
The Dual Simplex Algorithm

• Primal optimal (dual feasible) and primal feasible (dual
optimal) bases

• The dual simplex tableau, dual optimality and the dual pivot
rules

• Classical applications of linear programming: the use of the
primal and the dual simplex methods, examples
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Recall: Linear Programming Duality

• Consider the (primal) linear program:

z = max c
T
x

s.t. Ax = b

x ≥ 0

where A is an m× n matrix, b is a column m-vector, x is a

column n-vector, and c
T is a row n-vector

• By the Karush-Kuhn-Tucker Conditions, x is optimal if and

only if there is (vT ,wT ) so that

Ax = b, x ≥ 0 (P)

c
T −w

T
A+ v

T = 0, v
T ≥ 0 (D)

v
T
x = 0 (CS)
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Recall: Linear Programming Duality

• Let x be a basic feasible solution and let B denote the
corresponding basis matrix

z xB xN RHS

z 1 0 cB
T
B

−1
N − cN

T
cB

T
B

−1
b 0. sor

xB 0 Im B
−1
N B

−1
b 1..m sorok

• Choose the dual variables as follows:

w
T = cB

T
B

−1, v
T = [ 0

︸ ︷︷ ︸
basic

cB
T
B

−1
N − cN

T

︸ ︷︷ ︸
nonbasic

]

• (P) holds since x is feasible

• (CS) holds identically since

v
T
x = 0xB + (cB

T
B

−1
N − cN

T )0 ≡ 0
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Recall: Linear Programming Duality

• One of the constraints of (D), namely c
T −w

T
A+ v

T = 0

also holds identically

• Separating to basic and nonbasic components:

c
T −w

T
A+ v

T = (cB
T , cN

T )−

w
T (B,N ) + (0, cB

T
B

−1
N − cN

T )

• Component-wise:

cB
T −w

T
B + 0 = cB

T − cB
T
B

−1
B ≡ 0 (basic)

cN
T −w

T
N + (cB

T
B

−1
N − cN

T ) =

−cB
T
B

−1
N + cB

T
B

−1
N ≡ 0 (nonbasic)

• The other part of (D), vT ≥ 0, only holds if B is optimal
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The Dual Simplex Method

• Correspondingly, the primal simplex method develops a
basis that satisfies the (P), (D), and (CS) conditions
simultaneously

• In each iteration it satisfies the primal conditions (P), the
complementary slackness conditions (CS), and the dual
conditions (D) partially

• We have optimality when (D) is fully satisfied

• The dual simplex method is the “dual” of the primal
simplex: it converges through a series of “dual feasible”
bases into a “dual optimal” (primal feasible) basis

◦ in every iteration it fulfills (D), (CS) and (P) partially

◦ optimality when (P) is fully satisfied

• Useful when it is easy to find a dual feasible (primal optimal)
initial basis

– p. 5



The Dual Simplex Method

• Consider the standard form linear program:

max c
T
x

s.t. Ax = b

x ≥ 0

where A is an m× n matrix, b is a column m-vector, x is a

column n-vector, and c
T is a row n-vector

• Let B be a basis that satisfies

◦ the primal optimality conditions (i.e., dual feasible)

cB
T
B

−1
N − cN

T ≥ 0

◦ but is not primal feasible (i.e., not dual optimal)

B
−1
b � 0
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The Dual Simplex Method

• The simplex tableau for basis B

◦ (dual) feasible if ∀j ∈ N : zj ≥ 0

◦ (dual) optimal, if ∀i ∈ {1, . . . ,m} : b̄i ≥ 0

• The goal is to obtain a simplex tableau that is dual optimal,
maintaining dual feasibility along the way

• In terms of the tableau, this means that

◦ in row 0 we always have nonnegative elements (dual
feasibility)

◦ but the RHS column may contain negative elements (not
dual optimal)

• Eventually, the RHS column will also become nonnegative

• This is attained through a sequence of (dual) pivots

• For brevity, we merely state the method without proofs
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The Dual Simplex Method

