Simplex: Starting Solution and Analysis

- Finding an initial basic feasible solution: the Artificial Variable technique
- Sensitivity analysis: the effect of changing the objective function
- Parametric analysis: perturbation of the Right-Hand-Side

Recall: The Simplex Tableau

- Let \boldsymbol{A} be an $m \times n$ matrix with $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{A}, \boldsymbol{b})=m$, \boldsymbol{b} be a column m-vector, \boldsymbol{x} be a column n-vector, and \boldsymbol{c}^{T} be a row n-vector, and consider the linear program

$$
\begin{array}{rc}
z=\max & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

- Let \boldsymbol{B} be a primal feasible basis
- The simplex tableau

	\boldsymbol{x}_{B}		\boldsymbol{x}_{N}	RHS	
z	1	0	$\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}$	$\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{b}$	row 0
\boldsymbol{x}_{B}	0	\boldsymbol{I}_{m}	$B^{-1} N$	$B^{-1} b$	rows 1..m

Recall: The Simplex Tableau

- Optimality condition: $\forall j \in N: z_{j} \geq 0$
- x_{k} enters the basis, where $k=\operatorname{argmin} z_{j}$ $j \in N$
- Unbounded if no positive component in column $k: \boldsymbol{y}_{k} \leq 0$
- $x_{B_{r}}$ leaves the basis: $r=\underset{i \in\{1, \ldots, m\}}{\operatorname{argmin}}\left\{\frac{\bar{b}_{i}}{y_{i k}}: y_{i k}>0\right\}$

| | z | $x_{B_{1}} \ldots$ | $x_{B_{r}} \ldots$ | $x_{B_{m}}$ | \ldots | $x_{N_{j}} \ldots$ | $x_{N_{k}} \ldots$ | RHS | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| z | 1 | 0 | \ldots | 0 | \ldots | 0 | \ldots | z_{j} | \ldots | z_{k} | \ldots | z_{0} |
| $x_{B_{1}}$ | 0 | 1 | \ldots | 0 | \ldots | 0 | \ldots | $y_{1 j}$ | \ldots | $y_{1 k}$ | \ldots | \bar{b}_{1} |
| \vdots | \vdots | \vdots | | \vdots |
| $x_{B_{r}}$ | 0 | 0 | \ldots | 1 | \ldots | 0 | \ldots | $y_{r j}$ | \ldots | $y_{r k}$ | \ldots | \bar{b}_{r} |
| \vdots | \vdots | \vdots | | \vdots |
| $x_{B_{m}}$ | 0 | 0 | \ldots | 0 | \ldots | 1 | \ldots | $y_{m j}$ | \ldots | $y_{m k}$ | \ldots | \bar{b}_{m} |

Recall: The Simplex Tableau

- We need an initial basic feasible solution to start the simplex
- In canonical form an initial basis is easy to find
- Maximization problem: $\max \left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$
- Into standard form: $\max \left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}+\boldsymbol{I} \boldsymbol{x}_{s}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$
- If $\boldsymbol{b} \geq \mathbf{0}$ then the slack variables constitute a primal feasible initial basis: primal simplex
- For a minimization problem in canonical form:

$$
\min \left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}
$$

- Dual feasible initial basis on the columns of the slacks if $\boldsymbol{c}^{T} \geq \mathbf{0}^{T}$: dual simplex
- If neither case occurs then the simplex cannot be started: need a generic way for finding initial basic feasible solutions

Starting the Simplex Method

- Find an initial basic feasible solution for the linear program given in standard form:

$$
\begin{array}{rc}
z=\max & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

where \boldsymbol{A} is $m \times n$ with $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{A}, \boldsymbol{b})=m, \boldsymbol{b}$ is a column m, \boldsymbol{x} a column n, and \boldsymbol{c}^{T} is a row n-vector

- Suppose furthermore that $\boldsymbol{b} \geq \mathbf{0}$ (if there is row i with $b_{i}<0$, then invert the row to get $-b_{i}>0$)
- If some columns of \boldsymbol{A} form an identity matrix, choose these columns as basis
- Write the simplex tableau and eliminate reduced costs corresponding to the basis using elementary row operations

