# **Simplex: Starting Solution and Analysis**

- Finding an initial basic feasible solution: the Artificial Variable technique
- Sensitivity analysis: the effect of changing the objective function
- Parametric analysis: perturbation of the Right-Hand-Side

### **Recall: The Simplex Tableau**

• Let A be an  $m \times n$  matrix with rank(A) = rank(A, b) = m, b be a column *m*-vector, x be a column *n*-vector, and  $c^T$  be a row *n*-vector, and consider the linear program

- Let  ${old B}$  be a primal feasible basis
- The simplex tableau

#### **Recall: The Simplex Tableau**

- Optimality condition:  $\forall j \in N : z_j \ge 0$
- $x_k$  enters the basis, where  $k = \underset{j \in N}{\operatorname{argmin}} z_j$
- Unbounded if no positive component in column k:  $\boldsymbol{y}_k \leq 0$

• 
$$x_{B_r}$$
 leaves the basis:  $r = \underset{i \in \{1,...,m\}}{\operatorname{argmin}} \left\{ \frac{\overline{b}_i}{y_{ik}} : y_{ik} > 0 \right\}$ 

|           | z           | $x_{B_1}\ldots$ | $x_{B_r} \dots$ | $x_{B_m}$ | $\ldots x_{N_j} \ldots x_{N_k} \ldots$ | RHS              |
|-----------|-------------|-----------------|-----------------|-----------|----------------------------------------|------------------|
| z         | 1           | 0               | 0               | 0         | $\ldots z_j \ldots z_k \ldots$         | $z_0$            |
| $x_{B_1}$ | 0           | 1               | 0               | 0         | $\ldots y_{1j} \ldots y_{1k} \ldots$   | $ar{b}_1$        |
|           |             |                 | ÷               | :         |                                        |                  |
| $x_{B_r}$ | 0           | 0               | 1               | 0         | $\dots y_{rj} \dots y_{rk} \dots$      | $\overline{b}_r$ |
|           | •<br>•<br>• |                 | ÷               | ÷         |                                        |                  |
| $x_{B_m}$ | 0           | 0               | 0               | 1         | $\cdots y_{mj} \cdots y_{mk} \cdots$   | $\overline{b}_m$ |

# **Recall: The Simplex Tableau**

- We need an initial basic feasible solution to start the simplex
- In canonical form an initial basis is easy to find
- Maximization problem:  $\max\{ \boldsymbol{c}^T \boldsymbol{x} : \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \boldsymbol{0} \}$
- Into standard form:  $\max\{ \boldsymbol{c}^T \boldsymbol{x} : \boldsymbol{A} \boldsymbol{x} + \boldsymbol{I} \boldsymbol{x}_s = \boldsymbol{b}, \boldsymbol{x} \geq \boldsymbol{0} \}$
- If  $b \ge 0$  then the slack variables constitute a primal feasible initial basis: **primal simplex**
- For a **minimization problem** in canonical form:

$$\min\{\boldsymbol{c}^T\boldsymbol{x}:\boldsymbol{A}\boldsymbol{x}\geq\boldsymbol{b},\boldsymbol{x}\geq\boldsymbol{0}\}$$

- Dual feasible initial basis on the columns of the slacks if  $c^T \ge \mathbf{0}^T$ : dual simplex
- If neither case occurs then the simplex cannot be started: need a generic way for finding initial basic feasible solutions

# **Starting the Simplex Method**

• Find an initial basic feasible solution for the linear program given in standard form:

$$z = \max \quad c^T x$$
  
s.t.  $Ax = b$   
 $x \ge 0$ 

where A is  $m \times n$  with rank(A) = rank(A, b) = m, b is a column m, x a column n, and  $c^T$  is a row n-vector

- Suppose furthermore that  $b \ge 0$  (if there is row *i* with  $b_i < 0$ , then invert the row to get  $-b_i > 0$ )
- If some columns of  $\boldsymbol{A}$  form an identity matrix, choose these columns as basis
- Write the simplex tableau and eliminate reduced costs corresponding to the basis using elementary row operations

