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Recall: The Simplex Method

e Let A be an m x n matrix with rank(A) = rank(A, b) = m,

b be a column m-vector, x be a column n-vector, and ¢! be
a row n-vector, and consider the linear program

»=max clx
s.t. Ax =0
x >0

e Let B be a basis and reorder the columns of A to obtain
A=|B N|]

—1
e Furthermore, let x = [wB] — [B b] the basic solution
N 0

generated by B and suppose that this basic solution is
feasible (B~'b > 0)



Recall: The Simplex Method

e The linear program in the nonbasic variable space:

max 2o + Z]EN 2T

st. xg=b-— ZJEN YT,
LB, LN 2 0

where
o N denotes the set of nonbasic variables

o b= B 'b

o y; denotes the column of the matrix B~"IN that belongs
to the j-th nonbasic variable: y;, = B™'a;

o zp=cg'B'b=cg’b

o z; Is the component of the row vector eyl —egTB™IN
that belongs to the j7-th nonbasic variable



Recall: The Simplex Method

Pivot rules
o 1z can enter the basis if z; > 0

by
o x, leaves the basis where r = argmin {— L Yik > O}
' Yik

The optimality condition of the (primal) simplex method: the
basic feasible solution & is optimal if

VjEN:z <0

In the below we assume that basic feasible solutions are
nondegenerate, i.e., b > 0

We handle the degenerate case later



Termination with Unboundedness

e Given a basic feasible solution x, let x;, be a nonbasic
variable so that z;, > 0

max 20 + 2Tk

B _ b — Yy
s.t. x = [iBN] = O] -+ [ Bk] T}

x>0

e Increasing x; increases the objective function (by z;, > 0)
e \We can keep on increasing x;, until some basic variable

drops to zero:
b
T < mm{— L Yik > O}
€8 Yik



Termination with Unboundedness

This test is well-defined only in the case when there is basic
variable ¢ for which v, > 0

If no such basic variable exists, that is, if y, < 0, then no
basic variable blocks the growth of x;

Theorem: the optimal solution of the linear program

max{c’x : Ax = b, x > 0} is unbounded if there is basic

feasible solution & and nonbasic variable x; so that z, > 0
and y,, < 0

Proof: d = [_Zk] is a direction of the feasible region so
k
that all points along the ray * = x + dA, A > 0 are feasible

In this case, for an constant K’ > 0 there is A > 0 so that

cle =2+ 2> K []



Unbounded Optimal Solution: Example

e Given the linear program in the canonical form

max L1 + ?)I'Q

st. T — 21, < A4
—r; + 22 < 3
X1, xy = 0

e Introducing slack variables x5 and x4:

1 =2 1 o], 4] 4
a-[ 0L Tanfeens o

e Consider the basis mattix B = [a, as| = [_

o[- -l

L
|

| I |

o o

| I



Unbounded Optimal Solution: Example

e The usual parameters to transition to the nonbasic space:

20 — CBTb:9

ecn' —cg'BT'N =[1 0]-[3 0 [j 1] =[4 -3

1ar |01 I 0 [—1 1
BN = [1 21 [—-1 1| |-—1 2
e The linear program in the nonbasic variable space:

max 9 -+ 4371 — 31’4

=] =3}

X1,T2, X3, T4 Z O



Unbounded Optimal Solution: Example

e Observing that y, < 0, the ray causing unboundedness:

I1 0

o Lo . 3
T= 0zl T |10
| T4 L0

e In the space of the original
variables (omitting slacks):

][ f]

e Meanwhile, the objective
function grows without limit
according to 9 + 4\

[03]'




The Simplex Method: Initialization

Let A be an m x n matrix with rank(A) = rank(A, b) = m,

b be a column m-vector,  be a column n-vector, and ¢! be
a row n-vector, and consider the linear program

»=max clx
s.t. Ax =0
x>0

Suppose that all basic feasible solutions are nondegenerate

The simplex method is an iterative algorithm to solve the
above linear program, which uses nothing else than a
subroutine to solve systems of linear equations and basic
linear algebra operations

