
Simplex: Starting Solution and Analysis

• Finding an initial basic feasible solution: the Artificial
Variable technique

• Sensitivity analysis: the effect of changing the objective
function

• Parametric analysis: perturbation of the Right-Hand-Side
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Recall: The Simplex Tableau

• Let A be an m×n matrix with rank(A) = rank(A, b) = m,

b be a column m-vector, x be a column n-vector, and cT be
a row n-vector, and consider the linear program

z = max cTx

s.t. Ax = b

x ≥ 0

• Let B be a primal feasible basis

• The simplex tableau

z xB xN RHS

z 1 0 cB
TB−1N − cN

T cB
TB−1b row 0

xB 0 Im B−1N B−1b rows 1..m
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Recall: The Simplex Tableau

• Optimality condition: ∀j ∈ N : zj ≥ 0

• xk enters the basis, where k = argmin
j∈N

zj

• Unbounded if no positive component in column k: yk ≤ 0

• xBr
leaves the basis: r = argmin

i∈{1,...,m}

{

b̄i

yik
: yik > 0

}

z xB1
. . . xBr

. . . xBm
. . . xNj

. . . xNk
. . . RHS

z 1 0 . . . 0 . . . 0 . . . zj . . . zk . . . z0

xB1
0 1 . . . 0 . . . 0 . . . y1j . . . y1k . . . b̄1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

xBr
0 0 . . . 1 . . . 0 . . . yrj . . . yrk . . . b̄r

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

xBm
0 0 . . . 0 . . . 1 . . . ymj . . . ymk . . . b̄m
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Recall: The Simplex Tableau

• We need an initial basic feasible solution to start the simplex

• In canonical form an initial basis is easy to find

• Maximization problem: max{cTx : Ax ≤ b,x ≥ 0}

• Into standard form: max{cTx : Ax+ Ixs = b,x ≥ 0}

• If b ≥ 0 then the slack variables constitute a primal feasible
initial basis: primal simplex

• For a minimization problem in canonical form:

min{cTx : Ax ≥ b,x ≥ 0}

• Dual feasible initial basis on the columns of the slacks if
cT ≥ 0T : dual simplex

• If neither case occurs then the simplex cannot be started:
need a generic way for finding initial basic feasible solutions
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Starting the Simplex Method

• Find an initial basic feasible solution for the linear program
given in standard form:

z = max cTx

s.t. Ax = b

x ≥ 0

where A is m× n with rank(A) = rank(A, b) = m, b is a

column m, x a column n, and cT is a row n-vector

• Suppose furthermore that b ≥ 0 (if there is row i with
bi < 0, then invert the row to get −bi > 0)

• If some columns of A form an identity matrix, choose these
columns as basis

• Write the simplex tableau and eliminate reduced costs
corresponding to the basis using elementary row operations
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The Artificial Variable Technique

• Suppose that no trivial initial basis could be obtained this
way

• Introduce xa artificial variables and consider the modified
linear program:

z = min 1Txa

s.t. Ax+ xa = b

x,xa ≥ 0

where 1T is a row vector (of proper size) with all
components set to 1

• There is a trivial initial basis for the modified problem

• Since the columns of xa form an identity matrix, we have a

feasible initial basis on xa: B = I and B−1b = b ≥ 0 by
assumption
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The Artificial Variable Technique

• Solve the modified simplex from the initial basis defined by
the artificial variables

• The optimum is z0 = 1Txa (the sum of the artificial
variables in the solution)

• Thoerem: if z0 > 0 then the original linear program is
infeasible

• Proof: suppose that z0 > 0 but the original linear program

is feasible so there is x0: Ax0 = b

• Then, xa = b−Ax0 = 0 and so 1Txa = 0 < z0, which
contradicts the assumption that z0 is optimal

• If, on the other hand, z0 = 0, then xa = 0

• In this case the original linear program is feasible

• Solve it from the resultant basis
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The Two–Phase Simplex Method