The Artificial Variable Technique

- Suppose that no trivial initial basis could be obtained this way
- Introduce \boldsymbol{x}_{a} artificial variables and consider the modified linear program:

$$
\begin{array}{cc}
z=\min & \mathbf{1}^{T} \boldsymbol{x}_{\boldsymbol{a}} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}+\boldsymbol{x}_{\boldsymbol{a}}=\boldsymbol{b} \\
& \boldsymbol{x}, \boldsymbol{x}_{\boldsymbol{a}} \geq \mathbf{0}
\end{array}
$$

where 1^{T} is a row vector (of proper size) with all components set to 1

- There is a trivial initial basis for the modified problem
- Since the columns of $\boldsymbol{x}_{\boldsymbol{a}}$ form an identity matrix, we have a feasible initial basis on $\boldsymbol{x}_{a}: \boldsymbol{B}=\boldsymbol{I}$ and $\boldsymbol{B}^{-1} \boldsymbol{b}=\boldsymbol{b} \geq \mathbf{0}$ by assumption

The Artificial Variable Technique

- Solve the modified simplex from the initial basis defined by the artificial variables
- The optimum is $z_{0}=1^{T} \boldsymbol{x}_{\boldsymbol{a}}$ (the sum of the artificial variables in the solution)
- Thoerem: if $z_{0}>0$ then the original linear program is infeasible
- Proof: suppose that $z_{0}>0$ but the original linear program is feasible so there is $\boldsymbol{x}_{0}: ~ \boldsymbol{A} \boldsymbol{x}_{0}=\boldsymbol{b}$
- Then, $\boldsymbol{x}_{\boldsymbol{a}}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{\mathbf{0}}=\mathbf{0}$ and so $\mathbf{1}^{T} \boldsymbol{x}_{\boldsymbol{a}}=0<z_{0}$, which contradicts the assumption that z_{0} is optimal
- If, on the other hand, $z_{0}=0$, then $\boldsymbol{x}_{\boldsymbol{a}}=\mathbf{0}$
- In this case the original linear program is feasible
- Solve it from the resultant basis

The Two-Phase Simplex Method

- Phase One: find an initial basis
- Solve the modified linear program augmented with the artificial variables $\boldsymbol{x}_{\boldsymbol{a}}$

$$
\begin{array}{rc}
z=\max & -\mathbf{1}^{T} \boldsymbol{x}_{\boldsymbol{a}} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}+\boldsymbol{x}_{\boldsymbol{a}}=\boldsymbol{b} \\
& \boldsymbol{x}, \boldsymbol{x}_{\boldsymbol{a}} \geq \mathbf{0}
\end{array}
$$

- If $\boldsymbol{x}_{\boldsymbol{a}} \neq \mathbf{0}$ then the linear program is infeasible
- Otherwise, $\boldsymbol{x}_{a}=\mathbf{0}$ and suppose that all artificial variables have left the basis
- If not, the remaining artificial variables must be "pivoted" out from the basis manually, we do not discuss this here
- Phase Two: remove the artificial variables, restore the original objective function and run the simplex from the current basis

The Two-Phase Simplex: Example

- Solve the linear program using the Two-Phase Simplex

$$
\begin{aligned}
\min -3 x_{1} & +4 x_{2} \\
\text { s.t. } & x_{1} \\
2 x_{2} & \leq 4 \\
2 x_{1} & \geq 3 x_{2} \\
x_{1}, & x_{2} \geq 18
\end{aligned}
$$

- Convert to maximization and bring to standard form by introducing slack variables (take note of the " \geq " type of constraints and that eventually we need $b \geq 0$!)

| \max | $3 x_{1}$ | $-4 x_{2}$ | | | |
| ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| s.t. | x_{1} | $+x_{2}+x_{3}$ | | | |
| $2 x_{1}$ | $+3 x_{2}$ | | - | x_{4} | $=18$ |
| | x_{1}, | x_{2}, | x_{3}, | x_{4} | ≥ 0 |

The Two-Phase Simplex: Example

- No trivial primal or dual feasible basis
- Introduce artificial variables: it is enough add an artificial variable x_{5} to the second row
- This, together with the slack variable x_{3}, will provide a proper initial (identity) basis
- Solve the below linear program as the first phase:

max								x_{5}		
s.t.	x_{1}	$+$	x_{2}	$+$	x_{3}				$=$	4
	$2 x_{1}$	+	$3 x_{2}$			x_{4}	+	x_{5}	$=$	18
	x_{1},		x_{2},		x_{3},	x_{4},		x_{5}	\geq	0

- Note that we have converted the objective to maximization: will need to invert the resultant objective value!

