Duality in Linear Programming

- The dual of a linear program: motivation
- Formal definition, the Karush-Kuhn-Tucker (KKT) conditions
- Primal–dual relationships, the Weak and the Strong Duality Theorems
- The Farkas Lemma

• Consider the below linear program

$$z = \max x_{1} + 2x_{2} - x_{3}$$

s.t. $3x_{1} + 2x_{2} + x_{3} \leq 12$
 $-x_{1} - x_{3} \leq -3$
 $x_{1}, -x_{2}, -x_{3} \geq 0$

- We give upper bounds for the objective function
- Since variables are nonnegative, the first constraint is immediately an upper bound

$$z = x_1 + 2x_2 - x_3 \le 3x_1 + 2x_2 + x_3 \le 12$$

- Since component-wise $x_1 \leq 3x_1$, $2x_2 \leq 2x_2$, and $-x_3 \leq x_3$
- Is there any tighter upper bound?

• Summing the two constraints

z =	x_1	+	$2x_2$		x_3		
	$3x_1$	+	$2x_2$	+	x_3	\leq	12
\oplus	$-x_1$			—	x_3	\leq	-3
	$2x_1$	+	$2x_2$	+	$0x_3$	\leq	9

- Yields the tighter bound $z = x_1 + 2x_2 x_3 \le 2x_1 + 2x_2 \le 9$
- Even tighter bound is obtained if we add two times the second constraint to the first one:

$$z = x_1 + 2x_2 - x_3 \le (3 - 2 \times 1)x_1 + (2 - 2 \times 0)x_2 + (1 - 2 \times 1)x_3 \le 6$$

• This is the tightest possible bound, since the optimal objective function value is z = 6

• In fact, for any $w_1 \ge 0$ and $w_2 \ge 0$ for which the expression

$$w_1 \left(3x_1 + 2x_2 + x_3 \right) + w_2 \left(-x_1 - x_3 \right)$$

component-wise upper bounds the objective function $z = x_1 + 2x_2 - x_3$, that is, for which

 $3w_1 - w_2 \ge 1$, $2w_1 \ge 2$, and $w_1 - w_2 \ge -1$

holds, we get a new upper bound:

$$z = x_1 + 2x_2 - x_3 \le w_1 \left(3x_1 + 2x_2 + x_3 \right) + w_2 \left(-x_1 - x_3 \right)$$

- $w_1 \ge 0$ and $w_2 \ge 0$ needed, otherwise the sign would change
- The tightest bound is the one for which $12w_1 + (-3)w_2$ is minimal

• Yields another linear program: the **dual linear program**:

min	$12w_{1}$	 $3w_2$		
s.t.	$3w_1$	 w_2	\geq	1
	$2w_1$		\geq	2
	w_1	 w_2	\geq	-1
	$w_1,$	w_2	\geq	0

- To distinguish, the original linear program will be called the **primal**
- Interestingly, the dual optimal solution is also 6
- In fact this is guaranteed to hold and, what is more, there are very deep relationships between the primal and the dual

• **Theorem:** given a linear program as a maximization problem in the **standard form**

 $\begin{array}{l} \max \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} \ \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array}$

the dual is the standard form minimization problem

min $\boldsymbol{w}^T \boldsymbol{b}$ s.t. $\boldsymbol{w}^T \boldsymbol{A} - \boldsymbol{v}^T = \boldsymbol{c}^T$ $\boldsymbol{v}^T \ge \boldsymbol{0}, \ \boldsymbol{w}^T$ arbitrary

• One dual variable for each constraint of the primal and one dual constraint for each variable of the primal

