The Simplex Tableau: A Summary

WARNING: this is just a summary of the material covered in the full slide-deck The Simplex Tableau that will orient you as per the topics covered there; you are required to learn the full version, not just this summary!

- Recall: basic feasible solutions and the simplex pivot
- Termination: optimality and unbounded optimal solutions
- The steps of the simplex method
- Degeneration and cycling
- Complexity (worst-case and practical)
- The simplex tableau
- Solving linear programs using the simplex tableau: examples

Recall: The Simplex Method

- Let \boldsymbol{A} be an $m \times n$ matrix with $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{A}, \boldsymbol{b})=m$, \boldsymbol{b} be a column m-vector, \boldsymbol{x} be a column n-vector, and \boldsymbol{c}^{T} be a row n-vector, and consider the linear program

$$
\begin{array}{rc}
z=\max & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

- Let \boldsymbol{B} be a basis and reorder the columns of \boldsymbol{A} to obtain $\boldsymbol{A}=\left[\begin{array}{ll}\boldsymbol{B} & \boldsymbol{N}\end{array}\right]$
- Furthermore, let $\boldsymbol{x}=\left[\begin{array}{c}\boldsymbol{x}_{\boldsymbol{B}} \\ \boldsymbol{x}_{N}\end{array}\right]=\left[\begin{array}{c}\boldsymbol{B}^{-1} \boldsymbol{b} \\ \mathbf{0}\end{array}\right]$ the basic solution generated by \boldsymbol{B} and suppose that this basic solution is feasible ($\boldsymbol{B}^{-1} \boldsymbol{b} \geq \mathbf{0}$)

Recall: The Simplex Method

- The linear program in the nonbasic variable space:

$$
\begin{array}{cc}
\max & z_{0}+\sum_{j \in N} z_{j} x_{j} \\
\text { s.t. } & \boldsymbol{x}_{\boldsymbol{B}}=\overline{\boldsymbol{b}}-\sum_{j \in N} \boldsymbol{y}_{j} x_{j} \\
& \boldsymbol{x}_{\boldsymbol{B}}, \boldsymbol{x}_{\boldsymbol{N}} \geq \mathbf{0}
\end{array}
$$

where

- N denotes the set of nonbasic variables
- $\overline{\boldsymbol{b}}=\boldsymbol{B}^{-1} \boldsymbol{b}$
- \boldsymbol{y}_{j} denotes the column of the matrix $\boldsymbol{B}^{-1} \boldsymbol{N}$ that belongs to the j-th nonbasic variable: $\boldsymbol{y}_{j}=\boldsymbol{B}^{-1} \boldsymbol{a}_{j}$
- $z_{0}=\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \mathbf{B}^{-1} \boldsymbol{b}=\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \overline{\boldsymbol{b}}$
- z_{j} is the component of the row vector $\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}-\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}$ that belongs to the j-th nonbasic variable

Recall: The Simplex Method

- Pivot: increase a nonbasic variable that improves the objective function until a basic variable drops to zero, and leave all other nonbasic variables unchanged
- Pivot rules
- x_{k} can enter the basis if $z_{k}>0$
- x_{r} leaves the basis where $r=\underset{i \in\{1, \ldots, m\}}{\operatorname{argmin}}\left\{\frac{\bar{b}_{i}}{y_{i k}}: y_{i k}>0\right\}$
- The optimality condition of the (primal) simplex method: the basic feasible solution $\overline{\boldsymbol{x}}$ is optimal if

$$
\forall j \in N: z_{j} \leq 0
$$

Termination with Unboundedness

- Recall, if for some nonbasic variable $x_{k}: z_{k}>0$, then increasing x_{k} increases the objective function
- We can keep on increasing x_{k} until some basic variable drops to zero:

$$
x_{k} \leq \min _{i \in B}\left\{\frac{\bar{b}_{i}}{y_{i k}}: y_{i k}>0\right\}
$$