The Two-Phase Simplex: Example

- Initial basis: $\boldsymbol{B}=\left[\begin{array}{ll}\boldsymbol{a}_{\mathbf{3}} & \boldsymbol{a}_{\mathbf{5}}\end{array}\right], \boldsymbol{c}_{\boldsymbol{B}}{ }^{T}=\left[\begin{array}{ll}0 & -1\end{array}\right], \boldsymbol{c}_{\boldsymbol{N}}{ }^{T}=\mathbf{0}$
- Not a valid simplex tableau yet: there is a nonzero element in the objective row for the basic variable x_{5}
- "pivot": subtract the row of x_{5} from row 0

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	0	0	0	0	1	0
x_{3}	0	1	1	1	0	0	4
x_{5}	0	2	3	0	-1	1	18

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	-2	-3	0	1	0	-18
x_{3}	0	1	1	1	0	0	4
x_{5}	0	2	3	0	-1	1	18

The Two-Phase Simplex: Example

- We get an optimal tableau after the pivot, with optimal objective function value -6 (do not forget to invert this!)

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	0	3	1	0	-6
x_{2}	1	1	1	0	0	4
x_{5}	-1	0	-3	-1	1	6

- Since $\min x_{5}=6$, the artificial variable could not be eliminated
- The original linear program is infeasible

The Two-Phase Simplex: Example

- Consider the linear program
- Invert the first two constraints so that $\boldsymbol{b} \geq 0$ holds
- Add an artificial variable to the first two rows (will use the slack variable for the third row)

max					$-x_{6}$	$-x_{7}$	
s.t.	x_{1}	$+x_{2}$	$-x_{3}$		$+x_{6}$		$=$
	$-x_{1}$	$+x_{2}$		$-x_{4}$		$+x_{7}$	$=$
		x_{2}					$=$
	x_{1},	x_{2},	x_{3},	x_{4},	x_{6},	x_{7}	\geq

The Two-Phase Simplex: Example

- Still need to take care of the objective row: 2 pivots

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	RHS
z	1	0	0	0	0	0	1	1	0
x_{6}	0	1	1	-1	0	0	1	0	2
x_{7}	0	-1	1	0	-1	0	0	1	1
x_{5}	0	0	1	0	0	1	0	0	3

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	RHS
z	1	0	-2	1	1	0	0	0	-3
x_{6}	0	1	1	-1	0	0	1	0	2
x_{7}	0	-1	1	0	-1	0	0	1	1
x_{5}	0	0	1	0	0	1	0	0	3

The Two-Phase Simplex: Example

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	RHS
z	-2	0	1	-1	0	0	2	-1
x_{6}	2	0	-1	1	0	1	-1	1
x_{2}	-1	1	0	-1	0	0	1	1
x_{5}	1	0	0	1	1	0	-1	2

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}	RHS
z	0	0	0	0	0	1	1	0
x_{1}	1	0	$-\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$	$-\frac{1}{2}$	$\frac{1}{2}$
x_{2}	0	1	$-\frac{1}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{3}{2}$
x_{5}	0	0	$\frac{1}{2}$	$\frac{1}{2}$	1	$-\frac{1}{2}$	$-\frac{1}{2}$	$\frac{3}{2}$

The Two-Phase Simplex: Example

- Optimal tableau: end of Phase One
- the objective function value is 0
- the artificial variables have left the basis
- so $x_{6}=x_{7}=0$ can be removed
- The original objective: $\min x_{1}-2 x_{2}=-\max -x_{1}+2 x_{2}$
- Signs change when written into the simplex tableau!
- Again not a valid tableau: 2 pivots

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	-2	0	0	0	0
x_{1}	$\boxed{1}$	0	$-\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$
x_{2}	0	1	$-\frac{1}{2}$	$-\frac{1}{2}$	0	$\frac{3}{2}$
x_{5}	0	0	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{3}{2}$

The Two-Phase Simplex: Example

- Phase Two:

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	0	0	$-\frac{1}{2}$	$-\frac{3}{2}$	0	$\frac{5}{2}$
x_{1}	1	0	$-\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{2}$
x_{2}	0	1	$-\frac{1}{2}$	$-\frac{1}{2}$	0	$\frac{3}{2}$
x_{5}	0	0	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{3}{2}$