- The variables v^T and w^T are called **dual variables** (or Lagrangean multiplers)
- The dual variables $w^T = \begin{bmatrix} w_1 & w_2 & \dots & w_m \end{bmatrix}$ correspond to the primal constraints Ax = b: for every constraint $a^i x = b_i$ there is a dual variable w_i , precisely m
- The dual variables $v^T = \begin{bmatrix} v_1 & v_2 & \dots & v_n \end{bmatrix}$ correspond to the nonnegativity constraints for the primal variables x: for every constraint $x_j \ge 0$ there is a dual variable v_j , exactly n
- In fact, \boldsymbol{v}^T act as slack-variables that we can as well omit

min
$$\boldsymbol{w}^T \boldsymbol{b}$$

s.t. $\boldsymbol{w}^T \boldsymbol{A} \ge \boldsymbol{c}^T$
 \boldsymbol{w}^T arbitrary

• Obtain the dual of the canonical form linear program:

$$P: \max \ 6x_1 + 8x_2 \\ \text{s.t.} \ 3x_1 + x_2 \leq 4 \\ 5x_1 + 2x_2 \leq 7 \\ x_1, \quad x_2 \geq 0$$

• Converting to standard form by introducing slack variables

$$P: \max 6x_1 + 8x_2$$

s.t. $3x_1 + x_2 + x_3 = 4$
 $5x_1 + 2x_2 + x_4 = 7$
 $x_1, x_2, x_3, x_4 \ge 0$

- Two primal constraints, so in the dual there will be two dual variables: $w^T = \begin{bmatrix} w_1 & w_2 \end{bmatrix}$
- Dual variables v^T will be handled as slack-variables
- The dual objective function is $\min w^T b = \min b^T w$, where $b^T = \begin{bmatrix} 4 & 7 \end{bmatrix}$

 $\min 4w_1 + 7w_2$

- One dual condition for each primal variable
- The dual constraint for the primal variable x_1 : $w^T a_1 \ge c_1$, where a_1 is the column of A corresponding to x_1 (the first column) and c_1 is the objective coefficient for x_1

$$\begin{bmatrix} w_1 & w_2 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = 3w_1 + 5w_2 \ge 6$$

• Similarly, the dual constraint for x_2 : $w^T a_2 \ge c_2$

$$\begin{bmatrix} w_1 & w_2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = w_1 + 2w_2 \ge 8$$

• For the slack variables we obtain the dual constraints in a single step:

$$\begin{bmatrix} w_1 & w_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \ge 0 \equiv w_1 \ge 0, \ w_2 \ge 0$$

• The dual linear program:

$$D: \min 4w_1 + 7w_2 \\ \text{s.t.} 3w_1 + 5w_2 \ge 6 \\ w_1 + 2w_2 \ge 8 \\ w_1, \quad w_2 \ge 0$$

• The primal and the dual in canonical form:

 $\max 6x_1 + 8x_2 \qquad \qquad \min 4w_1 + 7w_2 \\ \text{s.t.} \ 3x_1 + x_2 \le 4 \qquad \qquad \text{s.t.} \ 3w_1 + 5w_2 \ge 6 \\ 5x_1 + 2x_2 \le 7 \qquad \qquad w_1 + 2w_2 \ge 8 \\ x_1, \quad x_2 \ge 0 \qquad \qquad w_1, \quad w_2 \ge 0 \\ \ \end{cases}$

• In general, the primal in dual in canonical form:

$$P: \max c^T x$$
 $D: \min w^T b$ s.t. $Ax \le b$ $s.t.w^T A \ge c^T$ $x \ge 0$ $w^T \ge 0$

- If there are constraints of the type $(\leq),\,(\geq)$ and (=) in the linear program

 $\begin{array}{l} \max \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} \ \boldsymbol{A}_1 \boldsymbol{x} \leq \boldsymbol{b}_1 \\ \boldsymbol{A}_2 \boldsymbol{x} = \boldsymbol{b}_2 \\ \boldsymbol{A}_3 \boldsymbol{x} \geq \boldsymbol{b}_3 \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array}$

• In standard form:

• Let w_1^T be the dual variables corresponding to the primal constraints $A_1 x \leq b_1$, w_2^T to constraints $A_2 x = b_2$, and w_3^T to $A_3 x \geq b_3$