• Choose the leaving variable xr first as the basic variable
with the smallest value in the current basis:

r = argmin
i∈{1,...,m}

b̄i

• Lemma: after the pivot we obtain a primal optimal basic
feasible solution (row 0 is nonnegative), if the entering
variable xk is chosen according to:

k = argmin
j∈N

{

−
zj

yrj
: yrj < 0

}

• Lemma: if ∀j ∈ N : yrj ≥ 0, then the dual is unbounded

and the primal is infeasible

• Pivot on row r and column k
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The Dual Simplex Method: Example

• Consider the linear program

min 2x1 + 3x2 + 4x3

s.t. x1 + 2x2 + x3 ≥ 3
2x1 − x2 + 3x3 ≥ 4
x1, x2, x3 ≥ 0

• Bringing to standard form and converting to maximization
(note the eventual inversion!):

max −2x1 − 3x2 − 4x3

s.t. x1 + 2x2 + x3 − x4 = 3
2x1 − x2 + 3x3 − x5 = 4
x1, x2, x3, x4, x5 ≥ 0

• Cannot use the primal simplex since the initial basis formed
by the slack variables is not (primal) feasible
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The Dual Simplex Method: Example

• Let us use the dual simplex (after inverting the constraints):

max −2x1 − 3x2 − 4x3

s.t. −x1 − 2x2 − x3 + x4 = −3
−2x1 + x2 − 3x3 + x5 = −4
x1, x2, x3, x4, x5 ≥ 0

• We can do this since the slack variables for a primal optimal
(dual feasible) initial basis

cB
T
B

−1
N − cN

T = 0− [−2 − 3 − 4] ≥ 0

• Not dual optimal: B−1
b = I2

[
−3
−4

]

=

[
−3
−4

]

� 0
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The Dual Simplex Method: Example

• The initial simplex tableau:

z x1 x2 x3 x4 x5 RHS

z 1 2 3 4 0 0 0

x4 0 −1 −2 −1 1 0 −3

x5 0 −2 1 −3 0 1 −4

• The most negative basic variable leaves the basis: x5

• The entering variable is x1 as − z1
y51

= min{−
zj

y5j
: y5j < 0}

• Divide the j-the element of row 0 with the j-th element of
the r-th row if that is negative and invert, and take the
minimum

• If we choose the leaving and entering variable this way, we
get a dual feasible basis after the pivot
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The Dual Simplex Method: Example

z x1 x2 x3 x4 x5 RHS

z 1 2 3 4 0 0 0

x4 0 −1 −2 −1 1 0 −3

x1 0 1 −1

2

3

2
0 −1

2
2

z x1 x2 x3 x4 x5 RHS

z 1 2 3 4 0 0 0

x4 0 0 −5

2

1

2
1 −1

2
−1

x1 0 1 −1

2

3

2
0 −1

2
2

z x1 x2 x3 x4 x5 RHS

z 1 0 4 1 0 1 −4

x4 0 0 −5

2

1

2
1 −1

2
−1

x1 0 1 −1

2

3

2
0 −1

2
2
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The Dual Simplex Method

• After the pivot the RHS element of the pivot row is always
nonnegative, since first we divided the row of xr by yrk < 0
and so we invert all elements, this way b̄r < 0 as well

• If the basis is not dual degenerate (zk > 0), then after the
pivot the objective function value decreases

• In fact, the current basis satisfies the (primal) optimality
conditions but it lies outside the feasible region of the primal

• Making it feasible is possible only at the price of decreasing
the primal objective

• It is not the primal maximization problem that we are solving
now but rather the dual minimization problem

• We do not need to rewrite the problem into the dual to apply
the dual simplex method, it can run directly on the (primal)
simplex tableau
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The Dual Simplex Method: Example

• The new basis is dual feasible (primal optimal) but still not
dual optimal, as x4 = −1 < 0

