The Dual Simplex Algorithm

- Primal optimal (dual feasible) and primal feasible (dual optimal) bases
- The dual simplex tableau, dual optimality and the dual pivot rules
- Classical applications of linear programming: the use of the primal and the dual simplex methods, examples

Recall: Linear Programming Duality

- Consider the (primal) linear program:

$$
\begin{array}{rc}
z=\max & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

where \boldsymbol{A} is an $m \times n$ matrix, \boldsymbol{b} is a column m-vector, \boldsymbol{x} is a column n-vector, and \boldsymbol{c}^{T} is a row n-vector

- By the Karush-Kuhn-Tucker Conditions, \boldsymbol{x} is optimal if and only if there is $\left(\boldsymbol{v}^{T}, \boldsymbol{w}^{T}\right)$ so that

$$
\begin{align*}
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, & \boldsymbol{x} \geq \mathbf{0} \tag{P}\\
\boldsymbol{c}^{T}-\boldsymbol{w}^{T} \boldsymbol{A}+\boldsymbol{v}^{T}=\mathbf{0}, & \boldsymbol{v}^{T} \geq \mathbf{0} \tag{D}\\
\boldsymbol{v}^{T} \boldsymbol{x}=0 & \tag{CS}
\end{align*}
$$

Recall: Linear Programming Duality

- Let \boldsymbol{x} be a basic feasible solution and let \boldsymbol{B} denote the corresponding basis matrix

	z		$\boldsymbol{x}_{\boldsymbol{B}}$	$\boldsymbol{x}_{\boldsymbol{N}}$
RHS				
	1	$\mathbf{0}$	$\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}$	$\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{b}$
$\boldsymbol{x}_{\boldsymbol{B}}$	$\mathbf{0}$	\boldsymbol{I}_{m}	$\boldsymbol{B}^{-1} \boldsymbol{N}$	$\boldsymbol{B}^{-1} \boldsymbol{b}$

0. sor
1..m sorok

- Choose the dual variables as follows:

$$
\boldsymbol{w}^{T}=\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1}, \quad \boldsymbol{v}^{T}=[\underbrace{\boldsymbol{0}}_{\text {basic }} \quad \underbrace{\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}}_{\text {nonbasic }}]
$$

- (P) holds since \boldsymbol{x} is feasible
- (CS) holds identically since

$$
\boldsymbol{v}^{T} \boldsymbol{x}=\mathbf{0} \boldsymbol{x}_{\boldsymbol{B}}+\left(\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}^{T}\right) \mathbf{0} \equiv 0
$$

Recall: Linear Programming Duality

- One of the constraints of (D), namely $\boldsymbol{c}^{T}-\boldsymbol{w}^{T} \boldsymbol{A}+\boldsymbol{v}^{T}=\mathbf{0}$ also holds identically
- Separating to basic and nonbasic components:

$$
\begin{aligned}
& \boldsymbol{c}^{T}-\boldsymbol{w}^{T} \boldsymbol{A}+\boldsymbol{v}^{T}=\left(\boldsymbol{c}_{\boldsymbol{B}}{ }^{T}, \boldsymbol{c}_{\boldsymbol{N}}{ }^{T}\right)- \\
& \boldsymbol{w}^{T}(\boldsymbol{B}, \boldsymbol{N})+\left(\mathbf{0}, \boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}\right)
\end{aligned}
$$

- Component-wise:

$$
\begin{aligned}
\boldsymbol{c}_{\boldsymbol{B}}^{T}-\boldsymbol{w}^{T} \boldsymbol{B}+\mathbf{0}=\boldsymbol{c}_{\boldsymbol{B}}^{T}-\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{B} \equiv \mathbf{0} \\
\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}-\boldsymbol{w}^{T} \boldsymbol{N}+\left(\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}^{T}\right)= \\
-\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}+\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N} \equiv \mathbf{0}
\end{aligned}
$$

- The other part of (D), $\boldsymbol{v}^{T} \geq \mathbf{0}$, only holds if \boldsymbol{B} is optimal

The Dual Simplex Method

- Correspondingly, the primal simplex method develops a basis that satisfies the (P), (D), and (CS) conditions simultaneously
- In each iteration it satisfies the primal conditions (P), the complementary slackness conditions (CS), and the dual conditions (D) partially
- We have optimality when (D) is fully satisfied
- The dual simplex method is the "dual" of the primal simplex: it converges through a series of "dual feasible" bases into a "dual optimal" (primal feasible) basis
o in every iteration it fulfills (D), (CS) and (P) partially
- optimality when (P) is fully satisfied
- Useful when it is easy to find a dual feasible (primal optimal) initial basis