- Consequently, $oldsymbol{w_1}^T \geq oldsymbol{0}$ and $oldsymbol{w_3}^T \leq oldsymbol{0}$
- From the constraints of the primal problem
 - \circ of the type " \leq " yield dual variables of the type " \geq 0",
 - $\circ~$ of the type " \geq " yield " ≤ 0 " variables, and
 - \circ of "=" type yield free dual variables (no sign restriction)

	Maximization problem		Minimization problem	
aint	\geq	\longleftrightarrow	≤ 0	ole
nstra	\leq	\longleftrightarrow	≥ 0	ariak
ပိ	=	\longleftrightarrow	arbitrary	>
ele	≥ 0	\longleftrightarrow	\geq	aint
ariab	≤ 0	\longleftrightarrow	\leq	nstra
>	arbitrary	\longleftrightarrow	—	S

• Write the dual for the below linear program

• The dual linear program

	Primal	Dual
Standard form	$\max \boldsymbol{c}^T \boldsymbol{x}$ s.t. $\boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}$ $\boldsymbol{x} \ge \boldsymbol{0}$	$\min oldsymbol{w}^T oldsymbol{b}$ s.t. $oldsymbol{w}^T oldsymbol{A} \geq oldsymbol{c}^T$ $oldsymbol{w}^T$ arbitrary
Canonical form	$\begin{array}{l} \max \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} \ \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array}$	$egin{array}{c} \min oldsymbol{w}^Toldsymbol{b} \ ext{ s.t.}oldsymbol{w}^Toldsymbol{A} \geq oldsymbol{c}^T \ oldsymbol{w}^T \geq oldsymbol{0} \end{array}$

The KKT Conditions

• Consider the primal-dual pair of linear programs:

P: max
$$c^T x$$
D: min $w^T b$ s.t. $Ax = b$ s.t. $w^T A - v^T = c^T$ $x \ge 0$ $v^T \ge 0, w^T$ arbitrary

- Theorem: The Karush-Kuhn-Tucker (KKT) Optimality Conditions: some x is an optimal solution to the primal and some (w^T, v^T) is an optimal solution to the dual, if and only if all the following conditions hold:
 - P: \boldsymbol{x} is primal feasible: $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}, \boldsymbol{x} \geq \boldsymbol{0}$
 - D: $(\boldsymbol{w}^T, \boldsymbol{v}^T)$ is dual-feasible: $\boldsymbol{w}^T \boldsymbol{A} \boldsymbol{v}^T = \boldsymbol{c}^T, \boldsymbol{v}^T \ge \boldsymbol{0}$

CS: complementary slackness conditions hold: $v^T x = 0$

The KKT Conditions

- The (P) and (D) conditions are straight forward: these require the primal and the dual solutions to be feasible
- Complementary slackness (CS) may need more explanation
- Factoring the (CS) conditions: $\boldsymbol{v}^T \boldsymbol{x} = \sum_{j=1}^n v_j x_j = 0$
- Since $v_j \ge 0$ and $x_j \ge 0$, this can only hold if for each $j \in \{1, \ldots, n\} : v_j x_j = 0$
- This gives a deep complementarity relation between the optimal and primal and dual solutions:

$$v_j > 0 \Rightarrow x_j = 0$$
$$x_j > 0 \Rightarrow v_j = 0$$

• For instance, if v_j is strictly positive in the optimal dual solution, then the corresponding primal x_j must be zero

The KKT Conditions: Proof

- **Proof:** We prove only the following simpler claim: given a primal linear program $\max\{c^T x : Ax = b, x \ge 0\}$, if x is an optimal basic feasible solution in the primal then there is (v^T, w^T) that satisfies (P), (D) and (CS)
- So let x be an optimal basic feasible solution and let B be the corresponding basis, and consider the simplex tableau

- Note that $c_B{}^T B^{-1} N c_N{}^T \ge 0$ since the tableau is optimal
- We use the optimal tableau to obtain the dual solution

