Duality in Linear Programming

- The dual of a linear program: motivation
- Formal definition, the Karush-Kuhn-Tucker (KKT) conditions
- Primal-dual relationships, the Weak and the Strong Duality Theorems
- The Farkas Lemma

Linear Programming Duality: Motivation

- Consider the below linear program

$$
z=\begin{array}{ccc}
\max & x_{1}+2 x_{2}-x_{3} \\
\text { s.t. } & 3 x_{1}+2 x_{2} & +x_{3} \leq 12 \\
& -x_{1} & \\
& & -x_{3} \leq \\
& x_{1}, & x_{2}, \\
& x_{3} \geq 0
\end{array}
$$

- We give upper bounds for the objective function
- Since variables are nonnegative, the first constraint is immediately an upper bound

$$
z=x_{1}+2 x_{2}-x_{3} \leq 3 x_{1}+2 x_{2}+x_{3} \leq 12
$$

- Since component-wise $x_{1} \leq 3 x_{1}, 2 x_{2} \leq 2 x_{2}$, and $-x_{3} \leq x_{3}$
- Is there any tighter upper bound?

Linear Programming Duality: Motivation

- Summing the two constraints
- Yields the tighter bound $z=x_{1}+2 x_{2}-x_{3} \leq 2 x_{1}+2 x_{2} \leq 9$
- Even tighter bound is obtained if we add two times the second constraint to the first one:
$z=x_{1}+2 x_{2}-x_{3} \leq(3-2 * 1) x_{1}+(2-2 * 0) x_{2}+(1-2 * 1) x_{3} \leq 6$
- This is the tightest possible bound, since the optimal objective function value is $z=6$

Linear Programming Duality: Motivation

- In fact, for any $w_{1} \geq 0$ and $w_{2} \geq 0$ for which the expression

$$
w_{1}\left(3 x_{1}+2 x_{2}+x_{3}\right)+w_{2}\left(-x_{1}-x_{3}\right)
$$

component-wise upper bounds the objective function $z=x_{1}+2 x_{2}-x_{3}$, that is, for which

$$
3 w_{1}-w_{2} \geq 1, \quad 2 w_{1} \geq 2, \quad \text { and } \quad w_{1}-w_{2} \geq-1
$$

holds, we get a new upper bound:
$z=x_{1}+2 x_{2}-x_{3} \leq w_{1}\left(3 x_{1}+2 x_{2}+x_{3}\right)+w_{2}\left(-x_{1}-x_{3}\right)$

- $w_{1} \geq 0$ and $w_{2} \geq 0$ needed, otherwise the sign would change
- The tightest bound is the one for which $12 w_{1}+(-3) w_{2}$ is minimal

Linear Programming Duality: Motivation

- Yields another linear program: the dual linear program:

$$
\begin{array}{cccc}
\min & 12 w_{1}-3 w_{2} & \\
\text { s.t. } & 3 w_{1}-w_{2} & \geq 1 \\
& 2 w_{1} & & \geq 2 \\
& w_{1}-w_{2} & \geq-1 \\
& w_{1}, & w_{2} & \geq 0
\end{array}
$$

- To distinguish, the original linear program will be called the primal
- Interestingly, the dual optimal solution is also 6
- In fact this is guaranteed to hold and, what is more, there are very deep relationships between the primal and the dual

The Dual Linear Program

- Theorem: given a linear program as a maximization problem in the standard form

$$
\begin{aligned}
& \max \boldsymbol{c}^{T} \boldsymbol{x} \\
& \text { s.t. } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{aligned}
$$

the dual is the standard form minimization problem

$$
\begin{aligned}
& \min \boldsymbol{w}^{T} \boldsymbol{b} \\
& \text { s.t. } \boldsymbol{w}^{T} \boldsymbol{A}-\boldsymbol{v}^{T}=\boldsymbol{c}^{T} \\
& \qquad \boldsymbol{v}^{T} \geq \mathbf{0}, \boldsymbol{w}^{T} \text { arbitrary }
\end{aligned}
$$

- One dual variable for each constraint of the primal and one dual constraint for each variable of the primal

The Dual Linear Program

- The variables \boldsymbol{v}^{T} and \boldsymbol{w}^{T} are called dual variables (or Lagrangean multiplers)
- The dual variables $\boldsymbol{w}^{T}=\left[\begin{array}{llll}w_{1} & w_{2} & \ldots & w_{m}\end{array}\right]$ correspond to the primal constraints $\boldsymbol{A x}=\boldsymbol{b}$: for every constraint $\boldsymbol{a}^{i} \boldsymbol{x}=b_{i}$ there is a dual variable w_{i}, precisely m
- The dual variables $\boldsymbol{v}^{T}=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$ correspond to the nonnegativity constraints for the primal variables x : for every constraint $x_{j} \geq 0$ there is a dual variable v_{j}, exactly n
- In fact, \boldsymbol{v}^{T} act as slack-variables that we can as well omit

$$
\begin{aligned}
& \min \boldsymbol{w}^{T} \boldsymbol{b} \\
& \text { s.t. } \boldsymbol{w}^{T} \boldsymbol{A} \geq \boldsymbol{c}^{T} \\
& \quad \boldsymbol{w}^{T} \text { arbitrary }
\end{aligned}
$$

