
Classical Applications

• Optimal Product Mix and the Resource Allocation problem

• Generalized assignment problems: continuous case,
machine scheduling

• Optimal portfolio: detecting arbitrage opportunities
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Optimal Product Mix

• Linear programming permeates the entire fields of
economic studies, management science, operations
research, and logistics

• Perhaps the most prevalent example is the Product Mix
Optimization (or Production Planning) problem

• A factory has finite resources available to manufacture
goods/commodities

• Products can be sold to realize immediate profit or stocked
in the hope of future profit

• Goal is to determine the optimal allocation of resources in
order the maximize profit

• Assumptions:

◦ products and market demands are independent

◦ resources are divisible

◦ prices and demands can be reliably predicted

◦ production costs are linear
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Optimal Product Mix

• Suppose that we are given

◦ T : the number of business periods

◦ I : the number of commodities to be produced

◦ K: the number of resource types

◦ aik: the amount of resource k needed to produce
commodity i

◦ bkt: the amount of resource k available in period t

◦ dit: the demand for commodity i during period t

◦ cit: profits per unit of commodity i in period t

◦ qit: storage cost for commodity i in period t

• Let the variables be as follows:

◦ xit: the quantity of commodity i produced in period t

◦ yit: stock from commodity i at the end of period t
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Optimal Product Mix

• The quantity of goods produced in a period plus the stock
must cover the demand in each period, subject to limits on
resource availability

• Goal: maximize profit while minimizing storage costs

• Let the starting stock be yi0 = 0 for each i

max

T
∑

t=1

I
∑

i=1

citxit −

T
∑

t=1

I
∑

i=1

qityit

s.t. yi,t−1 + xit − yit = dit i ∈ {1, . . . , I}, t ∈ {1, . . . , T}

I
∑

i=1

aikxit ≤ bkt k ∈ {1, . . . , K}, t ∈ {1, . . . , T}

xit, yit ≥ 0 i ∈ {1, . . . , I}, t ∈ {1, . . . , T}
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Optimal Product Mix

• There are endless variants of the product mix problem

◦ demands may be delayed to a later period

◦ resources may be substitutable for one another

◦ or may be stored in the inventory across periods

• Simplest case: plan for a single period only

• No inventory needs to be planned in this case

• Suppose that market demands are infinite

• Then, the amount of goods produced is limited only by
resource availability and profitability
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Optimal Product Mix

max

I
∑

i=1

cixi

s.t.

I
∑

i=1

aikxi ≤ bk i ∈ {1, . . . , I}

xi ≥ 0 i ∈ {1, . . . , I}

• This is a “classical” Resource Allocation problem

• The simplex method was invented for these types of
problems

• Parameters ci, bk, and aik are nonnegative

• After bringing to standard form by introducing slack
variables: trivial primal feasible initial basis on the slacks
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Optimal Product Mix: Example

• The ACME Winery produces three types of wine: white, red
and cuvée, from three types of grape (G1, G2, and G3)

◦ 2 tonnes of G1 grape and 1 ton of G2 grape is needed to
produce one barrel of white wine

◦ 2 tonnes of G3 grape is needed for one barrel of red
wine

◦ and finally for a barrel of cuvée wine one tonne from
each type of grape is used

• Availability of grape: 8 tonnes from G1, 4 tonnes from G2,
and 6 tonnes of G3 grape

• The profit is 31 thousand USD per barrel of white wine, 22
thousand USD on red wine, and 35 thousand USD on cuvée

• Question: How many barrels to produce from each type of
wine in order to maximize profits?
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Optimal Product Mix: Example

• Collect available data into a table as follows:

Demand [t/b] Profit [th USD/b]

G1 G2 G3

White wine 2 1 31

Red wine 2 22

Cuvée wine 1 1 1 35

Capacity [t] 8 4 6

• Let x1, x2, and x3 denote the amount of wine produced from
white, red, and cuvée wines ([barrels, b])

max 31x1 + 22x2 + 35x3

s.t. 2x1 + x3 ≤ 8
x1 + x3 ≤ 4

2x2 + x3 ≤ 6
x1, x2, x3 ≥ 0
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Optimal Product Mix: Example

