅ then this is also sufficient (next
lecture)

◦ if, on the other hand, I 6= ∅, then we can use the
Karush-Kuhn-Tucker conditions or the below method
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Improving Directions

• Definition: some d ∈ Rn is an improving direction of

function f at point x̄ ∈ X if there exists δ > 0 so that

f(x̄+ λd) < f(x̄) ∀λ ∈ (0, δ)

• Moving along the improving direction we obtain better
solutions

• Such directions can be characterized using the gradient of f

• Theorem: is f is smooth at point x̄ and there is d so that

∇f(x̄)Td < 0, then d is an improving direction of f in x̄

• Proof: the gradient characterizes the change in the value of

function f while we move from point x̄ to x̄+ λd

f(x̄+ λd)− f(x̄) ≈ ∇f(x̄)T (λd) < 0
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Unconstrained Programs: Optimum

• Corollary: if f is differentiable at x̄ and x̄ is a local

optimum of f , then ∇f(x̄) = 0

• Proof: suppose that ∇f(x̄) 6= 0, then the choice

d = −∇f(x̄) gives an improving direction, since

∇f(x̄)Td = ∇f(x̄)T (−∇f(x̄)) = −‖∇f(x̄)‖2 < 0

• So we have found a direction d so that moving along d we

obtain smaller values for f , which is a contradiction

• Cannot be used for solving nonlinear programs in general

◦ since it is only a necessary condition, not sufficient

◦ since the algebraic equation ∇f(x) = 0 usually cannot

be solved directly

◦ or because we may exit the feasible region along d
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Improving Feasible Directions

• Definition: d ∈ Rn is a feasible direction of some set X
at point x̄ ∈ X , if there is δ > 0 so that

∀λ ∈ (0, δ) : x̄+ λd ∈ X

• Definition: d is an improving feasible direction at x if it is
both a feasible and an improving direction

• We can move some nonzero distance along the improving
feasible direction to get all feasible solutions that improve
the objective function

• Theorem: if x̄ ∈ X is a local minimum of the nonlinear
program min f(x) : x ∈ X then there is no improving

feasible direction at x̄

• Proof: suppose otherwise and obtain a contradiction

• The condition is again only necessary, not sufficient
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Improving Directions: Example

x1

x2
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• The running example:

min −x2
1 − x2

2

x2
1 − x2 − 3 ≤ 0

x2 − 1 ≤ 0

−x1 ≤ 0

• ∇f(x)T = [−2x1 − 2x2]

• Consider the local minimum
x̄1 = [2 1]T

• Improving directions lie in the open half-space ∇f(x̄)Td =
−4d1 − 2d2 < 0, neither of which is feasible

• Similarly for local minimum x2
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Improving Directions: Example

• Consider the nonlinear program min{x2 : x2 = x2
1}

• Point x̄ = [1 1]T is not optimal, since x2 decreases with

decreasing x1

x1

x2

−2 −1 1 2

1

2

3

x̄

• Yet there is no feasible
direction at point x̄

• Since we cannot move along
a straight line and still remain
inside the feasible region

• So it does not follow from the
lack of an improving feasible
direction that a point is a local
optimum

• The condition is only neces-
sary
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The Method of Feasible Directions

• We have seen that if some x̄ is local minimum of the
nonlinear program min f(x) : x ∈ X then there is no

improving feasible direction at x̄

• The condition is only necessary but not sufficient, since in
pathological cases it can happen that there is no feasible
direction at all at a point

• This cannot happen for “well-behaved” (e.g., convex)
feasible regions

• The method of feasible directions due to Zoutendijk is a
simple iterative algorithm to find a point where there is no
improving feasible direction

• Traces back the solution of a nonlinear program to the
sequential solution of simple linear programs (successive
linear programming)

• Can be used for simpler convex programs
– p. 21



The Method of Feasible Directions

• Consider the following convex program, characterized by a
linear constraint system:

min f(x)

s.t. Ax ≤ b

Qx = q

where x ∈ Rn, A is an m× n and Q is an l× n matrix, b is
a column m-vector and q is a column l-vector, and f is a
smooth convex function

• Let x̄ be a feasible solution and separate the constraint
system to two groups:

◦ denote by A1x ≤ b1 the tight (or active) constraints at

x̄: A1x̄ = b1
◦ let A2x ≤ b2 be the inactive constraints: A2x̄ < b2
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The Method of Feasible Directions

• In what follows the term “feasible direction” will mean
“improving feasible direction” where no ambiguity arises

• An algebraic characterization for feasible directions

• Theorem: some d 6= 0 is a feasible direction at x̄ if

∇f(x̄)Td < 0 (1)

A1d ≤ 0 és Qd = 0 (2)

• Proof: by (1) d is improving

• We show that it is a feasible direction as well

• Equality constraints hold for any x = x̄+ λd : λ ∈ R, since

Qx = Q(x̄+ λd) = Qx̄+ λQd = q + λ0 = q

due to the assumption of the theorem that Qd = 0
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The Method of Feasible Directions

• Tight constraints hold for any x̄+ λd : λ ≥ 0, since

A1(x̄+ λd) = A1x̄+ λA1d = b1 + λA1d ≤ b1

and, by assumption, A1d ≤ 0

• To show that the inactive constraints hold as well, choose
δ > 0 small enough so that in the δ-neighborhood of x̄ the

condition A2x ≤ b2 is satisfied

• This can always be done

• We conclude that there is δ > 0 so that x̄+ λd is both
feasible and improving for any λ ∈ (0, δ)

• By the claim of the theorem, linear programming can be
used to seek feasible directions

• The minimum can be iteratively found along such feasible
directions
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Finding a Feasible Direction: Example

• Consider the convex program

min (x1 − 6)2+(x2 − 2)2

s.t. − x1 + 2x2 ≤ 4

3x1 + 2x2 ≤ 12

x1, x2 ≥ 0

• The tight conditions at x̄ = [2 3]T

A1 =

[

−1 2
3 2

]

, b1 =

[

4
12

]

• The gradient of the objective function is ∇f(x̄)T = [−8 2]

at point x̄, since ∇f(x)T = [2(x1 − 6) 2(x2 − 2)]
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Finding a Feasible Direction: Example

x1

x2

1 2 3 4 5 6

1

2

3

4

−∇f(x̄)x̄

improving feasible directions

feasible directions • From constraint A1d ≤ 0

−d1 + 2d2 ≤ 0

3d1 + 2d2 ≤ 0

• Using ∇f(x̄)Td < 0

−8d1 + 2d2 < 0

• Feasible directions are characterized by linear constraints

• Can be solved by linear programming
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Finding a Feasible Direction

• Let min{f(x) : Ax ≤ b,Qx = q} be a convex program,

let x̄ be a feasible solution, and denote by A1x ≤ b1 the
tight and by A2x ≤ b2 the inactive constraints at x̄

• We search for d so that ∇f(x̄)Td < 0, A1d ≤ 0 and

Qd = 0

• Solve the below linear program in variables d:

z = min ∇f(x̄)Td (1)

s.t. A1d ≤ 0 (2)

Qd = 0 (3)

∇f(x̄)Td ≥ −1 (4)

• Linear program because ∇f(x̄)T is a constant row-vector
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Finding a Feasible Direction

• Let the optimal solution to the linear program be d

• d is feasible by (2) and (3), and by (1) it is also improving

• Without (4) we would get unbounded minimum, since if for

any d it holds that ∇f(x̄)Td < 0, A1d ≤ 0, and Qd = 0,

then it also holds for any λd, λ > 0 too

• (4) normalizes the resultant vector d

• It is easy to see that d = 0 is always feasible, therefore the
optimal objective function value is guaranteed to be
nonpositive

◦ if z < 0 then it must hold that z = −1 by (4) and d 6= 0

is an improving feasible direction at x̄

◦ if z = 0 then there is no improving feasible direction at x̄
and so x̄ may be a local minimum
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Finding a Feasible Direction: Example

• Find an improving feasible direction in the running example

at point x̄ = [2 3]T

• Solve the below linear program:

min −8d1 + 2d2
−d1 + 2d2 ≤ 0
3d1 + 2d2 ≤ 0
−8d1 + 2d2 ≥ −1

• Multiply the third constraint by −1, introduce slack variables
s1, s2, and s3, and convert to maximization (note the
eventual inversion!)

