The Dual Simplex Algorithm: A Summary

WARNING: this is just a summary of the material covered in the full slide-deck The Dual Simplex Algorithm that will orient you as per the topics covered there; you are required to learn the full version, not just this summary!

- Primal optimal (dual feasible) and primal feasible (dual optimal) bases
- The dual simplex tableau, dual optimality and the dual pivot rules
- Lots of exercises (in the slide-deck)

Recall: Linear Programming Duality

- Consider the (primal) maximization (linear) program:

$$
\begin{array}{rc}
z=\max & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

where \boldsymbol{A} is an $m \times n$ matrix, \boldsymbol{b} is a column m-vector, \boldsymbol{x} is a column n-vector, and \boldsymbol{c}^{T} is a row n-vector

- The dual is a standard form minimization problem, where \boldsymbol{w}^{T} is a row m-vector and \boldsymbol{v}^{T} is a row n-vector

$$
\begin{aligned}
& \min \boldsymbol{w}^{T} \boldsymbol{b} \\
& \text { s.t. } \boldsymbol{w}^{T} \boldsymbol{A}-\boldsymbol{v}^{T}=\boldsymbol{c}^{T} \\
& \qquad \boldsymbol{v}^{T} \geq \mathbf{0}, \boldsymbol{w}^{T} \text { arbitrary }
\end{aligned}
$$

Strong Duality: Another Approach

- Let \boldsymbol{B} be an any basis, let $\boldsymbol{x}=\left[\begin{array}{l}x_{B} \\ x_{N}\end{array}\right]=\left[\begin{array}{c}\boldsymbol{B}^{-1} \boldsymbol{b} \\ 0\end{array}\right]$ be the corresponding solution in the primal, and choose the dual variables as follows:

$$
\boldsymbol{w}^{T}=\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1}, \quad \boldsymbol{v}^{T}=[\underbrace{0}_{\text {basic }} \underbrace{\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}}_{\text {nonbasic }}]
$$

- We can show that this choice satisfies the dual conditions at least partially
- First, the objective function value of the dual identically equals the primal objective function value in the basis \boldsymbol{B} :

$$
\boldsymbol{w}^{T} \boldsymbol{b}=\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{b}=\boldsymbol{c}_{B}^{T} \boldsymbol{x}_{\boldsymbol{B}}=\boldsymbol{c}^{T} \boldsymbol{x}
$$

Strong Duality: Another Approach

- Second, the dual condition $\boldsymbol{w}^{T} \boldsymbol{A}-\boldsymbol{v}^{T}=\boldsymbol{c}^{T}$ also holds with identity:

$$
\left.\begin{array}{rl}
\boldsymbol{w}^{T} \boldsymbol{A}-\boldsymbol{v}^{T} & =\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1}[\boldsymbol{B} \\
\boldsymbol{B}
\end{array}\right]-\left[\begin{array}{ll}
\mathbf{0} & \left(\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}\right)
\end{array}\right] .
$$

- The only dual condition that may not hold is $\boldsymbol{v}^{T} \geq \mathbf{0}$
- It is easy to show that this condition holds if and only if B is an optimal basis
 component $\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}$ coincides with row 0 of the optimal simplex table
- But this must is non-negative for an optimal simplex table, so we have $\boldsymbol{v}^{T} \geq 0$ as required

The Dual Simplex Method

- We could say that the primal simplex method develops a basis that satisfies all the dual conditions simultaneously
- In each iteration it uniquely determines the value of the dual variables \boldsymbol{w}^{T} and \boldsymbol{v}^{T} so that
- the dual objective function value equals the primal objective function value: $\boldsymbol{w}^{T} \boldsymbol{b} \equiv \boldsymbol{c}^{T} \boldsymbol{x}$
- the dual condition $\boldsymbol{w}^{T} \boldsymbol{A}-\boldsymbol{v}^{T} \equiv \boldsymbol{c}^{T}$ identically holds
- In addition, at optimality it also satisfies the dual non-negativity conditions $\boldsymbol{v}^{T} \geq \mathbf{0}$
- The dual simplex method is the "dual" of the primal simplex: it converges through a series of "dual feasible" bases into a "dual optimal" (primal feasible) basis
o in every iteration it fulfills (D), (CS) and (P) partially
- optimality when (P) is fully satisfied

