The Dual Simplex Algorithm

- Primal optimal (dual feasible) and primal feasible (dual optimal) bases
- The dual simplex tableau, dual optimality and the dual pivot rules
- Classical applications of linear programming: the use of the primal and the dual simplex methods, examples

Recall: Linear Programming Duality

• Consider the (primal) linear program:

where A is an $m \times n$ matrix, b is a column m-vector, x is a column n-vector, and c^T is a row n-vector

• By the Karush-Kuhn-Tucker Conditions, x is optimal if and only if there is (v^T, w^T) so that

$$oldsymbol{A}oldsymbol{x}=oldsymbol{b}, \qquad oldsymbol{x}\geq oldsymbol{0}$$
 (P)

$$\boldsymbol{c}^T - \boldsymbol{w}^T \boldsymbol{A} + \boldsymbol{v}^T = \boldsymbol{0}, \qquad \boldsymbol{v}^T \geq \boldsymbol{0}$$
 (D)

 $\boldsymbol{v}^T \boldsymbol{x} = 0$ (CS)

Recall: Linear Programming Duality

• Let x be a basic feasible solution and let B denote the corresponding basis matrix

Choose the dual variables as follows:

$$\boldsymbol{w}^T = \boldsymbol{c}_{\boldsymbol{B}}^T \boldsymbol{B}^{-1}, \qquad \boldsymbol{v}^T = [\underbrace{\boldsymbol{0}}_{\text{basic}} \quad \underbrace{\boldsymbol{c}_{\boldsymbol{B}}^T \boldsymbol{B}^{-1} \boldsymbol{N} - \boldsymbol{c}_{\boldsymbol{N}}^T}_{\text{nonbasic}}]$$

- (P) holds since x is feasible
- (CS) holds identically since

$$\boldsymbol{v}^T \boldsymbol{x} = \boldsymbol{0} \boldsymbol{x}_{\boldsymbol{B}} + (\boldsymbol{c}_{\boldsymbol{B}}^T \boldsymbol{B}^{-1} \boldsymbol{N} - \boldsymbol{c}_{\boldsymbol{N}}^T) \boldsymbol{0} \equiv \boldsymbol{0}$$

Recall: Linear Programming Duality

- One of the constraints of (D), namely $c^T w^T A + v^T = 0$ also holds identically
- Separating to basic and nonbasic components:

$$m{c}^T - m{w}^T m{A} + m{v}^T = (m{c}_{m{B}}{}^T, m{c}_{m{N}}{}^T) - m{w}^T(m{B}, m{N}) + (m{0}, m{c}_{m{B}}{}^T m{B}^{-1} m{N} - m{c}_{m{N}}{}^T)$$

• Component-wise:

$$\begin{split} \boldsymbol{c}_{\boldsymbol{B}}^{T} &- \boldsymbol{w}^{T} \boldsymbol{B} + \boldsymbol{0} = \boldsymbol{c}_{\boldsymbol{B}}^{T} - \boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{B} \equiv \boldsymbol{0} \quad \text{(basic)} \\ \boldsymbol{c}_{\boldsymbol{N}}^{T} &- \boldsymbol{w}^{T} \boldsymbol{N} + (\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N} - \boldsymbol{c}_{\boldsymbol{N}}^{T}) = \\ &- \boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N} + \boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N} \equiv \boldsymbol{0} \quad \text{(nonbasic)} \end{split}$$

• The other part of (D), $v^T \ge 0$, only holds if B is optimal

- Correspondingly, the primal simplex method develops a basis that satisfies the (P), (D), and (CS) conditions simultaneously
- In each iteration it satisfies the primal conditions (P), the complementary slackness conditions (CS), and the dual conditions (D) partially
- We have optimality when (D) is fully satisfied
- The **dual simplex method** is the "dual" of the primal simplex: it converges through a series of "dual feasible" bases into a "dual optimal" (primal feasible) basis
 - in every iteration it fulfills (D), (CS) and (P) partially
 - optimality when (P) is fully satisfied
- Useful when it is easy to find a dual feasible (primal optimal) initial basis

• Consider the standard form linear program:

$$\begin{array}{ll} \max & \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} & \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \\ & \boldsymbol{x} \geq \boldsymbol{0} \end{array}$$

where A is an $m \times n$ matrix, b is a column m-vector, x is a column n-vector, and c^T is a row n-vector