• x4 leaves the basis and x2 = argmin{−
zj

y4j
: y4j < 0}

enters

x1 x2 x3 x4 x5 RHS

z 0 0 9

5

8

5

1

5
−28

5

x2 0 1 −1

5
−2

5

1

5

2

5

x1 1 0 7

5
−1

5
−2

5

11

5

• The resultant basis is both dual optimal and dual feasible

• The optimum for the maximization problem is z = −28

5
,

attained at the point x = [11
5

2

5
0]T
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The Dual Simplex Method: Example

• Observe that the objective function value for the
maximization problem has decreased in each iteration

max−2x1 − 3x2 − 4x3 : 0 → −4 → −28

5

• Of course, this is because we have in fact solved the dual

minimization problem min{wT
b : wT

A ≥ c
T}

• Choosing w
T = cBB

−1 the dual objective function

w
T
b = cBB

−1
b can be read from the simplex tableau in

each step (row zero, RHS column)

minwT
b : 0 → −4 → −28

5

• Originally we had a minimization problem (invert!), whose

optimum is thus z = 28

5
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The Dual Simplex Method: Example

• Solve the below linear program:

min 2x1 + 3x2 + 5x3 + 6x4

s.t. x1 + 2x2 + 3x3 + x4 ≥ 2
−2x1 + x2 − x3 + 3x4 ≤ −3
x1, x2, x3, x4 ≥ 0

• Standard form, as a maximization (note: invert!)

max −2x1 − 3x2 − 5x3 − 6x4

s.t. x1 + 2x2 + 3x3 + x4 − x5 = 2
−2x1 + x2 − x3 + 3x4 + x6 = −3
x1, x2, x3, x4, x5, x6 ≥ 0

• Multiplying the first constraint by (-1) we obtain a primal
optimal initial basis
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The Dual Simplex Method: Example

• In general, slack variables constitute a primal feasible basis

if b ≥ 0, and a dual feasible basis if cT ≤ 0

• We can use the dual simplex now

z x1 x2 x3 x4 x5 x6 RHS

z 1 2 3 5 6 0 0 0

x5 0 −1 −2 −3 −1 1 0 −2

x6 0 −2 1 −1 3 0 1 −3

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 4 4 9 0 1 −3

x5 0 0 −5

2
−5

2
−5

2
1 −1

2
−1

2

x1 0 1 −1

2

1

2
−3

2
0 −1

2

3

2
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The Dual Simplex Method: Example

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 0 0 5 8

5

1

5
−19

5

x2 0 0 1 1 1 −2

5

1

5

1

5

x1 0 1 0 1 −1 −1

5
−2

5

8

5

• The minimum is 19

5
, attained by the minimization problem at

the point x = [8
5

1

5
0 0]T

• The dual of the original minimization problem:

max 2w1 − 3w2

s.t. w1 − 2w2 ≤ 2
2w1 + w2 ≤ 3
3w1 − w2 ≤ 5
w1 + 3w2 ≤ 6
w1 ≥ 0

w2, ≤ 0
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The Dual Simplex Method: Example

• w2 is odd since w2 ≤ 0 (the simplex requires nonnegativity)

• Let w′
2
= −w2 ≥ 0

max 2w1 + 3w′
2

s.t. w1 + 2w′
2

≤ 2
2w1 − w′

2
≤ 3

3w1 + w′
2

≤ 5
w1 − 3w′

2
≤ 6

w1, w′
2

≥ 0

• The slack variables supply a primal feasible initial basis in
the dual, since the RHS is nonnegatove and all constraints
are of the type “≤”

• Solving by the primal simplex: the optimum is 19

5
and

w1 =
8

5
, w2 = −w′

2
= −1

5
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Optimal Employee Work Schedule

• At a railway station, the distribution of work is such that the
number of staff needed is

◦ 3 persons between 0 and 4 o’clock,

◦ 8 persons between 4 and 8 o’clock,

◦ 10 persons between 8 and 12 o’clock,

◦ 8 persons between 12 and 16 o’clock,

◦ 14 persons between 16 and 20 o’clock,

◦ 5 persons between 20 and 24 o’clock

• Shifts start every day at 0, 4, 8, 12, 16, and 20 o’clock and
keep 8 hours

• Task: obtain an optimal schedule that requires the smallest
staff (fewest persons during the day working in total)
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Optimal Employee Work Schedule

