Nonlinear Programming 1

e General form of nonlinear programs, constrained and
unconstrained optimization, convex programs, local and
global optimal solution for nonconvex feasible region and/or
objective function, complexity

e Optimality conditions, smoothness, the concept of improving
directions and improving feasible directions, characterizing
the optimality of convex programs in terms of improving
feasible directions

e Solving simple nonlinear programs using successive linear
programming, the Method of Zoutendijk, finding improving
feasible directions, line search problems, choosing the step
size



Nonlinear Programming

Linear programming is widely used in practice

Sophisticated modeling frameworks, efficient solvers,
build-in from the basic level (Excel!)

Even problems of enormous size (hundreds of thousands of
variables, millions of constraints) can be solved by
computer-aided tools

Unfortunately, the world is highly nonlinear: in many cases
either the constraints or the objective function (or both) may
be nonlinear

In lucky cases the problem can be linearized without too
much loss of precision

In more complex cases, however, linear programming is of
limited use



Nonlinear Programs

e Consider the below nonlinear program:

min f(x)

s.t. gi(x) <0 el ={1,....m}

where x € R" is a real-valued column n-vector and f and
g; are continuously differentiable R™ — IR functions

e If / = () then the nonlinear program is unconstrained,
otherwise it is constrained

o If the feasible region X = {x: g;(x) <0, i € {1,...,m}}

is convex and f is convex on X, then the problem is a
convex program

e For this, it is enough thatall g; : : € {1,..., m} be convex
(we omit the proof)



Nonlinear Programs

e The form min {f(m) :gi(x) <0,ie{l,... ,m}} is a
generalization of linear programs to the nonlinear case

e A linear program min{c’z : Ax < b} can easily be written
in the general form with the choice:

flx)=c'z és gi(x)=a'z—b; ic{l,...,m}

e Unfortunately, nonlinear programs lack the appealing
simplicity of linear programs
o local optimum = global optimum

o the optimum might not necessarily occur at an extreme
point of the feasible region

o not even on the boundary of the feasible region
o the simplex method cannot be used
o the concept of duality is less overarching



Nonconvex Feasible Region

e Minimization of a Convex objective function over a convex
region: local optima correspond to global optima (recall the
Fundamental Theorem of Convex Programming)

e In general this is not the case
e Consider the nonlinear program
max 3x1 + dxs
s.t. 1 <4
To <7
4y < (17 —4)° +8

1,22 > 0

e In the general form, converting to minimization:

f(51717332) = —3x1 — OTa, 91(%&2) =x1—4,...



Nonconvex Feasible Region

e The objective function is linear (thus convex) but the feasible
region is nonconvex

T2 4 e The contours of the objective
> function are the straight lines
' —3T1 — DTy = C

e x; =1[4 2|'isalocal
optimum, objective: 22

o x, = [0 6] is both locally
and globally optimal,
objective: 30

e Global optimization is diffi-
cult, since a local check can-
not decide whether a point is
local or global optimum




Nonconvex Objective Function

e Consider the nonlinear program

min — a7 — 5

st. 27 — 29 —3<0

Lo — 1 S 0
— I S 0
e In general form:
flrr, o) = — a1 — a3
gi(x1,22) = 2° — 29 — 3
go(x1,29) =29 — 1
93(%,%2) — — I



Nonconvex Objective Function

e The feasible region is convex but the objective function is
not (concave)

e The contours of the objective
function —z% — x5 = c are

origin-centered cycles

e z; =[2 1]l isalocal
optimum, objective: —5

o x, = [0 — 3]' is both a local
and a global optimum,
objective: —9

e Again, no local check can es-
tablish this




Nonconvex Objective on Convex Region

e If we change the objective function to the convex function
f(z1,22) = (21— 2)% + (22 — 2)*

The objective contours are
concentric cycles centered

at[2 2]

x = [2 1]! is local and
global optimum, objective: 1

Convex feasible region +
convex objective function +
minimization = each local
optimum is global optimum

Convex programming is
much simpler than generic
nonlinear programming



Convex Programs: Optima

e If the objective is the convex f(z1,x9) = (z; — 1)? + 22
function

e Obijective contours are
concentric cycles around

1o

e Convex program, but the
optimum lies in the interior of
the feasible region!