The Dual Simplex Method

- Consider the standard form linear program:

$$
\begin{array}{rc}
\max & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

where \boldsymbol{A} is an $m \times n$ matrix, \boldsymbol{b} is a column m-vector, \boldsymbol{x} is a column n-vector, and \boldsymbol{c}^{T} is a row n-vector

- Let \boldsymbol{B} be a basis that satisfies
- the primal optimality conditions (i.e., dual feasible)

$$
\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T} \geq \mathbf{0}
$$

- but is not primal feasible (i.e., not dual optimal)

$$
\boldsymbol{B}^{-1} \boldsymbol{b} \nsupseteq 0
$$

The Dual Simplex Method

- The simplex tableau for basis B
- (dual) feasible if $\forall j \in N: z_{j} \geq 0$
- (dual) optimal, if $\forall i \in\{1, \ldots, m\}: \bar{b}_{i} \geq 0$
- The goal is to obtain a simplex tableau that is dual optimal, maintaining dual feasibility along the way
- In terms of the tableau, this means that
- in row 0 we always have nonnegative elements (dual feasibility)
- but the RHS column may contain negative elements (not dual optimal)
- Eventually, the RHS column will also become nonnegative
- This is attained through a sequence of (dual) pivots
- For brevity, we merely state the method without proofs

The Dual Simplex Method

- Choose the leaving variable x_{r} first as the basic variable with the smallest value in the current basis:

$$
r=\underset{i \in\{1, \ldots, m\}}{\operatorname{argmin}} \bar{b}_{i}
$$

- Lemma: after the pivot we obtain a primal optimal basic feasible solution (row 0 is nonnegative), if the entering variable x_{k} is chosen according to:

$$
k=\underset{j \in N}{\operatorname{argmin}}\left\{-\frac{z_{j}}{y_{r j}}: y_{r j}<0\right\}
$$

- Lemma: if $\forall j \in N: y_{r j} \geq 0$, then the dual is unbounded and the primal is infeasible
- Pivot on row r and column k

The Dual Simplex Method: Example

- Consider the linear program

$$
\begin{array}{ccc}
\min & 2 x_{1}+3 x_{2}+4 x_{3} \\
\mathrm{s.t.} & x_{1}+2 x_{2}+x_{3} \geq 3 \\
& 2 x_{1}-x_{2}+3 x_{3} \geq 4 \\
& x_{1}, & x_{2}, \\
x_{3} \geq 0
\end{array}
$$

- Bringing to standard form and converting to maximization (note the eventual inversion!):

$$
\begin{array}{ccccccccc}
\max & -2 x_{1} & -3 x_{2}-4 x_{3} & & & \\
\mathrm{s.t.} & x_{1} & +2 x_{2}+x_{3} & -x_{4} & & =3 \\
& 2 x_{1} & - & x_{2} & +3 x_{3} & & - & x_{5} & =4 \\
& x_{1}, & & x_{2}, & & x_{3}, & x_{4}, & x_{5} & \geq 0
\end{array}
$$

- Cannot use the primal simplex since the initial basis formed by the slack variables is not (primal) feasible

The Dual Simplex Method: Example

- Let us use the dual simplex (after inverting the constraints):

$$
\begin{array}{ccccccc}
\max & -2 x_{1} & -3 x_{2} & -4 x_{3} \\
\text { s.t. } & -x_{1} & - & 2 x_{2} & - & & \\
3 \\
& -2 x_{1} & + & x_{2} & - & 3 x_{3} \\
& & & & & & \\
& x_{1}, & & x_{2}, & & x_{3}, & x_{4}, \\
x_{5} & = & x_{5} & \geq 0
\end{array}
$$

- We can do this since the slack variables for a primal optimal (dual feasible) initial basis

$$
\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}=\mathbf{0}-\left[\begin{array}{lll}
-2 & -3 & -4
\end{array}\right] \geq \mathbf{0}
$$