The KKT Conditions: Proof

• Choose the dual variable v^T to the objective row of the optimal simplex tableau and set w^T as follows:

$$oldsymbol{w}^T = oldsymbol{c}_{oldsymbol{B}}^T oldsymbol{B}^{-1} oldsymbol{v}^T = [\underbrace{oldsymbol{0}}_{ ext{basic}} oldsymbol{e}_{ ext{basic}}^T oldsymbol{B}^{-1} oldsymbol{N} - oldsymbol{c}_{oldsymbol{N}}^T] \ge oldsymbol{0}$$

- (P) holds since x is primal optimal by assumption
- (D) holds, since $v^T \ge 0$ due to the optimality condition for the tableau and $c^T - w^T A + v^T = 0$ because it holds separately for both the basic and the nonbasic components:

$$oldsymbol{c}_{oldsymbol{B}}^T - oldsymbol{w}^T oldsymbol{B} + oldsymbol{0} = oldsymbol{c}_{oldsymbol{B}}^T - oldsymbol{c}_{oldsymbol{B}}^T oldsymbol{B} + oldsymbol{0} = oldsymbol{c}_{oldsymbol{N}}^T - oldsymbol{w}^T oldsymbol{N} + (oldsymbol{c}_{oldsymbol{B}}^T oldsymbol{B}^{-1} oldsymbol{N} - oldsymbol{c}_{oldsymbol{N}}^T oldsymbol{B}^{-1} oldsymbol{N} + oldsymbol{c}_{oldsymbol{B}}^T oldsymbol{B}^{-1} oldsymbol{N} - oldsymbol{c}_{oldsymbol{N}}^T oldsymbol{B}^{-1} oldsymbol{N} + oldsymbol{c}_{oldsymbol{B}}^T oldsymbol{B}^{-1} oldsymbol{N} - oldsymbol{c}_{oldsymbol{N}}^T oldsymbol{B}^{-1} oldsymbol{N} + oldsymbol{c}_{oldsymbol{B}}^T oldsymbol{B}^{-1} oldsymbol{N} - oldsymbol{c}_{oldsymbol{N}}^T oldsymbol{B}^{-1} oldsymbol{B}^{-1} oldsymbol{B}^{-1} oldsymbol{B}^{-1} oldsymbol{B} - oldsymbol{C}_{oldsymbol{N}}^T oldsymbol{B}^{-1} oldsymbol{B}^{-1} oldsymbol{B}^{-1} oldsymbol{B}^{-1} oldsymbol{B}^{-1} oldsymbol{B} - oldsymbol{B}^{-1} oldsymbol{B}^{-1} oldsymbol{B}^{-1} oldsymbol{B}^{-1} oldsymbol{B}^{-1} oldsymbol{B}^{-1} oldsymbol{B}^{-1} oldsymbol{B}^{-1} oldsymbol{B}^{-1} oldsymbol{B}^{-1}$$

The KKT Conditions: Proof

- What remained to be done is to show that the complementary slackness (CS) conditions also hold
- In fact, (CS) also holds, i.e., $\boldsymbol{v}^T \boldsymbol{x} = 0$, since

$$\begin{bmatrix} \mathbf{0} & (\boldsymbol{c}_{\boldsymbol{B}}^{T}\boldsymbol{B}^{-1}\boldsymbol{N} - \boldsymbol{c}_{\boldsymbol{N}}^{T}) \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_{\boldsymbol{B}} \\ \mathbf{0} \end{bmatrix} = 0$$

- Consequently, if x is a primal optimal basic feasible solution then we can easily read the dual variables v^T and w^T from the optimal tableau that satisfy the KKT conditions
- This sheds new light on the simplex method itself
- In fact, the simplex is an iterative algorithm to find a point that satisfies the KKT conditions: (P) and (CS) hold in each iteration and (D) is also satisfied at optimality