• Indicate the number of workers starting in each shift by x1,
x2, x3, x4, x5, and x6

• Then, the task is to minimize the objective function
x1 + x2 + x3 + x4 + x5 + x6

• From 0 until 4 o’clock, the 20-o’clock and 0-o-clock shifts
are in work, at least 3 persons

x1 + x6 ≥ 3

• From 4 until 8 o’clock at least 8 persons are needed

x1 + x2 ≥ 8

• Similarly for the rest of the shifts

• Of course, all variables are nonnegative
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Optimal Employee Work Schedule

• The linear program

min x1 + x2 + x3 + x4 + x5 + x6

s.t. x1 + x2 ≥ 8
x2 + x3 ≥ 10

x3 + x4 ≥ 8
x4 + x5 ≥ 14

x5 + x6 ≥ 5
x1 + x6 ≥ 3
x1, x2, x3, x4, x5, x6 ≥ 0

• Variables are continuous, even though we cannot schedule
employees partially

• Should pose this as an integer linear program, by requiring
variables to be integer-valued: NP-hard problem

• For now, we merely hope that what we obtain eventually will
be integer-valued
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Optimal Employee Work Schedule

• Introduce slack variables s1, s2, . . . to convert the
constraints xi + xj ≥ b to the form xi + xj − s = b, z ≥ 0

• Writing as a maximization problem (note to ourselves: invert
result at the end) and ignoring the column of z for now

x1 x2 x3 x4 x5 x6 s1 s2 s3 s4 s5 s6 RHS

z 1 1 1 1 1 1 0 0 0 0 0 0 0

s1 1 1 0 0 0 0 −1 0 0 0 0 0 8

s2 0 1 1 0 0 0 0 −1 0 0 0 0 10

s3 0 0 1 1 0 0 0 0 −1 0 0 0 8

s4 0 0 0 1 1 0 0 0 0 −1 0 0 14

s5 0 0 0 0 1 1 0 0 0 0 −1 0 5

s6 1 0 0 0 0 1 0 0 0 0 0 −1 3

– p. 23



Optimal Employee Work Schedule

• Slack variables form a trivial initial basis (it is worth inverting
all rows)

• Primal optimal basis but not primal feasible: use the dual
simplex!

• s4 leaves the basis and x4 enters

x1 x2 x3 x4 x5 x6 s1 s2 s3 s4 s5 s6 RHS

z 1 1 1 1 1 1 0 0 0 0 0 0 0

s1 −1 −1 0 0 0 0 1 0 0 0 0 0 −8

s2 0 −1 −1 0 0 0 0 1 0 0 0 0 −10

s3 0 0 −1 −1 0 0 0 0 1 0 0 0 −8

s4 0 0 0 −1 −1 0 0 0 0 1 0 0 −14

s5 0 0 0 0 −1 −1 0 0 0 0 1 0 −5

s6 −1 0 0 0 0 −1 0 0 0 0 0 1 −3
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Optimal Employee Work Schedule

x1 x2 x3 x4 x5 x6 s1 s2 s3 s4 s5 s6 RHS

z 1 1 1 0 0 1 0 0 0 1 0 0 −14

s1 −1 −1 0 0 0 0 1 0 0 0 0 0 −8

s2 0 −1 −1 0 0 0 0 1 0 0 0 0 −10

s3 0 0 −1 0 1 0 0 0 1 −1 0 0 6

x4 0 0 0 1 1 0 0 0 0 −1 0 0 14

s5 0 0 0 0 −1 −1 0 0 0 0 1 0 −5

s6 −1 0 0 0 0 −1 0 0 0 0 0 1 −3

• s2 leaves the basis and x2 enters
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Optimal Employee Work Schedule