- Not dual optimal: $\boldsymbol{B}^{-1} \boldsymbol{b}=\boldsymbol{I}_{2}\left[\begin{array}{l}-3 \\ -4\end{array}\right]=\left[\begin{array}{l}-3 \\ -4\end{array}\right] \nsupseteq \mathbf{0}$

The Dual Simplex Method: Example

- The initial simplex tableau:

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	2	3	4	0	0	0
x_{4}	0	-1	-2	-1	1	0	-3
x_{5}	0	-2	1	-3	0	1	-4

- The most negative basic variable leaves the basis: x_{5}
- The entering variable is x_{1} as $-\frac{z_{1}}{y_{51}}=\min \left\{-\frac{z_{j}}{y_{5 j}}: y_{5 j}<0\right\}$
- Divide the j-the element of row 0 with the j-th element of the r-th row if that is negative and invert, and take the minimum
- If we choose the leaving and entering variable this way, we get a dual feasible basis after the pivot

The Dual Simplex Method: Example

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	2	3	4	0	0	0
x_{4}	0	-1	-2	-1	1	0	-3
x_{1}	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	0	$-\frac{1}{2}$	2

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	2	3	4	0	0	0
x_{4}	0	0	$-\frac{5}{2}$	$\frac{1}{2}$	1	$-\frac{1}{2}$	-1
x_{1}	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	0	$-\frac{1}{2}$	2

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	1	0	4	1	0	1	-4
x_{4}	0	0	$-\frac{5}{2}$	$\frac{1}{2}$	1	$-\frac{1}{2}$	-1
x_{1}	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	0	$-\frac{1}{2}$	2

The Dual Simplex Method

- After the pivot the RHS element of the pivot row is always nonnegative, since first we divided the row of x_{r} by $y_{r k}<0$ and so we invert all elements, this way $\bar{b}_{r}<0$ as well
- If the basis is not dual degenerate ($z_{k}>0$), then after the pivot the objective function value decreases
- In fact, the current basis satisfies the (primal) optimality conditions but it lies outside the feasible region of the primal
- Making it feasible is possible only at the price of decreasing the primal objective
- It is not the primal maximization problem that we are solving now but rather the dual minimization problem
- We do not need to rewrite the problem into the dual to apply the dual simplex method, it can run directly on the (primal) simplex tableau

The Dual Simplex Method: Example

- The new basis is dual feasible (primal optimal) but still not dual optimal, as $x_{4}=-1<0$
- x_{4} leaves the basis and $x_{2}=\operatorname{argmin}\left\{-\frac{z_{j}}{y_{4 j}}: y_{4 j}<0\right\}$ enters

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	RHS
z	0	0	$\frac{9}{5}$	$\frac{8}{5}$	$\frac{1}{5}$	$-\frac{28}{5}$
x_{2}	0	1	$-\frac{1}{5}$	$-\frac{2}{5}$	$\frac{1}{5}$	$\frac{2}{5}$
x_{1}	1	0	$\frac{7}{5}$	$-\frac{1}{5}$	$-\frac{2}{5}$	$\frac{11}{5}$

- The resultant basis is both dual optimal and dual feasible
- The optimum for the maximization problem is $z=-\frac{28}{5}$, attained at the point $\boldsymbol{x}=\left[\begin{array}{ccc}\frac{11}{5} & \frac{2}{5} & 0\end{array}\right]^{T}$

The Dual Simplex Method: Example

- Observe that the objective function value for the maximization problem has decreased in each iteration

$$
\max -2 x_{1}-3 x_{2}-4 x_{3}: 0 \rightarrow-4 \rightarrow-\frac{28}{5}
$$

- Of course, this is because we have in fact solved the dual minimization problem $\min \left\{\boldsymbol{w}^{T} \boldsymbol{b}: \boldsymbol{w}^{T} \boldsymbol{A} \geq \boldsymbol{c}^{T}\right\}$
- Choosing $\boldsymbol{w}^{T}=\boldsymbol{c}_{\boldsymbol{B}} \boldsymbol{B}^{-1}$ the dual objective function $\boldsymbol{w}^{T} \boldsymbol{b}=\boldsymbol{c}_{\boldsymbol{B}} \boldsymbol{B}^{-1} \boldsymbol{b}$ can be read from the simplex tableau in each step (row zero, RHS column)

$$
\min \boldsymbol{w}^{T} \boldsymbol{b}: 0 \rightarrow-4 \rightarrow-\frac{28}{5}
$$

- Originally we had a minimization problem (invert!), whose optimum is thus $z=\frac{28}{5}$

The Dual Simplex Method: Example

- Solve the below linear program:

min	$2 x_{1}$	+	$3 x_{2}$	+	$5 x_{3}$	+	$6 x_{4}$			
s.t.	x_{1}	+	$2 x_{2}$	$+$	$3 x_{3}$	+	x_{4}			2
	$-2 x_{1}$	+	x_{2}	-	x_{3}	+	$3 x_{4}$			-3
	x_{1},		x_{2},		x_{3},		x_{4}			0

- Standard form, as a maximization (note: invert!)

