Starting Solution and Analysis: A Summary

WARNING: this is just a summary of the material covered in the full slide-deck **Starting Solution and Analysis** that will orient you as per the topics covered there; you are required to learn the full version, not just this summary!

- Finding an initial basic feasible solution: the Artificial Variable technique
- Sensitivity analysis: the effect of changing the objective function
- Parametric analysis: perturbation of the Right-Hand-Side (optional)

Recall: The Simplex Algorithm

- We need an initial basic feasible solution to start the simplex
- In canonical form an initial basis is easy to find
- Maximization problem: $\max\{ \boldsymbol{c}^T \boldsymbol{x} : \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \boldsymbol{0} \}$
- Into standard form: $\max\{ \boldsymbol{c}^T \boldsymbol{x} : \boldsymbol{A} \boldsymbol{x} + \boldsymbol{I} \boldsymbol{x}_s = \boldsymbol{b}, \boldsymbol{x} \geq \boldsymbol{0} \}$
- If $b \ge 0$ then the slack variables constitute a primal feasible initial basis: **primal simplex**
- For a **minimization problem** in canonical form:

$$\min\{\boldsymbol{c}^T \boldsymbol{x} : \boldsymbol{A} \boldsymbol{x} \ge \boldsymbol{b}, \boldsymbol{x} \ge \boldsymbol{0}\}$$

- Dual feasible initial basis on the columns of the slacks if $c^T \ge 0^T$: dual simplex
- If neither case occurs then the simplex cannot be started: need a generic way for finding initial basic feasible solutions

Starting the Simplex Method

• Find an initial basic feasible solution for the linear program given in standard form:

$$z = \max \quad c^T x$$

s.t. $Ax = b$
 $x \ge 0$

where A is $m \times n$ with rank(A) = rank(A, b) = m, b is a column m, x a column n, and c^T is a row n-vector

• Suppose furthermore that $b \ge 0$ (if there is row *i* with $b_i < 0$, then invert the row to get $-b_i > 0$)

The Artificial Variable Technique

• Introduce x_a artificial variables and consider the modified linear program:

$$egin{aligned} z = \min & \mathbf{1}^T m{x_a} \ ext{ s.t. } & m{A}m{x} + m{x_a} = m{b} \ m{x}, m{x_a} \geq m{0} \end{aligned}$$

where $\mathbf{1}^T$ is a row vector (of proper size) with all components set to 1

- There is a trivial initial basis for the modified problem
- Since the columns of x_a form an identity matrix, we have a feasible initial basis on x_a : B = I and $B^{-1}b = b \ge 0$ by assumption

The Artificial Variable Technique

- Solve the modified problem from the initial basis defined by the artificial variables
- The optimum is $z_0 = \mathbf{1}^T \boldsymbol{x_a}$ (the sum of the artificial variables in the solution)
- **Thoerem:** if $z_0 > 0$ then the original linear program is infeasible
- If, on the other hand, $z_0 = 0$, then $\boldsymbol{x_a} = \boldsymbol{0}$
- In this case the original linear program is feasible
- Solve it from the resultant basis

The Two–Phase Simplex Method

- Phase One: find an initial basis
- Solve the modified linear program augmented with the artificial variables x_a

- If $x_a
 eq 0$ then the linear program is infeasible
- Otherwise, $x_a = 0$ and suppose that all artificial variables have left the basis
- If not, the remaining artificial variables must be "pivoted" out from the basis manually, we do not discuss this here
- **Phase Two:** remove the artificial variables, restore the original objective function and run the simplex from the current basis

• Solve the linear program using the Two–Phase Simplex

• Convert to maximization and bring to standard form by introducing slack variables (take note of the " \geq " type of constraints and that eventually we need $b \geq 0$!)

- No trivial primal or dual feasible basis
- Introduce artificial variables: it is enough add an artificial variable x_5 to the second row
- This, together with the slack variable x_3 , will provide a proper initial (identity) basis
- Solve the below linear program as the first phase:

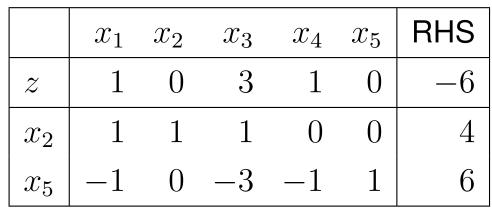
• Note that we have converted the objective to maximization: will need to invert the resultant objective value!

