The Simplex Tableau: A Summary

WARNING: this is just a summary of the material covered in the full slide-deck **The Simplex Tableau** that will orient you as per the topics covered there; you are required to learn the full version, not just this summary!

- Recall: basic feasible solutions and the simplex pivot
- Termination: optimality and unbounded optimal solutions
- The steps of the simplex method
- Degeneration and cycling
- Complexity (worst-case and practical)
- The simplex tableau
- Solving linear programs using the simplex tableau: examples

Recall: The Simplex Method

• Let \boldsymbol{A} be an $m \times n$ matrix with $\operatorname{rank}(\boldsymbol{A}) = \operatorname{rank}(\boldsymbol{A}, \boldsymbol{b}) = m$, \boldsymbol{b} be a column m-vector, \boldsymbol{x} be a column n-vector, and \boldsymbol{c}^T be a row n-vector, and consider the linear program

$$z = \max$$
 $c^T x$
s.t. $Ax = b$
 $x \ge 0$

- ullet Let $oldsymbol{B}$ be a basis and reorder the columns of $oldsymbol{A}$ to obtain $oldsymbol{A} = [oldsymbol{B} \ oldsymbol{N}]$
- ullet Furthermore, let $m{x} = egin{bmatrix} m{x}_B \ m{x}_N \end{bmatrix} = egin{bmatrix} m{B}^{-1} m{b} \ 0 \end{bmatrix}$ the basic solution generated by $m{B}$ and suppose that this basic solution is feasible $(m{B}^{-1} m{b} \geq m{0})$

Recall: The Simplex Method

The linear program in the nonbasic variable space:

$$\max \quad z_0 + \sum_{j \in N} z_j x_j$$
s.t.
$$\mathbf{x_B} = \bar{\mathbf{b}} - \sum_{j \in N} \mathbf{y}_j x_j$$

$$\mathbf{x_B}, \mathbf{x_N} \ge \mathbf{0}$$

where

- \circ N denotes the set of nonbasic variables
- $\circ \ ar{m{b}} = m{B}^{-1}m{b}$
- ullet $m{y}_j$ denotes the column of the matrix $m{B}^{-1}m{N}$ that belongs to the j-th nonbasic variable: $m{y}_j = m{B}^{-1}m{a}_j$
- $\circ \ z_0 = \boldsymbol{c_B}^T \mathbf{B}^{-1} \boldsymbol{b} = \boldsymbol{c_B}^T \bar{\boldsymbol{b}}$
- z_j is the component of the row vector $\mathbf{c}_N^T \mathbf{c}_B^T \mathbf{B}^{-1} \mathbf{N}$ that belongs to the j-th nonbasic variable

Recall: The Simplex Method

- Pivot: increase a nonbasic variable that improves the objective function until a basic variable drops to zero, and leave all other nonbasic variables unchanged
- Pivot rules
 - $\circ x_k$ can enter the basis if $z_k > 0$
 - $\circ \ x_r \text{ leaves the basis where } r = \operatorname*{argmin}_{i \in \{1, \dots, m\}} \left\{ \frac{\bar{b}_i}{y_{ik}} : y_{ik} > 0 \right\}$
- ullet The optimality condition of the (primal) simplex method: the basic feasible solution $ar{x}$ is optimal if

$$\forall j \in N : z_j \leq 0$$

Termination with Unboundedness

- Recall, if for some nonbasic variable x_k : $z_k > 0$, then increasing x_k increases the objective function
- We can keep on increasing x_k until some basic variable drops to zero:

$$x_k \le \min_{i \in B} \left\{ \frac{\bar{b}_i}{y_{ik}} : y_{ik} > 0 \right\}$$

- ullet If no such basic variable exists, then no basic variable blocks the growth of x_k
- Theorem: the optimal solution of the linear program $\max\{\boldsymbol{c}^T\boldsymbol{x}:\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b},\boldsymbol{x}\geq\boldsymbol{0}\}$ is **unbounded** if there is basic feasible solution $\bar{\boldsymbol{x}}$ and nonbasic variable x_k so that $z_k>0$ and $\boldsymbol{y}_k\leq 0$

The Simplex Method: Initialization

• Let \boldsymbol{A} be an $m \times n$ matrix with $\operatorname{rank}(\boldsymbol{A}) = \operatorname{rank}(\boldsymbol{A}, \boldsymbol{b}) = m$, \boldsymbol{b} be a column m-vector, \boldsymbol{x} be a column n-vector, and \boldsymbol{c}^T be a row n-vector, and consider the linear program

$$z = \max$$
 $c^T x$
s.t. $Ax = b$
 $x \ge 0$

- Suppose that all basic feasible solutions are nondegenerate
- The simplex method is an iterative algorithm to solve the above linear program, which uses nothing else than a subroutine to solve systems of linear equations and basic linear algebra operations
- Initialization: find an initial basic feasible solution and the corresponding basis \boldsymbol{B} (see later on how to do this)