- Multiplying the first constraint by (-1) we obtain a primal optimal initial basis

The Dual Simplex Method: Example

- In general, slack variables constitute a primal feasible basis if $\boldsymbol{b} \geq \mathbf{0}$, and a dual feasible basis if $\boldsymbol{c}^{T} \leq \mathbf{0}$
- We can use the dual simplex now

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	2	3	5	6	0	0	0
x_{5}	0	-1	-2	-3	-1	1	0	-2
x_{6}	0	-2	1	-1	3	0	1	-3

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	0	4	4	9	0	1	-3
x_{5}	0	0	$-\frac{5}{2}$	$-\frac{5}{2}$	$-\frac{5}{2}$	1	$-\frac{1}{2}$	$-\frac{1}{2}$
x_{1}	0	1	$-\frac{1}{2}$	$\frac{1}{2}$	$-\frac{3}{2}$	0	$-\frac{1}{2}$	$\frac{3}{2}$

The Dual Simplex Method: Example

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	0	0	0	5	$\frac{8}{5}$	$\frac{1}{5}$	$-\frac{19}{5}$
x_{2}	0	0	1	1	1	$-\frac{2}{5}$	$\frac{1}{5}$	$\frac{1}{5}$
x_{1}	0	1	0	1	-1	$-\frac{1}{5}$	$-\frac{2}{5}$	$\frac{8}{5}$

- The minimum is $\frac{19}{5}$, attained by the minimization problem at the point $\boldsymbol{x}=\left[\begin{array}{llll}\frac{8}{5} & \frac{1}{5} & 0 & 0\end{array}\right]^{T}$
- The dual of the original minimization problem:

$$
\begin{array}{cccc}
\max & 2 w_{1} & -3 w_{2} & \\
\text { s.t. } & w_{1} & -2 w_{2} & \leq 2 \\
& 2 w_{1}+w_{2} & \leq 3 \\
& 3 w_{1}-w_{2} & \leq 5 \\
& w_{1}+3 w_{2} & \leq 6 \\
& w_{1} & & \\
& & w_{2}, & \leq 0
\end{array}
$$

The Dual Simplex Method: Example

- w_{2} is odd since $w_{2} \leq 0$ (the simplex requires nonnegativity)
- Let $w_{2}^{\prime}=-w_{2} \geq 0$

$$
\begin{array}{ccc}
\max & 2 w_{1} & +3 w_{2}^{\prime} \\
\text { s.t. } & w_{1}+2 w_{2}^{\prime} & \leq 2 \\
& 2 w_{1}-w_{2}^{\prime} \leq 3 \\
& 3 w_{1}+w_{2}^{\prime} \leq 5 \\
& w_{1}-3 w_{2}^{\prime} \leq 6 \\
& w_{1}, & w_{2}^{\prime} \geq 0
\end{array}
$$

- The slack variables supply a primal feasible initial basis in the dual, since the RHS is nonnegatove and all constraints are of the type " \leq "
- Solving by the primal simplex: the optimum is $\frac{19}{5}$ and

$$
w_{1}=\frac{8}{5}, \quad w_{2}=-w_{2}^{\prime}=-\frac{1}{5}
$$

Optimal Employee Work Schedule

- At a railway station, the distribution of work is such that the number of staff needed is
- 3 persons between 0 and 4 o'clock,
- 8 persons between 4 and 8 o'clock,
- 10 persons between 8 and 12 o'clock,
- 8 persons between 12 and 16 o'clock,
- 14 persons between 16 and 20 o'clock,
- 5 persons between 20 and 24 o'clock
- Shifts start every day at $0,4,8,12,16$, and 20 o'clock and keep 8 hours
- Task: obtain an optimal schedule that requires the smallest staff (fewest persons during the day working in total)