e Boundary point methods
(like the simplex) cannot be
used

e Interior point solvers are
needed

—n. 10



Complexity

Solving a nonconvex nonlinear program is difficult even
when the feasible region is a polyhedron (i.e., constraints
are linear)

For instance, the well-known (and notoriously difficult)
Boolean 3-satisfiability problem (3SAT) can easily be
formulated in such a form

We seek the logical variables A, B, C', and D can be set so
that the below Boolean function evaluates to true

(AOR -~BOR C) AND (=A OR C OR —D) = TRUE

For instance, C' = TRUE is such a choice

—n. 11



Complexity

e 3SAT: decide whether an assignment of TRUE or FALSE
values to logical variables X; : 7 € {1,...,n} exists so that
the logical function

>3

F(X1 Xg, .. X ( S) X, V()X ):TRUE

1=1
in conjunctive normal form (CNF) consisting of m clauses
evaluates to TRUE
e Propositional logic:
o A: logical AND operation (conjunction)
o V: logical OR operation (disjunction)
S (ﬂ)XZ-j: variable j in clause i, may be negated (literal)
o (—)X;, V(—)X,, V (—)X,,: clause

—n. 12



Complexity

e Define the m x n clause matrix:
o a;; = —1, if variable X; occurs negated in clause ¢

o a;; = 1, if variable X; occurs non-negated in clause ¢
O Q;5 = 0 otherwise

e Any 3SAT instance can be equivalently formulated as a
nonlinear program using the clause matrix

e Let x, be a continuous variable for logical variable X ;:

n
_ E 2
< = IMnax Ij
j=1
n
E CLijZCjZ—l Vz:l,,m
j=1
—1§£CJ

| /\
—
<
|
\JI‘—‘
=
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Complexity

Theorem: a 3SAT instance is satisfiable, if and only the
optimal objective function value of the equivalent nonlinear
program is z = n (n is the number of variables)

If this is the case, then from —1 <z, < 1 and
2 =max ).z = n it follows that z; may either take value
1 (X;: TRUE) or —1 (X,: FALSE)

_IX5 V X12 \V4 _IX19 — TRUE <~ — X5 -+ 12 — X119 Z —1

The constraint ) . a;;z; > —1 holds only if at least one

literal in clause 7 evaluates to true
o X5 = X190 =Xq9=TRUE,then—-1+1—-1= -1
O X5 :_IX12:X19:TRUE, then—-1—-1—-1=-3

Corollary: nonconvex programming is NP-hard

_p 14



Nonlinear Programming: Optimality

e In the sequel we consider the below nonlinear program:
min f(x):x e X
X:{a::gi(a:)g() iE[:{l,...,m}}

where f and g; are continuously differentiable functions

e Smoothness (differentiability) is important as we want to use
the gradient
e We seek conditions for given & € R" to be optimal
o if I = () (unconstrained problem) and & is local
minimum, then V f(x) = 0 (proved below)

o if fis convex and I = () then this is also sufficient (next
lecture)

o if, on the other hand, I # (), then we can use the
Karush-Kuhn-Tucker conditions or the below method

—n. 15



Improving Directions

Definition: some d € R" is an improving direction of
function f at point & € X if there exists 0 > 0 so that

f(&@+ ) < f(Z) VA€ (0,0)

Moving along the improving direction we obtain better
solutions

Such directions can be characterized using the gradient of f

Theorem: is f is smooth at point & and there is d so that
Vf(x)'d < 0, then d is an improving direction of f in T

Proof: the gradient characterizes the change in the value of
function f while we move from point & to & + \d

f@+Xd) — f(®) =~ Vf(z)'(\d) <0 0

—n. 16



Unconstrained Programs: Optimum

Corollary: if f is differentiable at & and & is a local
optimum of f,then Vf(x) =0

Proof: suppose that V f(&) # 0, then the choice
d = —V f(&) gives an improving direction, since