Let *B* be a basis that satisfies
 the primal optimality conditions (i.e., dual feasible)

$$oldsymbol{c}_{oldsymbol{B}}{}^Toldsymbol{B}^{-1}oldsymbol{N} - oldsymbol{c}_{oldsymbol{N}}{}^T \geq oldsymbol{0}$$

• but is not primal feasible (i.e., not **dual optimal**)

$$oldsymbol{B}^{-1}oldsymbol{b}
eq 0$$

- ullet The simplex tableau for basis B
 - (dual) feasible if $\forall j \in N : z_j ≥ 0$

• (dual) optimal, if $\forall i \in \{1, \dots, m\} : \overline{b}_i \ge 0$

- The goal is to obtain a simplex tableau that is dual optimal, maintaining dual feasibility along the way
- In terms of the tableau, this means that
 - in row 0 we always have nonnegative elements (dual feasibility)
 - but the RHS column may contain negative elements (not dual optimal)
- Eventually, the RHS column will also become nonnegative
- This is attained through a sequence of (dual) pivots
- For brevity, we merely state the method without proofs

• Choose the **leaving variable** x_r first as the basic variable with the smallest value in the current basis:

 $r = \underset{i \in \{1, \dots, m\}}{\operatorname{argmin}} \overline{b}_i$

• Lemma: after the pivot we obtain a primal optimal basic feasible solution (row 0 is nonnegative), if the entering variable x_k is chosen according to:

$$k = \underset{j \in N}{\operatorname{argmin}} \left\{ -\frac{z_j}{y_{rj}} : y_{rj} < 0 \right\}$$

- Lemma: if $\forall j \in N : y_{rj} \ge 0$, then the dual is unbounded and the primal is infeasible
- Pivot on row r and column k

• Consider the linear program

• Bringing to standard form and converting to maximization (note the eventual inversion!):

• Cannot use the primal simplex since the initial basis formed by the slack variables is not (primal) feasible

• Let us use the dual simplex (after inverting the constraints):

• We can do this since the slack variables for a primal optimal (dual feasible) initial basis

• Not dual optimal:
$$\mathbf{B}^{-1}\mathbf{N} - \mathbf{c}_{\mathbf{N}}^{T} = \mathbf{0} - \begin{bmatrix} -2 & -3 & -4 \end{bmatrix} \ge \mathbf{0}$$

• The initial simplex tableau:

	z	x_1	x_2	x_3	x_4	x_5	RHS
z	1	2	3	4	0	0	0
x_4	0	-1	-2	-1	1	0	-3
x_5	0	$\boxed{-2}$	1	-3	0	1	-4

- The most negative basic variable leaves the basis: x_5
- The entering variable is x_1 as $-\frac{z_1}{y_{51}} = \min\{-\frac{z_j}{y_{5j}} : y_{5j} < 0\}$
- Divide the *j*-the element of row 0 with the *j*-th element of the *r*-th row if that is negative and invert, and take the minimum
- If we choose the leaving and entering variable this way, we get a dual feasible basis after the pivot

	z	x_1	x_2	x_3	x_4	x_5	RHS
z	1	2	3	4	0	0	0
x_4	0	-1	-2	-1	1	0	-3
x_1	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	0	$-\frac{1}{2}$	2

	z	x_1	x_2	x_3	x_4	x_5	RHS
z	1	2	3	4	0	0	0
x_4	0	0	$-\frac{5}{2}$	$\frac{1}{2}$	1	$-\frac{1}{2}$	-1
x_1	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	0	$-\frac{1}{2}$	2

	z	x_1	x_2	x_3	x_4	x_5	RHS
z	1	0	4	1	0	1	-4
x_4	0	0	$-\frac{5}{2}$	$\frac{1}{2}$	1	$-\frac{1}{2}$	-1
x_1	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	0	$-\frac{1}{2}$	2

- After the pivot the RHS element of the pivot row is always nonnegative, since first we divided the row of x_r by $y_{rk} < 0$ and so we invert all elements, this way $\overline{b}_r < 0$ as well
- If the basis is not dual degenerate $(z_k > 0)$, then after the pivot the objective function value **decreases**
- In fact, the current basis satisfies the (primal) optimality conditions but it lies outside the feasible region of the primal
- Making it feasible is possible only at the price of decreasing the primal objective
- It is not the primal maximization problem that we are solving now but rather the dual minimization problem
- We do not need to rewrite the problem into the dual to apply the dual simplex method, it can run directly on the (primal) simplex tableau