• Trivial primal feasible initial basis on the columns of the
slack variables: primal simplex

z x1 x2 x3 x4 x5 x6 RHS

z 1 −31 −22 −35 0 0 0 0

x4 0 2 0 1 1 0 0 8

x5 0 1 0 1 0 1 0 4

x6 0 0 2 1 0 0 1 6

z x1 x2 x3 x4 x5 x6 RHS

z 1 4 −22 0 0 35 0 140

x4 0 1 0 0 1 −1 0 4

x3 0 1 0 1 0 1 0 4

x6 0 −1 2 0 0 −1 1 2
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Optimal Product Mix: Example

z x1 x2 x3 x4 x5 x6 RHS

z 1 −7 0 0 0 24 11 162

x4 0 1 0 0 1 −1 0 4

x3 0 1 0 1 0 1 0 4

x2 0 −1

2
1 0 0 −1

2

1

2
1

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 0 0 7 17 11 190

x1 0 1 0 0 1 −1 0 4

x3 0 0 0 1 −1 2 0 0

x2 0 0 1 0 1

2
−1 1

2
3

• The optimal mix is 4 barrels of white wine, 3 barrels of red
wine, and no cuvée, the profit is 190 thousand USD
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Optimal Product Mix: Example

• Based on market analysis, the demand for cuvée will
increase in the following year and so the price per barrel for
cuvée wine is expected to grow to 44 thousand USD while
the price for the rest of the wines remains fixed

• Question: How to change the product mix to maximize
profits, given the anticipated price changes?

• Sensitivity analysis: the objective function changes

• In particular, the objective coefficient for a basic variable x3

changes in the optimal tableau: c3 = 35 → c′3 = 44

• Add the row of x3 (the second row!) to row zero exactly

c′3 − c3 = 9 times

• Take note to fix the reduced cost for x3 in the objective row
at zero

• The resultant tableau is not primal optimal: primal simplex
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Optimal Product Mix: Example

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 0 0 −2 35 11 190

x1 0 1 0 0 1 −1 0 4

x3 0 0 0 1 −1 2 0 0

x2 0 0 1 0 1

2
−1 1

2
3

z x1 x2 x3 x4 x5 x6 RHS

z 1 2 0 0 0 33 11 198

x4 0 1 0 0 1 −1 0 4

x3 0 1 0 1 0 1 0 4

x2 0 −1

2
1 0 0 −1

2

1

2
1

• The product mix changes to 1 barrel of red wine and 4
barrels of cuvée

• 4 tonnes of G1 grape is surplus (since x4 = 4)
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Optimal Product Mix: Example

• Question: How should the price of white wine change in
order for it to become profitable to produce? What is the
optimal product mix if the ACME Winery produces 2 barrels
of white wine at this price tag?

• The linear program in the space of the nonbasic variable x1

max 198− 2x1

s.t.

[

x4

x3

x2

]

=

[

4
4
1

]

−

[

1
1

−1

2

]

x1

x1, x2, x3, x4 ≥ 0

• If the price increased by 2 thousand USD the objective (the
profit) would no longer decrease with increasing x1

• If 2 barrels of white wine was produced at this price, then
cuvée output would drop to two tonnes and the remaining
G3 grape would be enough to one barrel of red wine
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Generalized Assignment Problem

• Another crucial application of linear programming in
operations research

• Given m agents and n jobs that must be assigned to agents

• Each task can be performed by each agent, but with
different effectiveness

◦ agent i can do job j with wij units of effort, meanwhile

we realize pij profits

◦ agent i has wi units of working capacity

◦ bj units of job j must be done

• Goal is to maximize profits

• Suppose that jobs are arbitrarily divisible

• Otherwise we get an integer linear program: NP-hard
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Generalized Assignment Problem

• Let xij denote the quantity of job j performed by agent i
[units]

max

m
∑

i=1

n
∑

j=1

pijxij

n
∑

j=1

wijxij ≤ wi i ∈ {1, . . . ,m}

m
∑

i=1

xij = bj j ∈ {1, . . . , n}

xij ≥ 0 i ∈ {1, . . . ,m},

j ∈ {1, . . . , n}
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Machine Scheduling

• The ACME Steel Factory manufactures small, medium and
large steel beams. The factory uses two types of machines:
A, and B, with capacity to produce the below quantities of
different types of steel beams per hour:

Beam Machine [unit/h] Demand [unit/week]

A B

Small 3 6 96

Medium size 2 4 96

Large 2 3 72

• The table specifies the weekly demand for each type of
beam as well, machine time available is 40 hours per week
per machine and the machines cost at 8 (A) and 4 (B)
thousand USD per hour be operated

• Task: Design an optimal schedule that minimizes
operations costs while covering the demands
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Machine Scheduling

• Denote by x1A the quantity of small, by x2A the quantity of
medium, and by x3A the quantity of large beams produced
by machine A [units]; similar to machine B

• Machine A spends
x1A
3

hours to produce small beams

• This is a special type of continuous assignment problem

min 8(x1A
3

+ x2A
2

+ x3A
2
) + 4(x1B

6
+ x2B

4
+ x3B

3
)

x1A
3

+ x2A
2

+ x3A
2

≤ 40
x1B
6

+ x2B
4

+ x3B
3

≤ 40

x1A + x1B = 96
x2A + x2B = 96
x3A + x3B = 72
x1A, x2A, x3A ≥ 0

x1B, x2B, x3B ≥ 0
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Machine Scheduling

• A simpler linear program can be obtained by letting x1A to
rather denote the amount of machine hours spent by
machine A on small beams, and similar for the rest of beam
types/machines

min 8(x1A + x2A + x3A) + 4(x1B + x2B + x3B)

x1A + x2A + x3A ≤ 40
x1B + x2B + x3B ≤ 40
3x1A + 6x1B = 96
2x2A + 4x2B = 96
2x3A + 3x3B = 72
x1A, x2A, x3A ≥ 0

x1B, x2B, x3B ≥ 0

• May still have fractional units of beams in the schedule:
price paid for the simplicity of the continuous model
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Machine Scheduling

• Introduce slacks x7 and x8 to bring to standard form

• Introduce artificial variables x9, x10, and x11 to find the
starting basis

• Phase One: still invalid tableau (again omit the column of z)

• Zero out the objective row elements marked in red (nonzero
reduced costs in basic columns) to get a valid tableau

x1A x1B x2A x2B x3A x3B x7 x8 x9 x10 x11 RHS

z 0 0 0 0 0 0 0 0 1 1 1 0

x7 1 0 1 0 1 0 1 0 0 0 0 40

x8 0 1 0 1 0 1 0 1 0 0 0 40

x9 3 6 0 0 0 0 0 0 1 0 0 96

x10 0 0 2 4 0 0 0 0 0 1 0 96

x11 0 0 0 0 2 3 0 0 0 0 1 72
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Machine Scheduling

• The optimal simplex tableau for Phase One

x1A x1B x2A x2B x3A x3B x7 x8 x9 x10 x11 RHS

z 0 0 0 0 0 0 0 0 1 1 1 0

x3A 0 0 0 0 1 0 −3 −6 1
3

2
2 24

x2B 0 0
1

2
1 0 0 0 0 0

1

4
0 24

x3B 0 0 0 0 0 1 2 4 −
2

3
−1 −1 8

x1A 1 0 1 0 0 0 4 6 −1 −
3

2
−2 16

x1B 0 1 −
1

2
0 0 0 −2 −3

2

3

3

4
1 8

• Objective value is 0: the basis obtained is feasible for the
original problem

• Artificial variables have left the basis: remove the
corresponding columns
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Machine Scheduling

• The original problem was minimization

◦ invert row zero twice (once for the min → max
conversion and once when writing into the tableau)

◦ take note that the resultant objective value will need to
be inverted at the end

• Phase Two: still not a valid tableau, zero out the reduced
costs marked in red

x1A x1B x2A x2B x3A x3B x7 x8 RHS

z 8 4 8 4 8 4 0 0 0

x3A 0 0 0 0 1 0 −3 −6 24

x2B 0 0 1

2
1 0 0 0 0 24

x3B 0 0 0 0 0 1 2 4 8

x1A 1 0 1 0 0 0 4 6 16

x1B 0 1 −1

2
0 0 0 −2 −3 8
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Machine Scheduling