• Phase One: find an initial basis

• Solve the modified linear program augmented with the
artificial variables xa

z = max −1Txa

s.t. Ax+ xa = b

x,xa ≥ 0

• If xa 6= 0 then the linear program is infeasible

• Otherwise, xa = 0 and suppose that all artificial variables
have left the basis

• If not, the remaining artificial variables must be “pivoted” out
from the basis manually, we do not discuss this here

• Phase Two: remove the artificial variables, restore the
original objective function and run the simplex from the
current basis
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The Two–Phase Simplex: Example

• Solve the linear program using the Two–Phase Simplex

min−3x1 + 4x2

s.t. x1 + x2 ≤ 4
2x1 + 3x2 ≥ 18
x1, x2 ≥ 0

• Convert to maximization and bring to standard form by
introducing slack variables (take note of the “≥” type of

constraints and that eventually we need b ≥ 0!)

max 3x1 − 4x2

s.t. x1 + x2 + x3 = 4
2x1 + 3x2 − x4 = 18
x1, x2, x3, x4 ≥ 0
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The Two–Phase Simplex: Example

• No trivial primal or dual feasible basis

• Introduce artificial variables: it is enough add an artificial
variable x5 to the second row

• This, together with the slack variable x3, will provide a
proper initial (identity) basis

• Solve the below linear program as the first phase:

max −x5

s.t. x1 + x2 + x3 = 4
2x1 + 3x2 − x4 + x5 = 18
x1, x2, x3, x4, x5 ≥ 0

• Note that we have converted the objective to maximization:
will need to invert the resultant objective value!
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The Two–Phase Simplex: Example

• Initial basis: B = [a3 a5], cB
T = [0 − 1], cN

T = 0

• Not a valid simplex tableau yet: there is a nonzero element
in the objective row for the basic variable x5

◦ “pivot”: subtract the row of x5 from row 0

z x1 x2 x3 x4 x5 RHS

z 1 0 0 0 0 1 0

x3 0 1 1 1 0 0 4

x5 0 2 3 0 −1 1 18

z x1 x2 x3 x4 x5 RHS

z 1 −2 −3 0 1 0 −18

x3 0 1 1 1 0 0 4

x5 0 2 3 0 −1 1 18
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The Two–Phase Simplex: Example

• We get an optimal tableau after the pivot, with optimal
objective function value −6 (do not forget to invert this!)

x1 x2 x3 x4 x5 RHS

z 1 0 3 1 0 −6

x2 1 1 1 0 0 4

x5 −1 0 −3 −1 1 6

• Since min x5 = 6, the
artificial variable could not
be eliminated

• The original linear
program is infeasible

2

4

6

2 4 6 x
1

x
2

8

x
1 +

 x
2  

 4
�

2x
1 + 3x

2  � 18
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The Two–Phase Simplex: Example

• Consider the linear program

min x1 − 2x2

s.t. −x1 − x2 ≤ −2
−x1 + x2 ≥ 1

x2 ≤ 3
x1, x2 ≥ 0

• Invert the first two constraints so that b ≥ 0 holds

• Add an artificial variable to the first two rows (will use the
slack variable for the third row)

max −x6 −x7

s.t. x1 +x2 −x3 +x6 = 2
−x1 +x2 −x4 +x7 = 1

x2 +x5 = 3
x1, x2, x3, x4, x5, x6, x7 ≥ 0
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The Two–Phase Simplex: Example

