
The Simplex Tableau: A Summary

WARNING: this is just a summary of the material covered in the
full slide-deck The Simplex Tableau that will orient you as per

the topics covered there; you are required to learn the full
version, not just this summary!

• Recall: basic feasible solutions and the simplex pivot

• Termination: optimality and unbounded optimal solutions

• The steps of the simplex method

• Degeneration and cycling

• Complexity (worst-case and practical)

• The simplex tableau

• Solving linear programs using the simplex tableau:
examples
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Recall: The Simplex Method

• Let A be an m×n matrix with rank(A) = rank(A, b) = m,

b be a column m-vector, x be a column n-vector, and cT be
a row n-vector, and consider the linear program

z = max cTx

s.t. Ax = b

x ≥ 0

• Let B be a basis and reorder the columns of A to obtain
A = [B N ]

• Furthermore, let x =

[

xB

xN

]

=

[

B−1b

0

]

the basic solution

generated by B and suppose that this basic solution is

feasible (B−1b ≥ 0)
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Recall: The Simplex Method

• The linear program in the nonbasic variable space:

max z0 +
∑

j∈N zjxj

s.t. xB = b̄−
∑

j∈N yjxj

xB,xN ≥ 0

where

◦ N denotes the set of nonbasic variables

◦ b̄ = B−1b

◦ yj denotes the column of the matrix B−1N that belongs

to the j-th nonbasic variable: yj = B−1aj

◦ z0 = cB
T
B

−1b = cB
T b̄

◦ zj is the component of the row vector cN
T − cB

TB−1N
that belongs to the j-th nonbasic variable
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Recall: The Simplex Method

• Pivot: increase a nonbasic variable that improves the
objective function until a basic variable drops to zero, and
leave all other nonbasic variables unchanged

• Pivot rules

◦ xk can enter the basis if zk > 0

◦ xr leaves the basis where r = argmin
i∈{1,...,m}

{

b̄i

yik
: yik > 0

}

• The optimality condition of the (primal) simplex method: the
basic feasible solution x̄ is optimal if

∀j ∈ N : zj ≤ 0
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Termination with Unboundedness

• Recall, if for some nonbasic variable xk: zk > 0, then
increasing xk increases the objective function

• We can keep on increasing xk until some basic variable
drops to zero:

xk ≤ min
i∈B

{

b̄i

yik
: yik > 0

}

• If no such basic variable exists, then no basic variable
blocks the growth of xk

• Theorem: the optimal solution of the linear program

max{cTx : Ax = b,x ≥ 0} is unbounded if there is basic

feasible solution x̄ and nonbasic variable xk so that zk > 0
and yk ≤ 0
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The Simplex Method: Initialization

• Let A be an m×n matrix with rank(A) = rank(A, b) = m,

b be a column m-vector, x be a column n-vector, and cT be
a row n-vector, and consider the linear program

z = max cTx

s.t. Ax = b

x ≥ 0

• Suppose that all basic feasible solutions are nondegenerate

• The simplex method is an iterative algorithm to solve the
above linear program, which uses nothing else than a
subroutine to solve systems of linear equations and basic
linear algebra operations

• Initialization: find an initial basic feasible solution and the
corresponding basis B (see later on how to do this)
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The Simplex Method: Main Step

1. Solve the system BxB = b

• The solution is unique: xB = B−1b = b̄. Let xN = 0

2. Solve the system wTB = cB
T

• The solution is unique: wT = cB
TB−1

• For each nonbasic variable j obtain the reduced cost zj =

cj −wTaj and choose the entering variable as

k = argmax
j∈N

zj (Dantzig’s pivot rule)

3. If zk ≤ 0 then terminate:

[

xB

xN

]

is an optimal solution and

the optimal objective function value is cB
TxB

• Otherwise proceed to the next step
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The Simplex Method: Main Step

4. Solve the system Byk = ak

• The solution is unique: yk = B−1ak

• If yk ≤ 0 then terminate: the linear program is unbounded

along the ray

{[

b̄

0

]

+

[

−yk

ek

]

λ : λ ≥ 0

}

• Otherwise, proceed to the next step

5. Pivot: xk enters the basis and xBr
leaves, where

r = argmin
i∈{1,...,m}

{

b̄i

yik
: yik > 0

}

(minimum ratio test)

• Refresh the basis B (swap aBr
to ak), N , cB

T and cN
T ,

and go to the first step
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The Simplex Method: Complexity

• Theorem: if the simplex method does not encounter a
degenerate basis then it solves the linear program in a finite
number of steps or proves that the optimal solution is
unbounded

• In each iteration we either terminate or find a new basic
feasible solution different from the current one

• The number of basic feasible solutions is finite

• Note: the basis is degenerate if xB = b̄ ≯ 0

• The objective function value remains the same during the
pivot (z0): we stay in the same extreme point

• Cycling: jumping from one degenerate basic feasible
solution to the other the simplex stays indefinitely in the
same extreme point without improving the objective function

• Finite termination is not guaranteed in such cases: rarely
occurs in practice
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The Simplex Method: Complexity

• Choosing the entering variable in a different way can
prevent cycling (e.g., Bland’s pivoting rule)

• But the running time of the simplex method may be
exponential in the size of the linear program