The Dual Simplex Method

- Consider the standard form linear program:

$$
\begin{array}{rc}
\max & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

where \boldsymbol{A} is an $m \times n$ matrix, \boldsymbol{b} is a column m-vector, \boldsymbol{x} is a column n-vector, and \boldsymbol{c}^{T} is a row n-vector

- Let \boldsymbol{B} be a basis that satisfies
- the primal optimality conditions (i.e., dual feasible)

$$
\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T} \geq \mathbf{0}
$$

- but is not primal feasible (i.e., not dual optimal)

$$
\boldsymbol{B}^{-1} \boldsymbol{b} \nsupseteq \mathbf{0}
$$

The Dual Simplex Method

- The simplex tableau for basis B
- (dual) feasible if $\forall j \in N: z_{j} \geq 0$
- (dual) optimal, if $\forall i \in\{1, \ldots, m\}: \bar{b}_{i} \geq 0$
- The goal is to obtain a simplex tableau that is dual optimal, maintaining dual feasibility along the way
- In terms of the tableau, this means that
- in row 0 we always have nonnegative elements (dual feasibility)
- but the RHS column may contain negative elements (not dual optimal)
- Eventually, the RHS column will also become nonnegative
- This is attained through a sequence of (dual) pivots
- For brevity, we merely state the method without proofs

The Dual Simplex Method

- Choose the leaving variable x_{r} first as the basic variable with the smallest value in the current basis:

$$
r=\underset{i \in\{1, \ldots, m\}}{\operatorname{argmin}} \bar{b}_{i}
$$

- Lemma: after the pivot we obtain a primal optimal basic feasible solution (row 0 is nonnegative), if the entering variable x_{k} is chosen according to:

$$
k=\underset{j \in N}{\operatorname{argmin}}\left\{-\frac{z_{j}}{y_{r j}}: y_{r j}<0\right\}
$$

- Lemma: if $\forall j \in N: y_{r j} \geq 0$, then the dual is unbounded and the primal is infeasible
- Pivot on row r and column k

The Dual Simplex Method: Example

- Consider the linear program

$$
\begin{array}{ccc}
\min & 2 x_{1}+3 x_{2}+4 x_{3} \\
\mathrm{s.t.} & x_{1}+2 x_{2}+x_{3} \geq 3 \\
& 2 x_{1}-x_{2}+3 x_{3} \geq 4 \\
& x_{1}, & x_{2}, \\
x_{3} \geq 0
\end{array}
$$

- Bringing to standard form and converting to maximization (note the eventual inversion!):

$$
\begin{array}{ccccccccc}
\max & -2 x_{1} & -3 x_{2}-4 x_{3} & & & \\
\mathrm{s.t.} & x_{1} & +2 x_{2}+x_{3} & -x_{4} & & =3 \\
& 2 x_{1} & - & x_{2} & +3 x_{3} & & - & x_{5} & =4 \\
& x_{1}, & & x_{2}, & & x_{3}, & x_{4}, & x_{5} & \geq 0
\end{array}
$$

- Cannot use the primal simplex since the initial basis formed by the slack variables is not (primal) feasible

The Dual Simplex Method: Example

- Let us use the dual simplex (after inverting the constraints):

$$
\begin{array}{ccccccc}
\max & -2 x_{1} & -3 x_{2} & -4 x_{3} \\
\text { s.t. } & -x_{1} & - & 2 x_{2} & - & & \\
3 \\
& -2 x_{1} & + & x_{2} & - & 3 x_{3} \\
& & & & & & \\
& x_{1}, & & x_{2}, & & x_{3}, & x_{4}, \\
x_{5} & = & x_{5} & \geq 0
\end{array}
$$