- The new basis is dual feasible (primal optimal) but still not dual optimal, as $x_4 = -1 < 0$
- x_4 leaves the basis and $x_2 = \operatorname{argmin}\{-\frac{z_j}{y_{4j}}: y_{4j} < 0\}$ enters

	x_1	x_2	x_3	x_4	x_5	RHS
z	0	0	$\frac{9}{5}$	$\frac{8}{5}$	$\frac{1}{5}$	$-\frac{28}{5}$
x_2	0	1	$-\frac{1}{5}$	$-\frac{2}{5}$	$\frac{1}{5}$	$\frac{2}{5}$
x_1	1	0	$\frac{\overline{7}}{5}$	$-\frac{1}{5}$	$-\frac{2}{5}$	$\frac{11}{5}$

- The resultant basis is both dual optimal and dual feasible
- The optimum for the maximization problem is $z = -\frac{28}{5}$, attained at the point $x = [\frac{11}{5} \quad \frac{2}{5} \quad 0]^T$

• Observe that the objective function value for the maximization problem has decreased in each iteration

$$\max -2x_1 - 3x_2 - 4x_3 : 0 \to -4 \to -\frac{28}{5}$$

- Of course, this is because we have in fact solved the dual minimization problem $\min\{w^Tb: w^TA \ge c^T\}$
- Choosing $w^T = c_B B^{-1}$ the dual objective function $w^T b = c_B B^{-1} b$ can be read from the simplex tableau in each step (row zero, RHS column)

$$\min \boldsymbol{w}^T \boldsymbol{b}: 0 \to -4 \to -\frac{28}{5}$$

• Originally we had a minimization problem (invert!), whose optimum is thus $z=\frac{28}{5}$

• Solve the below linear program:

• Standard form, as a maximization (note: invert!)

Multiplying the first constraint by (-1) we obtain a primal optimal initial basis

- In general, slack variables constitute a primal feasible basis if $b \ge 0$, and a dual feasible basis if $c^T \le 0$
- We can use the dual simplex now

	z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
z	1	2	3	5	6	0	0	0
x_5	0	-1	-2	-3	-1	1	0	-2
x_6	0	-2	1	-1	3	0	1	-3

	z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
z	1	0	4	4	9	0	1	-3
x_5	0	0	$-\frac{5}{2}$	$-\frac{5}{2}$	$-\frac{5}{2}$	1	$-\frac{1}{2}$	$-\frac{1}{2}$
x_1	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{3}{2}$	0	$-\frac{1}{2}$	$\frac{3}{2}$

	z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
\overline{z}	1	0	0	0	5	$\frac{8}{5}$	$\frac{1}{5}$	$-\frac{19}{5}$
x_2	0	0	1	1	1	$-\frac{2}{5}$	$\frac{1}{5}$	$\frac{1}{5}$
x_1	0	1	0	1	-1	$-\frac{1}{5}$	$-\frac{2}{5}$	$\frac{8}{5}$

- The minimum is $\frac{19}{5}$, attained by the minimization problem at the point $\boldsymbol{x} = [\frac{8}{5} \quad \frac{1}{5} \quad 0 \quad 0]^T$
- The dual of the original minimization problem:

- w_2 is odd since $w_2 \leq 0$ (the simplex requires nonnegativity)
- Let $w'_2 = -w_2 \ge 0$

- The slack variables supply a primal feasible initial basis in the dual, since the RHS is nonnegatove and all constraints are of the type "≤"
- Solving by the primal simplex: the optimum is $\frac{19}{5}$ and

$$w_1 = \frac{8}{5}, \qquad w_2 = -w_2' = -\frac{1}{5}$$

- At a railway station, the distribution of work is such that the number of staff needed is
 - 3 persons between 0 and 4 o'clock,
 - 8 persons between 4 and 8 o'clock,
 - $\circ~$ 10 persons between 8 and 12 o'clock,
 - $\circ~$ 8 persons between 12 and 16 o'clock,
 - 14 persons between 16 and 20 o'clock,
 - 5 persons between 20 and 24 o'clock
- Shifts start every day at 0, 4, 8, 12, 16, and 20 o'clock and keep 8 hours
- **Task:** obtain an optimal schedule that requires the smallest staff (fewest persons during the day working in total)