Vi@)'d=Vf(@) (-Vf(@)=-IVf(@)|* <0

So we have found a direction d so that moving along d we
obtain smaller values for f, which is a contradiction (]
Cannot be used for solving nonlinear programs in general

o since it is only a necessary condition, not sufficient

o since the algebraic equation V f(x) = 0 usually cannot
be solved directly

o or because we may exit the feasible region along d

—n. 17



Improving Feasible Directions

Definition: d € R" is a feasible direction of some set X
at point & € X, if there is 0 > 0 so that

YA€ (0,6): 2+ AdEX

Definition: d is an improving feasible direction at x if it is
both a feasible and an improving direction

We can move some nonzero distance along the improving
feasible direction to get all feasible solutions that improve
the objective function

Theorem: if £ € X is a local minimum of the nonlinear
program min f(ax) : € X then there is no improving

feasible direction at @
Proof: suppose otherwise and obtain a contradiction N

The condition is again only necessary, not sufficient

—n. 18



Improving Directions: Example

ALLTLLLLLULALLLANANNA NN AN Y

e The running example:

T A .

o min —xrj — &5

, 1
, :

\\ —331 S O

o Vf = —2331 — 2[132
—O® e Consider the local minimum
r =12 1

e Improving directions lie in the open half-space V f(x =
—4d; — 2d5 < 0, neither of which is feasible

e Similarly for local minimum a5

—n. 19



Improving Directions: Example

e (Consider the nonlinear program min{:z:2 = :1:%}

e Pointz =[1 1] is not optimal, since x, decreases with
decreasing x4

Yet there is no feasible
direction at point x

Since we cannot move along
a straight line and still remain
iInside the feasible region

So it does not follow from the
lack of an improving feasible
direction that a point is a local
optimum

The condition is only neces-
sary

—n. 20



The Method of Feasible Directions

We have seen that if some & is local minimum of the
nonlinear program min f(x) : « € X then there is no

improving feasible direction at &

The condition is only necessary but not sufficient, since in
pathological cases it can happen that there is no feasible
direction at all at a point

This cannot happen for “well-behaved” (e.g., convex)
feasible regions

The method of feasible directions due to Zoutendijk is a
simple iterative algorithm to find a point where there is no
improving feasible direction

Traces back the solution of a nonlinear program to the
sequential solution of simple linear programs (successive
linear programming)

Can be used for simpler convex programs

—n. 21



The Method of Feasible Directions

e Consider the following convex program, characterized by a
linear constraint system:

min f(a)
s.t. Ax <b

Qx =q

where x € R™, Aisanm x n and Q is an [ x n matrix, b is

a column m-vector and q is a column [-vector, and f is a
smooth convex function

e Let x be a feasible solution and separate the constraint
system to two groups:

o denote by A;x < b, the tight (or active) constraints at
I Ali_ll‘ = b1

o let A,x < b, be the inactive constraints: A,x < b,

—n. 22



The Method of Feasible Directions

In what follows the term “feasible direction” will mean
“improving feasible direction” where no ambiguity arises

An algebraic characterization for feasible directions
Theorem: some d # 0 is a feasible direction at x if

Vf(E)'d<0 (1)
Aid<0ésQd=0 (2)

Proof: by (1) d is improving
We show that it is a feasible direction as well
Equality constraints hold forany & = & + Ad : A € R, since

Qr=Q(x+Md)=Qx+)Qd=q+ \0=gq

due to the assumption of the theorem that Qd = 0

—n. 23



The Method of Feasible Directions

Tight constraints hold for any * + Ad : A > 0, since
Ai(x+2d) = Az + ) A d=b; + NAd < by

and, by assumption, A;d <0

To show that the inactive constraints hold as well, choose
0 > 0 small enough so that in the ¢-neighborhood of x the
condition A,x < b, is satisfied

This can always be done

We conclude that there is & > 0 so that & + \d is both
feasible and improving for any A € (0, ¢) O

By the claim of the theorem, linear programming can be
used to seek feasible directions

The minimum can be iteratively found along such feasible
directions

—n. 24



Finding a Feasible Direction: Example

e Consider the convex program

min (ZEl — 6>2+($2 — 2)2
s.t. —x1 4+ 229 < A4
31 + 210 < 12

L1,I2 2 O

e The tight conditionsatz = [2 3]*

—1 2 4
Al:[ 3 2]’ bl:[m]

e The gradient of the objective function is V f(x )