• Still not in standard form as variables d1 and d2 are free,
whereas the simplex method requires nonegative variables
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Finding a Feasible Direction: Example

• Substitute nonnegative variables according to di = d′i − d′′i :

d′i ≥ 0, d′′i ≥ 0

max 8d′1 −8d′′1 −2d′2 +2d′′2
−d′1 +d′′1 +2d′2 −2d′′2 +s1 = 0
3d′1 −3d′′1 +2d′2 −2d′′2 +s2 = 0
8d′1 −8d′′1 −2d′2 +2d′′2 +s3 = 1
d′1, d′′1, d′2, d′′2, s1, s2, s3 ≥ 0

• Initial simplex tableau with the slack variables as basis:

z d′1 d′′1 d′2 d′′2 s1 s2 s3 RHS

z 1 −8 8 2 −2 0 0 0 0
s1 0 −1 1 2 −2 1 0 0 0

s2 0 3 −3 2 −2 0 1 0 0
s3 0 8 −8 −2 2 0 0 1 1
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Finding a Feasible Direction: Example

z d′1 d′′1 d′2 d′′2 s1 s2 s3 RHS

z 1 0 0 22

3
−22

3
0 8

3
0 0

s1 0 0 0 8

3
−8

3
1 1

3
0 0

d′1 0 1 −1 2

3
−2

3
0 1

3
0 0

s3 0 0 0 −22

3

22

3
0 −8

3
1 1

z d′1 d′′1 d′2 d′′2 s1 s2 s3 RHS

z 1 0 0 0 0 0 0 1 1

s1 0 0 0 0 0 1 − 7

11

4

11

4

11

d′1 0 1 −1 0 0 0 1

11

1

11

1

11

d′′2 0 0 0 −1 1 0 − 4

11

3

22

3

22

• We have found an improving feasible direction: [ 1

11
− 3

22
]T
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Choosing the Step Size

• Suppose that we have found a feasible direction d at some

point x̄ ∈ X so that ∇f(x̄)Td < 0, A1d ≤ 0 and Qd = 0

• Question is, how much to move along d

◦ on the one hand, we must remain in the feasible region

◦ on the other hand, we can go only as far as the objective
function keeps on dropping and we must stop before it
may start to increase again

• Thus, we need to solve the below convex program for λ:

min f(x̄+ λd) (1)

s.t. A(x̄+ λd) ≤ b (2)

Q(x̄+ λd) = q (3)

λ ≥ 0 (4)

– p. 32



Choosing the Step Size

• (3) is redundant because Qx̄ = q and Qd = 0

• (1) can be replaced by the constraints A1(x̄+ λd) ≤ b1
and A2(x̄+ λd) ≤ b2

• From these A1(x̄+ λd) ≤ b1 trivially holds for each λ > 0,

since A1x̄ = b1 and A1d ≤ 0

• What remains are the inactive constraints A2(x̄+ λd) ≤ b2

• Simple convex program for λ:

min f(x̄+ λd)

s.t. (A2d)λ ≤ b2 −A2x̄

λ ≥ 0

• Here, A2d and b2 −A2x̄ are constant column vectors with
as many components as there are inactive constraints at x̄
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Choosing the Step Size

• Let s = A2d and t = b2 −A2x̄ be column r-vectors

• We know that t > 0, as A2x̄ < b2 is precisely the set of
inactive constraints at x̄

• Our convex program can be written equivalently as

min f(x̄+ λd) : λ ∈ L

L = {λ : s1λ ≤ t1
s2λ ≤ t2

...
...

srλ ≤ tr
0 ≤ λ }

• Convex program with a single unknown and simple structure

• Can be simplified even further
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Choosing the Step Size

• The constraints are of the general form siλ ≤ ti, where
ti > 0 for each i

min f(x̄+ λd) : λ ≥ 0, siλ ≤ ti, i = 1, . . . , r

1. for si < 0 we get a redundant constraint −|si|λ ≤ ti, or

equivalently λ ≥ − ti
|si|

(< 0) (redundant as λ ≥ 0)

2. for si = 0 we get the trivial 0λ ≤ ti(> 0)

3. si > 0 yields the irredundant constraint λ ≤ ti
si
(> 0)

• We obtain the simplified form:

min f(x̄+ λd) : 0 ≤ λ ≤ λmax

λmax =

{

mini∈{1,...,r}(
ti
si
: si > 0) ha s � 0

∞ ha s ≤ 0
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Choosing the Step Size