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	3	0	-2	0	0	4
x_{4}	2	0	-1	1	0	1
x_{2}	1	1	-1	0	0	2
x_{5}	-1	0	1	0	1	1

The Two-Phase Simplex: Example

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	0	0	0	2	6
x_{4}	1	0	0	1	1	2
x_{2}	0	1	0	0	1	3
x_{3}	-1	0	1	0	1	1

- In Phase One, we have moved into an extreme point of the feasible region through the points

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \rightarrow\left[\begin{array}{l}
0 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{c}
\frac{1}{2} \\
\frac{3}{2}
\end{array}\right]
$$

- In Phase Two we have solved the problem from this point

Sensitivity Analysis

- Linear programs are often used to model real problems whose parameters are uncertain or subject to measurement errors or noise
- In a Resource Allocation problem, for instance, the estimated prices might be uncertain, capacities might be expanded by investing into new equipment, etc.
- Question: how does the optimal solution of a linear program $\max \left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$ depend on the perturbation of the input parameters?
- here we discuss only the case when the objective function coefficients \boldsymbol{c}^{T} change
- sensitivity analysis goes similarly for the cases when the RHS vector \boldsymbol{b} or the constraint matrix \boldsymbol{A} change
- The idea is that we do not want to re-optimize the changed linear program from scratch

Changing the Objective Function

- Let \boldsymbol{B} be an optimal basis for the linear program $\max \left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$
- We characterize the change in the optimal solution x and the optimal objective function value when the k-th objective function coefficient c_{k} is changed to c_{k}^{\prime}
- The simplex tableau of the original linear program in the basis \boldsymbol{B}

	$z \quad x_{B}$		\boldsymbol{x}_{N}	RHS	row 0
z	1	0	$\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}$	$\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{b}$	
\boldsymbol{x}_{B}	0	\boldsymbol{I}_{m}	$B^{-1} N$	$\boldsymbol{B}^{-1} b$	row 1...m

- \boldsymbol{B} is (primal) feasible if $\boldsymbol{B}^{-1} \boldsymbol{b} \geq \mathbf{0}$
- \boldsymbol{B} is (primal) optimal if $\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T} \geq \mathbf{0}$

Changing the Objective Function

1.) The changed objective coefficient c_{k} belongs to a nonbasic variable $x_{k}: k \in N$

$$
\boldsymbol{c}_{\boldsymbol{N}}^{T} \rightarrow\left(\boldsymbol{c}_{\boldsymbol{N}}^{\prime}\right)^{T}=\boldsymbol{c}_{\boldsymbol{N}}+\left(c_{k}^{\prime}-c_{k}\right) \boldsymbol{e}_{\boldsymbol{k}}^{T}
$$

- In this case no change occurs in rows $1, \ldots, m$ of the simplex tableau, only the objective row (row 0) changes

$$
\begin{aligned}
\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}^{T} & \rightarrow \boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\left(\boldsymbol{c}_{\boldsymbol{N}}\right)^{T}= \\
& \boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}^{T}-\left(c_{k}^{\prime}-c_{k}\right) \boldsymbol{e}_{\boldsymbol{k}}^{T}
\end{aligned}
$$

- In fact, only the reduced cost z_{k} for the nonbasic variable x_{k} changes:

$$
z_{k} \rightarrow z_{k}^{\prime}=z_{k}-\left(c_{k}^{\prime}-c_{k}\right)
$$

Changing the Objective Function

- If $z_{k}-\left(c_{k}^{\prime}-c_{k}\right) \geq 0$ then basis \boldsymbol{B} remains optimal
- For instance, if we reduce the cost of a nonbasic variable the current basis is guaranteed to remain optimal
- The objective function value does not change (x_{k} remains at 0)
- If, on the other hand, $z_{k}-\left(c_{k}^{\prime}-c_{k}\right)<0$, then basis \boldsymbol{B} is no longer optimal according to the changed objective
- Run the primal simplex from basis \boldsymbol{B} to obtain the new optimum
- Using this method we do not need to re-run the Two-Phase simplex from scratch, rather the simplex method continues from the optimal basis of the original problem
- This is the idea in sensitivity analysis

Changing the Objective Function

2.) The changed objective coefficient c_{k} belongs to a basic variable $x_{k}: k \in B$