• Still need to take care of the objective row: 2 pivots

z x1 x2 x3 x4 x5 x6 x7 RHS

z 1 0 0 0 0 0 1 1 0

x6 0 1 1 −1 0 0 1 0 2

x7 0 −1 1 0 −1 0 0 1 1

x5 0 0 1 0 0 1 0 0 3

z x1 x2 x3 x4 x5 x6 x7 RHS

z 1 0 −2 1 1 0 0 0 −3

x6 0 1 1 −1 0 0 1 0 2

x7 0 −1 1 0 −1 0 0 1 1

x5 0 0 1 0 0 1 0 0 3
– p. 14



The Two–Phase Simplex: Example

x1 x2 x3 x4 x5 x6 x7 RHS

z −2 0 1 −1 0 0 2 −1

x6 2 0 −1 1 0 1 −1 1

x2 −1 1 0 −1 0 0 1 1

x5 1 0 0 1 1 0 −1 2

x1 x2 x3 x4 x5 x6 x7 RHS

z 0 0 0 0 0 1 1 0

x1 1 0 −1

2

1

2
0 1

2
−1

2

1

2

x2 0 1 −1

2
−1

2
0 1

2

1

2

3

2

x5 0 0 1

2

1

2
1 −1

2
−1

2

3

2
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The Two–Phase Simplex: Example

• Optimal tableau: end of Phase One

◦ the objective function value is 0

◦ the artificial variables have left the basis

◦ so x6 = x7 = 0 can be removed

• The original objective: min x1 − 2x2 = −max−x1 + 2x2

• Signs change when written into the simplex tableau!

• Again not a valid tableau: 2 pivots

x1 x2 x3 x4 x5 RHS

z 1 -2 0 0 0 0

x1 1 0 −1

2

1

2
0 1

2

x2 0 1 −1

2
−1

2
0 3

2

x5 0 0 1

2

1

2
1 3

2
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The Two–Phase Simplex: Example

• Phase Two:

x1 x2 x3 x4 x5 RHS

z 0 0 −1

2
−3

2
0 5

2

x1 1 0 −1

2

1

2
0 1

2

x2 0 1 −1

2
−1

2
0 3

2

x5 0 0 1

2

1

2
1 3

2

x1 x2 x3 x4 x5 RHS

z 3 0 −2 0 0 4

x4 2 0 −1 1 0 1

x2 1 1 −1 0 0 2

x5 −1 0 1 0 1 1
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The Two–Phase Simplex: Example

x1 x2 x3 x4 x5 RHS

z 1 0 0 0 2 6

x4 1 0 0 1 1 2

x2 0 1 0 0 1 3

x3 −1 0 1 0 1 1

• In Phase One, we have moved into
an extreme point of the feasible
region through the points

[

x1

x2

]

=
[

0
0

]

→
[

0
1

]

→

[

1

2
3

2

]

• In Phase Two we have solved the
problem from this point

1

2

3

1 2 3
x

1

x
2

[1/2 3/2]T

[2 3]T

[0 1]T

[0 3]T
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Sensitivity Analysis

• Linear programs are often used to model real problems
whose parameters are uncertain or subject to measurement
errors or noise

• In a Resource Allocation problem, for instance, the
estimated prices might be uncertain, capacities might be
expanded by investing into new equipment, etc.

• Question: how does the optimal solution of a linear

program max{cTx : Ax = b,x ≥ 0} depend on the

perturbation of the input parameters?

◦ here we discuss only the case when the objective

function coefficients cT change

◦ sensitivity analysis goes similarly for the cases when the

RHS vector b or the constraint matrix A change

• The idea is that we do not want to re-optimize the changed
linear program from scratch
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Changing the Objective Function

• Let B be an optimal basis for the linear program

max{cTx : Ax = b,x ≥ 0}

• We characterize the change in the optimal solution x and

the optimal objective function value when the k-th objective

function coefficient ck is changed to c′k

• The simplex tableau of the original linear program in the
basis B

z xB xN RHS

z 1 0 cB
TB−1N − cN

T cB
TB−1b row 0

xB 0 Im B−1N B−1b row 1...m

• B is (primal) feasible if B−1b ≥ 0

• B is (primal) optimal if cB
TB−1N − cN

T ≥ 0
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Changing the Objective Function

1.) The changed objective coefficient ck belongs to a nonbasic

variable xk : k ∈ N

cN
T → (c′

N
)
T
= cN + (c′k − ck)ek

T

• In this case no change occurs in rows 1, . . . ,m of the
simplex tableau, only the objective row (row 0) changes

cB
TB−1N − cN

T → cB
TB−1N − (cN

′)T =

cB
TB−1N − cN

T − (c′k − ck)ek
T

• In fact, only the reduced cost zk for the nonbasic variable xk

changes:

zk → z′k = zk − (c′k − ck)
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Changing the Objective Function