• Simple convex program with a single unknown

min f(x̄+ λd) : 0 ≤ λ ≤ λmax

• If λmax = ∞ then x+ λd remains feasible for any λ:
unconstrained line search

• Otherwise the search interval: λ ∈ [0, λmax]

• Convex program, can also be solved using the method of
feasible directions

• Or use a direct line search method (next lecture)
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Choosing the Step Size: Example

• Consider the running example:

min (x1 − 6)2+(x2 − 2)2

s.t. − x1 + 2x2 ≤ 4

3x1 + 2x2 ≤ 12

x1, x2 ≥ 0

• After solving the respective linear program, we obtained the

feasible direction d = [ 1

11
− 3

22
]T at x̄ = [2 3]T

• We need to find the best step size to move along d

• It is worth scaling d in a way that the components become

integer-valued (the norm of d does not matter)

• So let d = [2 − 3]T
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Choosing the Step Size: Example

• Solve min {f(x̄+ λd) : siλ ≤ ti, i = 1, . . . , r} to find the

optimal step size, where s = A2d and t = b2 −A2x̄ are
column r-vectors and A2x ≤ b2 are the inactive constraints

• At x̄ = [2 3]T the first two conditions are tight, the

nonnegativity constraints (x1 ≥ 0, x2 ≥ 0) are inactive

• From this A2 and b2, and s and t

A2 =

[

−1 0
0 −1

]

, b2 =

[

0
0

]

s = A2d =

[

−1 0
0 −1

][

2
−3

]

=

[

−2
3

]

t = b2 −A2x̄ =

[

0
0

]

−

[

−1 0
0 −1

][

2
3

]

=

[

2
3

]
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Choosing the Step Size: Example

• Write the objective function as the function of λ:

θ(λ) = f(x̄+λd) = ((x̄1+λd1)−6)2+((x̄2+λd2)−2)2 =

((2+2λ)− 6)2+((3− 3λ)− 2)2 = (2λ− 4)2+(1− 3λ)2 =

13λ2 − 22λ+ 17

• To find the optimal step size λ, we need to solve the below
convex program:

min 13λ2 − 22λ+ 17

s.t. − 2λ ≤ 2

3λ ≤ 3

λ ≥ 0
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Choosing the Step Size: Example

• The first constraint λ ≥ −1 is redundant, there remains the
second constraint:

min 13λ2 − 22λ+ 17 : 0 ≤ λ ≤ 1

• The objective (a parabola) attains its minimum at 11

13
< 1

• So λ ≤ 1 is not tight, the optimal step size is λ̄ = 11

13

• Consequently, from point [2 3]T we move along direction

d = [2 − 3]T to a distance λ̄ = 11

13
to arrive to the new

point x̄ = [48
13

6

13
]T

• Here it was easy to solve the line search problem directly, in
the general case it may be more difficult (next lecture)

• To solve the original convex program, we now need to find a

feasible direction at point x̄ = [48
13

6

13
]T
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Finding a Feasible Direction: Example

• Solve min {∇f(x̄)Td : A1d ≤ 0,∇f(x̄)Td ≥ −1} to find

the new feasible direction

• At x̄ = [48
13

6

13
]T only the first constraint is tight, so

A1 = [3 2]

• The gradient: ∇f(x̄) = [−60

13
− 40

13
]T

• We can again scale the gradient freely, only the direction
matters

• So consider the gradient [−3 − 2]T (multiply ∇f(x̄) by
20

13
), from which we obtain:

min −3d1 − 2d2
s.t. 3d1 + 2d2 ≤ 0

−3d1 − 2d2 ≥ −1
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Finding a Feasible Direction: Example

• After inverting the second constraint, as maximization:

max 3d1 + 2d2
s.t. 3d1 + 2d2 ≤ 0

3d1 + 2d2 ≤ 1

x1

x2

1 2 3 4 5

1

2

3

−∇f(x̄)

x̄

feasible directions

• Second constraint redundant,
the optimum is 0

• The gradient is orthogonal to
the boundary of the set of
feasible directions

• No improving feasible

direction at x̄ = [48
13

6

13
]T

• (Probably) optimal solution
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Finding a Feasible Direction: Example