The Dual Linear Program: Example

- Obtain the dual of the canonical form linear program:

$$
\begin{array}{cl}
P: & \max \\
\text { s.t. } & 6 x_{1}+8 x_{2} \\
& 3 x_{1}+x_{2} \leq 4 \\
& 5 x_{1}+2 x_{2} \leq 7 \\
& x_{1}, \\
& x_{2} \geq 0
\end{array}
$$

- Converting to standard form by introducing slack variables

$$
\begin{array}{cl}
P: \max & 6 x_{1}+8 x_{2} \\
\text { s.t. } & 3 x_{1}+x_{2}+x_{3} \\
& 5 x_{1}+2 x_{2} \\
& x_{1}, \\
& x_{2}, \quad x_{3},
\end{array} \quad x_{4}=7
$$

The Dual Linear Program: Example

- Two primal constraints, so in the dual there will be two dual variables: $\boldsymbol{w}^{T}=\left[\begin{array}{ll}w_{1} & w_{2}\end{array}\right]$
- Dual variables \boldsymbol{v}^{T} will be handled as slack-variables
- The dual objective function is $\min \boldsymbol{w}^{T} \boldsymbol{b}=\min \boldsymbol{b}^{T} \boldsymbol{w}$, where $\boldsymbol{b}^{T}=\left[\begin{array}{ll}4 & 7\end{array}\right]$

$$
\min 4 w_{1}+7 w_{2}
$$

- One dual condition for each primal variable
- The dual constraint for the primal variable $x_{1}: \boldsymbol{w}^{T} \boldsymbol{a}_{\mathbf{1}} \geq c_{1}$, where $\boldsymbol{a}_{\boldsymbol{1}}$ is the column of \boldsymbol{A} corresponding to x_{1} (the first column) and c_{1} is the objective coefficient for x_{1}

$$
\left[\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=3 w_{1}+5 w_{2} \geq 6
$$

The Dual Linear Program: Example

- Similarly, the dual constraint for $x_{2}: \boldsymbol{w}^{T} \boldsymbol{a}_{\mathbf{2}} \geq c_{2}$

$$
\left[\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=w_{1}+2 w_{2} \geq 8
$$

- For the slack variables we obtain the dual constraints in a single step:

$$
\left[\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \geq 0 \equiv w_{1} \geq 0, w_{2} \geq 0
$$

- The dual linear program:

$$
\begin{array}{ccc}
D: & \min & 4 w_{1}+7 w_{2} \\
& \\
\text { s.t. } & 3 w_{1}+5 w_{2} \geq 6 \\
& w_{1}+2 w_{2} \geq 8 \\
& w_{1}, & w_{2} \geq 0
\end{array}
$$

The Dual Linear Program: Example

- The primal and the dual in canonical form:

$$
\begin{array}{rr}
\max 6 x_{1}+8 x_{2} & \min 4 w_{1}+7 w_{2} \\
\text { s.t. } 3 x_{1}+x_{2} \leq 4 & \text { s.t. } 3 w_{1}+5 w_{2} \geq 6 \\
5 x_{1}+2 x_{2} \leq 7 & w_{1}+2 w_{2} \geq 8 \\
x_{1}, \quad x_{2} \geq 0 & w_{1}, \quad w_{2} \geq 0
\end{array}
$$

- In general, the primal in dual in canonical form:

$$
\begin{aligned}
& P: \max \boldsymbol{c}^{T} \boldsymbol{x} \\
& \text { s.t. } \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{aligned}
$$

$$
D: \min \boldsymbol{w}^{T} \boldsymbol{b}
$$

$$
\begin{aligned}
& \text { s.t. } \boldsymbol{w}^{T} \boldsymbol{A} \geq \boldsymbol{c}^{T} \\
& \qquad \boldsymbol{w}^{T} \geq \mathbf{0}
\end{aligned}
$$

The Dual Linear Program

- If there are constraints of the type $(\leq),(\geq)$ and $(=)$ in the linear program

$$
\begin{aligned}
\max & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A}_{1} \boldsymbol{x} \leq \boldsymbol{b}_{1} \\
& \boldsymbol{A}_{2} \boldsymbol{x}=\boldsymbol{b}_{2} \\
& \boldsymbol{A}_{3} \boldsymbol{x} \geq \boldsymbol{b}_{3} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{aligned}
$$

- In standard form:

$$
\begin{array}{rlrl}
\max & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A}_{1} \boldsymbol{x}+\boldsymbol{I} \boldsymbol{x}_{\boldsymbol{s}} & & \\
& \boldsymbol{A}_{2} \boldsymbol{x} & & \boldsymbol{b}_{1} \\
& \boldsymbol{A}_{3} \boldsymbol{x} & & =\boldsymbol{b}_{2} \\
\boldsymbol{x}, & \boldsymbol{x}_{\boldsymbol{s}}, & \boldsymbol{I} \boldsymbol{x}_{\boldsymbol{t}} & =\boldsymbol{b}_{3} \\
& \boldsymbol{x}_{\boldsymbol{t}} & \geq \mathbf{0}
\end{array}
$$

