
Duality in Linear Programming

• The dual of a linear program: motivation

• Formal definition, the Karush-Kuhn-Tucker (KKT) conditions

• Primal–dual relationships, the Weak and the Strong Duality
Theorems

• The Farkas Lemma
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Linear Programming Duality: Motivation

• Consider the below linear program

z = max x1 + 2x2 − x3

s.t. 3x1 + 2x2 + x3 ≤ 12
−x1 − x3 ≤ −3
x1, x2, x3 ≥ 0

• We give upper bounds for the objective function

• Since variables are nonnegative, the first constraint is
immediately an upper bound

z = x1 + 2x2 − x3 ≤ 3x1 + 2x2 + x3 ≤ 12

• Since component-wise x1 ≤ 3x1, 2x2 ≤ 2x2, and −x3 ≤ x3

• Is there any tighter upper bound?
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Linear Programming Duality: Motivation

• Summing the two constraints

z = x1 + 2x2 − x3

3x1 + 2x2 + x3 ≤ 12
⊕ −x1 − x3 ≤ −3

2x1 + 2x2 + 0x3 ≤ 9

• Yields the tighter bound z = x1 +2x2− x3 ≤ 2x1+2x2 ≤ 9

• Even tighter bound is obtained if we add two times the
second constraint to the first one:

z = x1+2x2−x3 ≤ (3−2∗1)x1+(2−2∗0)x2+(1−2∗1)x3 ≤ 6

• This is the tightest possible bound, since the optimal
objective function value is z = 6
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Linear Programming Duality: Motivation

• In fact, for any w1 ≥ 0 and w2 ≥ 0 for which the expression

w1 (3x1 + 2x2 + x3) + w2 (−x1 − x3)

component-wise upper bounds the objective function
z = x1 + 2x2 − x3, that is, for which

3w1 − w2 ≥ 1, 2w1 ≥ 2, and w1 − w2 ≥ −1

holds, we get a new upper bound:

z = x1 + 2x2 − x3 ≤ w1 (3x1 + 2x2 + x3) + w2 (−x1 − x3)

• w1 ≥ 0 and w2 ≥ 0 needed, otherwise the sign would
change

• The tightest bound is the one for which 12w1 + (−3)w2 is

minimal
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Linear Programming Duality: Motivation

• Yields another linear program: the dual linear program:

min 12w1 − 3w2

s.t. 3w1 − w2 ≥ 1
2w1 ≥ 2
w1 − w2 ≥ −1
w1, w2 ≥ 0

• To distinguish, the original linear program will be called the
primal

• Interestingly, the dual optimal solution is also 6

• In fact this is guaranteed to hold and, what is more, there
are very deep relationships between the primal and the dual
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The Dual Linear Program

• Theorem: given a linear program as a maximization
problem in the standard form

max c
T
x

s.t. Ax = b

x ≥ 0

the dual is the standard form minimization problem

min w
T
b

s.t. wT
A− v

T = c
T

v
T ≥ 0, wT arbitrary

• One dual variable for each constraint of the primal and one
dual constraint for each variable of the primal
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The Dual Linear Program

• The variables v
T and w

T are called dual variables (or
Lagrangean multiplers)

• The dual variables w
T = [w1 w2 . . . wm] correspond to

the primal constraints Ax = b: for every constraint

a
i
x = bi there is a dual variable wi, precisely m

• The dual variables v
T = [v1 v2 . . . vn] correspond to the

nonnegativity constraints for the primal variables x: for
every constraint xj ≥ 0 there is a dual variable vj , exactly n

• In fact, vT act as slack-variables that we can as well omit

min w
T
b

s.t. wT
A ≥ c

T

w
T arbitrary
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The Dual Linear Program: Example

• Obtain the dual of the canonical form linear program:

P : max 6x1 + 8x2

s.t. 3x1 + x2 ≤ 4
5x1 + 2x2 ≤ 7
x1, x2 ≥ 0

• Converting to standard form by introducing slack variables

P : max 6x1 + 8x2

s.t. 3x1 + x2 + x3 = 4
5x1 + 2x2 + x4 = 7
x1, x2, x3, x4 ≥ 0
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The Dual Linear Program: Example