# **The Artificial Variable Technique**

- Suppose that no trivial initial basis could be obtained this way
- Introduce  $x_a$  artificial variables and consider the modified linear program:

$$egin{aligned} z &= \min & \mathbf{1}^T oldsymbol{x}_{oldsymbol{a}} \ & ext{ s.t. } & oldsymbol{A} oldsymbol{x} + oldsymbol{x}_{oldsymbol{a}} = oldsymbol{b} \ &oldsymbol{x}, oldsymbol{x}_{oldsymbol{a}} &\geq oldsymbol{0} \end{aligned}$$

where  $\mathbf{1}^T$  is a row vector (of proper size) with all components set to 1

- There is a trivial initial basis for the modified problem
- Since the columns of  $x_a$  form an identity matrix, we have a feasible initial basis on  $x_a$ : B = I and  $B^{-1}b = b \ge 0$  by assumption

# **The Artificial Variable Technique**

- Solve the modified simplex from the initial basis defined by the artificial variables
- The optimum is  $z_0 = \mathbf{1}^T \boldsymbol{x_a}$  (the sum of the artificial variables in the solution)
- **Thoerem:** if  $z_0 > 0$  then the original linear program is infeasible
- **Proof:** suppose that  $z_0 > 0$  but the original linear program is feasible so there is  $x_0$ :  $Ax_0 = b$
- Then,  $x_a = b Ax_0 = 0$  and so  $\mathbf{1}^T x_a = 0 < z_0$ , which contradicts the assumption that  $z_0$  is optimal
- If, on the other hand,  $z_0 = 0$ , then  $\boldsymbol{x_a} = \boldsymbol{0}$
- In this case the original linear program is feasible
- Solve it from the resultant basis

## **The Two–Phase Simplex Method**

- Phase One: find an initial basis
- Solve the modified linear program augmented with the artificial variables  $x_a$

- If  $x_a 
  eq 0$  then the linear program is infeasible
- Otherwise,  $x_a = 0$  and suppose that all artificial variables have left the basis
- If not, the remaining artificial variables must be "pivoted" out from the basis manually, we do not discuss this here
- **Phase Two:** remove the artificial variables, restore the original objective function and run the simplex from the current basis

• Solve the linear program using the Two–Phase Simplex

• Convert to maximization and bring to standard form by introducing slack variables (take note of the " $\geq$ " type of constraints and that eventually we need  $b \geq 0$ !)

- No trivial primal or dual feasible basis
- Introduce artificial variables: it is enough add an artificial variable  $x_5$  to the second row
- This, together with the slack variable  $x_3$ , will provide a proper initial (identity) basis
- Solve the below linear program as the first phase:

• Note that we have converted the objective to maximization: will need to invert the resultant objective value!

- Initial basis:  $B = [a_3 \ a_5], c_B^T = [0 \ -1], c_N^T = 0$
- Not a valid simplex tableau yet: there is a nonzero element in the objective row for the basic variable  $x_5$ 
  - $\circ$  "pivot": subtract the row of  $x_5$  from row 0

|       | z | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | RHS |
|-------|---|-------|-------|-------|-------|-------|-----|
| z     | 1 | 0     | 0     | 0     | 0     | 1     | 0   |
| $x_3$ | 0 | 1     | 1     | 1     | 0     | 0     | 4   |
| $x_5$ | 0 | 2     | 3     | 0     | -1    | 1     | 18  |

|                    | z | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | RHS |
|--------------------|---|-------|-------|-------|-------|-------|-----|
| $\left  z \right $ | 1 | -2    | -3    | 0     | 1     | 0     | -18 |
| $x_3$              | 0 | 1     | 1     | 1     | 0     | 0     | 4   |
| $x_5$              | 0 | 2     | 3     | 0     | -1    | 1     | 18  |

• We get an optimal tableau after the pivot, with optimal objective function value -6 (do not forget to invert this!)