The Simplex Method: Main Step

- 1. Solve the system $Bx_B=b$
- ullet The solution is unique: $oldsymbol{x_B} = oldsymbol{B}^{-1} oldsymbol{b} = ar{oldsymbol{b}}$. Let $oldsymbol{x_N} = oldsymbol{0}$
- 2. Solve the system $oldsymbol{w}^T oldsymbol{B} = oldsymbol{c_B}^T$
 - ullet The solution is unique: $oldsymbol{w}^T = oldsymbol{c_B}^T oldsymbol{B}^{-1}$
- For each nonbasic variable j obtain the **reduced cost** $z_j = c_j \boldsymbol{w}^T \boldsymbol{a_j}$ and choose the entering variable as

$$k = \operatorname*{argmax} z_j$$
 (Dantzig's pivot rule)

- 3. If $z_k \leq 0$ then terminate: $\begin{bmatrix} x_B \\ x_N \end{bmatrix}$ is an optimal solution and the optimal objective function value is $c_B{}^Tx_B$
 - Otherwise proceed to the next step

The Simplex Method: Main Step

- 4. Solve the system $oldsymbol{B}oldsymbol{y}_k = oldsymbol{a_k}$
- ullet The solution is unique: $oldsymbol{y}_k = oldsymbol{B}^{-1} oldsymbol{a}_{oldsymbol{k}}$
- If $m{y}_k \leq m{0}$ then terminate: the linear program is unbounded along the ray $\left\{ egin{bmatrix} ar{b} \\ m{0} \end{bmatrix} + egin{bmatrix} -m{y}_k \\ e_{m{k}} \end{bmatrix} \lambda : \lambda \geq 0 \right\}$
- Otherwise, proceed to the next step
- 5. **Pivot:** x_k enters the basis and x_{B_r} leaves, where

$$r = \operatorname*{argmin}_{i \in \{1, \dots, m\}} \left\{ \frac{\overline{b}_i}{y_{ik}} : y_{ik} > 0 \right\} \qquad \text{(minimum ratio test)}$$

• Refresh the basis \boldsymbol{B} (swap $\boldsymbol{a_{B_r}}$ to $\boldsymbol{a_k}$), N, $\boldsymbol{c_B}^T$ and $\boldsymbol{c_N}^T$, and go to the first step

The Simplex Method: Complexity

- Theorem: if the simplex method does not encounter a degenerate basis then it solves the linear program in a finite number of steps or proves that the optimal solution is unbounded
- In each iteration we either terminate or find a new basic feasible solution different from the current one
- The number of basic feasible solutions is finite
- ullet Note: the basis is degenerate if $x_B=ar{b} \not> 0$
- The objective function value remains the same during the pivot (z_0) : we stay in the same extreme point
- Cycling: jumping from one degenerate basic feasible solution to the other the simplex stays indefinitely in the same extreme point without improving the objective function
- Finite termination is not guaranteed in such cases: rarely occurs in practice

The Simplex Method: Complexity

- Choosing the entering variable in a different way can prevent cycling (e.g., Bland's pivoting rule)
- But the running time of the simplex method may be exponential in the size of the linear program
- In the worst-case the algorithm may visit each of the $\binom{n}{m}$ basic feasible solutions
- In practice, however, the simplex method is very fast: usually the number of pivots it performs until optimality is linear in m and n
- There exist provably polynomial time algorithms to solve linear programs: Khachian's Ellipsoid Algorithm, Karmarkar's algorithm
- These are interior point solvers, do not use the simplex

The Simplex Tableau

- The simplex algorithm in requires solving three systems of linear equations in each iteration: simple for a computer but difficult for a human
- This can be avoided by using the simplex tableau
- ullet Suppose that we have an initial basis $oldsymbol{B}$
- Let z be a new variable that specifies the current value of the objective function:

$$z = \boldsymbol{c_B}^T \boldsymbol{x_B} + \boldsymbol{c_N}^T \boldsymbol{x_N}$$

 The linear program augmented with the new variable in tableau form ("tableau": "tabular representation", French)

	z	x_B	$\boldsymbol{x_N}$	RHS	
z	1	0	$oldsymbol{c_B}^T oldsymbol{B}^{-1} oldsymbol{N} - oldsymbol{c_N}^T$	$oldsymbol{c_B}^T oldsymbol{B}^{-1} oldsymbol{b}$	row 0
x_B	0	$oldsymbol{I}_m$	$oldsymbol{B}^{-1}oldsymbol{N}$	$oldsymbol{B}^{-1}oldsymbol{b}$	rows 1m

– p. 11

The Simplex Tableau

	z	x_{B_1}		x_{B_m}	x_{N_1}		$x_{N_{n-m}}$	RHS
z	1	0		0	z_1		z_{n-m}	z_0
x_{B_1}	0	1		0	$y_{1,1}$		$y_{1,n-m}$	\overline{b}_1
:	:	:	٠.	:	:	٠	:	:
x_{B_m}	0	0		1	$y_{m,1}$		$y_{m,n-m}$	\overline{b}_m