• Two primal constraints, so in the dual there will be two dual

variables: wT =
[
w1 w2

]

• Dual variables v
T will be handled as slack-variables

• The dual objective function is minwT
b = min bTw, where

b
T =

[
4 7

]

min 4w1 + 7w2

• One dual condition for each primal variable

• The dual constraint for the primal variable x1: w
T
a1 ≥ c1,

where a1 is the column of A corresponding to x1 (the first
column) and c1 is the objective coefficient for x1

[
w1 w2

]
[
3
5

]

= 3w1 + 5w2 ≥ 6
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The Dual Linear Program: Example

• Similarly, the dual constraint for x2: w
T
a2 ≥ c2

[
w1 w2

]
[
1
2

]

= w1 + 2w2 ≥ 8

• For the slack variables we obtain the dual constraints in a
single step:

[
w1 w2

]
[
1 0
0 1

]

≥ 0 ≡ w1 ≥ 0, w2 ≥ 0

• The dual linear program:

D : min 4w1 + 7w2

s.t. 3w1 + 5w2 ≥ 6
w1 + 2w2 ≥ 8
w1, w2 ≥ 0
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The Dual Linear Program: Example

• The primal and the dual in canonical form:

max 6x1 + 8x2

s.t. 3x1 + x2 ≤ 4

5x1 + 2x2 ≤ 7

x1, x2 ≥ 0

min 4w1 + 7w2

s.t. 3w1 + 5w2 ≥ 6

w1 + 2w2 ≥ 8

w1, w2 ≥ 0

• In general, the primal in dual in canonical form:

P : max c
T
x

s.t. Ax ≤ b

x ≥ 0

D : min w
T
b

s.t.wT
A ≥ c

T

w
T ≥ 0
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The Dual Linear Program

• If there are constraints of the type (≤), (≥) and (=) in the

linear program

max c
T
x

s.t. A1x ≤ b1

A2x = b2

A3x ≥ b3

x ≥ 0

• In standard form:

max c
T
x

s.t. A1x + Ixs = b1

A2x = b2

A3x − Ixt = b3

x, xs, xt ≥ 0
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The Dual Linear Program

• Let w1
T be the dual variables corresponding to the primal

constraints A1x ≤ b1, w2
T to constraints A2x = b2, and

w3
T to A3x ≥ b3

min w1
T
b + w2

T
b2 + w3

T
b3

s.t. w1
T
A1 + w2

T
A2 + w3

T
A3 ≥ c

T

w1
T
I ≥ 0

−w3
T
I ≥ 0

w1
T , w2

T , w3
T tetszőleges

• Consequently, w1
T ≥ 0 and w3

T ≤ 0

• From the constraints of the primal problem

◦ of the type “≤” yield dual variables of the type “≥ 0”,

◦ of the type “≥” yield “≤ 0” variables, and

◦ of “=” type yield free dual variables (no sign restriction)
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The Dual Linear Program

Maximization
problem

Minimization
problem

C
o

n
s
tr

a
in

t

≥ ←→ ≤ 0

V
a
ri

a
b

le

≤ ←→ ≥ 0

= ←→ arbitrary

V
a
ri

a
b

le ≥ 0 ←→ ≥

C
o

n
s
tr

a
in

t

≤ 0 ←→ ≤

arbitrary ←→ =
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The Dual Linear Program: Example

• Write the dual for the below linear program

max 8x1 + 3x2

s.t. x1 − 6x2 ≥ 2
5x1 + 7x2 = −4
x1 ≤ 0

x2 ≥ 0

• The dual linear program

min 2w1 − 4w2

s.t. w1 + 5w2 ≤ 8
−6w1 + 7w2 ≥ 3

w1 ≤ 0
w2 arbitrary
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The Dual Linear Program

Primal Dual

Standard form

max c
T
x

s.t. Ax = b

x ≥ 0

min w
T
b

s.t.wT
A ≥ c

T

w
T arbitrary

Canonical form

max c
T
x

s.t. Ax ≤ b

x ≥ 0

min w
T
b

s.t.wT
A ≥ c

T

w
T ≥ 0
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The KKT Conditions

• Consider the primal–dual pair of linear programs:

P : max c
T
x

s.t. Ax = b

x ≥ 0

D : min w
T
b

s.t. wT
A− v

T = c
T

v
T ≥ 0, wT arbitrary

• Theorem: The Karush-Kuhn-Tucker (KKT) Optimality
Conditions: some x is an optimal solution to the primal

and some (wT ,vT ) is an optimal solution to the dual, if and

only if all the following conditions hold:

P: x is primal feasible: Ax = b,x ≥ 0

D: (wT ,vT ) is dual-feasible: wT
A− v

T = c
T ,vT ≥ 0

CS: complementary slackness conditions hold: vT
x = 0
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The KKT Conditions

• The (P) and (D) conditions are straight forward: these
require the primal and the dual solutions to be feasible

• Complementary slackness (CS) may need more explanation

• Factoring the (CS) conditions: vT
x =

∑n

j=1
vjxj = 0

• Since vj ≥ 0 and xj ≥ 0, this can only hold if for each

j ∈ {1, . . . , n} : vjxj = 0

• This gives a deep complementarity relation between the
optimal and primal and dual solutions:

vj > 0⇒ xj = 0

xj > 0⇒ vj = 0

• For instance, if vj is strictly positive in the optimal dual

solution, then the corresponding primal xj must be zero
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The KKT Conditions: Proof

• Proof: We prove only the following simpler claim: given a

primal linear program max{cTx : Ax = b,x ≥ 0}, if x is

an optimal basic feasible solution in the primal then there is

(vT ,wT ) that satisfies (P), (D) and (CS)

• So let x be an optimal basic feasible solution and let B be
the corresponding basis, and consider the simplex tableau

z xB xN RHS

z 1 0 cB
T
B

−1
N − cN

T
cB

T
B

−1
b row 0

xB 0 Im B
−1
N B

−1
b rows 1...m

• Note that cB
T
B

−1
N − cN

T ≥ 0 since the tableau is
optimal

• We use the optimal tableau to obtain the dual solution

– p. 19



The KKT Conditions: Proof

• Choose the dual variable v
T to the objective row of the

optimal simplex tableau and set wT as follows:

w
T = cB

T
B

−1
v
T = [ 0

︸ ︷︷ ︸
basic

cB
T
B

−1
N − cN

T

︸ ︷︷ ︸
nonbasic

] ≥ 0

• (P) holds since x is primal optimal by assumption

• (D) holds, since v
T ≥ 0 due to the optimality condition for

the tableau and c
T −w

T
A+ v

T = 0 because it holds
separately for both the basic and the nonbasic components:

cB
T −w

T
B + 0 = cB

T − cB
T
B

−1
B = 0 (basic)

cN
T −w

T
N + (cB

T
B

−1
N − cN

T ) =

−cB
T
B

−1
N + cB

T
B

−1
N = 0 (nonbasic)
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The KKT Conditions: Proof

• What remained to be done is to show that the
complementary slackness (CS) conditions also hold

• In fact, (CS) also holds, i.e., vT
x = 0, since

[
0 (cB

T
B

−1
N − cN

T )
]
[
xB

0

]

= 0

• Consequently, if x is a primal optimal basic feasible solution

then we can easily read the dual variables v
T and w

T from
the optimal tableau that satisfy the KKT conditions

• This sheds new light on the simplex method itself

• In fact, the simplex is an iterative algorithm to find a point
that satisfies the KKT conditions: (P) and (CS) hold in each
iteration and (D) is also satisfied at optimality

– p. 21



The KKT Conditions: Example

• Solve the below linear program using the KKT conditions

max x1 + 3x2 (1)

s.t. −x1 + 2x2 ≤ 4 (2)

x1 + x2 ≤ 4 (3)

x1, x2 ≥ 0 (4)

• Introduce x3, x4 slack variables to convert to standard form

• Find x primal and w
T =

[
w1 w2

]
, vT =

[
v1 v2 v3 v4

]

dual variables so that the KKT conditions hold

Ax = b, x ≥ 0 (P)

c
T −w

T
A+ v

T = 0, v
T ≥ 0 (D)

v
T
x = 0 (CS)
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The KKT Conditions: Example