The KKT Conditions: Example

• Solve the below linear program using the KKT conditions

$$\max x_1 + 3x_2$$
 (1)

s.t.
$$-x_1 + 2x_2 \le 4$$
 (2)

$$x_1 + x_2 \le 4$$
 (3)

$$x_1, x_2 \ge 0 \tag{4}$$

- Introduce x_3 , x_4 slack variables to convert to standard form
- Find \boldsymbol{x} primal and $\boldsymbol{w}^T = \begin{bmatrix} w_1 & w_2 \end{bmatrix}$, $\boldsymbol{v}^T = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 \end{bmatrix}$ dual variables so that the KKT conditions hold

$$oldsymbol{A}oldsymbol{x}=oldsymbol{b}, \qquad oldsymbol{x}\geq oldsymbol{0}$$
 (P)

$$\boldsymbol{c}^T - \boldsymbol{w}^T \boldsymbol{A} + \boldsymbol{v}^T = \boldsymbol{0}, \qquad \boldsymbol{v}^T \ge \boldsymbol{0}$$
 (D)

 $\boldsymbol{v}^T \boldsymbol{x} = 0$ (CS)

The KKT Conditions: Example

- Consider the point $\boldsymbol{x} = \begin{bmatrix} 0 & 0 & 4 & 4 \end{bmatrix}^T$ • using (CS): $x_j > 0 \Rightarrow v_j = 0$, so $v_3 = v_4 = 0$
 - \circ writing (D) for the slack variables: $c^T w^T A + v^T = 0$

$$0 - w_1 + 0 = 0$$

$$0 - w_2 + 0 = 0$$

- \circ from this we get $w_1 = w_2 = 0$
- \circ writing (D) for x_1 and x_2 and using that $v^T \geq 0$

$$1 + w_1 - w_2 \le 0$$

$$3 - 2w_1 - w_2 \le 0$$

 \circ contradiction since $w_1 = w_2 = 0$, so \boldsymbol{x} is not optimal

The KKT Conditions: Example

• Now choose $oldsymbol{x} = [rac{4}{3} \quad rac{8}{3}]^T$

• $x_1 = \frac{4}{3} > 0 \Rightarrow v_1 = 0$, and $x_2 = \frac{8}{3} > 0 \Rightarrow v_2 = 0$

 \circ the first to rows of (D) (that correspond to x_1 and x_2)

$$\boldsymbol{w}^T \begin{bmatrix} -1 & 2\\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \end{bmatrix}$$

• from this: $w^T = \begin{bmatrix} \frac{2}{3} & \frac{5}{3} \end{bmatrix}$ • using the rest of (D): $v_3 = w_1 = \frac{2}{3}, v_4 = w_2 = \frac{5}{3}$

• the KKT conditions hold, so $oldsymbol{x} = [rac{4}{3} \quad rac{8}{3}]^T$ is optimal

The Geometry of the KKT Conditions

• Geometrically, $x = \begin{bmatrix} \frac{4}{3} & \frac{8}{3} \end{bmatrix}^T$ is the only point where $c^T = \begin{bmatrix} 1 & 3 \end{bmatrix}$ can be written as the nonnegative combination of the gradients (normal vectors) of the tight constraints

Primal-dual Relationships

- Theorem: the dual of the dual linear program is the primal
- **Proof:** the dual for the canonical form:

 $P: \max c^T x$ $D: \min w^T b$ $-\max -b^T w$ s.t. $Ax \le b$ $s.t.w^T A \ge c^T \equiv$ $s.t. -A^T w \le -c$ $x \ge 0$ $w^T \ge 0$ $w \ge 0$