 $x_{B_1}, x_{B_2}, \ldots, x_{B_m}$: basic variables

 $x_{N_1}, x_{N_2}, \ldots, x_{N_{n-m}}$: nonbasic variables

 z_j : the component of $c_{\pmb{B}}{}^T \pmb{B}^{-1} \pmb{N} - c_{\pmb{N}}{}^T$ that belongs to the nonbasic variable j and $z_0 = c_{\pmb{B}}{}^T \pmb{B}^{-1} \pmb{b}$

 $ar{b}_i$: the i-th element of $ar{m{b}} = m{B}^{-1}m{b}$

 y_{ij} : element at the position (i,j) of matrix $\boldsymbol{B}^{-1}\boldsymbol{N}$

The Simplex Tableau: Pivot

- The objective function has changed: $z + \sum_{j \in N} z_j x_j = z_0$
- The law for choosing the entering variable also changes: x_k enters the basis if $k = \operatorname*{argmin}_{j \in N} z_j$
- The law for choosing the leaving variable remains the same

$$r = \underset{i \in \{1, \dots, m\}}{\operatorname{argmin}} \left\{ \frac{\bar{b}_i}{y_{ik}} : y_{ik} > 0 \right\}$$

- Pivot: using elementary row transformations
 - 1. Divide row r by y_{rk}
 - 2. For each $i=1,2,\ldots,m:i\neq r$, subtract from row i the new row r multiplied by y_{ik}
 - 3. Subtract row r multiplied by z_k from the objective row

Consider the below linear program

Convert to standard for by introducing slack variables:

- First we need to find an initial basis: this usually needs some work, but this time we can use a simple trick
- If a linear program is given in canonical form: $\max\{c^Tx:Ax\leq b,x\geq 0\}$
- In standard form (the simplex algorithm needs the standard form!): $\max\{ m{c^T} m{x} : m{A} m{x} + m{I} m{x}_s = m{b}, m{x} \geq m{0}, m{x}_s \geq m{0} \}$
- ullet Observe that the columns of the constraint matrix corresponding to the slack variables form an identity matrix: so let $oldsymbol{B} = oldsymbol{I}$ (always nonsingular)
- ullet The columns for the slack variables $oldsymbol{x}_s$ comprise a basis!
- If in addition $m{b} \geq m{0}$, then this basis is also feasible, since then $ar{m{b}} = m{B}^{-1} m{b} = m{b} \geq m{0}$
- Row 0: since the objective coefficients for the slacks is zero: $c_{\mathbf{B}}{}^{T}\mathbf{B}^{-1}\mathbf{N} c_{\mathbf{N}}{}^{T} = -c_{\mathbf{N}}{}^{T}$ and $z_{0} = c_{\mathbf{B}}{}^{T}\mathbf{B}^{-1}\mathbf{b} = 0$

 We can write the linear program straight into a simplex table (WARNING: row zero must be inverted!)

	z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
\overline{z}	1	1	1	-4	0	0	0	0
x_4	0	1	1	2	1	0	0	9
$ x_5 $	0	1	1	-1	0	1	0	2
x_6	0	-1	1	1	0	0	1	4

- The current basis is not optimal since $z_3 = -4$
- The entering variable is x_3 , as $z_3 = \min_{j \in N} z_j = -4$
- No unboundedness as y_3 is not negative: $y_{i3} > 0$
- The leaving variable is x_6 , since $\frac{\bar{b}_6}{y_{63}} = \min\{\frac{9}{2}, 4\} = 4$

Perform a pivot by the above rules

	z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
\overline{z}	1	-3	5	0	0	0	4	16
x_4	0	3	-1	0	1	0	-2	1
$ x_5 $	0	0	2	0	0	1	1	6
x_3	0	-1	1	1	0	0	1	

- The new basis is not optimal as $z_1 = -3$
- Thus x_1 enters the basis
- No unboundedness because $y_{41} > 0$, x_4 leaves the basis

	z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
\overline{z}	1	0	4	0	1	0	2	17
x_1	0	1	$-\frac{1}{3}$	0	$\frac{1}{3}$	0	$-\frac{2}{3}$	$\frac{1}{3}$
x_5	0	0	2	0	0	1	1	6
x_3	0	0	$\frac{2}{3}$	1	$\frac{1}{3}$	0	$\frac{1}{3}$	$\frac{13}{3}$

- The new basis is optimal
- The objective function value can be read from the last element of row 0: z=17
- The basic variables from the RHS column: $\begin{vmatrix} x_1 \\ x_5 \\ x_3 \end{vmatrix} = \begin{vmatrix} \frac{1}{3} \\ \frac{13}{3} \end{vmatrix}$
- The optimal solution: $x^T = \begin{bmatrix} \frac{1}{3} & 0 & \frac{13}{3} \end{bmatrix}$ (note the indices!)