x1 x2 x3 x4 x5 x6 s1 s2 s3 s4 s5 s6 RHS

z 1 0 0 0 0 1 0 1 0 1 0 0 −24

s1 −1 0 1 0 0 0 1 −1 0 0 0 0 2

x2 0 1 1 0 0 0 0 −1 0 0 0 0 10

s3 0 0 −1 0 1 0 0 0 1 −1 0 0 6

x4 0 0 0 1 1 0 0 0 0 −1 0 0 14

s5 0 0 0 0 −1 −1 0 0 0 0 1 0 −5

s6 −1 0 0 0 0 −1 0 0 0 0 0 1 −3

• s5 leaves, x5 enters

• Dual degenerate pivot
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Optimal Employee Work Schedule

x1 x2 x3 x4 x5 x6 s1 s2 s3 s4 s5 s6 RHS

z 1 0 0 0 0 1 0 1 0 1 0 0 −24

s1 −1 0 1 0 0 0 1 −1 0 0 0 0 2

x2 0 1 1 0 0 0 0 −1 0 0 0 0 10

s3 0 0 −1 0 0 −1 0 0 1 −1 1 0 1

x4 0 0 0 1 0 −1 0 0 0 −1 1 0 9

x5 0 0 0 0 1 1 0 0 0 0 −1 0 5

s6 −1 0 0 0 0 −1 0 0 0 0 0 1 −3

• s6 leaves, x1 enters
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Optimal Employee Work Schedule

x1 x2 x3 x4 x5 x6 s1 s2 s3 s4 s5 s6 RHS

z 0 0 0 0 0 0 0 1 0 1 0 1 −27

s1 0 0 1 0 0 1 1 −1 0 0 0 −1 5

x2 0 1 1 0 0 0 0 −1 0 0 0 0 10

s3 0 0 −1 0 0 −1 0 0 1 −1 1 0 1

x4 0 0 0 1 0 −1 0 0 0 −1 1 0 9

x5 0 0 0 0 1 1 0 0 0 0 −1 0 5

x1 1 0 0 0 0 1 0 0 0 0 0 −1 3

• Optimal tableau: primal optimal and now also primal feasible

• 27 persons employed in total: 3 in the 0 o’clock shift, 10 in
the 4 o’clock shift, 9 in the 12 o’clock shift, and 5 in the 16
o’clock shift, and no one works in the rest of the shifts

• Observe that there is surplus staff from 4 until 8 (s1 = 5)
and from 12 until 16 (s3 = 1)!
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Optimal Production Planning

• The four-month prognosis for an item in a store is as follows:

1st month 2nd month 3rd month 4th month

Business Plan [t] 5 6 8 6

Purchase cost [mUSD/t] 4 3 2 5

Storage capacity [t] 10 10 10 10

Storage costs [mUSD/t] 1.5 1.5 1.5 1.5

• At the beginning and end of the period the stock in the
storage is zero

• The stock changes uniformly during a month and the
storage cost per month is based on the average quantity in
stock

• Task: fulfill the business plan in each month, taking into
account the storage capacities, with the lowest purchase
and storage costs
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Optimal Production Planning

• Denote the quantity of the items purchased in each month
by x1, x2, x3, and x4 [tonnes]

• Denote the stock at the end of each month by r1, r2, and r3
[tonnes] (no stock at the end of the period)

• From the quantity purchased in the first month, 5 tonnes
must be sold according to the business plan and the rest
goes into stock

x1 = 5 + r1

• In the rest of the months, the stock at the beginning plus the
purchased quantity covers the monthly business plan and
the stock at the end of the month

r1 + x2 = 6 + r2

r2 + x3 = 8 + r3

r3 + x4 = 6
– p. 30



Optimal Production Planning

• As the stock changes uniformly during the month, the
average stock in each month is

r1

2
,

r1 + r2

2
,

r2 + r3

2
,

r3

2

• The storage cost for the entire period [million USD]:

1.5
(
r1

2
+

r1 + r2

2
+

r2 + r3

2
+

r3

2

)

= 1.5r1+1.5r2+1.5r3

• The purchase cost: 4x1 + 3x2 + 2x3 + 5x4 [million USD]