The Dual Linear Program

- Let $\boldsymbol{w}_{1}{ }^{T}$ be the dual variables corresponding to the primal constraints $\boldsymbol{A}_{1} \boldsymbol{x} \leq \boldsymbol{b}_{1}, \boldsymbol{w}_{\mathbf{2}}{ }^{T}$ to constraints $\boldsymbol{A}_{2} \boldsymbol{x}=\boldsymbol{b}_{2}$, and $\boldsymbol{w}_{3}{ }^{T}$ to $\boldsymbol{A}_{3} \boldsymbol{x} \geq \boldsymbol{b}_{3}$

$$
\begin{aligned}
& \min \boldsymbol{w}_{1}{ }^{T} \boldsymbol{b}+\boldsymbol{w}_{2}{ }^{T} \boldsymbol{b}_{2}+\boldsymbol{w}_{\mathbf{3}}{ }^{T} \boldsymbol{b}_{3} \\
& \text { s.t. } \boldsymbol{w}_{1}{ }^{T} \boldsymbol{A}_{1}+\boldsymbol{w}_{2}{ }^{T} \boldsymbol{A}_{2}+\boldsymbol{w}_{3}{ }^{T} \boldsymbol{A}_{3} \geq \boldsymbol{c}^{T} \\
& \boldsymbol{w}_{1}{ }^{T} \boldsymbol{I} \\
& \boldsymbol{w}_{1}{ }^{T} \text {, } \\
& \boldsymbol{w}_{2}{ }^{T}, \quad \boldsymbol{w}_{3}
\end{aligned}
$$

- From the constraints of the primal problem
- of the type " \leq " yield dual variables of the type " ≥ 0 ",
- of the type " \geq " yield " ≤ 0 " variables, and
- of "=" type yield free dual variables (no sign restriction)

The Dual Linear Program

Maximization problem

Minimization
problem

The Dual Linear Program: Example

- Write the dual for the below linear program

$$
\left.\begin{array}{rrl}
\max & 8 x_{1}+3 x_{2} & \\
\text { s.t. } & x_{1}-6 x_{2} & \geq 2 \\
& 5 x_{1}+7 x_{2} & =-4 \\
& x_{1} & \\
& & x_{2}
\end{array}\right)
$$

- The dual linear program

$$
\begin{array}{rrll}
\min & 2 w_{1} & -4 w_{2} & \\
\text { s.t. } & w_{1} & +5 w_{2} & \leq 8 \\
& -6 w_{1} & +7 w_{2} & \geq 3 \\
& w_{1} & & \leq 0 \\
& & & w_{2}
\end{array} \text { arbitrary }
$$

The Dual Linear Program

	Primal	Dual
Standard form	max $\boldsymbol{c}^{T} \boldsymbol{x}$	$\min \boldsymbol{w}^{T} \boldsymbol{b}$
	s.t. $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$	s.t. $\boldsymbol{w}^{T} \boldsymbol{A} \geq \boldsymbol{c}^{T}$
$\boldsymbol{x} \geq \mathbf{0}$	\boldsymbol{w}^{T} arbitrary	
Canonical form	max $\boldsymbol{c}^{T} \boldsymbol{x}$	$\min \boldsymbol{w}^{T} \boldsymbol{b}$
	s.t. $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$	s.t. $\boldsymbol{w}^{T} \boldsymbol{A} \geq \boldsymbol{c}^{T}$
$\boldsymbol{x} \geq \mathbf{0}$	$\boldsymbol{w}^{T} \geq \mathbf{0}$	

The KKT Conditions

- Consider the primal-dual pair of linear programs:

$$
\begin{aligned}
& P: \max \boldsymbol{c}^{T} \boldsymbol{x} \\
& \text { s.t. } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \quad \boldsymbol{x} \geq \mathbf{0}
\end{aligned}
$$

$$
\begin{aligned}
& D: \min \boldsymbol{w}^{T} \boldsymbol{b} \\
& \qquad \begin{array}{l}
\text { s.t. } \\
\boldsymbol{w}^{T} \boldsymbol{A}-\boldsymbol{v}^{T}=\boldsymbol{c}^{T} \\
\\
\quad \boldsymbol{v}^{T} \geq \mathbf{0}, \boldsymbol{w}^{T} \text { arbitrary }
\end{array}
\end{aligned}
$$

- Theorem: The Karush-Kuhn-Tucker (KKT) Optimality Conditions: some \boldsymbol{x} is an optimal solution to the primal and some ($\boldsymbol{w}^{T}, \boldsymbol{v}^{T}$) is an optimal solution to the dual, if and only if all the following conditions hold:
P: \boldsymbol{x} is primal feasible: $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}$
$\mathrm{D}:\left(\boldsymbol{w}^{T}, \boldsymbol{v}^{T}\right)$ is dual-feasible: $\boldsymbol{w}^{T} \boldsymbol{A}-\boldsymbol{v}^{T}=\boldsymbol{c}^{T}, \boldsymbol{v}^{T} \geq \mathbf{0}$
CS: complementary slackness conditions hold: $\boldsymbol{v}^{T} \boldsymbol{x}=0$