• In the worst-case the algorithm may visit each of the
(

n

m

)

basic feasible solutions

• In practice, however, the simplex method is very fast:
usually the number of pivots it performs until optimality is
linear in m and n

• There exist provably polynomial time algorithms to solve
linear programs: Khachian’s Ellipsoid Algorithm,
Karmarkar’s algorithm

• These are interior point solvers, do not use the simplex
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The Simplex Tableau

• The simplex algorithm in requires solving three systems of
linear equations in each iteration: simple for a computer but
difficult for a human

• This can be avoided by using the simplex tableau

• Suppose that we have an initial basis B

• Let z be a new variable that specifies the current value of
the objective function:

z = cB
TxB + cN

TxN

• The linear program augmented with the new variable in
tableau form (“tableau”: “tabular representation”, French)

z xB xN RHS

z 1 0 cB
TB−1N − cN

T cB
TB−1b row 0

xB 0 Im B−1N B−1b rows 1...m
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The Simplex Tableau

z xB1
. . . xBm

xN1
. . . xNn−m

RHS

z 1 0 . . . 0 z1 . . . zn−m z0

xB1
0 1 . . . 0 y1,1 . . . y1,n−m b̄1

...
...

...
. . .

...
...

. . .
...

...

xBm
0 0 . . . 1 ym,1 . . . ym,n−m b̄m

xB1
, xB2

, . . . , xBm
: basic variables

xN1
, xN2

, . . . , xNn−m
: nonbasic variables

zj : the component of cB
TB−1N − cN

T that belongs to the

nonbasic variable j and z0 = cB
TB−1b

b̄i: the i-th element of b̄ = B−1b

yij : element at the position (i, j) of matrix B−1N
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The Simplex Tableau: Pivot

• The objective function has changed: z +
∑

j∈N zjxj = z0

• The law for choosing the entering variable also changes: xk

enters the basis if k = argmin
j∈N

zj

• The law for choosing the leaving variable remains the same

r = argmin
i∈{1,...,m}

{

b̄i

yik
: yik > 0

}

• Pivot: using elementary row transformations

1. Divide row r by yrk

2. For each i = 1, 2, . . . ,m : i 6= r, subtract from row i the
new row r multiplied by yik

3. Subtract row r multiplied by zk from the objective row
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The Simplex Tableau: Example

• Consider the below linear program

max −x1 − x2 + 4x3

s.t. x1 + x2 + 2x3 ≤ 9
x1 + x2 − x3 ≤ 2

−x1 + x2 + x3 ≤ 4
x1, x2, x3 ≥ 0

• Convert to standard for by introducing slack variables:

max −x1 − x2 + 4x3 + 0x4 + 0x5 + 0x6

s.t. x1 + x2 + 2x3 + x4 = 9
x1 + x2 − x3 + x5 = 2

−x1 + x2 + x3 + x6 = 4
x1, x2, x3, x4, x5, x6 ≥ 0
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The Simplex Tableau: Example

• First we need to find an initial basis: this usually needs
some work, but this time we can use a simple trick

• If a linear program is given in canonical form:

max{cTx : Ax ≤ b,x ≥ 0}

• In standard form (the simplex algorithm needs the standard

form!): max{cTx : Ax+ Ixs = b,x ≥ 0,xs ≥ 0}

• Observe that the columns of the constraint matrix
corresponding to the slack variables form an identity matrix:
so let B = I (always nonsingular)

• The columns for the slack variables xs comprise a basis!

• If in addition b ≥ 0, then this basis is also feasible, since

then b̄ = B−1b = b ≥ 0

• Row 0: since the objective coefficients for the slacks is zero:

cB
TB−1N − cN

T = −cN
T and z0 = cB

TB−1b = 0
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The Simplex Tableau: Example

• We can write the linear program straight into a simplex table
(WARNING: row zero must be inverted!)

z x1 x2 x3 x4 x5 x6 RHS

z 1 1 1 −4 0 0 0 0

x4 0 1 1 2 1 0 0 9

x5 0 1 1 −1 0 1 0 2

x6 0 −1 1 1 0 0 1 4

• The current basis is not optimal since z3 = −4

• The entering variable is x3, as z3 = minj∈N zj = −4

• No unboundedness as y
3

is not negative: yi3 > 0

• The leaving variable is x6, since
b̄6
y63

= min{9

2
, 4} = 4
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The Simplex Tableau: Example

• Perform a pivot by the above rules

z x1 x2 x3 x4 x5 x6 RHS

z 1 −3 5 0 0 0 4 16

x4 0 3 −1 0 1 0 −2 1

x5 0 0 2 0 0 1 1 6

x3 0 −1 1 1 0 0 1 4

• The new basis is not optimal as z1 = −3

• Thus x1 enters the basis

• No unboundedness because y41 > 0, x4 leaves the basis
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The Simplex Tableau: Example

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 4 0 1 0 2 17

x1 0 1 −1

3
0 1

3
0 −2

3

1

3

x5 0 0 2 0 0 1 1 6

x3 0 0 2

3
1 1

3
0 1

3

13

3

• The new basis is optimal

• The objective function value can be read from the last
element of row 0: z = 17

• The basic variables from the RHS column:

[

x1

x5

x3

]

=

[

1

3

6
13

3

]

• The optimal solution: xT = [1
3

0 13

3
] (note the indices!)
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