• Taking the dual D^2 of D:

$$egin{aligned} D^2: & -\min & -oldsymbol{x}^Toldsymbol{c} & \max oldsymbol{c}^Toldsymbol{x} & \ & ext{s.t.} & -oldsymbol{x}^Toldsymbol{\geq} -oldsymbol{b}^T &\equiv & ext{s.t.} & oldsymbol{A}oldsymbol{x} & \leq oldsymbol{b} \ & oldsymbol{x}^T & \geq oldsymbol{0} & oldsymbol{x}^Toldsymbol{\geq} oldsymbol{0} & \ & oldsymbol{x} & \geq oldsymbol{0} \ & oldsymbol{x}^T & \geq oldsymbol{0} & oldsymbol{x} & \geq oldsymbol{0} \ & oldsymbol{x}^T & \geq oldsymbol{0} & \ & oldsymbol{x} & \geq oldsymbol{0} \ & oldsymbol{x} & \geq oldsymbol{0} \ & oldsymbol{x} & \geq oldsymbol{0} \ & oldsymbol{x} & \ & oldsymbol{x} & b \ & oldsymbol{x} & \ & oldsymbol{x} & \geq oldsymbol{0} \ & oldsymbol{x} & \ & oldsymbol{x} & \geq oldsymbol{0} \ & oldsymbol{x} & \ & oldsymbol{x} & \geq oldsymbol{0} \ & oldsymbol{x} & \geq oldsymbol{0} \ & oldsymbol{x} & \ & oldsymbol{x} & \ & oldsymbol{x} & = oldsymbol{0} \ & oldsymbol{x} & \ & oldsymbol{0} \ & oldsymbol{x} & \ & oldsymb$$

Primal-dual Relationships

• Consider the primal-dual pair of linear programs in canonical form:

P: $\max c^T x$ D: $\min w^T b$ s.t. $Ax \le b$ $s.t.w^T A \ge c^T$ $x \ge 0$ $w^T \ge 0$

- Let \boldsymbol{x} be primal-feasible and let \boldsymbol{w}^T be dual-feasible
 - \circ multiply the primal constraint $oldsymbol{A} x \leq oldsymbol{b}$ from the left by $oldsymbol{w}^T \geq oldsymbol{0}$: $oldsymbol{w}^T oldsymbol{A} x \leq oldsymbol{w}^Toldsymbol{b}$
 - multiply the dual constraint $w^T A \ge c^T$ from the right by
 $x \ge 0$: $w^T A x \ge c^T x$
- Then,

$$c^T x \leq w^T A x \leq w^T b$$

The Weak Duality Theorem

- **Theorem:** the objective function value for *any* feasible solution for the primal maximization problem is less than, or equal to the objective function value for *any* feasible solution for the dual minimization problem
- **Proof:** using the above: $oldsymbol{c}^T oldsymbol{x} \leq oldsymbol{w}^T oldsymbol{A} oldsymbol{x} \leq oldsymbol{w}^T oldsymbol{b}$
- Note the importance of the *any* quantification: *any* primal-feasible x gives a lower bound $c^T x$ for the dual, and of course *any* dual-feasible w^T gives an upper bound $w^T b$ for the primal

• Corollaries:

- if x is primal-feasible, w^T is dual-feasible, and $c^T x = w^T b$, then x is optimal in the primal and w^T is optimal in the dual
- if the primal is unbounded then the dual is infeasible and vice versa

Weak Duality: Example

• Consider the previous example:

$$P: \max 6x_1 + 8x_2 \qquad D: \min 4w_1 + 7w_2$$

s.t. $3x_1 + x_2 \le 4 \qquad \text{s.t. } 3w_1 + 5w_2 \ge 6$
 $5x_1 + 2x_2 \le 7 \qquad w_1 + 2w_2 \ge 8$
 $x_1, \quad x_2 \ge 0 \qquad w_1, \quad w_2 \ge 0$