- Since  $\min x_5 = 6$ , the artificial variable could not be eliminated
- The original linear program is infeasible



• Consider the linear program

- Invert the first two constraints so that  $b \geq 0$  holds
- Add an artificial variable to the first two rows (will use the slack variable for the third row)

• Still need to take care of the objective row: 2 pivots

|       | z | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | RHS |
|-------|---|-------|-------|-------|-------|-------|-------|-------|-----|
| z     | 1 | 0     | 0     | 0     | 0     | 0     | 1     | 1     | 0   |
| $x_6$ | 0 | 1     | 1     | -1    | 0     | 0     | 1     | 0     | 2   |
| $x_7$ | 0 | -1    | 1     | 0     | -1    | 0     | 0     | 1     | 1   |
| $x_5$ | 0 | 0     | 1     | 0     | 0     | 1     | 0     | 0     | 3   |

|       | z | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | RHS |
|-------|---|-------|-------|-------|-------|-------|-------|-------|-----|
| z     | 1 | 0     | -2    | 1     | 1     | 0     | 0     | 0     | -3  |
| $x_6$ | 0 | 1     | 1     | -1    | 0     | 0     | 1     | 0     | 2   |
| $x_7$ | 0 | -1    | 1     | 0     | -1    | 0     | 0     | 1     | 1   |
| $x_5$ | 0 | 0     | 1     | 0     | 0     | 1     | 0     | 0     | 3   |

|       | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_6$ | $x_7$ | RHS |
|-------|-------|-------|-------|-------|-------|-------|-------|-----|
| z     | -2    | 0     | 1     | -1    | 0     | 0     | 2     | -1  |
| $x_6$ | 2     | 0     | -1    | 1     | 0     | 1     | -1    | 1   |
| $x_2$ | -1    | 1     | 0     | -1    | 0     | 0     | 1     | 1   |
| $x_5$ | 1     | 0     | 0     | 1     | 1     | 0     | -1    | 2   |

|       | $x_1$ | $x_2$ | $x_3$          | $x_4$          | $x_5$ | $x_6$          | $x_7$          | RHS           |
|-------|-------|-------|----------------|----------------|-------|----------------|----------------|---------------|
| z     | 0     | 0     | 0              | 0              | 0     | 1              | 1              | 0             |
| $x_1$ | 1     | 0     | $-\frac{1}{2}$ | $\frac{1}{2}$  | 0     | $\frac{1}{2}$  | $-\frac{1}{2}$ | $\frac{1}{2}$ |
| $x_2$ | 0     | 1     | $-\frac{1}{2}$ | $-\frac{1}{2}$ | 0     | $\frac{1}{2}$  | $\frac{1}{2}$  | $\frac{3}{2}$ |
| $x_5$ | 0     | 0     | $\frac{1}{2}$  | $\frac{1}{2}$  | 1     | $-\frac{1}{2}$ | $-\frac{1}{2}$ | $\frac{3}{2}$ |

- Optimal tableau: end of Phase One
  - $\circ\;$  the objective function value is  $0\;$
  - $\circ~$  the artificial variables have left the basis
  - $\circ$  so  $x_6 = x_7 = 0$  can be removed
- The original objective:  $\min x_1 2x_2 = -\max -x_1 + 2x_2$
- Signs change when written into the simplex tableau!
- Again not a valid tableau: 2 pivots

|                | $x_1$ | $x_2$ | $x_3$          | $x_4$          | $x_5$ | RHS           |
|----------------|-------|-------|----------------|----------------|-------|---------------|
| $\overline{z}$ | 1     | -2    | 0              | 0              | 0     | 0             |
| $x_1$          | 1     | 0     | $-\frac{1}{2}$ | $\frac{1}{2}$  | 0     | $\frac{1}{2}$ |
| $x_2$          | 0     | 1     | $-\frac{1}{2}$ | $-\frac{1}{2}$ | 0     | $\frac{3}{2}$ |
| $x_5$          | 0     | 0     | $\frac{1}{2}$  | $\frac{1}{2}$  | 1     | $\frac{3}{2}$ |

#### • Phase Two:

|                    | $x_1$ | $x_2$ | $x_3$          | $x_4$          | $x_5$ | RHS           |
|--------------------|-------|-------|----------------|----------------|-------|---------------|
| $\left  z \right $ | 0     | 0     | $-\frac{1}{2}$ | $-\frac{3}{2}$ | 0     | $\frac{5}{2}$ |
| $x_1$              | 1     | 0     | $-\frac{1}{2}$ | $\frac{1}{2}$  | 0     | $\frac{1}{2}$ |
| $x_2$              | 0     | 1     | $-\frac{1}{2}$ | $-\frac{1}{2}$ | 0     | $\frac{3}{2}$ |
| $x_5$              | 0     | 0     | $\frac{1}{2}$  | $\frac{1}{2}$  | 1     | $\frac{3}{2}$ |

