Duality in Linear Programming: A Summary

WARNING: this is just a summary of the material covered in the full slide-deck Duality in Linear Programming that will orient you as per the topics covered there; you are required to learn the full version, not just this summary!

- The dual of a linear program: motivation
- Formal definition, the Karush-Kuhn-Tucker (KKT) conditions (optional)
- Primal-dual relationships, the Weak and the Strong Duality Theorems
- The Farkas Lemma (optional)

Linear Programming Duality: Motivation

- Consider the below linear program

$$
z=\begin{array}{ccc}
\max & x_{1}+2 x_{2}-x_{3} \\
\text { s.t. } & 3 x_{1}+2 x_{2} & +x_{3} \leq 12 \\
& -x_{1} & \\
& & -x_{3} \leq \\
& x_{1}, & x_{2}, \\
& x_{3} \geq 0
\end{array}
$$

- We give upper bounds for the objective function
- Since variables are nonnegative, the first constraint is immediately an upper bound

$$
z=x_{1}+2 x_{2}-x_{3} \leq 3 x_{1}+2 x_{2}+x_{3} \leq 12
$$

- Since component-wise $x_{1} \leq 3 x_{1}, 2 x_{2} \leq 2 x_{2}$, and $-x_{3} \leq x_{3}$
- Is there any tighter upper bound?

Linear Programming Duality: Motivation

- Summing the two constraints
- Yields the tighter bound $z=x_{1}+2 x_{2}-x_{3} \leq 2 x_{1}+2 x_{2} \leq 9$
- Even tighter bound is obtained if we add two times the second constraint to the first one:
$z=x_{1}+2 x_{2}-x_{3} \leq(3-2 * 1) x_{1}+(2-2 * 0) x_{2}+(1-2 * 1) x_{3} \leq 6$
- This is the tightest possible bound, since the optimal objective function value is $z=6$

Linear Programming Duality: Motivation

- In fact, for any $w_{1} \geq 0$ and $w_{2} \geq 0$ for which the expression

$$
w_{1}\left(3 x_{1}+2 x_{2}+x_{3}\right)+w_{2}\left(-x_{1}-x_{3}\right) \leq 12 w_{1}-3 w_{2}
$$

component-wise upper bounds the objective function $z=x_{1}+2 x_{2}-x_{3}$, that is, for which

$$
3 w_{1}-w_{2} \geq 1, \quad 2 w_{1} \geq 2, \quad \text { and } \quad w_{1}-w_{2} \geq-1
$$

holds, we get a new upper bound:
$z=x_{1}+2 x_{2}-x_{3} \leq w_{1}\left(3 x_{1}+2 x_{2}+x_{3}\right)+w_{2}\left(-x_{1}-x_{3}\right)$

- $w_{1} \geq 0$ and $w_{2} \geq 0$ needed, otherwise the sign would change
- The tightest bound is the one for which $12 w_{1}+(-3) w_{2}$ is minimal

Linear Programming Duality: Motivation

- Yields another linear program: the dual linear program:

$$
\begin{array}{cccc}
\min & 12 w_{1}-3 w_{2} & \\
\text { s.t. } & 3 w_{1}-w_{2} & \geq 1 \\
& 2 w_{1} & & \geq 2 \\
& w_{1}-w_{2} & \geq-1 \\
& w_{1}, & & w_{2}
\end{array}
$$

- To distinguish, the original linear program will be called the primal
- For the primal max $\left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$ we get the dual $\min \left\{\boldsymbol{w}^{T} \boldsymbol{b}: \boldsymbol{w}^{T} \boldsymbol{A} \geq \boldsymbol{c}^{T}, \boldsymbol{w}^{T} \geq \mathbf{0}\right\}$
- Interestingly, the dual optimal solution is also 6
- In fact this is guaranteed to hold and, what is more, there are very deep relationships between the primal and the dual

The Dual Linear Program

- Theorem: given a linear program as a maximization problem in the standard form

$$
\begin{aligned}
& \max \boldsymbol{c}^{T} \boldsymbol{x} \\
& \text { s.t. } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{aligned}
$$

the dual is the standard form minimization problem

$$
\begin{aligned}
& \min \boldsymbol{w}^{T} \boldsymbol{b} \\
& \text { s.t. } \boldsymbol{w}^{T} \boldsymbol{A}-\boldsymbol{v}^{T}=\boldsymbol{c}^{T} \\
& \qquad \boldsymbol{v}^{T} \geq \mathbf{0}, \boldsymbol{w}^{T} \text { arbitrary }
\end{aligned}
$$

- One dual variable for each constraint of the primal and one dual constraint for each variable of the primal