• If zk − (c′k − ck) ≥ 0 then basis B remains optimal

• For instance, if we reduce the cost of a nonbasic variable
the current basis is guaranteed to remain optimal

• The objective function value does not change (xk remains
at 0)

• If, on the other hand, zk − (c′k − ck) < 0, then basis B is no

longer optimal according to the changed objective

• Run the primal simplex from basis B to obtain the new
optimum

• Using this method we do not need to re-run the Two–Phase
simplex from scratch, rather the simplex method continues
from the optimal basis of the original problem

• This is the idea in sensitivity analysis
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Changing the Objective Function

2.) The changed objective coefficient ck belongs to a basic

variable xk : k ∈ B

• Let xk be the t-th basic variable: xk ≡ xBt

cB
T → (c′

B
)
T
= cB + (c′Bt

− cBt
)et

T

• Again, only the objective row changes in the tableau

• Basic variables (including xBt
) still have zero reduced cost

• The reduced costs for nonbasic variables change, the j-th:

z′j = (c′
B
)
T
B−1aj − cj = cB

TB−1aj − cj+

[0 0 . . . c′Bt
− cBt

. . . 0]yj = zj + (c′Bt
− cBt

)ytj

• Add c′Bt
− cBt

times the row of xBt
to row 0

• Then zero out the reduced cost for xBt
– p. 23



Changing the Objective: Example

• Solve the below linear program:

max 2x1 − x2 + x3

s.t. x1 + x2 + x3 ≤ 6
−x1 + 2x2 ≤ 4
x1, x2, x3 ≥ 0

• The slack variables form a feasible initial basis

z x1 x2 x3 x4 x5 RHS

z 1 −2 1 −1 0 0 0

x4 0 1 1 1 1 0 6

x5 0 −1 2 0 0 1 4
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Changing the Objective: Example

z x1 x2 x3 x4 x5 RHS

z 1 0 3 1 2 0 12

x1 0 1 1 1 1 0 6

x5 0 0 3 1 1 1 10

• Optimal tableau, with basic variables B = {1, 5}

• Reduce c2 = −1 to c′
2
= −3: since x2 is not basic only the

reduced cost z2 changes in row 0:

z′
2
= z2 − (c′

2
− c2) = 3− (−3− (−1)) = 5

z x1 x2 x3 x4 x5 RHS

z 1 0 5 1 2 0 12
. . . . . . . . . . . . . . . . . . . . . . . .

• The tableau remains optimal, the objective function value
does not change
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Changing the Objective: Example

• If now the objective coefficient for x2 is changed to c′
2
= 3,

then z′
2
= −1

• The resultant tableau is no longer optimal: primal simplex

z x1 x2 x3 x4 x5 RHS

z 1 0 −1 1 2 0 12

x1 0 1 1 1 1 0 6

x5 0 0 3 1 1 1 10

• The optimal tableau

z x1 x2 x3 x4 x5 RHS

z 1 0 0 4

3

7

3

1

3

46

3

x1 0 1 0 2

3

2

3
−1

3

8

3

x2 0 0 1 1

3

1

3

1

3

10

3
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Changing the Objective: Example

• Now change the cost for a basic variable, say, x1, from
c1 = 2 to zero

• The optimal tableau of the original problem:

z x1 x2 x3 x4 x5 RHS

z 1 0 3 1 2 0 12

x1 0 1 1 1 1 0 6

x5 0 0 3 1 1 1 10

• Add the first row to row 0 exactly c′
1
− c1 = −2 times (that

is, subtract the double)
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Changing the Objective: Example