• Finally, the stock cannot exceed the storage capacity:

r1, r2, r3 ≤ 10

• Evidently, all variables are nonnegative
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Optimal Production Planning

• The linear program:

min 4x1 +3x2 +2x3 +5x4 +1.5r1 +1.5r2 +1.5r3
s.t. x1 −r1 = 5

x2 +r1 −r2 = 6
x3 +r2 −r3 = 8

x4 +r3 = 6
r1 ≤ 10

r2 ≤ 10
r3 ≤ 10

x1, x2, x3, x4, r1, r2, r3 ≥ 0

• The objective function in maximization form:

max −4x1 −3x2 −2x3 −5x4 −1.5r1 −1.5r2 −1.5r3

• Must be inverted when written into the simplex tableau!
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Optimal Production Planning

• We still need to find an initial basis

◦ the slacks for the storage constraints (s1, s2, s3) are OK

◦ x1, x2, x3, and x4 would also work, but we first need to
zero out the corresponding objective function
coefficients to obtain a valid simplex tableau

z x1 x2 x3 x4 r1 r2 r3 s1 s2 s3 RHS

z 1 4 3 2 5 3

2

3

2

3

2
0 0 0 0

x1 0 1 0 0 0 −1 0 0 0 0 0 5

x2 0 0 1 0 0 1 −1 0 0 0 0 6

x3 0 0 0 1 0 0 1 −1 0 0 0 8

x4 0 0 0 0 1 0 0 1 0 0 0 6

s1 0 0 0 0 0 1 0 0 1 0 0 10

s2 0 0 0 0 0 0 1 0 0 1 0 10

s3 0 0 0 0 0 0 0 1 0 0 1 10
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Optimal Production Planning

• Subtract four times the row of x1 from row 0, this way
eliminating the reduced cost for x1:

z x1 x2 x3 x4 r1 r2 r3 s1 s2 s3 RHS

z 1 0 3 2 5 11

2

3

2

3

2
0 0 0 −20

x1 0 1 0 0 0 −1 0 0 0 0 0 5

x2 0 0 1 0 0 1 −1 0 0 0 0 6

x3 0 0 0 1 0 0 1 −1 0 0 0 8

x4 0 0 0 0 1 0 0 1 0 0 0 6

s1 0 0 0 0 0 1 0 0 1 0 0 10

s2 0 0 0 0 0 0 1 0 0 1 0 10

s3 0 0 0 0 0 0 0 1 0 0 1 10

• Note how the objective function value has changed!
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Optimal Production Planning

• Similarly, cancel the reduced cost for x2, x3, and x4 by
elementary row operations

z x1 x2 x3 x4 r1 r2 r3 s1 s2 s3 RHS

z 1 0 0 0 0 5

2

5

2
−3

2
0 0 0 −84

x1 0 1 0 0 0 −1 0 0 0 0 0 5

x2 0 0 1 0 0 1 −1 0 0 0 0 6

x3 0 0 0 1 0 0 1 −1 0 0 0 8

x4 0 0 0 0 1 0 0 1 0 0 0 6

s1 0 0 0 0 0 1 0 0 1 0 0 10

s2 0 0 0 0 0 0 1 0 0 1 0 10

s3 0 0 0 0 0 0 0 1 0 0 1 10

• Primal feasible tableau, solve with the primal simplex

• Note the nonzero objective function in the initial tableau!
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Optimal Production Planning

z x1 x2 x3 x4 r1 r2 r3 s1 s2 s3 RHS

z 1 0 0 0 3

2

5

2

5

2
0 0 0 0 −75

x1 0 1 0 0 0 −1 0 0 0 0 0 5

x2 0 0 1 0 0 1 −1 0 0 0 0 6

x3 0 0 0 1 1 0 1 0 0 0 0 14

r3 0 0 0 0 1 0 0 1 0 0 0 6

s1 0 0 0 0 0 1 0 0 1 0 0 10

s2 0 0 0 0 0 0 1 0 0 1 0 10

s3 0 0 0 0 −1 0 0 0 0 0 1 4

• The quantity of items to be purchased in each month is 5, 6,
and 14 tonnes, no purchase in the last month