- Indicate the number of workers starting in each shift by x1,
 x2, x3, x4, x5, and x6
- Then, the task is to minimize the objective function $x_1 + x_2 + x_3 + x_4 + x_5 + x_6$
- From 0 until 4 o'clock, the 20-o'clock and 0-o-clock shifts are in work, at least 3 persons

$$x_1 + x_6 \ge 3$$

• From 4 until 8 o'clock at least 8 persons are needed

$$x_1 + x_2 \ge 8$$

- Similarly for the rest of the shifts
- Of course, all variables are nonnegative

• The linear program

\min	x_1	+	x_2	+	x_3	+	x_4	+	x_5	+	x_6		
s.t.	x_1	+	x_2									\geq	8
			x_2	+	x_3							\geq	10
					x_3	+	x_4					\geq	8
							x_4	+	x_5			\geq	14
									x_5	+	x_6	\geq	5
	x_1									+	x_6	\geq	3
	$x_1,$		$x_2,$		$x_3,$		$x_4,$		$x_5,$		x_6	\geq	0

- Variables are continuous, even though we cannot schedule employees partially
- Should pose this as an integer linear program, by requiring variables to be integer-valued: NP-hard problem
- For now, we merely hope that what we obtain eventually will be integer-valued

- Introduce slack variables s_1, s_2, \ldots to convert the constraints $x_i + x_j \ge b$ to the form $x_i + x_j s = b, z \ge 0$
- Writing as a maximization problem (note to ourselves: invert result at the end) and ignoring the column of z for now

	x_1	x_2	x_3	x_4	x_5	x_6	s_1	s_2	s_3	s_4	s_5	s_6	RHS
\overline{z}	1	1	1	1	1	1	0	0	0	0	0	0	0
s_1	1	1	0	0	0	0	-1	0	0	0	0	0	8
s_2	0	1	1	0	0	0	0	-1	0	0	0	0	10
S_3	0	0	1	1	0	0	0	0	-1	0	0	0	8
$ S_4 $	0	0	0	1	1	0	0	0	0	-1	0	0	14
S_5	0	0	0	0	1	1	0	0	0	0	-1	0	5
s_6	1	0	0	0	0	1	0	0	0	0	0	-1	3

- Slack variables form a trivial initial basis (it is worth inverting all rows)
- Primal optimal basis but not primal feasible: use the dual simplex!
- s_4 leaves the basis and x_4 enters

	x_1	x_2	x_3	x_4	x_5	x_6	s_1	S_2	s_3	S_4	S_5	s_6	RHS
z	1	1	1	1	1	1	0	0	0	0	0	0	0
s_1	-1	-1	0	0	0	0	1	0	0	0	0	0	-8
$ s_2 $	0	-1	-1	0	0	0	0	1	0	0	0	0	-10
S_3	0	0	-1	-1	0	0	0	0	1	0	0	0	-8
$ s_4 $	0	0	0	-1	-1	0	0	0	0	1	0	0	-14
s_5	0	0	0	0	-1	-1	0	0	0	0	1	0	-5
s_6	-1	0	0	0	0	-1	0	0	0	0	0	1	-3

	x_1	x_2	x_3	x_4	x_5	x_6	s_1	s_2	s_3	s_4	S_5	s_6	RHS
\overline{z}	1	1	1	0	0	1	0	0	0	1	0	0	-14
s_1	-1	-1	0	0	0	0	1	0	0	0	0	0	-8
s_2	0	-1	-1	0	0	0	0	1	0	0	0	0	-10
S_3	0	0	-1	0	1	0	0	0	1	-1	0	0	6
x_4	0	0	0	1	1	0	0	0	0	-1	0	0	14
s_5	0	0	0	0	-1	-1	0	0	0	0	1	0	-5
s_6	-1	0	0	0	0	-1	0	0	0	0	0	1	-3