Optimal Employee Work Schedule

- Indicate the number of workers starting in each shift by x_{1}, $x_{2}, x_{3}, x_{4}, x_{5}$, and x_{6}
- Then, the task is to minimize the objective function $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}$
- From 0 until 4 o'clock, the 20 -o'clock and 0-o-clock shifts are in work, at least 3 persons

$$
x_{1}+x_{6} \geq 3
$$

- From 4 until 8 o'clock at least 8 persons are needed

$$
x_{1}+x_{2} \geq 8
$$

- Similarly for the rest of the shifts
- Of course, all variables are nonnegative

Optimal Employee Work Schedule

- The linear program

- Variables are continuous, even though we cannot schedule employees partially
- Should pose this as an integer linear program, by requiring variables to be integer-valued: NP-hard problem
- For now, we merely hope that what we obtain eventually will be integer-valued

Optimal Employee Work Schedule

- Introduce slack variables s_{1}, s_{2}, \ldots to convert the constraints $x_{i}+x_{j} \geq b$ to the form $x_{i}+x_{j}-s=b, z \geq 0$
- Writing as a maximization problem (note to ourselves: invert result at the end) and ignoring the column of z for now

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	RHS
z	1	1	1	1	1	1	0	0	0	0	0	0	0
s_{1}	1	1	0	0	0	0	-1	0	0	0	0	0	8
s_{2}	0	1	1	0	0	0	0	-1	0	0	0	0	10
s_{3}	0	0	1	1	0	0	0	0	-1	0	0	0	8
s_{4}	0	0	0	1	1	0	0	0	0	-1	0	0	14
s_{5}	0	0	0	0	1	1	0	0	0	0	-1	0	5
s_{6}	1	0	0	0	0	1	0	0	0	0	0	-1	3

Optimal Employee Work Schedule

- Slack variables form a trivial initial basis (it is worth inverting all rows)
- Primal optimal basis but not primal feasible: use the dual simplex!
- s_{4} leaves the basis and x_{4} enters

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	RHS
z	1	1	1	1	1	1	0	0	0	0	0	0	0
s_{1}	-1	-1	0	0	0	0	1	0	0	0	0	0	-8
s_{2}	0	-1	-1	0	0	0	0	1	0	0	0	0	-10
s_{3}	0	0	-1	-1	0	0	0	0	1	0	0	0	-8
s_{4}	0	0	0	-1	-1	0	0	0	0	1	0	0	-14
s_{5}	0	0	0	0	-1	-1	0	0	0	0	1	0	-5
s_{6}	-1	0	0	0	0	-1	0	0	0	0	0	1	-3

Optimal Employee Work Schedule

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	RHS
z	1	1	1	0	0	1	0	0	0	1	0	0	-14
s_{1}	-1	-1	0	0	0	0	1	0	0	0	0	0	-8
s_{2}	0	-1	-1	0	0	0	0	1	0	0	0	0	-10
s_{3}	0	0	-1	0	1	0	0	0	1	-1	0	0	6
x_{4}	0	0	0	1	1	0	0	0	0	-1	0	0	14
s_{5}	0	0	0	0	-1	-1	0	0	0	0	1	0	-5
s_{6}	-1	0	0	0	0	-1	0	0	0	0	0	1	-3

- s_{2} leaves the basis and x_{2} enters

Optimal Employee Work Schedule

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	RHS
z	1	0	0	0	0	1	0	1	0	1	0	0	-24
s_{1}	-1	0	1	0	0	0	1	-1	0	0	0	0	2
x_{2}	0	1	1	0	0	0	0	-1	0	0	0	0	10
s_{3}	0	0	-1	0	1	0	0	0	1	-1	0	0	6
x_{4}	0	0	0	1	1	0	0	0	0	-1	0	0	14
s_{5}	0	0	0	0	-1	-1	0	0	0	0	1	0	-5
s_{6}	-1	0	0	0	0	-1	0	0	0	0	0	1	-3

- s_{5} leaves, x_{5} enters
- Dual degenerate pivot

Optimal Employee Work Schedule

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	RHS
z	1	0	0	0	0	1	0	1	0	1	0	0	-24
s_{1}	-1	0	1	0	0	0	1	-1	0	0	0	0	2
x_{2}	0	1	1	0	0	0	0	-1	0	0	0	0	10
s_{3}	0	0	-1	0	0	-1	0	0	1	-1	1	0	1
x_{4}	0	0	0	1	0	-1	0	0	0	-1	1	0	9
x_{5}	0	0	0	0	1	1	0	0	0	0	-1	0	5
s_{6}	-1	0	0	0	0	-1	0	0	0	0	0	1	-3