- If no such basic variable exists, then no basic variable blocks the growth of x_{k}
- Theorem: the optimal solution of the linear program $\max \left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$ is unbounded if there is basic feasible solution $\overline{\boldsymbol{x}}$ and nonbasic variable x_{k} so that $z_{k}>0$ and $\boldsymbol{y}_{k} \leq 0$

The Simplex Method: Initialization

- Let \boldsymbol{A} be an $m \times n$ matrix with $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{A}, \boldsymbol{b})=m$, \boldsymbol{b} be a column m-vector, \boldsymbol{x} be a column n-vector, and \boldsymbol{c}^{T} be a row n-vector, and consider the linear program

$$
\begin{array}{rc}
z=\max & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

- Suppose that all basic feasible solutions are nondegenerate
- The simplex method is an iterative algorithm to solve the above linear program, which uses nothing else than a subroutine to solve systems of linear equations and basic linear algebra operations
- Initialization: find an initial basic feasible solution and the corresponding basis \boldsymbol{B} (see later on how to do this)

The Simplex Method: Main Step

1. Solve the system $\boldsymbol{B} \boldsymbol{x}_{\boldsymbol{B}}=\boldsymbol{b}$

- The solution is unique: $\boldsymbol{x}_{\boldsymbol{B}}=\boldsymbol{B}^{-1} \boldsymbol{b}=\overline{\boldsymbol{b}}$. Let $\boldsymbol{x}_{\boldsymbol{N}}=\mathbf{0}$

2. Solve the system $\boldsymbol{w}^{T} \boldsymbol{B}=\boldsymbol{c}_{\boldsymbol{B}}{ }^{T}$

- The solution is unique: $\boldsymbol{w}^{T}=\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1}$
- For each nonbasic variable j obtain the reduced cost $z_{j}=$ $c_{j}-\boldsymbol{w}^{T} \boldsymbol{a}_{\boldsymbol{j}}$ and choose the entering variable as

$$
k=\underset{j \in N}{\operatorname{argmax}} z_{j} \quad \text { (Dantzig's pivot rule) }
$$

3. If $z_{k} \leq 0$ then terminate: $\left[\begin{array}{l}\boldsymbol{x}_{\boldsymbol{B}} \\ \boldsymbol{x}_{\boldsymbol{N}}\end{array}\right]$ is an optimal solution and the optimal objective function value is $\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{x}_{\boldsymbol{B}}$

- Otherwise proceed to the next step

The Simplex Method: Main Step

4. Solve the system $\boldsymbol{B} \boldsymbol{y}_{k}=\boldsymbol{a}_{\boldsymbol{k}}$

- The solution is unique: $\boldsymbol{y}_{k}=\boldsymbol{B}^{-1} \boldsymbol{a}_{\boldsymbol{k}}$
- If $\boldsymbol{y}_{k} \leq \mathbf{0}$ then terminate: the linear program is unbounded along the ray $\left\{\left[\begin{array}{l}\overline{\boldsymbol{b}} \\ \mathbf{0}\end{array}\right]+\left[\begin{array}{r}-\boldsymbol{y}_{k} \\ \boldsymbol{e}_{\boldsymbol{k}}\end{array}\right] \lambda: \lambda \geq 0\right\}$
- Otherwise, proceed to the next step

5. Pivot: x_{k} enters the basis and $x_{B_{r}}$ leaves, where

$$
r=\underset{i \in\{1, \ldots, m\}}{\operatorname{argmin}}\left\{\frac{\bar{b}_{i}}{y_{i k}}: y_{i k}>0\right\}
$$

- Refresh the basis \boldsymbol{B} (swap $\boldsymbol{a}_{\boldsymbol{B}_{r}}$ to $\boldsymbol{a}_{\boldsymbol{k}}$), $N, \boldsymbol{c}_{\boldsymbol{B}}{ }^{T}$ and $\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}$, and go to the first step