• Performing the row operation, the objective value changes:

z x1 x2 x3 x4 x5 RHS

z 1 -2 1 −1 0 0 0

x1 0 1 1 1 1 0 6

x5 0 0 3 1 1 1 10

• Since only the elements that belong to nonbasic variables
need to be altered in the objective row, we simple set the
reduced cost for x1 to zero

z x1 x2 x3 x4 x5 RHS

z 1 0 1 −1 0 0 0

x1 0 1 1 1 1 0 6

x5 0 0 3 1 1 1 10
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Changing the Objective: Example

• The resultant tableau is not optimal:primal simplex

• The optimal tableau:

z x1 x2 x3 x4 x5 RHS

z 1 1 2 0 1 0 6

x3 0 1 1 1 1 0 6

x5 0 −1 2 0 0 1 4

• Since the “profit” realized on x1 drops from 2 to zero, it is
worth to reduce x1 to zero in the solution and rather
increase x3 (substitute products/goods)

• Change in the RHS can be handled using duality

• Changing the RHS in the primal = changing the objective in
the dual ⇒ perform sensitivity analysis on the dual
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Parametric Analysis

• In sensitivity analysis we ask how the optimum depends on
certain model parameters

• We change only a single parameter at a time

• In practice the question is often arises what happens if more
than one parameters change according to some given
perturbation function

• For instance, in the optimal product mix purchase prices
might change simultaneously

• Parametric analysis

◦ we now discuss only the case when the RHS is
perturbed along a given direction

◦ parametric analysis on the objective can again be traced
back to parametric analysis on the RHS of the dual
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Perturbation of the RHS

• Consider the linear program

z = max cTx

s.t. Ax = b

x ≥ 0

where A is m× n with rank(A) = rank(A, b) = m, b is a

column m, x a column n, and cT is a row n-vector

• Perturb the RHS vector b along a given direction b′, while
leaving the rest of the problem parameters intact:

b+ λb′, λ ≥ 0

• Characterize the change in the optimal objective and in the

optimal solution for λ ≥ 0
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Perturbation of the RHS

• Consider the simplex tableau for a basis B that is optimal
for the unchanged problem

z xB xN RHS

z 1 0 cB
TB−1N − cN

T cB
TB−1b row 0

xB 0 Im B−1N B−1b rows 1...m

• Since the tableau us optimal: cB
TB−1N − cN

T ≥ 0

• This does not depend on b so the tableau remains primal
optimal for any λ

• The question is how long it remains primal feasible as well?

• Perturbing b effects only the RHS column by B−1(b+ λb′)

and the objective value by cB
TB−1(b+ λb′)

• The tableau remains primal feasible as long as the RHS is

nonnegative: B−1(b+ λb′) = B−1b+ λ(B−1b′) ≥ 0
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Perturbation of the RHS

• Let S = {i : b̄′i < 0}, where b̄′i is the i-th component of

b̄
′
= B−1b′

• If S = ∅ then B−1(b+ λb′) ≥ 0 for any λ ≥ 0 and thus

basis B remains optimal unconditionally

• Otherwise, find the row i for which b̄i + λb̄′i first becomes

negative:

r = argmin
i∈S

(

−
b̄i

b̄′i

)

, λ̄ = min
i∈S

(

−
b̄i

b̄′i

)

= −
b̄r

b̄′r

• For any 0 ≤ λ ≤ λ̄ = λ1 basis B is feasible and optimal

• Meanwhile, the objective function value and the variables:

z(λ) = cB
T (b̄+ λb̄

′
), x(λ) =

[

xB

xN

]

=

[

b̄+ λb̄
′

0

]
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Perturbation of the RHS

• On the other hand, for any λ > λ̄ basis B is no longer
primal feasible

• Dual simplex pivot on xBr

• If there is no blocking variable (i.e., when the row of xBr
is

nonnegative), then the primal problem becomes infeasible

(dual unbounded) for any λ > λ̄

• Otherwise, we find the parameter λ̄ = λ2 until which the
tableau obtained remains primal feasible

• We carry on with this iteration until we get either

◦ S = ∅: in this case the current basis is optimal form any

λ > λ̄, or

◦ no blocking variable is found during the dual simplex

pivot: the primal is infeasible for any λ > λ̄
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Perturbation of the RHS: Example