The KKT Conditions

- The (P) and (D) conditions are straight forward: these require the primal and the dual solutions to be feasible
- Complementary slackness (CS) may need more explanation
- Factoring the (CS) conditions: $\boldsymbol{v}^{T} \boldsymbol{x}=\sum_{j=1}^{n} v_{j} x_{j}=0$
- Since $v_{j} \geq 0$ and $x_{j} \geq 0$, this can only hold if for each $j \in\{1, \ldots, n\}: v_{j} x_{j}=0$
- This gives a deep complementarity relation between the optimal and primal and dual solutions:

$$
\begin{aligned}
& v_{j}>0 \Rightarrow x_{j}=0 \\
& x_{j}>0 \Rightarrow v_{j}=0
\end{aligned}
$$

- For instance, if v_{j} is strictly positive in the optimal dual solution, then the corresponding primal x_{j} must be zero

The KKT Conditions: Proof

- Proof: We prove only the following simpler claim: given a primal linear program $\max \left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$, if \boldsymbol{x} is an optimal basic feasible solution in the primal then there is $\left(\boldsymbol{v}^{T}, \boldsymbol{w}^{T}\right)$ that satisfies (P), (D) and (CS)
- So let \boldsymbol{x} be an optimal basic feasible solution and let \boldsymbol{B} be the corresponding basis, and consider the simplex tableau

z	\boldsymbol{x}_{B}		x_{N}	RHS	row 0
	1	0	$\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}$	$\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{b}$	
$\boldsymbol{x}_{\text {B }}$	0	\boldsymbol{I}_{m}	$B^{-1} N$	$\boldsymbol{B}^{-1} b$	rows 1...m

- Note that $\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T} \geq \mathbf{0}$ since the tableau is optimal
- We use the optimal tableau to obtain the dual solution

The KKT Conditions: Proof

- Choose the dual variable \boldsymbol{v}^{T} to the objective row of the optimal simplex tableau and set \boldsymbol{w}^{T} as follows:
$\boldsymbol{w}^{T}=\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \quad \boldsymbol{v}^{T}=[\underbrace{\boldsymbol{0}}_{\text {basic }} \underbrace{\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}}_{\text {nonbasic }}] \geq \mathbf{0}$
- (P) holds since x is primal optimal by assumption
- (D) holds, since $\boldsymbol{v}^{T} \geq \mathbf{0}$ due to the optimality condition for the tableau and $\boldsymbol{c}^{T}-\boldsymbol{w}^{T} \boldsymbol{A}+\boldsymbol{v}^{T}=\mathbf{0}$ because it holds separately for both the basic and the nonbasic components:

$$
\begin{array}{r}
\boldsymbol{c}_{\boldsymbol{B}}^{T}-\boldsymbol{w}^{T} \boldsymbol{B}+\mathbf{0}=\boldsymbol{c}_{\boldsymbol{B}}^{T}-\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{B}=\mathbf{0} \\
\boldsymbol{c}_{\boldsymbol{N}}^{T}-\boldsymbol{w}^{T} \boldsymbol{N}+\left(\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}^{T}\right)= \\
-\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}+\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}=\mathbf{0} \tag{nonbasic}
\end{array}
$$

The KKT Conditions: Proof

- What remained to be done is to show that the complementary slackness (CS) conditions also hold
- In fact, (CS) also holds, i.e., $\boldsymbol{v}^{T} \boldsymbol{x}=0$, since

$$
\left.\left[\begin{array}{ll}
\mathbf{0} & \left(\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}\right.
\end{array}\right)\right]\left[\begin{array}{c}
\boldsymbol{x}_{\boldsymbol{B}} \\
\mathbf{0}
\end{array}\right]=0
$$

- Consequently, if \boldsymbol{x} is a primal optimal basic feasible solution then we can easily read the dual variables \boldsymbol{v}^{T} and \boldsymbol{w}^{T} from the optimal tableau that satisfy the KKT conditions
- This sheds new light on the simplex method itself
- In fact, the simplex is an iterative algorithm to find a point that satisfies the KKT conditions: (P) and (CS) hold in each iteration and (D) is also satisfied at optimality

The KKT Conditions: Example

- Solve the below linear program using the KKT conditions

$$
\begin{array}{cc}
\max & x_{1}+3 x_{2} \\
\text { s.t. } & -x_{1}+2 x_{2} \leq 4 \\
& x_{1}+x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0 \tag{4}
\end{array}
$$