The Simplex Method: Complexity

- Theorem: if the simplex method does not encounter a degenerate basis then it solves the linear program in a finite number of steps or proves that the optimal solution is unbounded
- In each iteration we either terminate or find a new basic feasible solution different from the current one
- The number of basic feasible solutions is finite
- Note: the basis is degenerate if $\boldsymbol{x}_{\boldsymbol{B}}=\overline{\boldsymbol{b}} \ngtr \mathbf{0}$
- The objective function value remains the same during the pivot $\left(z_{0}\right)$: we stay in the same extreme point
- Cycling: jumping from one degenerate basic feasible solution to the other the simplex stays indefinitely in the same extreme point without improving the objective function
- Finite termination is not guaranteed in such cases: rarely occurs in practice

The Simplex Method: Complexity

- Choosing the entering variable in a different way can prevent cycling (e.g., Bland's pivoting rule)
- But the running time of the simplex method may be exponential in the size of the linear program
- In the worst-case the algorithm may visit each of the $\binom{n}{m}$ basic feasible solutions
- In practice, however, the simplex method is very fast: usually the number of pivots it performs until optimality is linear in m and n
- There exist provably polynomial time algorithms to solve linear programs: Khachian's Ellipsoid Algorithm, Karmarkar's algorithm
- These are interior point solvers, do not use the simplex

The Simplex Tableau

- The simplex algorithm in requires solving three systems of linear equations in each iteration: simple for a computer but difficult for a human
- This can be avoided by using the simplex tableau
- Suppose that we have an initial basis \boldsymbol{B}
- Let z be a new variable that specifies the current value of the objective function:

$$
z=\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{x}_{\boldsymbol{B}}+\boldsymbol{c}_{\boldsymbol{N}}^{T} \boldsymbol{x}_{\boldsymbol{N}}
$$

- The linear program augmented with the new variable in tableau form ("tableau": "tabular representation", French)

	z	\boldsymbol{x}_{B}	\boldsymbol{x}_{N}	RHS	$\begin{gathered} \text { row } 0 \\ \text { rows } 1 \ldots \mathrm{~m} \end{gathered}$
z	1	0	$\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}$	$\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{b}$	
\boldsymbol{x}_{B}	0	\boldsymbol{I}_{m}	$B^{-1} \boldsymbol{N}$	$B^{-1} b$	

The Simplex Tableau

	z	$x_{B_{1}}$	\ldots	$x_{B_{m}}$	$x_{N_{1}}$	\ldots	$x_{N_{n-m}}$	RHS
z	1	0	\ldots	0	z_{1}	\ldots	z_{n-m}	z_{0}
$x_{B_{1}}$	0	1	\ldots	0	$y_{1,1}$	\ldots	$y_{1, n-m}$	\bar{b}_{1}
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\ddots	\vdots	\vdots
$x_{B_{m}}$	0	0	\ldots	1	$y_{m, 1}$	\ldots	$y_{m, n-m}$	\bar{b}_{m}

$x_{B_{1}}, x_{B_{2}}, \ldots, x_{B_{m}}$: basic variables
$x_{N_{1}}, x_{N_{2}}, \ldots, x_{N_{n-m}}$: nonbasic variables
z_{j} : the component of $\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}$ that belongs to the nonbasic variable j and $z_{0}=\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{b}$
\bar{b}_{i} : the i-th element of $\overline{\boldsymbol{b}}=\boldsymbol{B}^{-1} \boldsymbol{b}$
$y_{i j}$: element at the position (i, j) of matrix $\boldsymbol{B}^{-1} \boldsymbol{N}$

The Simplex Tableau: Pivot

- The objective function has changed: $z+\sum_{j \in N} z_{j} x_{j}=z_{0}$
- The law for choosing the entering variable also changes: x_{k} enters the basis if $k=\underset{j \in N}{\operatorname{argmin}} z_{j}$
- The law for choosing the leaving variable remains the same

$$
r=\underset{i \in\{1, \ldots, m\}}{\operatorname{argmin}}\left\{\frac{\bar{b}_{i}}{y_{i k}}: y_{i k}>0\right\}
$$

- Pivot: using elementary row transformations

1. Divide row r by $y_{r k}$
2. For each $i=1,2, \ldots, m: i \neq r$, subtract from row i the new row r multiplied by $y_{i k}$
3. Subtract row r multiplied by z_{k} from the objective row