— -8 2
at point &, since Vf(x)! = [2(z; — 6) 2(zy — 2)]

—n. 25



Finding a Feasible Direction: Example

e From constraint A;d <0

—dy + 2dy <0

3d1 + 2dy <0

T'd <0

)

—8d; + 2dy < 0

e Using V f(a

loNns

t

Irec

feasible d

improving

e Feasible directions are characterized by linear constraints

inear programming

e Can be solved by |

—Dn. 26



Finding a Feasible Direction

o Let min{f(x): Ax < b,Qx = q} be a convex program,
let & be a feasible solution, and denote by A;x < b; the
tight and by Asa < b, the inactive constraints at x

e We searchfordsothat Vf(z)'d <0, A;d < 0 and
Qd = 0

e Solve the below linear program in variables d:

z=min Vf(z)'d (1)
s.t. A d<O0 (2)
Qd=0 (3)
Vi@)'d>-1 (4)

e Linear program because V f(x)” is a constant row-vector

—n. 27



Finding a Feasible Direction

Let the optimal solution to the linear program be d
d is feasible by (2) and (3), and by (1) it is also improving

Without (4) we would get unbounded minimum, since if for
any d it holds that V f(z)'d < 0, A;d < 0, and Qd = 0,
then it also holds for any Ad, A > 0 too

(4) normalizes the resultant vector d

It is easy to see that d = O is always feasible, therefore the
optimal objective function value is guaranteed to be
nonpositive

o if z < 0thenitmust holdthat z = —1by (4)andd # 0
IS an improving feasible direction at &

o if z = 0 then there is no improving feasible direction at x
and so x may be a local minimum

—n. 28



Finding a Feasible Direction: Example

e Find an improving feasible direction in the running example
atpointz = [2 3]!

e Solve the below linear program:

min —8d1 + 2d2

—d; + 2dy < 0
3di + 2dy, < 0
—8dy + 2dy, > -1

e Multiply the third constraint by —1, introduce slack variables
s1, S9, and s3, and convert to maximization (note the
eventual inversion!)

e Still not in standard form as variables d; and d, are free,
whereas the simplex method requires nonegative variables



Finding a Feasible Direction: Example

e Substitute nonnegative variables according to d; = d; — d:

d; >0,d] >0

max 8d; —8d]
—d;  +df
3d;  —3d]
8d; —8d]
dy,  dy,

—2d,
+2d,
+2d,
_Q,d’2

+2d”

—2d’2, —|—81

o
+2d!
d!.

S1,

+S9

59,

+S3
S3

IV

e Initial simplex tableau with the slack variables as basis:

z| dy df dy dy sy s s3|RHS
z |1}-8 8 2 =2 0 0 O 0
s1| 0] —1 r 2 =2 1 0 0 0
so (013 -3 2 =2 0 1 0 0
s3 | 0 § =8 =2 2 0 0 1 1

o = O O

—n. 30



Finding a Feasible Direction: Example

z1dy df dy di s; sy s3|RHS
22 22 8
ol 1 -1 2 -2 o0 1 o] o
22 22 8
z|dy df dy di s; sy s3|RHS
z |10 0 0 0 O 0 1 1
7 4 4
dil, 01 -1 0 0 0 le gll 1_:1))1
oo 0 -1 1 0 -4 3| 3

e We have found an improving feasible direction: |

11

—n. 31



Choosing the Step Size

e Suppose that we have found a feasible direction d at some
point Z € X sothat Vf(z)'d <0, Aid <0and Qd =0

e Question is, how much to move along d
o on the one hand, we must remain in the feasible region

o on the other hand, we can go only as far as the objective
function keeps on dropping and we must stop before it
may start to increase again

e Thus, we need to solve the below convex program for A:

min f(Z + A\d) (1)
s.t. A(x+Ad) < b (2)
Q(z + \d) = q (3)

A>0 (4)

