Classical Applications: A Summary

WARNING: this is just a summary of the material covered in the full slide-deck **Classical Applications** that will orient you as per the topics covered there; you are required to learn the full version, not just this summary!

- Optimal Product Mix and the Resource Allocation problem
- Generalized assignment problems: continuous case, machine scheduling
- Optimal portfolio: detecting arbitrage opportunities (optional)
- Make sure you study and solve all the examples in the full-slide deck!

Optimal Product Mix

- Linear programming permeates the entire fields of economic studies, management science, operations research, and logistics
- Perhaps the most prevalent example is the Product Mix Optimization (or Production Planning) problem
- A factory has finite resources available to manufacture goods/commodities
- Products can be sold to realize immediate profit or stocked in the hope for future profit
- Goal is to determine the optimal allocation of resources in order the maximize profit
- Assumptions:
 - products and market demands are independent
 - $\circ\;$ resources are divisible
 - prices and demands can be reliably predicted

Optimal Product Mix

- The quantity of goods produced in a period plus the stock must cover the demand in each period, subject to limits on resource availability
- Goal: maximize profit while minimizing storage costs
- Let the starting stock be $y_{i0} = 0$ for each i

$$\max \sum_{t=1}^{T} \sum_{i=1}^{I} c_{it} (y_{i,t-1} + x_{it} - y_{it}) - \sum_{t=1}^{T} \sum_{i=1}^{I} q_{it} y_{it}$$

s.t. $y_{i,t-1} + x_{it} - y_{it} = d_{it}$ $i \in \{1, \dots, I\}, t \in \{1, \dots, T\}$
$$\sum_{i=1}^{I} a_{ik} x_{it} \le b_{kt}$$
 $k \in \{1, \dots, K\}, t \in \{1, \dots, T\}$
 $x_{it}, y_{it} \ge 0$ $i \in \{1, \dots, I\}, t \in \{1, \dots, T\}$

Generalized Assignment Problem

- Another crucial application of linear programming in operations research
- Given m agents and n jobs that must be assigned to agents
- Each task can be performed by each agent, but with different effectiveness
 - \circ agent *i* can do job *j* with w_{ij} units of effort, meanwhile we realize p_{ij} profits
 - \circ agent *i* has w_i units of working capacity
 - $\circ b_j$ units of job j must be done
- Goal is to maximize profits
- Suppose that jobs are arbitrarily divisible
- Otherwise we get an integer linear program: NP-hard

Generalized Assignment Problem

 Let x_{ij} denote the quantity of job j performed by agent i [units]

$$\max \sum_{i=1}^{m} \sum_{j=1}^{n} p_{ij} x_{ij}$$

$$\sum_{j=1}^{n} w_{ij} x_{ij} \le w_i \qquad i \in \{1, \dots, m\}$$

$$\sum_{i=1}^{m} x_{ij} = b_j \qquad j \in \{1, \dots, n\}$$

$$x_{ij} \ge 0 \qquad i \in \{1, \dots, m\},$$

$$j \in \{1, \dots, n\}$$