• Solve the below linear program, subject to the following
perturbation of the RHS:

max x1 + 3x2

s.t. x1 + x2 ≤ 6− λ

−x1 + 2x2 ≤ 6 + λ

x1, x2 ≥ 0

• Easily, b = [6 6]T and b′ = [−1 1]T

• Adding slacks x3 and x4 the optimal solution for λ = 0:

z x1 x2 x3 x4 RHS

z 1 0 0 5

3

2

3
14

x1 0 1 0 2

3
−1

3
2

x2 0 0 1 1

3

1

3
4
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Perturbation of the RHS: Example

• Question: how long the current basis B =

[

1 1
−2 1

]

remains optimal?

• Observe that the columns of the slack variables x3 and x4 in
the original problem form an identity matrix

• Therefore the corresponding columns in the tableau specify
precisely the inverse of B:

b̄
′
= B−1b′ =

[

2

3
−1

3
1

3

1

3

][

−1
1

]

=

[

−1
0

]

• From this: S = {1}, r = 1 , and λ̄ = − b̄1
b̄′
1

= − 2

−1
= 2 = λ1
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Perturbation of the RHS: Example

• Consequently, for λ ∈ [0, 1] the optimal objective function

value and the optimal solution:

z(λ) = cB
T (b̄+ λb̄

′
) = [1 3]

[

2
4

]

+ λ[1 3]

[

−1
0

]

= 14− λ

x(λ) =

[

x1(λ)
x2(λ)

]

= b̄+ λb̄
′
=

[

2
4

]

+ λ

[

−1
0

]

=

[

2− λ

4

]

• For λ > 2 we have x1 < 0 in the current basis

z x1 x2 x3 x4 RHS

z 1 0 0 5

3

2

3
14− λ

x1 0 1 0 2

3
−1

3
2− λ

x2 0 0 1 1

3

1

3
4
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Perturbation of the RHS: Example

• Choose λ = 2 and perform a dul simplex pivot on the basic
variable x1: x4 enters the basis

z x1 x2 x3 x4 RHS

z 1 2 0 3 0 12
x4 0 −3 0 −2 1 0
x2 0 1 1 1 0 4

• Now b̄ =
[

b̄4
b̄2

]

and we search for b̄
′
=
[

b̄′
4

b̄′
2

]

according to

b =
[

b1
b2

]

= [ 6
6
] and b′ =

[

b′
1

b′
2

]

=
[

1
−1

]

• Multiplying by the matrix formed by column 3 and 4:

b̄ =
[

−2 1
1 0

] [

6
6

]

=
[

−6
6

]

b̄
′
=
[

−2 1
1 0

] [

−1
1

]

=
[

3
−1

]
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Perturbation of the RHS: Example

• Then, S = {2}, r = 2, and λ̄ = − b̄2
b̄′
2

= − 6

−1
= 6 = λ2

• The objective function value and the solution for λ ∈ [2, 6]:

z(λ) = cB
T (b̄+ λb̄

′
) = [0 3]

[

−6
6

]

+ λ[0 3]

[

3
−1

]

= 18− 3λ

x1(λ) ≡ 0,

[

x4(λ)
x2(λ)

]

= b̄+ λb̄
′
=

[

−6
6

]

+ λ

[

3
−1

]

=

[

−6 + 3λ
6− λ

]

z x1 x2 x3 x4 RHS

z 1 2 0 3 0 18− 3λ

x4 0 −3 0 −2 1 −6 + 3λ

x2 0 1 1 1 0 6− λ
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Perturbation of the RHS: Example

• The current basis is no longer feasible for any λ > 6

• Move the a new basis: x2 leaves the basis

• Since the row of x2 is nonnegative, we have dual
unboundedness at this point

• Consequently, for any λ > 6 the primal becomes infeasible

• The objective function
value is piecewise
linear and concave

5

10

15

2 4 6 �

z( )�

14 - �

18 - 3
�
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