|       | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | RHS |
|-------|-------|-------|-------|-------|-------|-----|
| z     | 3     | 0     | -2    | 0     | 0     | 4   |
| $x_4$ | 2     | 0     | -1    | 1     | 0     | 1   |
| $x_2$ | 1     | 1     | -1    | 0     | 0     | 2   |
| $x_5$ | -1    | 0     | 1     | 0     | 1     | 1   |

|       | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | RHS |
|-------|-------|-------|-------|-------|-------|-----|
| z     | 1     | 0     | 0     | 0     | 2     | 6   |
| $x_4$ | 1     | 0     | 0     | 1     | 1     | 2   |
| $x_2$ | 0     | 1     | 0     | 0     | 1     | 3   |
| $x_3$ | -1    | 0     | 1     | 0     | 1     | 1   |

 In Phase One, we have moved into an extreme point of the feasible region through the points

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \to \begin{bmatrix} 0 \\ 1 \end{bmatrix} \to \begin{bmatrix} \frac{1}{2} \\ \frac{3}{2} \end{bmatrix}$$

 In Phase Two we have solved the problem from this point



# **Sensitivity Analysis**

- Linear programs are often used to model real problems whose parameters are uncertain or subject to measurement errors or noise
- In a Resource Allocation problem, for instance, the estimated prices might be uncertain, capacities might be expanded by investing into new equipment, etc.
- Question: how does the optimal solution of a linear program  $\max\{c^Tx : Ax = b, x \ge 0\}$  depend on the perturbation of the input parameters?
  - $\circ~$  here we discuss only the case when the objective function coefficients  ${m c}^T$  change
  - $\circ$  sensitivity analysis goes similarly for the cases when the RHS vector b or the constraint matrix A change
- The idea is that we do not want to re-optimize the changed linear program from scratch

- Let B be an optimal basis for the linear program  $\max\{c^Tx: Ax = b, x \ge 0\}$
- We characterize the change in the optimal solution x and the optimal objective function value when the k-th objective function coefficient  $c_k$  is changed to  $c'_k$
- The simplex tableau of the original linear program in the basis  ${\boldsymbol {\cal B}}$

- $\boldsymbol{B}$  is (primal) feasible if  $\boldsymbol{B}^{-1}\boldsymbol{b}\geq \boldsymbol{0}$
- $\boldsymbol{B}$  is (primal) optimal if  $\boldsymbol{c}_{\boldsymbol{B}}{}^{T}\boldsymbol{B}^{-1}\boldsymbol{N} \boldsymbol{c}_{\boldsymbol{N}}{}^{T} \geq \boldsymbol{0}$

1.) The changed objective coefficient  $c_k$  belongs to a nonbasic variable  $x_k : k \in N$ 

$$\boldsymbol{c_N}^T \rightarrow (\boldsymbol{c'_N})^T = \boldsymbol{c_N} + (c'_k - c_k) \boldsymbol{e_k}^T$$

• In this case no change occurs in rows  $1, \ldots, m$  of the simplex tableau, only the objective row (row 0) changes

$$oldsymbol{c}_{oldsymbol{B}}^T oldsymbol{B}^{-1} oldsymbol{N} - oldsymbol{c}_{oldsymbol{N}}^T o oldsymbol{c}_{oldsymbol{B}}^T oldsymbol{B}^{-1} oldsymbol{N} - oldsymbol{c}_{oldsymbol{N}}^T - (oldsymbol{c}_k^T - oldsymbol{c}_k) oldsymbol{e}_{oldsymbol{k}}^T$$

• In fact, only the reduced cost  $z_k$  for the nonbasic variable  $x_k$  changes:

$$z_k \to z'_k = z_k - (c'_k - c_k)$$

- If  $z_k (c'_k c_k) \ge 0$  then basis  $\boldsymbol{B}$  remains optimal
- For instance, if we **reduce** the cost of a nonbasic variable the current basis is guaranteed to remain optimal
- The objective function value does not change (*x<sub>k</sub>* remains at 0)
- If, on the other hand,  $z_k (c'_k c_k) < 0$ , then basis B is no longer optimal according to the changed objective
- Run the primal simplex from basis  ${m B}$  to obtain the new optimum
- Using this method we do not need to re-run the Two–Phase simplex from scratch, rather the simplex method continues from the optimal basis of the original problem
- This is the idea in sensitivity analysis