The Simplex Tableau: Example

- Consider the below linear program

$$
\begin{array}{cccc}
\max & -x_{1} & -x_{2}+4 x_{3} \\
\mathrm{s.t.} & x_{1} & +x_{2}+2 x_{3} \leq 9 \\
& x_{1} & +x_{2}-x_{3} \leq 2 \\
-x_{1} & +x_{2}+x_{3} \leq 4 \\
& x_{1}, & x_{2}, & x_{3} \geq 0
\end{array}
$$

- Convert to standard for by introducing slack variables:

$$
\begin{aligned}
& \max -x_{1}-x_{2}+4 x_{3}+0 x_{4}+0 x_{5}+0 x_{6}
\end{aligned}
$$

The Simplex Tableau: Example

- First we need to find an initial basis: this usually needs some work, but this time we can use a simple trick
- If a linear program is given in canonical form: $\max \left\{\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x}: \boldsymbol{A x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$
- In standard form (the simplex algorithm needs the standard form!): $\max \left\{\boldsymbol{c}^{\boldsymbol{T}} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}+\boldsymbol{I} \boldsymbol{x}_{s}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}, \boldsymbol{x}_{s} \geq \mathbf{0}\right\}$
- Observe that the columns of the constraint matrix corresponding to the slack variables form an identity matrix: so let $\boldsymbol{B}=\boldsymbol{I}$ (always nonsingular)
- The columns for the slack variables \boldsymbol{x}_{s} comprise a basis!
- If in addition $\boldsymbol{b} \geq \mathbf{0}$, then this basis is also feasible, since then $\overline{\boldsymbol{b}}=\boldsymbol{B}^{-1} \boldsymbol{b}=\boldsymbol{b} \geq \mathbf{0}$
- Row 0: since the objective coefficients for the slacks is zero:
$\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}=-\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}$ and $z_{0}=\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{b}=0$

The Simplex Tableau: Example

- We can write the linear program straight into a simplex table (WARNING: row zero must be inverted!)

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	1	1	-4	0	0	0	0
x_{4}	0	1	1	2	1	0	0	9
x_{5}	0	1	1	-1	0	1	0	2
x_{6}	0	-1	1	1	0	0	1	4

- The current basis is not optimal since $z_{3}=-4$
- The entering variable is x_{3}, as $z_{3}=\min _{j \in N} z_{j}=-4$
- No unboundedness as \boldsymbol{y}_{3} is not negative: $y_{i 3}>0$
- The leaving variable is x_{6}, since $\frac{\bar{b}_{6}}{y_{63}}=\min \left\{\frac{9}{2}, 4\right\}=4$

The Simplex Tableau: Example

- Perform a pivot by the above rules

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	-3	5	0	0	0	4	16
x_{4}	0	3	-1	0	1	0	-2	1
x_{5}	0	0	2	0	0	1	1	6
x_{3}	0	-1	1	1	0	0	1	4

- The new basis is not optimal as $z_{1}=-3$
- Thus x_{1} enters the basis
- No unboundedness because $y_{41}>0, x_{4}$ leaves the basis

The Simplex Tableau: Example

	z	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	RHS
z	1	0	4	0	1	0	2	17
x_{1}	0	1	$-\frac{1}{3}$	0	$\frac{1}{3}$	0	$-\frac{2}{3}$	$\frac{1}{3}$
x_{5}	0	0	2	0	0	1	1	6
x_{3}	0	0	$\frac{2}{3}$	1	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{13}{3}$

- The new basis is optimal
- The objective function value can be read from the last element of row 0: $z=17$
- The basic variables from the RHS column: $\left[\begin{array}{l}x_{1} \\ x_{5} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}\frac{1}{3} \\ 6 \\ \frac{13}{3}\end{array}\right]$
- The optimal solution: $\boldsymbol{x}^{T}=\left[\begin{array}{lll}\frac{1}{3} & 0 & \frac{13}{3}\end{array}\right]$ (note the indices!)