—n. 32



Choosing the Step Size

e (3) is redundant because Qx = q and Qd =0

e (1) can be replaced by the constraints A;(x + A\d) < b,
and AQ(Z_U + )\d) < b2

e From these A;(x + Ad) < b trivially holds for each A > 0,
since Ajx =b;and A;d <0

e What remains are the inactive constraints A, (& + \d) < b,
e Simple convex program for \:

min f(x + A\d)
S.t. (Agd))\ S bQ — AQCI_'J
A>0

e Here, A>d and b, — A,x are constant column vectors with
as many components as there are inactive constraints at

—n. 33



Choosing the Step Size

o Llets = A,dand t = b, — A>Z be column r-vectors

e We know thatt > 0, as A,x < b, is precisely the set of
Inactive constraints at x

e Our convex program can be written equivalently as

min f(z + Ad): A e L
L:{)\ 81)\ Stl

A}
e Convex program with a single unknown and simple structure
e Can be simplified even further

—n. 34



Choosing the Step Size

e The constraints are of the general form s; A < ¢;, where
t; > 0 foreach

min f(x +Ad) : A >0, s;A<t,,i=1,...,r

1. for s; < 0 we get a redundant constraint —|s;|A < ¢;, or
equivalently A\ > — (< 0) (redundant as A > 0)

EN

2. for s; = 0 we get the trivial 0A < t;(> 0)
3. s; > 0 yields the irredundant constraint A < (> 0)

e \We obtain the simplified form:

min f(& 4+ Ad) : 0 < A < Aax

\ _ MiN;e(1,... 70}(8—2 :s;, >0) has ﬁ 0
s 00 has <0

—n. 35



Choosing the Step Size

Simple convex program with a single unknown
min f(x + Ad) : 0 < A < Ajax

If Anax = 00 then & + Ad remains feasible for any A:
unconstrained line search

Otherwise the search interval: A € [0, A\pax]

Convex program, can also be solved using the method of
feasible directions

Or use a direct line search method (next lecture)

—n. 36



Choosing the Step Size: Example

Consider the running example:

min (561 — 6>2+($2 — 2)2
s.t. — T + 2332 S 4
3r1 + 229 < 12

L1, L2 2 O

After solving the respective linear program, we obtained the

feasible directond = [+ — 2|7 atz =[2 3|'
We need to find the best step size to move along d

It is worth scaling d in a way that the components become
integer-valued (the norm of d does not matter)

Soletd=1[2 - 3]t

—n. 37



Choosing the Step Size: Example

e Solve min {f(@ -+ )\d) c 5 A < ti,o=1,... ,7“} to find the
optimal step size, where s = Asd andt = by, — A,x are
column r-vectors and A,x < b, are the inactive constraints

e Atz =[2 3] the first two conditions are tight, the
nonnegativity constraints (x; > 0, x5 > 0) are inactive

e From this A, and by, and s and ¢

—n. 38



Choosing the Step Size: Example

e Write the objective function as the function of A:

0(\) = f(@+Ad) = (T1+d1)—6)2+ (T2 +Ado) —2)* =
(24+2)\) —6)* 4+ ((3—3N) —2)* = (2A —4)* + (1 —=3)\)* =
130% — 220\ + 17
e To find the optimal step size A\, we need to solve the below
convex program:
min 13)\* — 22\ 4 17
s.t. —2A <2
3IN<3
A>0

—n. 39



Choosing the Step Size: Example

The first constraint A > —1 is redundant, there remains the
second constraint:

min 13\2 — 222+ 17:0< 1 < 1

The objective (a parabola) attains its minimum at < 1

So )\ < 1 is not tight, the optimal step size is A\ = 13

Consequently, from point [2 3] we move along direction

d=[2 - 3] toadistance A = = to arrive to the new
48 6 17T
pointx =[5 3]

Here it was easy to solve the line search problem directly, in
the general case it may be more difficult (next lecture)

To solve the original convex program, we now need to find a
feasible direction at point & = [5 2|7

13 13

—n. 40



Finding a Feasible Direction: Example

Solve min {Vf(z)'d: A;d <0,V f(z)'d > —1} to find
the new feasible direction

Atz =[5 |7 only the first constraint is tight, so
A =3 2

' - ) — 60 40
The gradient: Vf(z) = [-% — 3"