- 2.) The changed objective coefficient  $c_k$  belongs to a basic variable  $x_k : k \in B$ 
  - Let  $x_k$  be the *t*-th basic variable:  $x_k \equiv x_{B_t}$

$$\boldsymbol{c_B}^T \rightarrow (\boldsymbol{c'_B})^T = \boldsymbol{c_B} + (c'_{B_t} - c_{B_t}) \boldsymbol{e_t}^T$$

- Again, only the objective row changes in the tableau
- Basic variables (including  $x_{B_t}$ ) still have zero reduced cost
- The reduced costs for nonbasic variables change, the j-th:

$$z'_{j} = (c'_{B})^{T} B^{-1} a_{j} - c_{j} = c_{B}^{T} B^{-1} a_{j} - c_{j} + [0 \quad 0 \quad \dots \quad c'_{B_{t}} - c_{B_{t}} \quad \dots \quad 0] y_{j} = z_{j} + (c'_{B_{t}} - c_{B_{t}}) y_{tj}$$

- Add  $c'_{B_t} c_{B_t}$  times the row of  $x_{B_t}$  to row 0
- Then zero out the reduced cost for  $x_{B_t}$

• Solve the below linear program:

• The slack variables form a feasible initial basis

|                    | z | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | RHS |
|--------------------|---|-------|-------|-------|-------|-------|-----|
| $\left  z \right $ | 1 | -2    | 1     | -1    | 0     | 0     | 0   |
| $x_4$              | 0 | 1     | 1     | 1     | 1     | 0     | 6   |
| $x_5$              | 0 | -1    | 2     | 0     | 0     | 1     | 4   |

|       | z | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | RHS |
|-------|---|-------|-------|-------|-------|-------|-----|
| z     | 1 | 0     | 3     | 1     | 2     | 0     | 12  |
| $x_1$ | 0 | 1     | 1     | 1     | 1     | 0     | 6   |
| $x_5$ | 0 | 0     | 3     | 1     | 1     | 1     | 10  |

- Optimal tableau, with basic variables  $B = \{1, 5\}$
- Reduce  $c_2 = -1$  to  $c'_2 = -3$ : since  $x_2$  is not basic only the reduced cost  $z_2$  changes in row 0:

$$z'_2 = z_2 - (c'_2 - c_2) = 3 - (-3 - (-1)) = 5$$

|     | z   | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | RHS   |
|-----|-----|-------|-------|-------|-------|-------|-------|
| z   | 1   | 0     | 5     | 1     | 2     | 0     | 12    |
| ••• | ••• | •••   | • • • | •••   | •••   | •••   | • • • |

• The tableau remains optimal, the objective function value does not change

- If now the objective coefficient for  $x_2$  is changed to  $c_2^\prime=3,$  then  $z_2^\prime=-1$
- The resultant tableau is no longer optimal: primal simplex

|       | z | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | RHS |
|-------|---|-------|-------|-------|-------|-------|-----|
| z     | 1 | 0     | -1    | 1     | 2     | 0     | 12  |
| $x_1$ | 0 | 1     | 1     | 1     | 1     | 0     | 6   |
| $x_5$ | 0 | 0     | 3     | 1     | 1     | 1     | 10  |

• The optimal tableau

|       | z | $x_1$ | $x_2$ | $x_3$         | $x_4$         | $x_5$          | RHS            |
|-------|---|-------|-------|---------------|---------------|----------------|----------------|
| z     | 1 | 0     | 0     | $\frac{4}{3}$ | $\frac{7}{3}$ | $\frac{1}{3}$  | $\frac{46}{3}$ |
| $x_1$ | 0 | 1     | 0     | $\frac{2}{3}$ | $\frac{2}{3}$ | $-\frac{1}{3}$ | $\frac{8}{3}$  |
| $x_2$ | 0 | 0     | 1     | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$  | $\frac{10}{3}$ |