• Choose some primal and dual solution

• let
$$\boldsymbol{x} = \begin{bmatrix} \frac{1}{6} & 3 \end{bmatrix}^T$$
 and $\boldsymbol{w}^T = \begin{bmatrix} 2 & 3 \end{bmatrix}$
• then, $\boldsymbol{c}^T \boldsymbol{x} = 25$ and $\boldsymbol{w}^T \boldsymbol{b} = 29$, and so for the optimal solution $\bar{\boldsymbol{x}} = \begin{bmatrix} \bar{x}_1 & \bar{x}_2 \end{bmatrix}$ of the primal we have the bounds:

$$25 \le 6\bar{x}_1 + 8\bar{x}_2 \le 29$$

same applies to the dual

A Note on Weak Duality

- If the primal is unbounded then the dual is infeasible
- Similarly, if the dual is unbounded than the primal is infeasible
- This does not hold in the reverse direction: from the infeasibility of the primal it *does not* follow that the dual is unbounded (nor the other way around)
- For instance, the below primal-dual pair of linear programs are both infeasible

The Strong Duality Theorem

- **Theorem:** for the primal–dual pair of linear programs exactly one of the below claims holds true
 - the primal has an optimal solution \$\bar{x}\$ and the dual also has an optimal solution \$\bar{w}^T\$, and \$c^T\$\bar{x} = \$\bar{w}^T\$b\$
 - one of the problems is unbounded and therefore the other is infeasible
 - \circ neither problem is feasible

P optimal	\iff	D optimal
P unbounded	\Longrightarrow	D infeasible
D unbounded	\Longrightarrow	P infeasible
P infeasible	\implies	D unbounded or infeasible
D infeasible	\implies	P unbounded or infeasible

• We can use the dual to solve the primal

• Only two constraints: the dual has only two variables:

- Solve the dual graphically
- The optimal solution: $\bar{\boldsymbol{w}}^T = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ and $z_0 = 5$
- We immediately know that the primal optimum is 5 by the Strong Theorem
- We could also obtain the primal solution itself
- We do not discuss that here

• Solve the below linear program

• In standard form:

- Find an initial feasible basis
- The trivial choice would be to choose the columns of the slack variables into the initial basis, in particular if $B = \{x_4, x_5, x_6, x_7\}$ then $B = B^{-1} = I_4$
- Unfortunately, this trivial basis is not (primal) feasible, since $ar{b}=B^{-1}b=b
 ot\ge 0$
- Let us write the dual, in the hope that it will be easier to find an initial basis for that

 Converting to standard form and rewriting the objective as a maximization problem (note to ourselves: we'll need to invert the resultant objective function due to the min ⇒ max conversion!)

• The slack variables form an initial feasible basis, as

$$\boldsymbol{B} = \boldsymbol{B}^{-1} = -\boldsymbol{I}_3 \text{ and } \boldsymbol{B}^{-1}\boldsymbol{b} = \begin{bmatrix} 5\\2\\1 \end{bmatrix} \ge \boldsymbol{0}$$

• We can use the (primal) simplex from here

• The initial simplex tableau:

	z	w_1	w_2	w_3	w_4	w_5	w_6	w_7	RHS
z	1	1	3	-5	-2	0	0	0	0
w_5	0	1	2	5	-5	1	0	0	5
w_6	0	2	2	-1	-3	0	1	0	2
w_7	0	0	0	1	1	0	0	1	1

- Recall the pivot rules
 - optimality condition: $z_k = \min_{j \in N} z_j \ge 0$
 - k enters the basis, if $k = \operatorname{argmin}_{j \in N} z_j$

•
$$r$$
 leaves the basis, if $r = \operatorname*{argmin}_{i \in \{1,...,m\}} \left\{ \frac{\overline{b}_i}{y_{ik}} : y_{ik} > 0 \right\}$

• So w_3 enters and w_5 (or w_7) leaves the basis

• After the first pivot

	z	w_1	w_2	w_3	w_4	w_5	w_6	w_7	RHS
z	1	2	5	0	-7	1	0	0	5
w_3	0	$\frac{1}{5}$	$\frac{2}{5}$	1	-1	$\frac{1}{5}$	0	0	1
w_6	0	$\frac{11}{5}$	$\frac{12}{5}$	0	-4	$\frac{1}{5}$	1	0	3
w_7	0	$-\frac{1}{5}$	$-\frac{2}{5}$	0	2	$-\frac{1}{5}$	0	1	0