The Dual Linear Program

- The variables \boldsymbol{v}^{T} and \boldsymbol{w}^{T} are called dual variables (or Lagrangean multipliers)
- The dual variables $\boldsymbol{w}^{T}=\left[\begin{array}{llll}w_{1} & w_{2} & \ldots & w_{m}\end{array}\right]$ correspond to the primal constraints $\boldsymbol{A x}=\boldsymbol{b}$: for every constraint $\boldsymbol{a}^{i} \boldsymbol{x}=b_{i}$ there is a dual variable w_{i}, precisely m
- The dual variables $\boldsymbol{v}^{T}=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$ correspond to the nonnegativity constraints for the primal variables x : for every constraint $x_{j} \geq 0$ there is a dual variable v_{j}, exactly n
- In fact, \boldsymbol{v}^{T} act as slack-variables that we can as well omit

$$
\begin{aligned}
& \min \boldsymbol{w}^{T} \boldsymbol{b} \\
& \text { s.t. } \boldsymbol{w}^{T} \boldsymbol{A} \geq \boldsymbol{c}^{T} \\
& \quad \boldsymbol{w}^{T} \text { arbitrary }
\end{aligned}
$$

The Primal and the Dual: Canonical Form

- In general, the primal and dual in canonical form:
$P: \max \boldsymbol{c}^{T} \boldsymbol{x}$

$$
\begin{gathered}
\text { s.t. } \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\
\boldsymbol{x} \geq \mathbf{0}
\end{gathered}
$$

$D: \min \boldsymbol{w}^{T} \boldsymbol{b}$

$$
\begin{aligned}
& \text { s.t. } \boldsymbol{w}^{T} \boldsymbol{A} \geq \boldsymbol{c}^{T} \\
& \qquad \boldsymbol{w}^{T} \geq \mathbf{0}
\end{aligned}
$$

The Dual Linear Program

Maximization problem

Minimization
problem

The Dual Linear Program

	Primal	Dual
Standard form	max $\boldsymbol{c}^{T} \boldsymbol{x}$	$\min \boldsymbol{w}^{T} \boldsymbol{b}$
	s.t. $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$	s.t. $\boldsymbol{w}^{T} \boldsymbol{A} \geq \boldsymbol{c}^{T}$
$\boldsymbol{x} \geq \mathbf{0}$	\boldsymbol{w}^{T} arbitrary	
Canonical form	max $\boldsymbol{c}^{T} \boldsymbol{x}$	$\min \boldsymbol{w}^{T} \boldsymbol{b}$
	s.t. $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$	s.t. $\boldsymbol{w}^{T} \boldsymbol{A} \geq \boldsymbol{c}^{T}$
$\boldsymbol{x} \geq \mathbf{0}$	$\boldsymbol{w}^{T} \geq \mathbf{0}$	

Primal-Dual Relationships

- Theorem: the dual of the dual linear program is the primal
- The Weak Duality Theorem: the objective function value for any feasible solution for the primal maximization problem is less than, or equal to the objective function value for any feasible solution for the dual minimization problem
- Note the importance of the any quantification: any primalfeasible \boldsymbol{x} gives a lower bound $\boldsymbol{c}^{T} \boldsymbol{x}$ for the dual, and of course any dual-feasible \boldsymbol{w}^{T} gives an upper bound $\boldsymbol{w}^{T} \boldsymbol{b}$ for the primal
- Corollaries:
- if \boldsymbol{x} is primal-feasible, \boldsymbol{w}^{T} is dual-feasible, and $\boldsymbol{c}^{T} \boldsymbol{x}=\boldsymbol{w}^{T} \boldsymbol{b}$, then \boldsymbol{x} is optimal in the primal and \boldsymbol{w}^{T} is optimal in the dual
- if the primal is unbounded then the dual is infeasible and vice versa

Primal-Dual Relationships

- The Strong Duality Theorem: for the primal-dual pair of linear programs exactly one of the below claims holds true
- the primal has an optimal solution $\overline{\boldsymbol{x}}$ and the dual also has an optimal solution $\overline{\boldsymbol{w}}^{T}$, and $\boldsymbol{c}^{T} \overline{\boldsymbol{x}}=\overline{\boldsymbol{w}}^{T} \boldsymbol{b}$
- one of the problems is unbounded and therefore the other is infeasible
- neither problem is feasible

P optimal
P unbounded \Longrightarrow
D unbounded \Longrightarrow
P infeasible $\quad \Longrightarrow$
D infeasible $\quad \Longrightarrow$

D optimal
D infeasible
P infeasible
D unbounded or infeasible
P unbounded or infeasible

Duality: Example

- Solve the below linear program

$$
\begin{array}{lrlll}
\max & -5 x_{1} & -2 x_{2} & -x_{3} & \\
\text { s.t. } & -x_{1} & -2 x_{2} & & \leq 1 \\
& -2 x_{1} & -2 x_{2} & & \leq 3 \\
& -5 x_{1} & +x_{2}-x_{3} & \leq-5 \\
& 5 x_{1} & +3 x_{2}-x_{3} \leq-2 \\
& x_{1}, & & x_{2}, & x_{3}
\end{array}
$$