We can again scale the gradient freely, only the direction
matters

So consider the gradient [-3  — 2] (multiply V f(Z) by
23), from which we obtain:

min —3d; — 2ds
S.t. 3d1 + 2d2
—3d; — 2ds

AVAIVAN
|
p—
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Finding a Feasible Direction: Example

e After inverting the second constraint, as maximization:

max 3d; + 2d,
s.t. 3dy + 2dy < 0
3dy + 2d, < 1

e Second constraint redundant,

L2 Af e direct the optimum is 0
5 [leasible directions e The gradient is orthogonal to
the boundary of the set of
21 \ V(&) feasible directions
1y N e No improving feasible
directionat z = [#8 &7

: . . : >Cl?
23 4 9 ™ o (Probably) optimal solution
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Finding a Feasible Direction: Example

e Now suppose that we wish to solve the same nonlinear
program, but this time starting from the point £ = [4 0]*

min (z; — 6)*+(zy — 2)°
St. —x1+ 229 <4
31 + 210 < 12
x1,T9 > 0

e To find a feasible direction, we need the set of inactive
constraints and the gradient at @

A = [g _ﬂ Vf(®)=[-4 -4
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Finding a Feasible Direction: Example

e The linear program to find the feasible direction:

min —4d; — 4ds
S.t. 3d1 —+ 2d2 S 0
—dy < 0
—4dy — 4dy > -1

e From the second constraint ds > 0, no need to substitute

e Inverting the third condition, substituting d; = d| — d{:
d; > 0, d{ > 0, introducing slack variables, and converting
to maximization:

max 4d, — 4d! + 4ds

dll, dll/, dz, S1, S9 Z 0

_p 44



Finding a Feasible Direction: Example

e Initial simplex tableau (primal feasible):

z| dy d{ dy s; ss|RHS
2111 -4 4 —4 0 O 0
s; 1013 =3 2 1 O 0
s | 0 4 —4 4 0 1 1

e The optimal tableau:

z| dy d{ dy s; s | RHS
z (1} 0 0 0 0 1 1
d(0] 0 0 1 -1 % %
d|of-1 1 0 -1 1| 1

DO |

e The improving feasible direction: d = [—



Finding a Feasible Direction: Example

e Rescalingyieldsd = [-2 3|1
e Parameters for computing the optimal step size:

o S R
w1 AL
il il SR

O(N) = f(®+ Ad) = ((4 —2X) — 6)* + ((0 + 3)) — 2)* =
(2X —4)? + (1 = 3X\)* = 13)\* — 4\ + 8
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Finding a Feasible Direction: Example

e The optimal step size:

min 13)\° — 4\ + 8
s.t. 8A <2
8\ < 4
A >0

o Simplified: min 13X\ —4X +8:0 <\ < i
e Solution at the minimum of the parabola: A = 2 <

SERTERE:

e We returned to the same optimal point [ ] as before

o L

>~

T +

g Sk
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Method of Feasible Directions: Summary

e Given a convex program min f(x) : Ax < b, Qx = q, an
initial feasible solution x{, and let £k = 1

1. Find an improving feasible direction at x;: decompose
Ax < btotight A;x; = b; and inactive Asxy, < by
constraints at x;,

e Let d; be the optimal solution to the below linear program:

z=min Vf(xy)'d

s.t. A d<O0

Qd=0
Vf(xp)'d> -1

e If the optimal objective z,,. = 0 then halt, x; is optimal
e Otherwise, z,,; = —1 and d;, # 0: line search along dj

—n. 48



Method of Feasible Directions: Summary

2. Lets = A,dandt = b, — Asx;,
o Let )\, be the optimal solution to the below convex program:

min f(x, + Ad) : 0 < X < A\pax

) mingeq, 7a}(%:si>0) hast
00 has <0

o Letxy, 1 =xp + M\dy, k =k + 1andgoto (1)

e Can also be modified for convex programs over nonlinear
constraints, and also for nonconvex programs

e Globally non-convergent (zig-zagging), for convergence
we’'d need a second-order method

e Uses line search as a subroutine
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