- Now change the cost for a basic variable, say,  $x_1, {\rm from } c_1=2 {\rm \ to \ zero}$
- The optimal tableau of the original problem:

|       | z | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | RHS |
|-------|---|-------|-------|-------|-------|-------|-----|
| z     | 1 | 0     | 3     | 1     | 2     | 0     | 12  |
| $x_1$ | 0 | 1     | 1     | 1     | 1     | 0     | 6   |
| $x_5$ | 0 | 0     | 3     | 1     | 1     | 1     | 10  |

• Add the first row to row 0 exactly  $c'_1 - c_1 = -2$  times (that is, subtract the double)

• Performing the row operation, the objective value changes:

|       | z | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | RHS |
|-------|---|-------|-------|-------|-------|-------|-----|
| z     | 1 | -2    | 1     | -1    | 0     | 0     | 0   |
| $x_1$ | 0 | 1     | 1     | 1     | 1     | 0     | 6   |
| $x_5$ | 0 | 0     | 3     | 1     | 1     | 1     | 10  |

• Since only the elements that belong to nonbasic variables need to be altered in the objective row, we simple set the reduced cost for  $x_1$  to zero

|       | z | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | RHS |
|-------|---|-------|-------|-------|-------|-------|-----|
| z     | 1 | 0     | 1     | -1    | 0     | 0     | 0   |
| $x_1$ | 0 | 1     | 1     | 1     | 1     | 0     | 6   |
| $x_5$ | 0 | 0     | 3     | 1     | 1     | 1     | 10  |

- The resultant tableau is not optimal:primal simplex
- The optimal tableau:

|       | z | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | RHS |
|-------|---|-------|-------|-------|-------|-------|-----|
| z     | 1 | 1     | 2     | 0     | 1     | 0     | 6   |
| $x_3$ | 0 | 1     | 1     | 1     | 1     | 0     | 6   |
| $x_5$ | 0 | -1    | 2     | 0     | 0     | 1     | 4   |

- Since the "profit" realized on  $x_1$  drops from 2 to zero, it is worth to reduce  $x_1$  to zero in the solution and rather increase  $x_3$  (substitute products/goods)
- Change in the RHS can be handled using duality
- Changing the RHS in the primal = changing the objective in the dual ⇒ perform sensitivity analysis on the dual

## **Parametric Analysis**

- In sensitivity analysis we ask how the optimum depends on certain model parameters
- We change only a single parameter at a time
- In practice the question is often arises what happens if more than one parameters change according to some given perturbation function
- For instance, in the optimal product mix purchase prices might change simultaneously

#### • Parametric analysis

- we now discuss only the case when the RHS is perturbed along a given direction
- parametric analysis on the objective can again be traced back to parametric analysis on the RHS of the dual

• Consider the linear program

where A is  $m \times n$  with rank(A) = rank(A, b) = m, b is a column m, x a column n, and  $c^T$  is a row n-vector

• Perturb the RHS vector b along a given direction b', while leaving the rest of the problem parameters intact:

$$\boldsymbol{b} + \lambda \boldsymbol{b}', \lambda \ge 0$$

- Characterize the change in the optimal objective and in the optimal solution for  $\lambda \geq 0$ 

• Consider the simplex tableau for a basis  ${\boldsymbol{B}}$  that is optimal for the unchanged problem

- Since the tableau us optimal:  $\boldsymbol{c}_{\boldsymbol{B}}^{T}\boldsymbol{B}^{-1}\boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}^{T}\geq\boldsymbol{0}$
- This does not depend on  ${\pmb b}$  so the tableau remains primal optimal for any  $\lambda$
- The question is how long it remains primal feasible as well?
- Perturbing *b* effects only the RHS column by  $B^{-1}(b + \lambda b')$ and the objective value by  $c_B^T B^{-1}(b + \lambda b')$
- The tableau remains primal feasible as long as the RHS is nonnegative:  $B^{-1}(b + \lambda b') = B^{-1}b + \lambda(B^{-1}b') \ge 0$