- Initial basis: $B = [a_3 \ a_5], c_B^T = [0 \ -1], c_N^T = 0$
- Not a valid simplex tableau yet: there is a nonzero element in the objective row for the basic variable x_5
 - \circ "pivot": subtract the row of x_5 from row 0

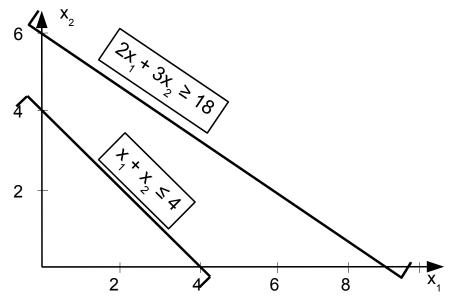
	z	x_1	x_2	x_3	x_4	x_5	RHS
\overline{z}	1	0	0	0	0	1	0
x_3	0	1	1	1	0	0	4
x_5	0	2	3	0	-1	1	18

	z	x_1	x_2	x_3	x_4	x_5	RHS
z	1	-2	-3	0	1	0	-18
x_3	0	1	1	1	0	0	4
x_5	0	2	3	0	-1	1	18

• We get an optimal tableau after the pivot, with optimal objective function value -6 (do not forget to invert this!)



- Since $\min x_5 = 6$, the artificial variable could not be eliminated
- The original linear program is infeasible



Sensitivity Analysis

- Linear programs are often used to model real problems whose parameters are uncertain or subject to measurement errors or noise
- In a Resource Allocation problem, for instance, the estimated prices might be uncertain, capacities might be expanded by investing into new equipment, etc.
- Question: how does the optimal solution of a linear program $\max\{c^Tx : Ax = b, x \ge 0\}$ depend on the perturbation of the input parameters?
 - $\circ~$ here we discuss only the case when the objective function coefficients ${m c}^T$ change
 - \circ sensitivity analysis goes similarly for the cases when the RHS vector b or the constraint matrix A change
- The idea is that we do not want to re-optimize the changed linear program from scratch

- Let B be an optimal basis for the linear program $\max\{c^Tx: Ax = b, x \ge 0\}$
- We characterize the change in the optimal solution x and the optimal objective function value when the k-th objective function coefficient c_k is changed to c'_k
- The simplex tableau of the original linear program in the basis ${\boldsymbol {\cal B}}$

- \boldsymbol{B} is (primal) feasible if $\boldsymbol{B}^{-1}\boldsymbol{b}\geq \boldsymbol{0}$
- \boldsymbol{B} is (primal) optimal if $\boldsymbol{c}_{\boldsymbol{B}}^T \boldsymbol{B}^{-1} \boldsymbol{N} \boldsymbol{c}_{\boldsymbol{N}}^T \geq \boldsymbol{0}$

1.) The changed objective coefficient c_k belongs to a nonbasic variable $x_k : k \in N$

$$\boldsymbol{c_N}^T \rightarrow (\boldsymbol{c'_N})^T = \boldsymbol{c_N} + (c'_k - c_k) \boldsymbol{e_k}^T$$

• In this case no change occurs in rows $1, \ldots, m$ of the simplex tableau, only the objective row (row 0) changes

$$oldsymbol{c}_{oldsymbol{B}}^T oldsymbol{B}^{-1} oldsymbol{N} - oldsymbol{c}_{oldsymbol{N}}^T oldsymbol{>} = oldsymbol{c}_{oldsymbol{B}}^T oldsymbol{B}^{-1} oldsymbol{N} - oldsymbol{c}_{oldsymbol{N}}^T - (c'_k - c_k) oldsymbol{e}_{oldsymbol{k}}^T$$

• In fact, only the reduced cost z_k for the nonbasic variable x_k changes:

$$z_k \to z'_k = z_k - (c'_k - c_k)$$

- If $z_k (c'_k c_k) \ge 0$ then basis \boldsymbol{B} remains optimal
- For instance, if we **reduce** the cost of a nonbasic variable the current basis is guaranteed to remain optimal
- The objective function value does not change (*x_k* remains at 0)
- If, on the other hand, $z_k (c'_k c_k) < 0$, then basis B is no longer optimal according to the changed objective
- Run the primal simplex from basis ${m B}$ to obtain the new optimum
- Using this method we do not need to re-run the Two–Phase simplex from scratch, rather the simplex method continues from the optimal basis of the original problem
- This is the idea in sensitivity analysis

- 2.) The changed objective coefficient c_k belongs to a basic variable $x_k : k \in B$
 - Let x_k be the *t*-th basic variable: $x_k \equiv x_{B_t}$

$$\boldsymbol{c_B}^T \rightarrow (\boldsymbol{c'_B})^T = \boldsymbol{c_B} + (c'_{B_t} - c_{B_t})\boldsymbol{e_t}^T$$