• s_2 leaves the basis and x_2 enters

	x_1	x_2	x_3	x_4	x_5	x_6	s_1	s_2	s_3	s_4	s_5	s_6	RHS
z	1	0	0	0	0	1	0	1	0	1	0	0	-24
s_1	-1	0	1	0	0	0	1	-1	0	0	0	0	2
x_2	0	1	1	0	0	0	0	-1	0	0	0	0	10
s_3	0	0	-1	0	1	0	0	0	1	-1	0	0	6
x_4	0	0	0	1	1	0	0	0	0	-1	0	0	14
s_5	0	0	0	0	-1	-1	0	0	0	0	1	0	-5
s_6	-1	0	0	0	0	-1	0	0	0	0	0	1	-3

- s_5 leaves, x_5 enters
- Dual degenerate pivot

	x_1	x_2	x_3	x_4	x_5	x_6	s_1	s_2	s_3	s_4	s_5	s_6	RHS
z	1	0	0	0	0	1	0	1	0	1	0	0	-24
s_1	-1	0	1	0	0	0	1	-1	0	0	0	0	2
x_2	0	1	1	0	0	0	0	-1	0	0	0	0	10
s_3	0	0	-1	0	0	-1	0	0	1	-1	1	0	1
x_4	0	0	0	1	0	-1	0	0	0	-1	1	0	9
x_5	0	0	0	0	1	1	0	0	0	0	-1	0	5
s_6	-1	0	0	0	0	-1	0	0	0	0	0	1	-3

• s_6 leaves, x_1 enters

	x_1	x_2	x_3	x_4	x_5	x_6	s_1	s_2	s_3	s_4	s_5	s_6	RHS
z	0	0	0	0	0	0	0	1	0	1	0	1	-27
s_1	0	0	1	0	0	1	1	-1	0	0	0	-1	5
x_2	0	1	1	0	0	0	0	-1	0	0	0	0	10
S_3	0	0	-1	0	0	-1	0	0	1	-1	1	0	1
x_4	0	0	0	1	0	-1	0	0	0	-1	1	0	9
x_5	0	0	0	0	1	1	0	0	0	0	-1	0	5
x_1	1	0	0	0	0	1	0	0	0	0	0	-1	3

- Optimal tableau: primal optimal and now also primal feasible
- 27 persons employed in total: 3 in the 0 o'clock shift, 10 in the 4 o'clock shift, 9 in the 12 o'clock shift, and 5 in the 16 o'clock shift, and no one works in the rest of the shifts
- Observe that there is surplus staff from 4 until 8 ($s_1 = 5$) and from 12 until 16 ($s_3 = 1$)!

• The four-month prognosis for an item in a store is as follows:

	1st month	2nd month	3rd month	4th month
Business Plan [t]	5	6	8	6
Purchase cost [mUSD/t]	4	3	2	5
Storage capacity [t]	10	10	10	10
Storage costs [mUSD/t]	1.5	1.5	1.5	1.5

- At the beginning and end of the period the stock in the storage is zero
- The stock changes uniformly during a month and the storage cost per month is based on the average quantity in stock
- **Task:** fulfill the business plan in each month, taking into account the storage capacities, with the lowest purchase and storage costs

- Denote the quantity of the items purchased in each month by x_1 , x_2 , x_3 , and x_4 [tonnes]
- Denote the stock at the end of each month by r_1 , r_2 , and r_3 [tonnes] (no stock at the end of the period)
- From the quantity purchased in the first month, 5 tonnes must be sold according to the business plan and the rest goes into stock

$$x_1 = 5 + r_1$$

 In the rest of the months, the stock at the beginning plus the purchased quantity covers the monthly business plan and the stock at the end of the month

$$r_{1} + x_{2} = 6 + r_{2}$$
$$r_{2} + x_{3} = 8 + r_{3}$$
$$r_{3} + x_{4} = 6$$

• As the stock changes uniformly during the month, the average stock in each month is

$$\frac{r_1}{2}, \quad \frac{r_1+r_2}{2}, \quad \frac{r_2+r_3}{2}, \quad \frac{r_3}{2}$$

• The storage cost for the entire period [million USD]:

$$1.5\left(\frac{r_1}{2} + \frac{r_1 + r_2}{2} + \frac{r_2 + r_3}{2} + \frac{r_3}{2}\right) = 1.5r_1 + 1.5r_2 + 1.5r_3$$