- Let x_{k} be the t-th basic variable: $x_{k} \equiv x_{B_{t}}$

$$
\boldsymbol{c}_{\boldsymbol{B}}^{T} \rightarrow\left(\boldsymbol{c}_{\boldsymbol{B}}^{\prime}\right)^{T}=\boldsymbol{c}_{\boldsymbol{B}}+\left(c_{B_{t}}^{\prime}-c_{B_{t}}\right) \boldsymbol{e}_{\boldsymbol{t}}^{T}
$$

- Again, only the objective row changes in the tableau
- Basic variables (including $x_{B_{t}}$) still have zero reduced cost
- The reduced costs for nonbasic variables change, the j-th:

$$
\begin{aligned}
& z_{j}^{\prime}=\left(\boldsymbol{c}_{\boldsymbol{B}}^{\prime}\right)^{T} \boldsymbol{B}^{-1} \boldsymbol{a}_{j}-c_{j}=\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{a}_{j}-c_{j}+ \\
& \quad\left[\begin{array}{llll}
0 & 0 \ldots c_{B_{t}}^{\prime}-c_{B_{t}} \ldots & 0
\end{array}\right] \boldsymbol{y}_{\boldsymbol{j}}=z_{j}+\left(c_{B_{t}}^{\prime}-c_{B_{t}}\right) y_{t j}
\end{aligned}
$$

- Add $c_{B_{t}}^{\prime}-c_{B_{t}}$ times the row of $x_{B_{t}}$ to row 0
- Then zero out the reduced cost for $x_{B_{t}}$

Changing the Objective: Example

- Solve the below linear program:

$$
\begin{array}{cccc}
\max & 2 x_{1}-x_{2}+x_{3} \\
\mathrm{s.t.} & x_{1}+x_{2}+x_{3} & \leq 6 \\
& -x_{1}+2 x_{2} & & \leq 4 \\
& x_{1}, & x_{2}, & x_{3}
\end{array}
$$

- The slack variables form a feasible initial basis

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	-2	1	-1	0	0	0
x_{4}	0	1	1	1	1	0	6
x_{5}	0	-1	2	0	0	1	4

Changing the Objective: Example

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	0	3	1	2	0	12
x_{1}	0	1	1	1	1	0	6
x_{5}	0	0	3	1	1	1	10

- Optimal tableau, with basic variables $B=\{1,5\}$
- Reduce $c_{2}=-1$ to $c_{2}^{\prime}=-3$: since x_{2} is not basic only the reduced cost z_{2} changes in row 0 :
$z_{2}^{\prime}=z_{2}-\left(c_{2}^{\prime}-c_{2}\right)=3-(-3-(-1))=5$

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	0	5	1	2	0	12
\ldots							

- The tableau remains optimal, the objective function value does not change

Changing the Objective: Example

- If now the objective coefficient for x_{2} is changed to $c_{2}^{\prime}=3$, then $z_{2}^{\prime}=-1$
- The resultant tableau is no longer optimal: primal simplex

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	0	-1	1	2	0	12
x_{1}	0	1	1	1	1	0	6
x_{5}	0	0	3	1	1	1	10

- The optimal tableau

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	0	0	$\frac{4}{3}$	$\frac{7}{3}$	$\frac{1}{3}$	$\frac{46}{3}$
x_{1}	0	1	0	$\frac{2}{3}$	$\frac{2}{3}$	$-\frac{1}{3}$	$\frac{8}{3}$
x_{2}	0	0	1	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{10}{3}$

Changing the Objective: Example

- Now change the cost for a basic variable, say, x_{1}, from $c_{1}=2$ to zero
- The optimal tableau of the original problem:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	0	3	1	2	0	12
x_{1}	0	1	1	1	1	0	6
x_{5}	0	0	3	1	1	1	10

- Add the first row to row 0 exactly $c_{1}^{\prime}-c_{1}=-2$ times (that is, subtract the double)

Changing the Objective: Example

- Performing the row operation, the objective value changes:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	-2	1	-1	0	0	0
x_{1}	0	1	1	1	1	0	6
x_{5}	0	0	3	1	1	1	10

- Since only the elements that belong to nonbasic variables need to be altered in the objective row, we simple set the reduced cost for x_{1} to zero

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	0	1	-1	0	0	0
x_{1}	0	1	1	1	1	0	6
x_{5}	0	0	3	1	1	1	10