- Again, only the objective row changes in the tableau
- Basic variables (including x_{B_t}) still have zero reduced cost
- The reduced costs for nonbasic variables change, the j-th:

$$z'_{j} = (c'_{B})^{T} B^{-1} a_{j} - c_{j} = c_{B}^{T} B^{-1} a_{j} - c_{j} + [0 \quad 0 \quad \dots \quad c'_{B_{t}} - c_{B_{t}} \quad \dots \quad 0] y_{j} = z_{j} + (c'_{B_{t}} - c_{B_{t}}) y_{tj}$$

- Add $c'_{B_t} c_{B_t}$ times the row of x_{B_t} to row 0
- Then zero out the reduced cost for x_{B_t}

• Solve the below linear program:

• The slack variables form a feasible initial basis

	z	x_1	x_2	x_3	x_4	x_5	RHS
z	1	-2	1	-1	0	0	0
x_4	0	1	1	1	1	0	6
x_5	0	-1	2	0	0	1	4

	z	x_1	x_2	x_3	x_4	x_5	RHS
z	1	0	3	1	2	0	12
x_1	0	1	1	1	1	0	6
x_5	0	0	3	1	1	1	10

- Optimal tableau, with basic variables $B = \{1, 5\}$
- Reduce $c_2 = -1$ to $c'_2 = -3$: since x_2 is not basic only the reduced cost z_2 changes in row 0:

$$z'_2 = z_2 - (c'_2 - c_2) = 3 - (-3 - (-1)) = 5$$

	\mathcal{Z}	x_1	x_2	x_3	x_4	x_5	RHS
z	1	0	5	1	2	0	12
•••	•••	• • •	• • •	•••	•••	• • •	• • •

• The tableau remains optimal, the objective function value does not change

- If now the objective coefficient for x_2 is changed to $c_2^\prime=3,$ then $z_2^\prime=-1$
- The resultant tableau is no longer optimal: primal simplex

	z	x_1	x_2	x_3	x_4	x_5	RHS
$\left z \right $	1	0	-1	1	2	0	12
x_1	0	1	1	1	1	0	6
x_5	0	0	3	1	1	1	10

• The optimal tableau

	z	x_1	x_2	x_3	x_4	x_5	RHS
\overline{z}	1	0	0	$\frac{4}{3}$	$\frac{7}{3}$	$\frac{1}{3}$	$\frac{46}{3}$
x_1	0	1	0	$\frac{2}{3}$	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{8}{3}$
x_2	0	0	1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{10}{3}$

- Now change the cost for a basic variable, say, $x_1, {\rm from } c_1 = 2 {\rm \ to \ zero}$
- The optimal tableau of the original problem:

	z	x_1	x_2	x_3	x_4	x_5	RHS
\boxed{z}	1	0	3	1	2	0	12
x_1	0	1	1	1	1	0	6
x_5	0	0	3	1	1	1	10

• Add the first row to row 0 exactly $c_1^\prime - c_1 = -2$ times (that is, subtract the double)

• Performing the row operation, the objective value changes:

	z	x_1	x_2	x_3	x_4	x_5	RHS
z	1	-2	1	-1	0	0	0
x_1	0	1	1	1	1	0	6
x_5	0	0	3	1	1	1	10

• Since only the elements that belong to nonbasic variables need to be altered in the objective row, we simply set the reduced cost for x_1 to zero

	z	x_1	x_2	x_3	x_4	x_5	RHS
\overline{z}	1	0	1	-1	0	0	0
x_1	0	1	1	1	1	0	6
x_5	0	0	3	1	1	1	10

- The resultant tableau is not optimal:primal simplex
- The optimal tableau:

	z	x_1	x_2	x_3	x_4	x_5	RHS
z	1	1	2	0	1	0	6
x_3	0	1	1	1	1	0	6
x_5	0	-1	2	0	0	1	4

- Since the "profit" realized on x_1 drops from 2 to zero, it is worth to reduce x_1 to zero in the solution and rather increase x_3 (substitute products/goods)
- Change in the RHS can be handled using duality
- Changing the RHS in the primal = changing the objective in the dual ⇒ perform sensitivity analysis on the dual

Parametric Analysis (Optional)

- In sensitivity analysis we ask how the optimum depends on certain model parameters: we change only a single parameter at a time
- **Parametric analysis:** what happens if more than one parameter changes along a known trajectory?
- Given the linear program max{c^Tx : Ax = b, x ≥ 0}, perturb the RHS vector b along a given direction b', while leaving the rest of the problem parameters intact:

$$\boldsymbol{b} + \lambda \boldsymbol{b}', \lambda \ge 0$$

- Parametric analysis can be used to characterize the optimal objective and the optimal solution for any $\lambda \geq 0$
- Again, we do not solve the problem from scratch
- See the full slide-deck for the details