• Consider the point x =
[
0 0 4 4

]T

◦ using (CS): xj > 0⇒ vj = 0, so v3 = v4 = 0

◦ writing (D) for the slack variables: cT −w
T
A+ v

T = 0

0− w1 + 0 = 0

0− w2 + 0 = 0

◦ from this we get w1 = w2 = 0

◦ writing (D) for x1 and x2 and using that vT ≥ 0

1 + w1 − w2 ≤ 0

3− 2w1 − w2 ≤ 0

◦ contradiction since w1 = w2 = 0, so x is not optimal
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The KKT Conditions: Example

• Now choose x = [4
3

8

3
]T

◦ x1 =
4

3
> 0⇒ v1 = 0, and x2 =

8

3
> 0⇒ v2 = 0

◦ the first to rows of (D) (that correspond to x1 and x2)

w
T

[
−1 2
1 1

]

= [1 3]

◦ from this: wT = [2
3

5

3
]

◦ using the rest of (D):

v3 = w1 =
2

3
, v4 = w2 =

5

3

◦ the KKT conditions hold, so

x = [4
3

8

3
]T is optimal

1

2

3

1 2 3 x
1

x
2

[4 0]T

[0 0]T

[0 2]T

4

x
1 + x

2  
 4
�

-x 1
+ 2x 2

  4�
c

[4/3 8/3]T
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The Geometry of the KKT Conditions

c

c

c

c

• Geometrically, x = [4
3

8

3
]T is the only point where

c
T = [1 3] can be written as the nonnegative combination

of the gradients (normal vectors) of the tight constraints
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Primal–dual Relationships

• Theorem: the dual of the dual linear program is the primal

• Proof: the dual for the canonical form:

P : max c
T
x

s.t. Ax ≤ b

x ≥ 0

D : min w
T
b

s.t.wT
A ≥ c

T

w
T ≥ 0

≡

−max − b
T
w

s.t.−A
T
w ≤ −c

w ≥ 0

• Taking the dual D2 of D:

D2 : −min − x
T
c

s.t.− x
T
A

T ≥ −bT

x
T ≥ 0

≡

max c
T
x

s.t. Ax ≤ b

x ≥ 0
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Primal–dual Relationships

• Consider the primal–dual pair of linear programs in
canonical form:

P : max c
T
x

s.t. Ax ≤ b

x ≥ 0

D : min w
T
b

s.t.wT
A ≥ c

T

w
T ≥ 0

• Let x be primal-feasible and let wT be dual-feasible

◦ multiply the primal constraint Ax ≤ b from the left by

w
T ≥ 0: wT

Ax ≤ w
T
b

◦ multiply the dual constraint wT
A ≥ c

T from the right by

x ≥ 0: wT
Ax ≥ c

T
x

• Then,

c
T
x ≤ w

T
Ax ≤ w

T
b
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The Weak Duality Theorem

• Theorem: the objective function value for any feasible
solution for the primal maximization problem is less than, or
equal to the objective function value for any feasible
solution for the dual minimization problem

• Proof: using the above: cTx ≤ w
T
Ax ≤ w

T
b

• Note the importance of the any quantification: any primal-

feasible x gives a lower bound c
T
x for the dual, and of

course any dual-feasible w
T gives an upper bound w

T
b for

the primal

• Corollaries:

◦ if x is primal-feasible, wT is dual-feasible, and

c
T
x = w

T
b, then x is optimal in the primal and w

T is
optimal in the dual

◦ if the primal is unbounded then the dual is infeasible and
vice versa
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Weak Duality: Example

• Consider the previous example:

P : max 6x1 +8x2

s.t. 3x1 + x2 ≤ 4
5x1 +2x2 ≤ 7
x1, x2 ≥ 0

D : min 4w1 +7w2

s.t. 3w1 +5w2 ≥ 6
w1 +2w2 ≥ 8
w1, w2 ≥ 0

• Choose some primal and dual solution

◦ let x = [1
6

3]T and w
T = [2 3]