- Let  $S = \{i : \bar{b}'_i < 0\}$ , where  $\bar{b}'_i$  is the *i*-th component of  $\bar{b}' = B^{-1}b'$
- If S = Ø then B<sup>-1</sup>(b + λb') ≥ 0 for any λ ≥ 0 and thus basis B remains optimal unconditionally
- Otherwise, find the row *i* for which  $\overline{b}_i + \lambda \overline{b}'_i$  first becomes negative:

$$r = \operatorname*{argmin}_{i \in S} \left( -\frac{\overline{b}_i}{\overline{b}'_i} \right), \qquad \overline{\lambda} = \operatorname*{min}_{i \in S} \left( -\frac{\overline{b}_i}{\overline{b}'_i} \right) = -\frac{\overline{b}_r}{\overline{b}'_r}$$

- For any  $0 \le \lambda \le \overline{\lambda} = \lambda_1$  basis  $\boldsymbol{B}$  is feasible and optimal
- Meanwhile, the objective function value and the variables:  $z(\lambda) = \boldsymbol{c}_{\boldsymbol{B}}{}^{T}(\bar{\boldsymbol{b}} + \lambda \bar{\boldsymbol{b}}'), \qquad \boldsymbol{x}(\lambda) = \begin{bmatrix} \boldsymbol{x}_{\boldsymbol{B}} \\ \boldsymbol{x}_{\boldsymbol{N}} \end{bmatrix} = \begin{bmatrix} \bar{\boldsymbol{b}} + \lambda \bar{\boldsymbol{b}}' \\ \boldsymbol{0} \end{bmatrix}$

- On the other hand, for any  $\lambda > \overline{\lambda}$  basis  ${\pmb B}$  is no longer primal feasible
- Dual simplex pivot on  $x_{B_r}$
- If there is no blocking variable (i.e., when the row of  $x_{B_r}$  is nonnegative), then the primal problem becomes infeasible (dual unbounded) for any  $\lambda > \overline{\lambda}$
- Otherwise, we find the parameter  $\overline{\lambda} = \lambda_2$  until which the tableau obtained remains primal feasible
- We carry on with this iteration until we get either
  - $\circ~S=\emptyset$ : in this case the current basis is optimal form any  $\lambda>\bar{\lambda},$  or
  - $\circ~$  no blocking variable is found during the dual simplex pivot: the primal is infeasible for any  $\lambda>\bar{\lambda}$

• Solve the below linear program, subject to the following perturbation of the RHS:

- Easily,  $\boldsymbol{b} = \begin{bmatrix} 6 & 6 \end{bmatrix}^T$  and  $\boldsymbol{b'} = \begin{bmatrix} -1 & 1 \end{bmatrix}^T$
- Adding slacks  $x_3$  and  $x_4$  the optimal solution for  $\lambda = 0$ :

|       | z | $x_1$ | $x_2$ | $x_3$         | $x_4$          | RHS |
|-------|---|-------|-------|---------------|----------------|-----|
| z     | 1 | 0     | 0     | $\frac{5}{3}$ | $\frac{2}{3}$  | 14  |
| $x_1$ | 0 | 1     | 0     | $\frac{2}{3}$ | $-\frac{1}{3}$ | 2   |
| $x_2$ | 0 | 0     | 1     | $\frac{1}{3}$ | $\frac{1}{3}$  | 4   |

- Question: how long the current basis  $\boldsymbol{B} = \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$  remains optimal?
- Observe that the columns of the slack variables  $x_3$  and  $x_4$  in the original problem form an identity matrix
- Therefore the corresponding columns in the tableau specify precisely the inverse of B:

$$\bar{\boldsymbol{b}}' = \boldsymbol{B}^{-1}\boldsymbol{b}' = \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

• From this:  $S = \{1\}$ , r = 1, and  $\overline{\lambda} = -\frac{\overline{b}_1}{\overline{b}_1'} = -\frac{2}{-1} = 2 = \lambda_1$ 

• Consequently, for  $\lambda \in [0, 1]$  the optimal objective function value and the optimal solution:

$$z(\lambda) = \boldsymbol{c}_{\boldsymbol{B}}{}^{T}(\bar{\boldsymbol{b}} + \lambda \bar{\boldsymbol{b}}') = \begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} 2\\ 4 \end{bmatrix} + \lambda \begin{bmatrix} 1 & 3 \end{bmatrix} \begin{bmatrix} -1\\ 0 \end{bmatrix} = 14 - \lambda$$
$$\boldsymbol{x}(\lambda) = \begin{bmatrix} x_{1}(\lambda)\\ x_{2}(\lambda) \end{bmatrix} = \bar{\boldsymbol{b}} + \lambda \bar{\boldsymbol{b}}' = \begin{bmatrix} 2\\ 4 \end{bmatrix} + \lambda \begin{bmatrix} -1\\ 0 \end{bmatrix} = \begin{bmatrix} 2 - \lambda\\ 4 \end{bmatrix}$$