- Introduce x_{3}, x_{4} slack variables to convert to standard form
- Find \boldsymbol{x} primal and $\boldsymbol{w}^{T}=\left[\begin{array}{ll}w_{1} & w_{2}\end{array}\right], \boldsymbol{v}^{T}=\left[\begin{array}{llll}v_{1} & v_{2} & v_{3} & v_{4}\end{array}\right]$ dual variables so that the KKT conditions hold

$$
\begin{align*}
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, & \boldsymbol{x} \geq \mathbf{0} \tag{P}\\
\boldsymbol{c}^{T}-\boldsymbol{w}^{T} \boldsymbol{A}+\boldsymbol{v}^{T}=\mathbf{0}, & \boldsymbol{v}^{T} \geq \mathbf{0} \tag{D}\\
\boldsymbol{v}^{T} \boldsymbol{x}=0 & \tag{CS}
\end{align*}
$$

The KKT Conditions: Example

- Consider the point $\boldsymbol{x}=\left[\begin{array}{llll}0 & 0 & 4 & 4\end{array}\right]^{T}$
- using (CS): $x_{j}>0 \Rightarrow v_{j}=0$, so $v_{3}=v_{4}=0$
- writing (D) for the slack variables: $\boldsymbol{c}^{T}-\boldsymbol{w}^{T} \boldsymbol{A}+\boldsymbol{v}^{T}=\mathbf{0}$

$$
\begin{aligned}
& 0-w_{1}+0=0 \\
& 0-w_{2}+0=0
\end{aligned}
$$

- from this we get $w_{1}=w_{2}=0$
- writing (D) for x_{1} and x_{2} and using that $\boldsymbol{v}^{T} \geq \mathbf{0}$

$$
\begin{gathered}
1+w_{1}-w_{2} \leq 0 \\
3-2 w_{1}-w_{2} \leq 0
\end{gathered}
$$

- contradiction since $w_{1}=w_{2}=0$, so \boldsymbol{x} is not optimal

The KKT Conditions: Example

- Now choose $\boldsymbol{x}=\left[\begin{array}{ll}\frac{4}{3} & \frac{8}{3}\end{array}\right]^{T}$
- $x_{1}=\frac{4}{3}>0 \Rightarrow v_{1}=0$, and $x_{2}=\frac{8}{3}>0 \Rightarrow v_{2}=0$
- the first to rows of (D) (that correspond to x_{1} and x_{2})

$$
\boldsymbol{w}^{T}\left[\begin{array}{rr}
-1 & 2 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 3
\end{array}\right]
$$

- from this: $\boldsymbol{w}^{T}=\left[\begin{array}{ll}\frac{2}{3} & \frac{5}{3}\end{array}\right]$
- using the rest of (D):

$$
v_{3}=w_{1}=\frac{2}{3}, v_{4}=w_{2}=\frac{5}{3}
$$

- the KKT conditions hold, so

$\boldsymbol{x}=\left[\begin{array}{ll}\frac{4}{3} & \frac{8}{3}\end{array}\right]^{T}$ is optimal

The Geometry of the KKT Conditions

- Geometrically, $\boldsymbol{x}=\left[\begin{array}{ll}\frac{4}{3} & \frac{8}{3}\end{array}\right]^{T}$ is the only point where $\boldsymbol{c}^{\boldsymbol{T}}=\left[\begin{array}{ll}1 & 3\end{array}\right]$ can be written as the nonnegative combination of the gradients (normal vectors) of the tight constraints

Primal-dual Relationships

- Theorem: the dual of the dual linear program is the primal
- Proof: the dual for the canonical form:

$$
\begin{array}{rcc}
P: \max \boldsymbol{c}^{T} \boldsymbol{x} & D: \min \boldsymbol{w}^{T} \boldsymbol{b} & -\max -\boldsymbol{b}^{T} \boldsymbol{w} \\
\text { s.t. } \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} & \text { s.t. } \boldsymbol{w}^{T} \boldsymbol{A} \geq \boldsymbol{c}^{T} \equiv & \text { s.t. }-\boldsymbol{A}^{T} \boldsymbol{w} \leq-\boldsymbol{c} \\
\boldsymbol{x} \geq \mathbf{0} & \boldsymbol{w}^{T} \geq \mathbf{0} & \boldsymbol{w} \geq \mathbf{0}
\end{array}
$$

- Taking the dual D^{2} of D :

$$
\begin{array}{cc}
D^{2}:-\min -\boldsymbol{x}^{T} \boldsymbol{c} & \max \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. }-\boldsymbol{x}^{T} \boldsymbol{A}^{T} \geq-\boldsymbol{b}^{T} \equiv & \text { s.t. } \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\
\boldsymbol{x}^{T} \geq \mathbf{0} & \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

Primal-dual Relationships

- Consider the primal-dual pair of linear programs in canonical form:

$$
\begin{array}{cc}
P: \quad \max \boldsymbol{c}^{T} \boldsymbol{x} & D: \quad \min \boldsymbol{w}^{T} \boldsymbol{b} \\
\text { s.t. } \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} & \text { s.t. } \boldsymbol{w}^{T} \boldsymbol{A} \geq \boldsymbol{c}^{T} \\
\boldsymbol{x} \geq \mathbf{0} & \boldsymbol{w}^{T} \geq \mathbf{0}
\end{array}
$$

- Let \boldsymbol{x} be primal-feasible and let \boldsymbol{w}^{T} be dual-feasible
- multiply the primal constraint $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ from the left by

$$
\boldsymbol{w}^{T} \geq \mathbf{0}: \boldsymbol{w}^{T} \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{w}^{T} \boldsymbol{b}
$$