◦ then, cTx = 25 and w
T
b = 29, and so for the optimal

solution x̄ =
[
x̄1 x̄2

]
of the primal we have the bounds:

25 ≤ 6x̄1 + 8x̄2 ≤ 29

◦ same applies to the dual
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A Note on Weak Duality

• If the primal is unbounded then the dual is infeasible

• Similarly, if the dual is unbounded than the primal is
infeasible

• This does not hold in the reverse direction: from the
infeasibility of the primal it does not follow that the dual is
unbounded (nor the other way around)

• For instance, the below primal–dual pair of linear programs
are both infeasible

P : max 8x1 + 3x2

s.t. x1 − 6x2 ≥ 2
5x1 + 7x2 = −4
x1 ≤ 0

x2 ≥ 0

D : min 2w1 − 4w2

s.t. w1 + 5w2 ≤ 8
−6w1 + 7w2 ≥ 3

w1 ≤ 0
w2 arb.
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The Strong Duality Theorem

• Theorem: for the primal–dual pair of linear programs
exactly one of the below claims holds true

◦ the primal has an optimal solution x̄ and the dual also

has an optimal solution w̄
T , and c

T
x̄ = w̄

T
b

◦ one of the problems is unbounded and therefore the
other is infeasible

◦ neither problem is feasible

P optimal ⇐⇒ D optimal

P unbounded =⇒ D infeasible

D unbounded =⇒ P infeasible

P infeasible =⇒ D unbounded or infeasible

D infeasible =⇒ P unbounded or infeasible
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Duality: Example

• We can use the dual to solve the primal

min 2x1 + 3x2 + 5x3 + 2x4 + 3x5

s.t. x1 + x2 + 2x3 + x4 + 3x5 ≥ 4
2x1 − 2x2 + 3x3 + x4 + x5 ≥ 3
x1, x2, x3, x4, x5 ≥ 0

• Only two constraints: the dual has only two variables:

max 4w1 + 3w2

s.t. w1 + 2w2 ≤ 2
w1 − 2w2 ≤ 3
2w1 + 3w2 ≤ 5
w1 + w2 ≤ 2
3w1 + w2 ≤ 3
w1, w2, ≥ 0
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Duality: Example

• Solve the dual
graphically

• The optimal solution:

w̄
T = [4

5

3

5
] and z0 = 5

• We immediately know
that the primal optimum
is 5 by the Strong
Theorem

• We could also obtain
the primal solution itself

• We do not discuss that
here

1

2

3

1 2 3 w
1

w
2

4

3
w

1 +
 w

2  
 3
�

-2

-1

0

w 1 
- 2

w 2
 

 3�

w
1 +

 w
2  

 2
�

2w
1 + 3w

2  
 5
�

w
1
+ 2w

2
  2
�
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Duality: Example

• Solve the below linear program

max −5x1 − 2x2 − x3

s.t. −x1 − 2x2 ≤ 1
−2x1 − 2x2 ≤ 3
−5x1 + x2 − x3 ≤ −5
5x1 + 3x2 − x3 ≤ −2
x1, x2, x3 ≥ 0

• In standard form:

max −5x1 −2x2 −x3

s.t. −x1 −2x2 +x4 = 1
−2x1 −2x2 +x5 = 3
−5x1 +x2 −x3 +x6 = −5
5x1 +3x2 −x3 +x7 = −2
x1, x2, x3, x4, x5, x6, x7 ≥ 0
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Duality: Example

• Find an initial feasible basis

• The trivial choice would be to choose the columns of the
slack variables into the initial basis, in particular if

B = {x4, x5, x6, x7} then B = B
−1 = I4

• Unfortunately, this trivial basis is not (primal) feasible, since

b̄ = B
−1
b = b � 0

• Let us write the dual, in the hope that it will be easier to find
an initial basis for that

min w1 + 3w2 − 5w3 − 2w4

s.t. −w1 − 2w2 − 5w3 + 5w4 ≥ −5
−2w1 − 2w2 + w3 + 3w4 ≥ −2

− w3 − w4 ≥ −1
w1, w2, w3, w4 ≥ 0
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Duality: Example