- s_{6} leaves, x_{1} enters

Optimal Employee Work Schedule

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	RHS
z	0	0	0	0	0	0	0	1	0	1	0	1	-27
s_{1}	0	0	1	0	0	1	1	-1	0	0	0	-1	5
x_{2}	0	1	1	0	0	0	0	-1	0	0	0	0	10
s_{3}	0	0	-1	0	0	-1	0	0	1	-1	1	0	1
x_{4}	0	0	0	1	0	-1	0	0	0	-1	1	0	9
x_{5}	0	0	0	0	1	1	0	0	0	0	-1	0	5
x_{1}	1	0	0	0	0	1	0	0	0	0	0	-1	3

- Optimal tableau: primal optimal and now also primal feasible
- 27 persons employed in total: 3 in the 0 o'clock shift, 10 in the 4 o'clock shift, 9 in the 12 o'clock shift, and 5 in the 16 o'clock shift, and no one works in the rest of the shifts
- Observe that there is surplus staff from 4 until $8\left(s_{1}=5\right)$ and from 12 until $16\left(s_{3}=1\right)$!

Optimal Production Planning

- The four-month prognosis for an item in a store is as follows:

	1st month	2nd month	3rd month	4th month
Business Plan [t]	5	6	8	6
Purchase cost [mUSD/t]	4	3	2	5
Storage capacity [t]	10	10	10	10
Storage costs [mUSD/t]	1.5	1.5	1.5	1.5

- At the beginning and end of the period the stock in the storage is zero
- The stock changes uniformly during a month and the storage cost per month is based on the average quantity in stock
- Task: fulfill the business plan in each month, taking into account the storage capacities, with the lowest purchase and storage costs

Optimal Production Planning

- Denote the quantity of the items purchased in each month by x_{1}, x_{2}, x_{3}, and x_{4} [tonnes]
- Denote the stock at the end of each month by r_{1}, r_{2}, and r_{3} [tonnes] (no stock at the end of the period)
- From the quantity purchased in the first month, 5 tonnes must be sold according to the business plan and the rest goes into stock

$$
x_{1}=5+r_{1}
$$

- In the rest of the months, the stock at the beginning plus the purchased quantity covers the monthly business plan and the stock at the end of the month

$$
\begin{gathered}
r_{1}+x_{2}=6+r_{2} \\
r_{2}+x_{3}=8+r_{3} \\
r_{3}+x_{4}=6
\end{gathered}
$$

Optimal Production Planning

- As the stock changes uniformly during the month, the average stock in each month is

$$
\frac{r_{1}}{2}, \quad \frac{r_{1}+r_{2}}{2}, \quad \frac{r_{2}+r_{3}}{2}, \quad \frac{r_{3}}{2}
$$

- The storage cost for the entire period [million USD]:

$$
1.5\left(\frac{r_{1}}{2}+\frac{r_{1}+r_{2}}{2}+\frac{r_{2}+r_{3}}{2}+\frac{r_{3}}{2}\right)=1.5 r_{1}+1.5 r_{2}+1.5 r_{3}
$$

- The purchase cost: $4 x_{1}+3 x_{2}+2 x_{3}+5 x_{4}$ [million USD]
- Finally, the stock cannot exceed the storage capacity:

$$
r_{1}, r_{2}, r_{3} \leq 10
$$

- Evidently, all variables are nonnegative

Optimal Production Planning

- The linear program:

- The objective function in maximization form:

$$
\max \begin{array}{lllllll}
-4 x_{1} & -3 x_{2} & -2 x_{3} & -5 x_{4} & -1.5 r_{1} & -1.5 r_{2} & -1.5 r_{3}
\end{array}
$$

- Must be inverted when written into the simplex tableau!