- multiply the dual constraint $\boldsymbol{w}^{T} \boldsymbol{A} \geq \boldsymbol{c}^{T}$ from the right by

$$
\boldsymbol{x} \geq \mathbf{0}: \boldsymbol{w}^{T} \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{c}^{T} \boldsymbol{x}
$$

- Then,

$$
\boldsymbol{c}^{T} \boldsymbol{x} \leq \boldsymbol{w}^{T} \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{w}^{T} \boldsymbol{b}
$$

The Weak Duality Theorem

- Theorem: the objective function value for any feasible solution for the primal maximization problem is less than, or equal to the objective function value for any feasible solution for the dual minimization problem
- Proof: using the above: $\boldsymbol{c}^{T} \boldsymbol{x} \leq \boldsymbol{w}^{T} \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{w}^{T} \boldsymbol{b}$
- Note the importance of the any quantification: any primalfeasible \boldsymbol{x} gives a lower bound $\boldsymbol{c}^{T} \boldsymbol{x}$ for the dual, and of course any dual-feasible \boldsymbol{w}^{T} gives an upper bound $\boldsymbol{w}^{T} \boldsymbol{b}$ for the primal
- Corollaries:
- if \boldsymbol{x} is primal-feasible, \boldsymbol{w}^{T} is dual-feasible, and $\boldsymbol{c}^{T} \boldsymbol{x}=\boldsymbol{w}^{T} \boldsymbol{b}$, then \boldsymbol{x} is optimal in the primal and \boldsymbol{w}^{T} is optimal in the dual
- if the primal is unbounded then the dual is infeasible and vice versa

Weak Duality: Example

- Consider the previous example:

$$
\begin{array}{rlrl}
P: \quad \max 6 x_{1}+8 x_{2} & D: & \min 4 w_{1}+7 w_{2} \\
\text { s.t. } 3 x_{1}+x_{2} & \leq 4 & \text { s.t. } 3 w_{1}+5 w_{2} & \geq 6 \\
5 x_{1}+2 x_{2} & \leq 7 & w_{1}+2 w_{2} & \geq 8 \\
x_{1}, \quad x_{2} & \geq 0 & w_{1}, \quad w_{2} & \geq 0
\end{array}
$$

- Choose some primal and dual solution
- let $\boldsymbol{x}=\left[\begin{array}{ll}\frac{1}{6} & 3\end{array}\right]^{T}$ and $\boldsymbol{w}^{T}=\left[\begin{array}{ll}2 & 3\end{array}\right]$
- then, $\boldsymbol{c}^{T} \boldsymbol{x}=25$ and $\boldsymbol{w}^{T} \boldsymbol{b}=29$, and so for the optimal solution $\overline{\boldsymbol{x}}=\left[\begin{array}{ll}\bar{x}_{1} & \bar{x}_{2}\end{array}\right]$ of the primal we have the bounds:

$$
25 \leq 6 \bar{x}_{1}+8 \bar{x}_{2} \leq 29
$$

- same applies to the dual

A Note on Weak Duality

- If the primal is unbounded then the dual is infeasible
- Similarly, if the dual is unbounded than the primal is infeasible
- This does not hold in the reverse direction: from the infeasibility of the primal it does not follow that the dual is unbounded (nor the other way around)
- For instance, the below primal-dual pair of linear programs are both infeasible

$$
\begin{aligned}
& P: \max 8 x_{1}+3 x_{2} \quad D: \min 2 w_{1}-4 w_{2} \\
& \begin{aligned}
\text { s.t. } x_{1}-6 x_{2} & \geq 2 & \text { s.t. } w_{1}+5 w_{2} & \leq 8 \\
5 x_{1}+7 x_{2} & =-4 & & -6 w_{1}+7 w_{2}
\end{aligned} \frac{\geq 3}{} \begin{array}{rlrl}
& \leq 0 \\
x_{1} & \leq 0 & w_{1} & \\
x_{2} & \geq 0 & & w_{2}
\end{array}
\end{aligned}
$$

The Strong Duality Theorem

- Theorem: for the primal-dual pair of linear programs exactly one of the below claims holds true
- the primal has an optimal solution $\overline{\boldsymbol{x}}$ and the dual also has an optimal solution $\overline{\boldsymbol{w}}^{T}$, and $\boldsymbol{c}^{T} \overline{\boldsymbol{x}}=\overline{\boldsymbol{w}}^{T} \boldsymbol{b}$
- one of the problems is unbounded and therefore the other is infeasible
- neither problem is feasible

P optimal
P unbounded \Longrightarrow
D unbounded \Longrightarrow
P infeasible $\quad \Longrightarrow$
D infeasible $\quad \Longrightarrow \quad P$ unbounded or infeasible