- The purchase cost: $4x_1 + 3x_2 + 2x_3 + 5x_4$ [million USD]
- Finally, the stock cannot exceed the storage capacity:

$$r_1, r_2, r_3 \le 10$$

• Evidently, all variables are nonnegative

• The linear program:

min $4x_1 + 3x_2 + 2x_3 + 5x_4 + 1.5r_1 + 1.5r_2 + 1.5r_3$ = 5s.t. x_1 $-r_{1}$ = 6 $+r_1$ $-r_2$ x_2 $+r_2 -r_3 = 8$ $\mathcal{X}_{\mathbf{3}}$ $+r_3 = 6$ x_4 < 10 r_1 < 10 r_2 $r_3 \leq 10$ $x_1, \quad x_2, \quad x_3, \quad x_4, \quad r_1, \quad r_2, \quad r_3 > 0$

• The objective function in maximization form:

 $\max -4x_1 -3x_2 -2x_3 -5x_4 -1.5r_1 -1.5r_2 -1.5r_3$

• Must be inverted when written into the simplex tableau!

- We still need to find an initial basis
 - \circ the slacks for the storage constraints (s_1 , s_2 , s_3) are OK
 - $\circ x_1, x_2, x_3$, and x_4 would also work, but we first need to zero out the corresponding objective function coefficients to obtain a valid simplex tableau

	z	x_1	x_2	x_3	x_4	r_1	r_2	r_3	s_1	s_2	s_3	RHS
z	1	4	3	2	5	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	0	0	0	0
x_1	0	1	0	0	0	-1	0	0	0	0	0	5
x_2	0	0	1	0	0	1	-1	0	0	0	0	6
x_3	0	0	0	1	0	0	1	-1	0	0	0	8
x_4	0	0	0	0	1	0	0	1	0	0	0	6
s_1	0	0	0	0	0	1	0	0	1	0	0	10
s_2	0	0	0	0	0	0	1	0	0	1	0	10
s_3	0	0	0	0	0	0	0	1	0	0	1	10

• Subtract four times the row of x_1 from row 0, this way eliminating the reduced cost for x_1 :

	z	x_1	x_2	x_3	x_4	r_1	r_2	r_3	s_1	s_2	s_3	RHS
\boxed{z}	1	0	3	2	5	$\frac{11}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	0	0	0	-20
x_1	0	1	0	0	0	-1	0	0	0	0	0	5
x_2	0	0	1	0	0	1	-1	0	0	0	0	6
x_3	0	0	0	1	0	0	1	-1	0	0	0	8
x_4	0	0	0	0	1	0	0	1	0	0	0	6
s_1	0	0	0	0	0	1	0	0	1	0	0	10
s_2	0	0	0	0	0	0	1	0	0	1	0	10
s_3	0	0	0	0	0	0	0	1	0	0	1	10

• Note how the objective function value has changed!

• Similarly, cancel the reduced cost for x_2 , x_3 , and x_4 by elementary row operations

	z	x_1	x_2	x_3	x_4	r_1	r_2	r_3	s_1	S_2	s_3	RHS
\overline{z}	1	0	0	0	0	$\frac{5}{2}$	$\frac{5}{2}$	$-\frac{3}{2}$	0	0	0	-84
x_1	0	1	0	0	0	-1	0	0	0	0	0	5
x_2	0	0	1	0	0	1	-1	0	0	0	0	6
x_3	0	0	0	1	0	0	1	-1	0	0	0	8
x_4	0	0	0	0	1	0	0	1	0	0	0	6
s_1	0	0	0	0	0	1	0	0	1	0	0	10
s_2	0	0	0	0	0	0	1	0	0	1	0	10
s_3	0	0	0	0	0	0	0	1	0	0	1	10

- Primal feasible tableau, solve with the primal simplex
- Note the nonzero objective function in the initial tableau!

	z	x_1	x_2	x_3	x_4	r_1	r_2	r_3	s_1	s_2	s_3	RHS
\overline{z}	1	0	0	0	$\frac{3}{2}$	$\frac{5}{2}$	$\frac{5}{2}$	0	0	0	0	-75
x_1	0	1	0	0	0	-1	0	0	0	0	0	5
x_2	0	0	1	0	0	1	-1	0	0	0	0	6
x_3	0	0	0	1	1	0	1	0	0	0	0	14
r_3	0	0	0	0	1	0	0	1	0	0	0	6
s_1	0	0	0	0	0	1	0	0	1	0	0	10
s_2	0	0	0	0	0	0	1	0	0	1	0	10
s_3	0	0	0	0	-1	0	0	0	0	0	1	4