Initialization: find an initial basic feasible solution and the
corresponding basis B (see later on how to do this)
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The Simplex Method: Main Step

. Solve the system Bxg = b

The solution is unique: g = B 'b=0>b. Letxny =0

. Solve the system w! B = cg’

The solution is unique: w” = cg” B~

For each nonbasic variable j obtain the reduced cost z; =
¢; — w' a; and choose the entering variable as

k = argmax z; (Dantzig’s pivot rule)
jeEN

LB

. If z, < 0 then terminate: [
LN

] is an optimal solution and

the optimal objective function value is cg’ =5
Otherwise proceed to the next step

—n. 11



The Simplex Method: Main Step

. Solve the system By, = ay

The solution is unique: ¥, = B~ 'ay
If y,, < 0 then terminate: the linear program is unbounded

along the ray { [g] + l_g’“] A > O}
k

Otherwise, proceed to the next step
. Pivot: x;, enters the basis and z g, leaves, where

bi
r = argmin {— L Yik > O} (minimum ratio test)
' Yik

Refresh the basis B (swap ap, t0 ai), N, cg’ and cn?,
and go to the first step
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The Simplex Method: Complexity

Theorem: if the simplex method does not encounter a
degenerate basis then it solves the linear program in a finite
number of steps or proves that the optimal solution is
unbounded

Proof: in each step one of the below 3 cases can occur:
o If z;, < 0 then terminate with optimality
o If z > 0 but y,, < 0 then terminate with unboundedness

o if 2z > 0 and y,, £ 0 then z;, enters and some x, leaves
the basis, so that 2= > 0 and the objective function

Yrk

value strictly increases to zk > 0

Thus, in each iteration we e|ther terminate or find a new
basic feasible solution different from the current one

The number of basic feasible solutions is finite []

—n. 13



Degeneration and Cycling

If z1 enters and z , leaves the basis and y,, £ O:
Before the pivot After the pivot

20 20 + %k
rp B — B—ry
Yrk k

xr =0 T = br

The basis is degenerate if tg = b # 0

In this case there is xz, = b, = 0, and if in addition y,;, > 0

bi
then xp, may z;: min {— L Yi > 0} — 0
' Yik Yrk

The objective function value remains the same (z;): we stay
In the same extreme point during the pivot

_p 14



Degeneration and Cycling

Cycling: jumping from one degenerate basic feasible
solution to the other the simplex stays indefinitely in the
same extreme point without improving the objective function

Finite termination is not guaranteed in such cases
Cycling is theoretically possible but rarely occurs in practice
As we may choose the entering variable x;, arbitrarily as
long as z; > 0, we can define different pivot rules:

o Dantzig's pivot rule: £ = argmax . y 2;

o Greedy: choose the variable that yields the largest gain

In the objective function

o Bland’s pivoting rule: choose the smallest index
nonbasic variable for which z; > 0 and if g, = 0 holds
for more than one basic variable choose the one with the
smallest index as the leaving variable

o Theorem: Bland’s pivoting rule prevents cycling

—n. 15



The Simplex Method: Complexity

The running time of the simplex method may be exponential
In the size of the linear program using Dantzig’s pivot rule

In the worst-case the algorithm may visit each of the ()
basic feasible solutions

In fact, for any deterministic pivot rule an example has been
found that yields exponential running time for the simplex

Open question: is there a deterministic pivot rule that gives
a running time better than exponential?