• Converting to standard form and rewriting the objective as a
maximization problem (note to ourselves: we’ll need to
invert the resultant objective function due to the min⇒ max
conversion!)

max −w1 −3w2 +5w3 +2w4

s.t. −w1 −2w2 −5w3 +5w4 −w5 = −5
−2w1 −2w2 +w3 +3w4 −w6 = −2

−w3 −w4 −w7 = −1
w1, w2, w3 w4, w5, w6, w7 ≥ 0

• The slack variables form an initial feasible basis, as

B = B
−1 = −I3 and B

−1
b =

[
5
2
1

]

≥ 0

• We can use the (primal) simplex from here
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Duality: Example

• The initial simplex tableau:

z w1 w2 w3 w4 w5 w6 w7 RHS

z 1 1 3 −5 −2 0 0 0 0

w5 0 1 2 5 −5 1 0 0 5

w6 0 2 2 −1 −3 0 1 0 2

w7 0 0 0 1 1 0 0 1 1

• Recall the pivot rules

◦ optimality condition: zk = minj∈N zj ≥ 0

◦ k enters the basis, if k = argminj∈N zj

◦ r leaves the basis, if r = argmin
i∈{1,...,m}

{
b̄i

yik
: yik > 0

}

• So w3 enters and w5 (or w7) leaves the basis
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Duality: Example

• After the first pivot

z w1 w2 w3 w4 w5 w6 w7 RHS

z 1 2 5 0 −7 1 0 0 5

w3 0 1

5

2

5
1 −1 1

5
0 0 1

w6 0 11

5

12

5
0 −4 1

5
1 0 3

w7 0 −1

5
−2

5
0 2 −1

5
0 1 0

• w4 enters and w7 leaves the basis: degenerate pivot

z w1 w2 w3 w4 w5 w6 w7 RHS

z 1 13

10

18

5
0 0 3

10
0 7

2
5

w3 0 1

10

1

5
1 0 1

10
0 1

2
1

w6 0 9

5

8

5
0 0 −1

5
1 2 3

w4 0 − 1

10
−1

5
0 1 − 1

10
0 1

2
0
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Duality: Example

• The optimal dual solution: wT = [0 0 1 0 0 3 0]

• The objective function value is −5, since we must invert the
result due to the min⇒ max objective function conversion

• This is the optimum of the primal as well (Strong Theorem)

• For the optimal primal solution we need to work a bit, in that

we must calculate x = cB
T
B

−1

• Since B = {w3, w4, w6}, so B =

[
−5 5 0
1 3 −1
−1 −1 0

]

• From this: B−1 =

[
− 1

10
0 −1

2
1

10
0 −1

2
1

5
−1 −2

]

• Finally: x = cB
T
B

−1 = [ 3

10
0 7

2
]
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The Farkas Lemma

• Theorem: given matrix A (m× n) and vector b (column
m-vector), precisely one of the below claims hold:

1.) exists x so that Ax = b,x ≥ 0, or

2.) exists w
T so that wT

A ≥ 0 and w
T
b < 0

• Proof: consider the primal–dual pair of linear programs

P : max 0x

s.t. Ax = b

x ≥ 0

D : min w
T
b

s.t.wT
A ≥ 0

w
T arbitrary

• If (1) holds, i.e., when Ax = b,x ≥ 0 is feasible, then the
primal optimum is 0

• The primal optimum 0 is a lower bound for the dual objective

for any dual solution: 0 ≤ w
T
b (Weak Theorem)

• This contradicts w
T
b < 0, thus (2) cannot hold
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The Farkas Lemma

• The reverse direction: if (1) does not hold, i.e., when
Ax = b,x ≥ 0 is infeasible, then the primal (P) is infeasible

• Due to the Strong Theorem, the dual is either unbounded or
infeasible

• Observe that the dual is trivially feasible, since at least

w
T = 0 is a solution

• Thus, the dual in unbounded, so it is feasible and (2)
holds

• The Farkas lemma is a seemingly innocuous result, yet it
underlies basically the entire field of mathematical
programming

• This time we have proved the Farkas lemma using linear
programming duality

• We could have gone the other way around: in fact, the
Farkas lemma predates linear programming theory

– p. 41
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