- We can do this since the slack variables for a primal optimal (dual feasible) initial basis

$$
\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}=\mathbf{0}-\left[\begin{array}{lll}
-2 & -3 & -4
\end{array}\right] \geq \mathbf{0}
$$

- Not dual optimal: $\boldsymbol{B}^{-1} \boldsymbol{b}=\boldsymbol{I}_{2}\left[\begin{array}{l}-3 \\ -4\end{array}\right]=\left[\begin{array}{l}-3 \\ -4\end{array}\right] \nsupseteq \mathbf{0}$

The Dual Simplex Method: Example

- The initial simplex tableau:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	2	3	4	0	0	0
x_{4}	0	-1	-2	-1	1	0	-3
x_{5}	0	-2	1	-3	0	1	-4

- The most negative basic variable leaves the basis: x_{5}
- The entering variable is x_{1} as $-\frac{z_{1}}{y_{51}}=\min \left\{-\frac{z_{j}}{y_{5 j}}: y_{5 j}<0\right\}$
- Divide the j-the element of row 0 with the j-th element of the r-th row if that is negative and invert, and take the minimum
- If we choose the leaving and entering variable this way, we get a dual feasible basis after the pivot

The Dual Simplex Method: Example

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	2	3	4	0	0	0
x_{4}	0	-1	-2	-1	1	0	-3
x_{1}	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	0	$-\frac{1}{2}$	2

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	2	3	4	0	0	0
x_{4}	0	0	$-\frac{5}{2}$	$\frac{1}{2}$	1	$-\frac{1}{2}$	-1
x_{1}	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	0	$-\frac{1}{2}$	2

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	0	4	1	0	1	-4
x_{4}	0	0	$-\frac{5}{2}$	$\frac{1}{2}$	1	$-\frac{1}{2}$	-1
x_{1}	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	0	$-\frac{1}{2}$	2

The Dual Simplex Method: Example

- The new basis is dual feasible (primal optimal) but still not dual optimal, as $x_{4}=-1<0$
- x_{4} leaves the basis and $x_{2}=\operatorname{argmin}\left\{-\frac{z_{j}}{y_{4 j}}: y_{4 j}<0\right\}$ enters

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	0	0	$\frac{9}{5}$	$\frac{8}{5}$	$\frac{1}{5}$	$-\frac{28}{5}$
x_{2}	0	1	$-\frac{1}{5}$	$-\frac{2}{5}$	$\frac{1}{5}$	$\frac{2}{5}$
x_{1}	1	0	$\frac{7}{5}$	$-\frac{1}{5}$	$-\frac{2}{5}$	$\frac{11}{5}$

- The resultant basis is both dual optimal and dual feasible
- The optimum for the maximization problem is $z=-\frac{28}{5}$, attained at the point $\boldsymbol{x}=\left[\begin{array}{ccc}\frac{11}{5} & \frac{2}{5} & 0\end{array}\right]^{T}$

The Dual Simplex Method: Example

- Observe that the objective function value for the maximization problem has decreased in each iteration

$$
\max -2 x_{1}-3 x_{2}-4 x_{3}: 0 \rightarrow-4 \rightarrow-\frac{28}{5}
$$

- Of course, this is because we have in fact solved the dual minimization problem $\min \left\{\boldsymbol{w}^{T} \boldsymbol{b}: \boldsymbol{w}^{T} \boldsymbol{A} \geq \boldsymbol{c}^{T}\right\}$
- Choosing $\boldsymbol{w}^{T}=\boldsymbol{c}_{\boldsymbol{B}} \boldsymbol{B}^{-1}$ the dual objective function $\boldsymbol{w}^{T} \boldsymbol{b}=\boldsymbol{c}_{\boldsymbol{B}} \boldsymbol{B}^{-1} \boldsymbol{b}$ can be read from the simplex tableau in each step (row zero, RHS column)

$$
\min \boldsymbol{w}^{T} \boldsymbol{b}: 0 \rightarrow-4 \rightarrow-\frac{28}{5}
$$

- Originally we had a minimization problem (invert!), whose optimum is thus $z=\frac{28}{5}$