Optimal Production Planning

- We still need to find an initial basis
- the slacks for the storage constraints $\left(s_{1}, s_{2}, s_{3}\right)$ are OK
- x_{1}, x_{2}, x_{3}, and x_{4} would also work, but we first need to zero out the corresponding objective function coefficients to obtain a valid simplex tableau

	z	x_{1}	x_{2}	x_{3}	x_{4}	r_{1}	r_{2}	r_{3}	s_{1}	s_{2}	s_{3}	RHS
z	1	4	3	2	5	$\frac{3}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	0	0	0	0
x_{1}	0	1	0	0	0	-1	0	0	0	0	0	5
x_{2}	0	0	1	0	0	1	-1	0	0	0	0	6
x_{3}	0	0	0	1	0	0	1	-1	0	0	0	8
x_{4}	0	0	0	0	1	0	0	1	0	0	0	6
s_{1}	0	0	0	0	0	1	0	0	1	0	0	10
s_{2}	0	0	0	0	0	0	1	0	0	1	0	10
s_{3}	0	0	0	0	0	0	0	1	0	0	1	10

Optimal Production Planning

- Subtract four times the row of x_{1} from row 0 , this way eliminating the reduced cost for x_{1} :

	z	x_{1}	x_{2}	x_{3}	x_{4}	r_{1}	r_{2}	r_{3}	s_{1}	s_{2}	s_{3}	RHS
z	1	0	3	2	5	$\frac{11}{2}$	$\frac{3}{2}$	$\frac{3}{2}$	0	0	0	-20
x_{1}	0	1	0	0	0	-1	0	0	0	0	0	5
x_{2}	0	0	1	0	0	1	-1	0	0	0	0	6
x_{3}	0	0	0	1	0	0	1	-1	0	0	0	8
x_{4}	0	0	0	0	1	0	0	1	0	0	0	6
s_{1}	0	0	0	0	0	1	0	0	1	0	0	10
s_{2}	0	0	0	0	0	0	1	0	0	1	0	10
s_{3}	0	0	0	0	0	0	0	1	0	0	1	10

- Note how the objective function value has changed!

Optimal Production Planning

- Similarly, cancel the reduced cost for x_{2}, x_{3}, and x_{4} by elementary row operations

	z	x_{1}	x_{2}	x_{3}	x_{4}	r_{1}	r_{2}	r_{3}	s_{1}	s_{2}	s_{3}	RHS
z	1	0	0	0	0	$\frac{5}{2}$	$\frac{5}{2}$	$-\frac{3}{2}$	0	0	0	-84
x_{1}	0	1	0	0	0	-1	0	0	0	0	0	5
x_{2}	0	0	1	0	0	1	-1	0	0	0	0	6
x_{3}	0	0	0	1	0	0	1	-1	0	0	0	8
x_{4}	0	0	0	0	1	0	0	1	0	0	0	6
s_{1}	0	0	0	0	0	1	0	0	1	0	0	10
s_{2}	0	0	0	0	0	0	1	0	0	1	0	10
s_{3}	0	0	0	0	0	0	0	1	0	0	1	10

- Primal feasible tableau, solve with the primal simplex
- Note the nonzero objective function in the initial tableau!

Optimal Production Planning

	z	x_{1}	x_{2}	x_{3}	x_{4}	r_{1}	r_{2}	r_{3}	s_{1}	s_{2}	s_{3}	RHS
z	1	0	0	0	$\frac{3}{2}$	$\frac{5}{2}$	$\frac{5}{2}$	0	0	0	0	-75
x_{1}	0	1	0	0	0	-1	0	0	0	0	0	5
x_{2}	0	0	1	0	0	1	-1	0	0	0	0	6
x_{3}	0	0	0	1	1	0	1	0	0	0	0	14
r_{3}	0	0	0	0	1	0	0	1	0	0	0	6
s_{1}	0	0	0	0	0	1	0	0	1	0	0	10
s_{2}	0	0	0	0	0	0	1	0	0	1	0	10
s_{3}	0	0	0	0	-1	0	0	0	0	0	1	4

- The quantity of items to be purchased in each month is 5,6 , and 14 tonnes, no purchase in the last month
- Stock is created only in the 3rd month, 6 tonnes
- The total cost is 75 million USD

Network Routing

- A subscriber wishes to transfer 2-2 units of traffic between points $A-B$ and $C-D$ in a telecommunications network
- The network service provider establishes a path P_{1} between $A-B$ and paths P_{2} and P_{3} between $C-D$
- The $A-B$ link capacity is 3 units, and 2 units for $C-D$
- Pricing is progressive: the first 1 unit of traffic through a link costs 1 unit, every additional unit costs 3 units