- In standard form:

$$
\begin{array}{ccccccccl}
\max & -5 x_{1} & -2 x_{2} & -x_{3} & & & & & \\
\text { s.t. } & -x_{1} & -2 x_{2} & & +x_{4} & & & & =1 \\
& -2 x_{1} & -2 x_{2} & & & +x_{5} & & & =3 \\
& -5 x_{1} & +x_{2} & -x_{3} & & & +x_{6} & & =-5 \\
& 5 x_{1} & +3 x_{2} & -x_{3} & & & & +x_{7} & =-2 \\
& x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}, & x_{6}, & x_{7} & \geq 0
\end{array}
$$

Duality: Example

- Find an initial feasible basis
- The trivial choice would be to choose the columns of the slack variables into the initial basis, in particular if $B=\left\{x_{4}, x_{5}, x_{6}, x_{7}\right\}$ then $\boldsymbol{B}=\boldsymbol{B}^{-1}=\boldsymbol{I}_{4}$
- Unfortunately, this trivial basis is not (primal) feasible, since $\bar{b}=\boldsymbol{B}^{-1} \boldsymbol{b}=\boldsymbol{b} \nsupseteq \mathbf{0}$
- Let us write the dual, in the hope that it will be easier to find an initial basis for that

$$
\begin{array}{lrllll}
\min & w_{1} & +3 w_{2} & -5 w_{3} & -2 w_{4} \\
\text { s.t. } & -w_{1} & -2 w_{2} & -5 w_{3}+5 w_{4} & \geq-5 \\
& -2 w_{1} & -2 w_{2} & +w_{3}+3 w_{4} \geq-2 \\
& & -w_{3}- & w_{4} \geq-1 \\
& w_{1}, & & w_{2}, & w_{3}, & w_{4} \geq 0
\end{array}
$$

Duality: Example

- Converting to standard form and rewriting the objective as a maximization problem (note to ourselves: we'll need to invert the resultant objective function due to the $\min \Rightarrow \max$ conversion!)

$$
\begin{aligned}
& \max \quad-w_{1} \quad-3 w_{2}+5 w_{3}+2 w_{4} \\
& \text { s.t. } \quad-w_{1} \quad-2 w_{2} \quad-5 w_{3} \quad+5 w_{4} \quad-w_{5} \\
& \begin{array}{cccccccc}
-2 w_{1} & -2 w_{2} & +w_{3} & +3 w_{4} & & -w_{6} & & =-2 \\
& & -w_{3} & -w_{4} & & & -w_{7} & =-1 \\
w_{1}, & w_{2}, & w_{3} & w_{4}, & w_{5}, & w_{6}, & w_{7} & \geq
\end{array}
\end{aligned}
$$

- The slack variables form an initial feasible basis, as

$$
\boldsymbol{B}=\boldsymbol{B}^{-1}=-\boldsymbol{I}_{3} \text { and } \boldsymbol{B}^{-1} \boldsymbol{b}=\left[\begin{array}{l}
5 \\
2 \\
1
\end{array}\right] \geq \mathbf{0}
$$

- Use the (primal) simplex from here (invert all constraints!)

Duality: Example

- The initial simplex tableau:

	z	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	w_{7}	RHS
z	1	1	3	-5	-2	0	0	0	0
w_{5}	0	1	2	5	-5	1	0	0	5
w_{6}	0	2	2	-1	-3	0	1	0	2
w_{7}	0	0	0	1	1	0	0	1	1

- Recall the pivot rules
- optimality condition: $z_{k}=\min _{j \in N} z_{j} \geq 0$
- k enters the basis, if $k=\operatorname{argmin}_{j \in N} z_{j}$
- r leaves the basis, if $r=\underset{i \in\{1, \ldots, m\}}{\operatorname{argmin}}\left\{\frac{\bar{b}_{i}}{y_{i k}}: y_{i k}>0\right\}$
- So w_{3} enters and $w_{5}\left(\right.$ or $\left.w_{7}\right)$ leaves the basis

Duality: Example

- After the first pivot

	z	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	w_{7}	RHS
z	1	2	5	0	-7	1	0	0	5
w_{3}	0	$\frac{1}{5}$	$\frac{2}{5}$	1	-1	$\frac{1}{5}$	0	0	1
w_{6}	0	$\frac{11}{5}$	$\frac{12}{5}$	0	-4	$\frac{1}{5}$	1	0	3
w_{7}	0	$-\frac{1}{5}$	$-\frac{2}{5}$	0	2	$-\frac{1}{5}$	0	1	0

- w_{4} enters and w_{7} leaves the basis, and so on
- The optimal dual solution: $\boldsymbol{w}^{T}=\left[\begin{array}{lllllll}0 & 0 & 1 & 0 & 0 & 3 & 0\end{array}\right]$
- The optimal objective function value is -5 , since we must invert the result due to the $\min \Rightarrow$ max objective function conversion
- This is the optimum of the primal as well (Strong Theorem)