Changing the Objective: Example

- The resultant tableau is not optimal:primal simplex
- The optimal tableau:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	1	2	0	1	0	6
x_{3}	0	1	1	1	1	0	6
x_{5}	0	-1	2	0	0	1	4

- Since the "profit" realized on x_{1} drops from 2 to zero, it is worth to reduce x_{1} to zero in the solution and rather increase x_{3} (substitute products/goods)
- Change in the RHS can be handled using duality
- Changing the RHS in the primal = changing the objective in the dual \Rightarrow perform sensitivity analysis on the dual

Parametric Analysis

- In sensitivity analysis we ask how the optimum depends on certain model parameters
- We change only a single parameter at a time
- In practice the question is often arises what happens if more than one parameters change according to some given perturbation function
- For instance, in the optimal product mix purchase prices might change simultaneously
- Parametric analysis
- we now discuss only the case when the RHS is perturbed along a given direction
- parametric analysis on the objective can again be traced back to parametric analysis on the RHS of the dual

Perturbation of the RHS

- Consider the linear program

$$
\begin{array}{rc}
z=\max & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

where \boldsymbol{A} is $m \times n$ with $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{A}, \boldsymbol{b})=m, \boldsymbol{b}$ is a column m, \boldsymbol{x} a column n, and \boldsymbol{c}^{T} is a row n-vector

- Perturb the RHS vector \boldsymbol{b} along a given direction \boldsymbol{b}^{\prime}, while leaving the rest of the problem parameters intact:

$$
\boldsymbol{b}+\lambda \boldsymbol{b}^{\prime}, \lambda \geq 0
$$

- Characterize the change in the optimal objective and in the optimal solution for $\lambda \geq 0$

Perturbation of the RHS

- Consider the simplex tableau for a basis \boldsymbol{B} that is optimal for the unchanged problem

	z	\boldsymbol{x}_{B}	\boldsymbol{x}_{N}	RHS	row 0 rows 1...m
z	1	0	$\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}$	$\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{b}$	
\boldsymbol{x}_{B}	0	\boldsymbol{I}_{m}	$B^{-1} N$	$\boldsymbol{B}^{-1} b$	

- Since the tableau us optimal: $\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T} \geq \mathbf{0}$
- This does not depend on \boldsymbol{b} so the tableau remains primal optimal for any λ
- The question is how long it remains primal feasible as well?
- Perturbing \boldsymbol{b} effects only the RHS column by $\boldsymbol{B}^{-1}\left(\boldsymbol{b}+\lambda \boldsymbol{b}^{\prime}\right)$ and the objective value by $\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1}\left(\boldsymbol{b}+\lambda \boldsymbol{b}^{\prime}\right)$
- The tableau remains primal feasible as long as the RHS is nonnegative: $\boldsymbol{B}^{-1}\left(\boldsymbol{b}+\lambda \boldsymbol{b}^{\prime}\right)=\boldsymbol{B}^{-1} \boldsymbol{b}+\lambda\left(\boldsymbol{B}^{-1} \boldsymbol{b}^{\prime}\right) \geq \mathbf{0}$

Perturbation of the RHS

- Let $S=\left\{i: \bar{b}_{i}^{\prime}<0\right\}$, where \bar{b}_{i}^{\prime} is the i-th component of $\bar{b}^{\prime}=\boldsymbol{B}^{-1} \boldsymbol{b}^{\prime}$
- If $S=\emptyset$ then $\boldsymbol{B}^{-1}\left(\boldsymbol{b}+\lambda \boldsymbol{b}^{\prime}\right) \geq \mathbf{0}$ for any $\lambda \geq 0$ and thus basis B remains optimal unconditionally
- Otherwise, find the row i for which $\bar{b}_{i}+\lambda \bar{b}_{i}^{\prime}$ first becomes negative:

$$
r=\underset{i \in S}{\operatorname{argmin}}\left(-\frac{\bar{b}_{i}}{\overline{\bar{b}_{i}^{\prime}}}\right), \quad \bar{\lambda}=\min _{i \in S}\left(-\frac{\bar{b}_{i}}{\bar{b}_{i}^{\prime}}\right)=-\frac{\bar{b}_{r}}{\bar{b}_{r}^{\prime}}
$$