- The quantity of items to be purchased in each month is 5, 6, and 14 tonnes, no purchase in the last month
- Stock is created only in the 3rd month, 6 tonnes
- The total cost is 75 million USD

- A subscriber wishes to transfer 2-2 units of traffic between points A-B and C-D in a telecommunications network
- The network service provider establishes a path P_1 between A-B and paths P_2 and P_3 between C-D
- The A-B link capacity is 3 units, and 2 units for C-D
- Pricing is progressive: the first 1 unit of traffic through a link costs 1 unit, every additional unit costs 3 units

• **Task:** find the minimal cost assignment of traffic demands to paths

- Denote the quantity of traffic routed to paths $P_1,\,P_2,\,{\rm and}\,\,P_3$ by $f_1,\,f_2,\,{\rm and}\,\,f_3$
- The demand is 2 units of flow between $A\mathchar`-B$ and 2 units between $C\mathchar`-D$

 $f_1 \ge 2, \qquad f_2 + f_3 \ge 2$

• Denote the total load at each link by l_1 and l_2 , these must satisfy the capacity constraints

$$l_1 = f_1 + f_2 \le 3, \qquad l_2 = f_3 \le 2$$

• Let the price of traffic routed to each link be c_1 and c_2

$$c_i = \begin{cases} l_i & \text{if } l_i \le 1\\ 1+3(l_i-1) & \text{if } l_i > 1 \end{cases} \quad i \in \{1,2\}$$

• Task is to minimize $c_1 + c_2$: nonlinear objective function!

• Trick: linearize the objective function

- Piecewise linear objective function
- Approximate piecewise

```
\min c_i
c_i \ge l_i
c_i \ge 3l_i - 2
```

- The smallest possible cost by minimization
- The piecewise objective is convex: we can use linear programming

• The linear program:

\min	$c_1 + c_2$	
s.t.	$f_1 + f_2$	≤ 3
	f_3	≤ 2
	$f_1 + f_2 - c_1$	≤ 0
	$3f_1 + 3f_2 - c_1$	≤ 2
	$f_3 - c_2$	≤ 0
	$3f_3 - c_2$	≤ 2
	f_1	≥ 2
	$f_2 + f_3$	≥ 2
	$f_1, f_2, f_3, c_1, c_2,$	≥ 0

- Standard form: slack variables constitute an initial basis
- Converting to maximization and inverting the last two constraints we get a dual feasible initial basis
- Use the dual simplex!

	z	f_1	f_2	f_3	c_1	c_2	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8	RHS
z	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0
s_1	0	1	1	0	0	0	1	0	0	0	0	0	0	0	3
s_2	0	0	0	1	0	0	0	1	0	0	0	0	0	0	2
s_3	0	1	1	0	-1	0	0	0	1	0	0	0	0	0	0
s_4	0	3	3	0	-1	0	0	0	0	1	0	0	0	0	2
s_5	0	0	0	1	0	-1	0	0	0	0	1	0	0	0	0
s_6	0	0	0	3	0	-1	0	0	0	0	0	1	0	0	2
s_7	0	-1	0	0	0	0	0	0	0	0	0	0	1	0	-2
s_8	0	0	-1	-1	0	0	0	0	0	0	0	0	0	1	-2

• The optimal tableau:

	z	f_1	f_2	f_3	c_1	c_2	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8	RHS
z	1	0	0	0	0	0	0	0	0	1	0	1	3	3	-8
s_1	0	0	0	0	0	0	1	0	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	1	1	0
s_2	0	0	0	0	0	0	0	1	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	0	1
s_3	0	0	0	0	0	0	0	0	1	-1	1	-1	-2	-2	4
c_1	0	0	0	0	1	0	0	0	0	-1	$\frac{3}{2}$	$-\frac{3}{2}$	-3	-3	7
c_2	0	0	0	0	0	1	0	0	0	0	$-\frac{3}{2}$	$\frac{1}{2}$	0	0	1
f_2	0	0	1	0	0	0	0	0	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	-1	1
f_1	0	1	0	0	0	0	0	0	0	0	0	0	-1	0	2
f_3	0	0	0	1	0	0	0	0	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	0	0	1

- Route 2 unit to path P_1 and route 1 unit to each of the paths P_2 and P_3
- The total cost is 8 units