- Task: find the minimal cost assignment of traffic demands to paths

Network Routing

- Denote the quantity of traffic routed to paths P_{1}, P_{2}, and P_{3} by f_{1}, f_{2}, and f_{3}
- The demand is 2 units of flow between $A-B$ and 2 units between C - D

$$
f_{1} \geq 2, \quad f_{2}+f_{3} \geq 2
$$

- Denote the total load at each link by l_{1} and l_{2}, these must satisfy the capacity constraints

$$
l_{1}=f_{1}+f_{2} \leq 3, \quad l_{2}=f_{3} \leq 2
$$

- Let the price of traffic routed to each link be c_{1} and c_{2}

$$
c_{i}=\left\{\begin{array}{ll}
l_{i} & \text { if } l_{i} \leq 1 \\
1+3\left(l_{i}-1\right) & \text { if } l_{i}>1
\end{array} \quad i \in\{1,2\}\right.
$$

- Task is to minimize $c_{1}+c_{2}$: nonlinear objective function!

Network Routing

- Trick: linearize the objective function

- Piecewise linear objective function
- Approximate piecewise

$$
\begin{gathered}
\min c_{i} \\
c_{i} \geq l_{i} \\
c_{i} \geq 3 l_{i}-2
\end{gathered}
$$

- The smallest possible cost by minimization
- The piecewise objective is convex: we can use linear programming

Network Routing

- The linear program:

$$
\begin{array}{ccl}
\min & c_{1}+c_{2} & \\
\text { s.t. } & f_{1}+f_{2} & \leq 3 \\
& f_{3} & \leq 2 \\
& f_{1}+f_{2}-c_{1} & \leq 0 \\
3 f_{1}+3 f_{2}-c_{1} & \leq 2 \\
& f_{3}-c_{2} & \leq 0 \\
3 f_{3}-c_{2} & \leq 2 \\
f_{1} & \geq 2 \\
& f_{2}+f_{3} & \geq 2 \\
& f_{1}, f_{2}, f_{3}, c_{1}, c_{2}, & \geq 0
\end{array}
$$

Network Routing

- Standard form: slack variables constitute an initial basis
- Converting to maximization and inverting the last two constraints we get a dual feasible initial basis
- Use the dual simplex!

	z	f_{1}	f_{2}	f_{3}	c_{1}	c_{2}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}	s_{8}	RHS
z	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0
s_{1}	0	1	1	0	0	0	1	0	0	0	0	0	0	0	3
s_{2}	0	0	0	1	0	0	0	1	0	0	0	0	0	0	2
s_{3}	0	1	1	0	-1	0	0	0	1	0	0	0	0	0	0
s_{4}	0	3	3	0	-1	0	0	0	0	1	0	0	0	0	2
s_{5}	0	0	0	1	0	-1	0	0	0	0	1	0	0	0	0
s_{6}	0	0	0	3	0	-1	0	0	0	0	0	1	0	0	2
s_{7}	0	-1	0	0	0	0	0	0	0	0	0	0	1	0	-2
s_{8}	0	0	-1	-1	0	0	0	0	0	0	0	0	0	1	-2

Network Routing

- The optimal tableau:

	z	f_{1}	f_{2}	f_{3}	c_{1}	c_{2}	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}	s_{8}	RHS
z	1	0	0	0	0	0	0	0	0	1	0	1	3	3	-8
s_{1}	0	0	0	0	0	0	1	0	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	1	1	0
s_{2}	0	0	0	0	0	0	0	1	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	0	1
s_{3}	0	0	0	0	0	0	0	0	1	-1	1	-1	-2	-2	4
c_{1}	0	0	0	0	1	0	0	0	0	-1	$\frac{3}{2}$	$-\frac{3}{2}$	-3	-3	7
c_{2}	0	0	0	0	0	1	0	0	0	0	$-\frac{3}{2}$	$\frac{1}{2}$	0	0	1
f_{2}	0	0	1	0	0	0	0	0	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	-1	1
f_{1}	0	1	0	0	0	0	0	0	0	0	0	0	-1	0	2
f_{3}	0	0	0	1	0	0	0	0	0	0	$-\frac{1}{2}$	$\frac{1}{2}$	0	0	1

- Route 2 unit to path P_{1} and route 1 unit to each of the paths P_{2} and P_{3}
- The total cost is 8 units