• Phase Two: optimal simplex tableau

x1A x1B x2A x2B x3A x3B x7 x8 RHS

z 2 0 2 0 0 0 0 8 −448

x3A
3

4
0 3

4
0 1 0 0 −3

2
36

x2B 0 0 1

2
1 0 0 0 0 24

x7
1

4
0 1

4
0 0 0 1 3

2
4

x3B −1

2
0 −1

2
0 0 1 0 1 0

x1B
1

2
1 0 0 0 0 0 0 16

• Schedule 0 and 16 hours for small, 0 and 24 hours for
medium, and 36 and 0 hours for producing large beams on
machine A and B, respectively

• Cost is 448 thousand USD, the schedule for machine A
contains 4 hours of dead time, machine B operates full time
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Machine Scheduling

• The management of the ACME Steel Factory decides to
rationalize the work schedule

• Since machine B operates full time, the management
decides to introduce a new work shift for machine B

• Task: Compute the optimal schedule and cost as the
function of extra hours of work of machine B

• Parametric analysis when perturbing the RHS: denote the

available work span for machine B be bB = 40 + λ

• Determine the cost and the optimal schedule in terms of λ

b̄
′

= B−1b′ = B−1e2 = (B−1)2

where (B−1)2 denotes the second column of B−1
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Machine Scheduling

• We would need to compute B−1, or at least the second
column

• Observe that in the original problem the column that belong
to the slack variable x8 is exactly e2

• Thus we can always read the second row of the current
basis from the column of x8 in the simplex tableau

b̄
′

= (B−1)2 = y2 =











−3

2

0
3

2

1
0











• Hence: S = {1}, r = 1, and λ̄ = − b̄1
b̄′
1

= − 36

−
3

2

= 24 = λ1
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Machine Scheduling

• The current basis is optimal for λ ∈ [0, 24]

z(λ) = cB
T (b̄+ λb̄

′

) = −448 + 8λ

x(λ) =











x3A

x2B

x7

x3B

x1B











=











36
24
4
0
16











+











−3

2

0
3

2

1
0











λ

• If the work span of machine B was increased to 64 hours
than all production would move to this machine

• Meanwhile, the cost decreases as 448− 8λ = 256 [th USD]

• End of parametric analysis: after the dual simplex pivot the
resultant basis is optimal for any λ ≥ 24
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Arbitrage Pricing

• Given n instruments/securities/investment options, traded
according to a discrete market model

• The market can be in one of m possible eventual states at
the end of the trading period: the profit on instrument j in
the eventual state i is rij (can be negative)

• There are two possible investment strategies:

◦ long position: we buy instrument j at the beginning of
the investment period which we sell at the end

◦ “short” position: we sell instrument j at the beginning of
the period that we are confined to buy back at the end

• Arbitrage opportunity: a portfolio of long and short
positions that produces positive expected income

• Such portfolio will bring net profit at no risk of loss

• Question: is there an arbitrage opportunity at the market?
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Arbitrage Pricing

• Let xj denote the weight of instrument j in the portfoilo

• Long position (xj > 0): we receive (1 + rij)xj amount at

the end, provided the market outcome is i

• Net profit is rijxj , we bet for price increase

• Short position (xj < 0): first we get |xj| amount and then

we buy at (1 + rij)|xj| amount at the end, net profit: rijxj

• Positive income if rij < 0, we bet for price reduction

• Let R = [rij] be the m× n payoff matrix

• The net income for market outcome i:
∑

j
rijxj

• Arbitrage if the net profit for a portfolio is positive for every
possible market outcome

∃x : Rx > 0
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Arbitrage Pricing: Example

• Suppose that there are n = 2 instruments traded on the
market, which can be of m = 3 possible states at the end of
the investment period

• The payoff for each instrument/outcome combination is as
follows:

R =

[

−1

4

1

8

−1

4
0

0 1

5

]

• For instance, the first instrument will lose 25% in the first
two outcomes and produces zero profit otherwise

• Let the portfolio be x =

[

x1

x2

]

, where x1 is the position on

the first and x2 on the second instrument

• Long position: xi > 0, short position: xi < 0
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Arbitrage Pricing: Example