- For any $0 \leq \lambda \leq \bar{\lambda}=\lambda_{1}$ basis \boldsymbol{B} is feasible and optimal
- Meanwhile, the objective function value and the variables:

$$
z(\lambda)=\boldsymbol{c}_{B}{ }^{T}\left(\overline{\boldsymbol{b}}+\lambda \overline{\boldsymbol{b}}^{\prime}\right), \quad \boldsymbol{x}(\lambda)=\left[\begin{array}{l}
\boldsymbol{x}_{B} \\
\boldsymbol{x}_{\boldsymbol{N}}
\end{array}\right]=\left[\begin{array}{c}
\overline{\boldsymbol{b}}+\lambda \overline{\boldsymbol{b}}^{\prime} \\
\mathbf{0}
\end{array}\right]
$$

Perturbation of the RHS

- On the other hand, for any $\lambda>\bar{\lambda}$ basis B is no longer primal feasible
- Dual simplex pivot on $x_{B_{r}}$
- If there is no blocking variable (i.e., when the row of $x_{B_{r}}$ is nonnegative), then the primal problem becomes infeasible (dual unbounded) for any $\lambda>\bar{\lambda}$
- Otherwise, we find the parameter $\bar{\lambda}=\lambda_{2}$ until which the tableau obtained remains primal feasible
- We carry on with this iteration until we get either
- $S=\emptyset$: in this case the current basis is optimal form any $\lambda>\bar{\lambda}$, or
- no blocking variable is found during the dual simplex pivot: the primal is infeasible for any $\lambda>\bar{\lambda}$

Perturbation of the RHS: Example

- Solve the below linear program, subject to the following perturbation of the RHS:

$$
\begin{array}{lrl}
\max & x_{1}+3 x_{2} & \\
\text { s.t. } & x_{1}+x_{2} & \leq 6-\lambda \\
& -x_{1}+2 x_{2} & \leq 6+\lambda \\
& x_{1}, & x_{2}
\end{array}
$$

- Easily, $\boldsymbol{b}=\left[\begin{array}{ll}6 & 6\end{array}\right]^{T}$ and $\boldsymbol{b}^{\prime}=\left[\begin{array}{ll}-1 & 1\end{array}\right]^{T}$
- Adding slacks x_{3} and x_{4} the optimal solution for $\lambda=0$:

	z	x_{1}	x_{2}	x_{3}	x_{4}	RHS
z	1	0	0	$\frac{5}{3}$	$\frac{2}{3}$	14
x_{1}	0	1	0	$\frac{2}{3}$	$-\frac{1}{3}$	2
x_{2}	0	0	1	$\frac{1}{3}$	$\frac{1}{3}$	4

Perturbation of the RHS: Example

- Question: how long the current basis $\boldsymbol{B}=\left[\begin{array}{rr}1 & 1 \\ -2 & 1\end{array}\right]$ remains optimal?
- Observe that the columns of the slack variables x_{3} and x_{4} in the original problem form an identity matrix
- Therefore the corresponding columns in the tableau specify precisely the inverse of \boldsymbol{B} :

$$
\overline{\boldsymbol{b}}^{\prime}=\boldsymbol{B}^{-1} \boldsymbol{b}^{\prime}=\left[\begin{array}{rr}
\frac{2}{3} & -\frac{1}{3} \\
\frac{1}{3} & \frac{1}{3}
\end{array}\right]\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0
\end{array}\right]
$$

- From this: $S=\{1\}, r=1$, and $\bar{\lambda}=-\frac{\bar{b}_{1}}{b_{1}^{\prime}}=-\frac{2}{-1}=2=\lambda_{1}$

Perturbation of the RHS: Example

- Consequently, for $\lambda \in[0,1]$ the optimal objective function value and the optimal solution:

$$
\begin{gathered}
z(\lambda)=\boldsymbol{c}_{\boldsymbol{B}}{ }^{T}\left(\overline{\boldsymbol{b}}+\lambda \overline{\boldsymbol{b}}^{\prime}\right)=\left[\begin{array}{ll}
1 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right]+\lambda\left[\begin{array}{ll}
1 & 3
\end{array}\right]\left[\begin{array}{r}
-1 \\
0
\end{array}\right]=14-\lambda \\
\boldsymbol{x}(\lambda)=\left[\begin{array}{l}
x_{1}(\lambda) \\
x_{2}(\lambda)
\end{array}\right]=\overline{\boldsymbol{b}}+\lambda \overline{\boldsymbol{b}}^{\prime}=\left[\begin{array}{l}
2 \\
4
\end{array}\right]+\lambda\left[\begin{array}{r}
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
2-\lambda \\
4
\end{array}\right]
\end{gathered}
$$