• w_4 enters and w_7 leaves the basis: degenerate pivot

	z	w_1	w_2	w_3	w_4	w_5	w_6	w_7	RHS
z	1	$\frac{13}{10}$	$\frac{18}{5}$	0	0	$\frac{3}{10}$	0	$\frac{7}{2}$	5
w_3	0	$\frac{1}{10}$	$\frac{1}{5}$	1	0	$\frac{1}{10}$	0	$\frac{1}{2}$	1
w_6	0	$\frac{9}{5}$	$\frac{8}{5}$	0	0	$-\frac{1}{5}$	1	2	3
$ w_4 $	0	$-\frac{1}{10}$	$-\frac{1}{5}$	0	1	$-\frac{1}{10}$	0	$\frac{1}{2}$	0

- The optimal dual solution: $\boldsymbol{w}^T = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 3 & 0 \end{bmatrix}$
- The objective function value is -5, since we must invert the result due to the min $\Rightarrow \max$ objective function conversion
- This is the optimum of the primal as well (Strong Theorem)
- For the optimal primal solution we need to work a bit, in that we must calculate $\mathbf{x} = c_B^T B^{-1}$

• Since
$$B = \{w_3, w_4, w_6\}$$
, so $B = \begin{bmatrix} -5 & 5 & 0 \\ 1 & 3 & -1 \\ -1 & -1 & 0 \end{bmatrix}$

• From this:
$$\mathbf{B}^{-1} = \begin{bmatrix} -\frac{1}{10} & 0 & -\frac{1}{2} \\ \frac{1}{10} & 0 & -\frac{1}{2} \\ \frac{1}{5} & -1 & -2 \end{bmatrix}$$

• Finally: $\mathbf{x} = c_{B}^{T} B^{-1} = \begin{bmatrix} \frac{3}{10} & 0 & \frac{7}{2} \end{bmatrix}$

The Farkas Lemma

- **Theorem:** given matrix A ($m \times n$) and vector b (column *m*-vector), precisely one of the below claims hold:
 - 1.) exists $m{x}$ so that $m{A}m{x}=m{b},m{x}\geqm{0}$, or
 - 2.) exists \boldsymbol{w}^T so that $\boldsymbol{w}^T \boldsymbol{A} \ge \boldsymbol{0}$ and $\boldsymbol{w}^T \boldsymbol{b} < 0$
- **Proof:** consider the primal-dual pair of linear programs
 - P: $\max \mathbf{0} \mathbf{x}$ D: $\min \mathbf{w}^T \mathbf{b}$ s.t. $\mathbf{A} \mathbf{x} = \mathbf{b}$ $\mathrm{s.t.} \mathbf{w}^T \mathbf{A} \ge \mathbf{0}$ $\mathbf{x} \ge \mathbf{0}$ \mathbf{w}^T arbitrary
- If (1) holds, i.e., when $Ax = b, x \ge 0$ is feasible, then the primal optimum is 0
- The primal optimum 0 is a lower bound for the dual objective for *any* dual solution: $0 \le w^T b$ (Weak Theorem)
- This contradicts $\boldsymbol{w}^T \boldsymbol{b} < 0$, thus (2) cannot hold

The Farkas Lemma

- The reverse direction: if (1) does not hold, i.e., when $Ax = b, x \ge 0$ is infeasible, then the primal (P) is infeasible
- Due to the Strong Theorem, the dual is either unbounded or infeasible
- Observe that the dual is trivially feasible, since at least ${m w}^T = {f 0}$ is a solution
- Thus, the dual in unbounded, so it is feasible and (2) holds
- The Farkas lemma is a seemingly innocuous result, yet it underlies basically the entire field of mathematical programming
- This time we have proved the Farkas lemma using linear programming duality
- We could have gone the other way around: in fact, the Farkas lemma predates linear programming theory