• For the first market outcome, the net profit is −1

4
x1 +

1

8
x2,

positive income if this is positive

• For instance, if we maintain 1 unit of short position on the
first instrument (x1 = −1) and one unit if long position on

the second (x2 = 1), then the profit is 3

8

• Same portfolio is profitable for the second outcome as well

(net profit: 1

4
)

• What is more, it is profitable for the third market outcome

too (net profit: 1

5
)

• We have found an arbitrage opportunity: there is a portfolio
that brings positive income for every possible market
outcome (i.e., at zero risk)

• Undesirable on “normal” markets
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Arbitrage Pricing

• Arbitrage opportunity if ∃x : Rx > 0

• We use duality theory to characterize such opportunities

• “>” type of constraints are hard to handle in linear programs

• Consider the below linear program instead:

min 0x

s.t. Rx ≥ 0

• Let pT be the vector of dual variables for the m primal
constraints

• The dual linear program:

max pT
0

s.t. pTR = 0

pT ≥ 0
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Arbitrage Pricing

• For both linear program it holds that any feasible solution is
immediately optimal as well

• Trivial solution: x = 0 and pT = 0

• We seek for nontrivial primal solutions x for which Rx > 0

• We rather study nontrivial solutions of the dual

• Fundamental Theorem of Asset Pricing: there exists x:

Rx > 0, if and only if there is no pT that satisfies the below:

pTR = 0, pT ≥ 0, pT 6= 0

• Proof: Farkas lemma

• The reverse is also true: if there is pT : pTR = 0, pT ≥ 0,

pT 6= 0 then there is no arbitrage on the market
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Arbitrage Pricing

• This result could use some explanation

• Suppose there is pT 6= 0, pT ≥ 0 according to the
conditions of the theorem

• Normalize so that pT
1 = 1 (can always be done)

• We may interpret components of pT as a probability on the
outcomes

• Then, by pTR = 0 for any portfolio x the expected net

profit is E(profit) = pTRx = 0

• The Fundamental Theorem states that there is no arbitrage
in the market if there is a probability distribution on market
outcomes with zero expected net profit for any portfolio

• Such pT probabilities are called the risk-neutral
probabilities (completely independent from the physical
probabilities of the states)
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Arbitrage Pricing: Example

• There are two instruments on a market, which belong to
competitive enterprises: if the price of one of the
instruments increases then the other decreases, and vice
versa

• It is also possible that the price of the first instrument
remains the same and the second brings some minimal
profit

R =

[

−1

5

3

10

0 1

10
1

5
−1

5

]

• Question: is there an arbitrage opportunity in the market?
If yes, which one is the optimal portfolio?
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Arbitrage Pricing: Example

• Find portfolio x so that Rx > 0

• If there is such x then every other λx is a solution for λ > 0
and hence Rx can be made arbitrarily large

• It is enough the solve the below linear program:

max 0x

Rx ≥ 1

• Let x = x+ − x− and let xs be slack variables

max 0x+ + 0x− + 0xs

s.t. −Rx+ + Rx− + xs = −1

x+, x−, xs, ≥ 0

• The columns for xs form a dual feasible initial basis: dual
simplex
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Arbitrage Pricing: Example

• The initial simplex tableau:

x1 x2 x3 x4 x5 x6 x7 RHS

z 0 0 0 0 0 0 0 0

x5
1

5
− 3

10
−1

5

3

10
1 0 0 −1

x6 0 − 1

10
0 1

10
0 1 0 −1

x7 −1

5

1

5

1

5
−1

5
0 0 1 −1

• The optimal tableau:

x1 x2 x3 x4 x5 x6 x7 RHS

z 0 0 0 0 0 0 0 0

x2 0 1 0 −1 −10 0 −10 20

x6 0 0 0 0 −1 1 −1 1

x1 1 0 −1 0 −10 0 −15 25
– p. 35



Arbitrage Pricing: Example

• We have found an arbitrage opportunity: maintain a long
position of 25 units from the first and a long position of 20
units on the second instrument

• At the end of the period the expected net profit: Rx =

[

1
2
1

]

• If one component of R changes: R =

[

−1

5

3

10

0 1

10
1

5
−2

5

]

• No arbitrage opportunity

• Dual argumentation: if in this case the individual market

outcomes occur with probability pT = [1
3

1

3

1

3
], then every

portfolio is “fair” (produces zero profit/loss)
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