D optimal
D infeasible
P infeasible
D unbounded or infeasible

Duality: Example

- We can use the dual to solve the primal

$$
\begin{array}{lr}
\min & 2 x_{1}+3 x_{2}+5 x_{3}+2 x_{4}+3 x_{5} \\
\text { s.t. } & x_{1}+x_{2}+2 x_{3}+x_{4}+3 x_{5} \geq 4 \\
& 2 x_{1}-2 x_{2}+3 x_{3}+x_{4}+x_{5} \geq 3 \\
& x_{1},
\end{array} x_{2}, \ldots x_{3}, x_{4}, \quad x_{5} \geq 0
$$

- Only two constraints: the dual has only two variables:

\max	$4 w_{1}$	$+3 w_{2}$
s.t.	w_{1}	$+2 w_{2} \leq 2$
	w_{1}	$-2 w_{2} \leq 3$
	$2 w_{1}+3 w_{2} \leq 5$	
	w_{1}	$+w_{2} \leq 2$
	$3 w_{1}$	$+w_{2} \leq 3$
	w_{1},	w_{2},

Duality: Example

- Solve the dual graphically
- The optimal solution: $\overline{\boldsymbol{w}}^{T}=\left[\begin{array}{cc}\frac{4}{5} & \frac{3}{5}\end{array}\right]$ and $z_{0}=5$
- We immediately know that the primal optimum is 5 by the Strong Theorem
- We could also obtain the primal solution itself
- We do not discuss that here

Duality: Example

- Solve the below linear program

$$
\begin{array}{lrlll}
\max & -5 x_{1} & -2 x_{2} & -x_{3} & \\
\text { s.t. } & -x_{1} & -2 x_{2} & & \leq 1 \\
& -2 x_{1} & -2 x_{2} & & \leq 3 \\
& -5 x_{1} & +x_{2}-x_{3} & \leq-5 \\
& 5 x_{1} & +3 x_{2}-x_{3} \leq-2 \\
& x_{1}, & & x_{2}, & x_{3}
\end{array}
$$

- In standard form:

$$
\begin{array}{ccccccccl}
\max & -5 x_{1} & -2 x_{2} & -x_{3} & & & & & \\
\text { s.t. } & -x_{1} & -2 x_{2} & & +x_{4} & & & & =1 \\
& -2 x_{1} & -2 x_{2} & & & +x_{5} & & & =3 \\
& -5 x_{1} & +x_{2} & -x_{3} & & & +x_{6} & & =-5 \\
& 5 x_{1} & +3 x_{2} & -x_{3} & & & & +x_{7} & =-2 \\
& x_{1}, & x_{2}, & x_{3}, & x_{4}, & x_{5}, & x_{6}, & x_{7} & \geq 0
\end{array}
$$

Duality: Example

- Find an initial feasible basis
- The trivial choice would be to choose the columns of the slack variables into the initial basis, in particular if $B=\left\{x_{4}, x_{5}, x_{6}, x_{7}\right\}$ then $\boldsymbol{B}=\boldsymbol{B}^{-1}=\boldsymbol{I}_{4}$
- Unfortunately, this trivial basis is not (primal) feasible, since $\bar{b}=\boldsymbol{B}^{-1} \boldsymbol{b}=\boldsymbol{b} \nsupseteq \mathbf{0}$
- Let us write the dual, in the hope that it will be easier to find an initial basis for that

$$
\begin{array}{lrllll}
\min & w_{1} & +3 w_{2} & -5 w_{3} & -2 w_{4} \\
\text { s.t. } & -w_{1} & -2 w_{2} & -5 w_{3}+5 w_{4} & \geq-5 \\
& -2 w_{1} & -2 w_{2} & +w_{3}+3 w_{4} \geq-2 \\
& & -w_{3}- & w_{4} \geq-1 \\
& w_{1}, & & w_{2}, & w_{3}, & w_{4} \geq 0
\end{array}
$$

Duality: Example

- Converting to standard form and rewriting the objective as a maximization problem (note to ourselves: we'll need to invert the resultant objective function due to the $\min \Rightarrow \max$ conversion!)

\max	$-w_{1}$	$-3 w_{2}$	$+5 w_{3}$	$+2 w_{4}$				
s.t.	$-w_{1}$	$-2 w_{2}$	$-5 w_{3}$	$+5 w_{4}$	$-w_{5}$			$=-5$
	$-2 w_{1}$	$-2 w_{2}$	$+w_{3}$	$+3 w_{4}$		$-w_{6}$		$=-2$
			$-w_{3}$	$-w_{4}$			$-w_{7}$	$=-1$
	w_{1},	w_{2},	w_{3}	w_{4},	w_{5},	w_{6},	w_{7}	≥ 0

- The slack variables form an initial feasible basis, as
$\boldsymbol{B}=\boldsymbol{B}^{-1}=-\boldsymbol{I}_{3}$ and $\boldsymbol{B}^{-1} \boldsymbol{b}=\left[\begin{array}{l}5 \\ 2 \\ 1\end{array}\right] \geq \mathbf{0}$
- We can use the (primal) simplex from here

Duality: Example

- The initial simplex tableau:

	z	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	w_{7}	RHS
z	1	1	3	-5	-2	0	0	0	0
w_{5}	0	1	2	5	-5	1	0	0	5
w_{6}	0	2	2	-1	-3	0	1	0	2
w_{7}	0	0	0	1	1	0	0	1	1