• Stock is created only in the 3rd month, 6 tonnes

• The total cost is 75 million USD
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Network Routing

• A subscriber wishes to transfer 2-2 units of traffic between
points A-B and C-D in a telecommunications network

• The network service provider establishes a path P1

between A-B and paths P2 and P3 between C-D

• The A-B link capacity is 3 units, and 2 units for C-D

• Pricing is progressive: the first 1 unit of traffic through a link
costs 1 unit, every additional unit costs 3 units

• Task: find the minimal cost assignment of traffic demands
to paths
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Network Routing

• Denote the quantity of traffic routed to paths P1, P2, and P3

by f1, f2, and f3

• The demand is 2 units of flow between A-B and 2 units
between C-D

f1 ≥ 2, f2 + f3 ≥ 2

• Denote the total load at each link by l1 and l2, these must
satisfy the capacity constraints

l1 = f1 + f2 ≤ 3, l2 = f3 ≤ 2

• Let the price of traffic routed to each link be c1 and c2

ci =

{
li if li ≤ 1
1 + 3(li − 1) if li > 1

i ∈ {1, 2}

• Task is to minimize c1 + c2: nonlinear objective function!
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Network Routing

• Trick: linearize the objective function

• Piecewise linear
objective function

• Approximate piecewise

min ci

ci ≥ li

ci ≥ 3li − 2

• The smallest possible
cost by minimization

• The piecewise objective
is convex: we can use lin-
ear programming
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Network Routing

• The linear program:

min c1 + c2
s.t. f1 + f2 ≤ 3

f3 ≤ 2

f1 + f2 − c1 ≤ 0

3f1 + 3f2 − c1 ≤ 2

f3 − c2 ≤ 0

3f3 − c2 ≤ 2

f1 ≥ 2

f2 + f3 ≥ 2

f1, f2, f3, c1, c2, ≥ 0
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Network Routing

• Standard form: slack variables constitute an initial basis

• Converting to maximization and inverting the last two
constraints we get a dual feasible initial basis

• Use the dual simplex!

z f1 f2 f3 c1 c2 s1 s2 s3 s4 s5 s6 s7 s8 RHS

z 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0

s1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 3

s2 0 0 0 1 0 0 0 1 0 0 0 0 0 0 2

s3 0 1 1 0 −1 0 0 0 1 0 0 0 0 0 0

s4 0 3 3 0 −1 0 0 0 0 1 0 0 0 0 2

s5 0 0 0 1 0 −1 0 0 0 0 1 0 0 0 0

s6 0 0 0 3 0 −1 0 0 0 0 0 1 0 0 2

s7 0 −1 0 0 0 0 0 0 0 0 0 0 1 0 −2

s8 0 0 −1 −1 0 0 0 0 0 0 0 0 0 1 −2
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• The optimal tableau:

z f1 f2 f3 c1 c2 s1 s2 s3 s4 s5 s6 s7 s8 RHS

z 1 0 0 0 0 0 0 0 0 1 0 1 3 3 −8

s1 0 0 0 0 0 0 1 0 0 0 − 1

2

1

2
1 1 0

s2 0 0 0 0 0 0 0 1 0 0
1

2
− 1

2
0 0 1

s3 0 0 0 0 0 0 0 0 1 −1 1 −1 −2 −2 4

c1 0 0 0 0 1 0 0 0 0 −1
3

2
− 3

2
−3 −3 7

c2 0 0 0 0 0 1 0 0 0 0 − 3

2

1

2
0 0 1

f2 0 0 1 0 0 0 0 0 0 0
1

2
− 1

2
0 −1 1

f1 0 1 0 0 0 0 0 0 0 0 0 0 −1 0 2

f3 0 0 0 1 0 0 0 0 0 0 − 1

2

1

2
0 0 1

• Route 2 unit to path P1 and route 1 unit to each of the paths
P2 and P3

• The total cost is 8 units
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