• For  $\lambda > 2$  we have  $x_1 < 0$  in the current basis

|       | z | $x_1$ | $x_2$ | $x_3$         | $x_4$          | RHS            |
|-------|---|-------|-------|---------------|----------------|----------------|
| z     | 1 | 0     | 0     | $\frac{5}{3}$ | $\frac{2}{3}$  | $14 - \lambda$ |
| $x_1$ | 0 | 1     | 0     | $\frac{2}{3}$ | $-\frac{1}{3}$ | $2 - \lambda$  |
| $x_2$ | 0 | 0     | 1     | $\frac{1}{3}$ | $\frac{1}{3}$  | 4              |

• Choose  $\lambda = 2$  and perform a dul simplex pivot on the basic variable  $x_1$ :  $x_4$  enters the basis

• Now 
$$\bar{b} = \begin{bmatrix} \bar{b}_4 \\ \bar{b}_2 \end{bmatrix}$$
 and we search for  $\bar{b}' = \begin{bmatrix} \bar{b}'_4 \\ \bar{b}'_2 \end{bmatrix}$  according to  $b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 6 \end{bmatrix}$  and  $b' = \begin{bmatrix} b'_1 \\ b'_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ 

• Multiplying by the matrix formed by column 3 and 4:

$$\bar{\boldsymbol{b}} = \begin{bmatrix} -2 & 1\\ 1 & 0 \end{bmatrix} \begin{bmatrix} 6\\ 6 \end{bmatrix} = \begin{bmatrix} -6\\ 6 \end{bmatrix} \quad \bar{\boldsymbol{b}}' = \begin{bmatrix} -2 & 1\\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1\\ 1 \end{bmatrix} = \begin{bmatrix} 3\\ -1 \end{bmatrix}$$

• Then, 
$$S = \{2\}$$
,  $r = 2$ , and  $\bar{\lambda} = -\frac{\bar{b}_2}{\bar{b}'_2} = -\frac{6}{-1} = 6 = \lambda_2$ 

• The objective function value and the solution for  $\lambda \in [2, 6]$ :

$$z(\lambda) = \boldsymbol{c}_{\boldsymbol{B}}{}^{T}(\bar{\boldsymbol{b}} + \lambda \bar{\boldsymbol{b}}') = \begin{bmatrix} 0 & 3 \end{bmatrix} \begin{bmatrix} -6\\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 0 & 3 \end{bmatrix} \begin{bmatrix} 3\\ -1 \end{bmatrix} = 18 - 3\lambda$$
$$x_{1}(\lambda) \equiv 0, \quad \begin{bmatrix} x_{4}(\lambda)\\ x_{2}(\lambda) \end{bmatrix} = \bar{\boldsymbol{b}} + \lambda \bar{\boldsymbol{b}}' = \begin{bmatrix} -6\\ 6 \end{bmatrix} + \lambda \begin{bmatrix} 3\\ -1 \end{bmatrix} = \begin{bmatrix} -6 + 3\lambda\\ 6 - \lambda \end{bmatrix}$$

|       | z | $x_1$ | $x_2$ | $x_3$ | $x_4$ | RHS             |
|-------|---|-------|-------|-------|-------|-----------------|
| z     | 1 | 2     | 0     | 3     | 0     | $18 - 3\lambda$ |
| $x_4$ | 0 | -3    | 0     | -2    | 1     | $-6+3\lambda$   |
| $x_2$ | 0 | 1     | 1     | 1     | 0     | $6-\lambda$     |

- The current basis is no longer feasible for any  $\lambda > 6$
- Move the a new basis:  $x_2$  leaves the basis
- Since the row of  $x_2$  is nonnegative, we have dual unboundedness at this point
- Consequently, for any  $\lambda > 6$  the primal becomes infeasible

 The objective function value is piecewise linear and concave