- Recall the pivot rules
- optimality condition: $z_{k}=\min _{j \in N} z_{j} \geq 0$
- k enters the basis, if $k=\operatorname{argmin}_{j \in N} z_{j}$
- r leaves the basis, if $r=\underset{i \in\{1, \ldots, m\}}{\operatorname{argmin}}\left\{\frac{\bar{b}_{i}}{y_{i k}}: y_{i k}>0\right\}$
- So w_{3} enters and $w_{5}\left(\right.$ or $\left.w_{7}\right)$ leaves the basis

Duality: Example

- After the first pivot

	z	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	w_{7}	RHS
z	1	2	5	0	-7	1	0	0	5
w_{3}	0	$\frac{1}{5}$	$\frac{2}{5}$	1	-1	$\frac{1}{5}$	0	0	1
w_{6}	0	$\frac{11}{5}$	$\frac{12}{5}$	0	-4	$\frac{1}{5}$	1	0	3
w_{7}	0	$-\frac{1}{5}$	$-\frac{2}{5}$	0	2	$-\frac{1}{5}$	0	1	0

- w_{4} enters and w_{7} leaves the basis: degenerate pivot

	z	w_{1}	w_{2}	w_{3}	w_{4}	w_{5}	w_{6}	w_{7}	RHS
z	1	$\frac{13}{10}$	$\frac{18}{5}$	0	0	$\frac{3}{10}$	0	$\frac{7}{2}$	5
w_{3}	0	$\frac{1}{10}$	$\frac{1}{5}$	1	0	$\frac{1}{10}$	0	$\frac{1}{2}$	1
w_{6}	0	$\frac{9}{5}$	$\frac{8}{5}$	0	0	$-\frac{1}{5}$	1	2	3
w_{4}	0	$-\frac{1}{10}$	$-\frac{1}{5}$	0	1	$-\frac{1}{10}$	0	$\frac{1}{2}$	0

Duality: Example

- The optimal dual solution: $\boldsymbol{w}^{T}=\left[\begin{array}{lllllll}0 & 0 & 1 & 0 & 0 & 3 & 0\end{array}\right]$
- The objective function value is -5 , since we must invert the result due to the min \Rightarrow max objective function conversion
- This is the optimum of the primal as well (Strong Theorem)
- For the optimal primal solution we need to work a bit, in that we must calculate $\mathrm{x}=\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1}$
- Since $B=\left\{w_{3}, w_{4}, w_{6}\right\}$, so $\boldsymbol{B}=\left[\begin{array}{rrr}-5 & 5 & 0 \\ 1 & 3 & -1 \\ -1 & -1 & 0\end{array}\right]$
- From this: $\boldsymbol{B}^{-1}=\left[\begin{array}{rrr}-\frac{1}{10} & 0 & -\frac{1}{2} \\ \frac{1}{10} & 0 & -\frac{1}{2} \\ \frac{1}{5} & -1 & -2\end{array}\right]$
- Finally: $\mathbf{x}=\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1}=\left[\begin{array}{lll}\frac{3}{10} & 0 & \frac{7}{2}\end{array}\right]$

The Farkas Lemma

- Theorem: given matrix $\boldsymbol{A}(m \times n)$ and vector \boldsymbol{b} (column m-vector), precisely one of the below claims hold:
1.) exists \boldsymbol{x} so that $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}$, or
2.) exists \boldsymbol{w}^{T} so that $\boldsymbol{w}^{T} \boldsymbol{A} \geq \mathbf{0}$ and $\boldsymbol{w}^{T} \boldsymbol{b}<0$
- Proof: consider the primal-dual pair of linear programs

$$
\begin{array}{crr}
P: & \max \mathbf{0} \boldsymbol{x} & D: \\
\text { s.t. } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} & & \text { s.t. } \boldsymbol{w}^{T} \boldsymbol{b} \\
\boldsymbol{x} \geq \mathbf{0} & & \boldsymbol{w}^{T} \text { arbitrary }
\end{array}
$$

- If (1) holds, i.e., when $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}$ is feasible, then the primal optimum is 0
- The primal optimum 0 is a lower bound for the dual objective for any dual solution: $0 \leq \boldsymbol{w}^{T} \boldsymbol{b}$ (Weak Theorem)
- This contradicts $\boldsymbol{w}^{T} \boldsymbol{b}<0$, thus (2) cannot hold

The Farkas Lemma

- The reverse direction: if (1) does not hold, i.e., when $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}$ is infeasible, then the primal (P) is infeasible
- Due to the Strong Theorem, the dual is either unbounded or infeasible
- Observe that the dual is trivially feasible, since at least $\boldsymbol{w}^{T}=\mathbf{0}$ is a solution
- Thus, the dual in unbounded, so it is feasible and (2) holds
- The Farkas lemma is a seemingly innocuous result, yet it underlies basically the entire field of mathematical programming
- This time we have proved the Farkas lemma using linear programming duality
- We could have gone the other way around: in fact, the Farkas lemma predates linear programming theory