• Now suppose that we wish to solve the same nonlinear

program, but this time starting from the point x̄ = [4 0]T

min (x1 − 6)2+(x2 − 2)2

s.t. − x1 + 2x2 ≤ 4

3x1 + 2x2 ≤ 12

x1, x2 ≥ 0

• To find a feasible direction, we need the set of inactive
constraints and the gradient at x̄

A1 =

[

3 2
0 −1

]

, ∇f(x̄) = [−4 − 4]T
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Finding a Feasible Direction: Example

• The linear program to find the feasible direction:

min −4d1 − 4d2
s.t. 3d1 + 2d2 ≤ 0

−d2 ≤ 0
−4d1 − 4d2 ≥ −1

• From the second constraint d2 ≥ 0, no need to substitute

• Inverting the third condition, substituting d1 = d′1 − d′′1:

d′1 ≥ 0, d′′1 ≥ 0, introducing slack variables, and converting

to maximization:

max 4d′1 − 4d′′1 + 4d2
s.t. 3d′1 − 3d′′1 + 2d2 + s1 = 0

4d′1 − 4d′′1 + 4d2 + s2 = 1
d′1, d′′1, d2, s1, s2 ≥ 0
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Finding a Feasible Direction: Example

• Initial simplex tableau (primal feasible):

z d′1 d′′1 d2 s1 s2 RHS

z 1 −4 4 −4 0 0 0

s1 0 3 −3 2 1 0 0
s2 0 4 −4 4 0 1 1

• The optimal tableau:

z d′1 d′′1 d2 s1 s2 RHS

z 1 0 0 0 0 1 1
d2 0 0 0 1 −1 3

4

3

4

d′′1 0 −1 1 0 −1 1

2

1

2

• The improving feasible direction: d = [−1

2

3

4
]T
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Finding a Feasible Direction: Example

• Rescaling yields d = [−2 3]T

• Parameters for computing the optimal step size:

A2 =

[

−1 2
−1 0

]

, b2 =

[

4
0

]

s = A2d =

[

−1 2
−1 0

][

−2
3

]

=

[

8
2

]

t = b2 −A2x̄ =

[

4
0

]

−

[

−1 2
−1 0

][

4
0

]

=

[

8
4

]

θ(λ) = f(x̄+ λd) = ((4− 2λ)− 6)2 + ((0 + 3λ)− 2)2 =

= (2λ− 4)2 + (1− 3λ)2 = 13λ2 − 4λ+ 8
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Finding a Feasible Direction: Example

• The optimal step size:

min 13λ2 − 4λ+ 8

s.t. 8λ ≤ 2

8λ ≤ 4

λ ≥ 0

• Simplified: min 13λ2 − 4λ+ 8 : 0 ≤ λ ≤ 1

4

• Solution at the minimum of the parabola: λ̄ = 2

13
< 1

4

x̄+ λ̄d =

[

4
0

]

+ 2

13

[

−2
3

]

=

[

48

13
6

13

]

• We returned to the same optimal point [48
13

6

13
]T as before
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Method of Feasible Directions: Summary

• Given a convex program min f(x) : Ax ≤ b,Qx = q, an

initial feasible solution x1, and let k = 1

1. Find an improving feasible direction at xk: decompose

Ax ≤ b to tight A1xk = b1 and inactive A2xk < b2
constraints at xk

• Let dk be the optimal solution to the below linear program:

z = min ∇f(xk)
Td

s.t. A1d ≤ 0

Qd = 0

∇f(xk)
Td ≥ −1

• If the optimal objective zopt = 0 then halt, xk is optimal

• Otherwise, zopt = −1 and dk 6= 0: line search along dk
– p. 48



Method of Feasible Directions: Summary

2. Let s = A2d and t = b2 −A2xk

• Let λk be the optimal solution to the below convex program:

min f(xk + λd) : 0 ≤ λ ≤ λmax

λmax =

{

mini∈{1,...,r}(
ti
si
: si > 0) ha s � 0

∞ ha s ≤ 0

• Let xk+1 = xk + λkdk, k = k + 1 and go to (1)

• Can also be modified for convex programs over nonlinear
constraints, and also for nonconvex programs

• Globally non-convergent (zig-zagging), for convergence
we’d need a second-order method

• Uses line search as a subroutine
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