- For $\lambda>2$ we have $x_{1}<0$ in the current basis

	z	x_{1}	x_{2}	x_{3}	x_{4}	RHS
z	1	0	0	$\frac{5}{3}$	$\frac{2}{3}$	$14-\lambda$
x_{1}	0	1	0	$\frac{2}{3}$	$-\frac{1}{3}$	$2-\lambda$
x_{2}	0	0	1	$\frac{1}{3}$	$\frac{1}{3}$	4

Perturbation of the RHS: Example

- Choose $\lambda=2$ and perform a dul simplex pivot on the basic variable $x_{1}: x_{4}$ enters the basis

	z	x_{1}	x_{2}	x_{3}	x_{4}	RHS
z	1	2	0	3	0	12
x_{4}	0	-3	0	-2	1	0
x_{2}	0	1	1	1	0	4

- Now $\overline{\boldsymbol{b}}=\left[\begin{array}{c}\bar{b}_{4} \\ \bar{b}_{2}\end{array}\right]$ and we search for $\overline{\boldsymbol{b}}^{\prime}=\left[\begin{array}{c}\bar{b}_{4}^{\prime} \\ \bar{b}_{2}^{\prime}\end{array}\right]$ according to

$$
\boldsymbol{b}=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\left[\begin{array}{l}
6 \\
6
\end{array}\right] \text { and } \boldsymbol{b}^{\prime}=\left[\begin{array}{l}
b_{1}^{\prime} \\
b_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

- Multiplying by the matrix formed by column 3 and 4:

$$
\overline{\boldsymbol{b}}=\left[\begin{array}{rr}
-2 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
6 \\
6
\end{array}\right]=\left[\begin{array}{r}
-6 \\
6
\end{array}\right] \quad \overline{\boldsymbol{b}}^{\prime}=\left[\begin{array}{rr}
-2 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=\left[\begin{array}{r}
3 \\
-1
\end{array}\right]
$$

Perturbation of the RHS: Example

- Then, $S=\{2\}, r=2$, and $\bar{\lambda}=-\frac{\bar{b}_{2}}{\bar{b}_{2}^{\prime}}=-\frac{6}{-1}=6=\lambda_{2}$
- The objective function value and the solution for $\lambda \in[2,6]$:

$$
\begin{gathered}
z(\lambda)=\boldsymbol{c}_{\boldsymbol{B}}^{T}\left(\overline{\boldsymbol{b}}+\lambda \overline{\boldsymbol{b}}^{\prime}\right)=\left[\begin{array}{ll}
0 & 3
\end{array}\right]\left[\begin{array}{r}
-6 \\
6
\end{array}\right]+\lambda\left[\begin{array}{ll}
0 & 3
\end{array}\right]\left[\begin{array}{r}
3 \\
-1
\end{array}\right]=18-3 \lambda \\
x_{1}(\lambda) \equiv 0, \quad\left[\begin{array}{l}
x_{4}(\lambda) \\
x_{2}(\lambda)
\end{array}\right]=\overline{\boldsymbol{b}}+\lambda \overline{\boldsymbol{b}}^{\prime}=\left[\begin{array}{r}
-6 \\
6
\end{array}\right]+\lambda\left[\begin{array}{r}
3 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-6+3 \lambda \\
6-\lambda
\end{array}\right] \\
\begin{array}{|l|r|rrrr|r|}
\hline & z & x_{1} & x_{2} & x_{3} & x_{4} & \text { RHS } \\
\hline z & 1 & 2 & 0 & 3 & 0 & 18-3 \lambda \\
\hline x_{4} & 0 & -3 & 0 & -2 & 1 & -6+3 \lambda \\
x_{2} & 0 & 1 & 1 & 1 & 0 & 6-\lambda
\end{array}
\end{gathered}
$$

Perturbation of the RHS: Example

- The current basis is no longer feasible for any $\lambda>6$
- Move the a new basis: x_{2} leaves the basis
- Since the row of x_{2} is nonnegative, we have dual unboundedness at this point
- Consequently, for any $\lambda>6$ the primal becomes infeasible
- The objective function value is piecewise linear and concave