In practice, however, the simplex method is very fast:
usually the number of pivots it performs until optimality is
linear in m and n

There exist provably polynomial time algorithms to solve
linear programs: Khachian’s Ellipsoid Algorithm,
Karmarkar’'s algorithm

—n. 16



The Simplex Tableau

The simplex algorithm in requires solving three systems of
linear equations in each iteration: simple for a computer but
difficult for a human

This can be avoided by using the simplex tableau
Suppose that we have an initial basis B

Let z be a new variable that specifies the current value of
the objective function:

Z = CBTCBB + CNTCL'N

The linear program augmented with the new variable:

max =z

S.T. YA cBTmB — CNTCBN = 0
BLBB -+ NLBN = b
B, rN Z 0

—n. 17



The Simplex Tableau
e = determines xgasxg + B '!Nxy = B~ 'b
e Plus we know that z = cg”B'b+ (eny? —cg" B™'N)zn
Z + OCUB + (CBTB_lN — CNT)QL‘N — CBTB_lb

e In the nonbasic variable space:

max z2

st. 2z + O0xg + (cg"B'N —cnDxny = cg"B™'b
I,.xtg + B 'Nzy — B
B, rN Z 0

e In tableau form (“tableau”: “tabular representation”, French)
Z IB TN RHS
z 1 0| cg”’B !N —cnT| cgT"B'b row 0
xg| Ol I, BN B 'b rows 1...m

—n. 18




The Simplex Tableau

2|, --- TBy, | TN, ... Zn,_. | RHS
2z 17 0 ... 0O 21 e Zp—m 20
g, |0 1 ... 0 |1 - Yimm | b
g, |10 O ... 1 |Un1i - Ynmn-m b,
TB,, LBy, -, LB, Dasic variables
TNy, TNy, - -+, TN, . Nonbasic variables

z;: the component of cg” BN — ¢ that belongs to the
nonbasic variable j and 2z, = cg” B~ 'b

b;: the i-th element of b = B~ 'b

y;;: element at the position (i, j) of matrix B~'IN



The Simplex Tableau: Entering Variable

e Unfortunately, the objective function has changed:
zZ+ Z ZjLj = 20
jEN

e To improve the objective function value we need to find a
nonbasic variable k£ for which z, < 0

e The entering variable can be read from row 0
o Nonbasic variable k enters the basis for which

k = argmin z;
JEN

o Optimality condition:

Zr =minz; > 0
jEN

—n. 20



The Simplex Tableau: Leaving Variable

e The basic variables according to the simplex tableau:
Ima:B -+ B_lNCL‘N — B_lb

e The current value of the basic variable x g, can be read from
row ¢ of the tableau:

rp, + Z YijTj = b;
JEN

o when zy is increased, xr g, decreases by y;,xx

o we have unboundedness if no positive element occurs in
column k: y, <0

b
o the leaving variable: r = argmin {— L Yik > O}
/ Yik

—n. 21



The Simplex Tableau: Pivot

e Suppose k enters and r leaves the basis

e The simplex tableau before the pivot:

B, ---TB, ---TB,, TN - TNy - RHS
< 0 0 0 Zj . Bk e 20
T B4 1 0 0 - Y15 .- Y1k - - 51
B, 0 1 0 e Yrg oo Yrk - - Er
TR, 0 0 1 o Ymj - Ymk -+ | bm

—n. 22



The Simplex Tableau: Pivot

1. Divide row r by v,

rp, --- LB, --- LB, CBNj xNk RHS

z 0 0 0 Zj C 2k ... 20
T B4 1 0 0 - Y14 - Y1k - - 51
1 Irj. by

= 0 Yrk 0 Yrk 1 Yrk
rB,, 0 0 1 e Ymj - - Ymk - - - Bm

—n. 23



The Simplex Tableau: Pivot

2. Foreachi:=1,2,...,m : 1 = r, subtract from row : the

new row r multiplied by y;.

Zz |z, ... TB, ...TB,, TN, TN - RHS
z 1 0 0 0 Zj . 2k .. 20
TR 0| 1 ...=24AE .. 0 Y1j — Y1k 22 0 b1 — y1p 22
1 Yrk J Yrk Yrk
1 Yrj b,
T 0 0 0 =L 1
Br. Yrk Yrk Yrk
TB 0 0 “Ymk ] Y — Yk 2L 0 b —y kEr
m U Yk mJ MY Yk ME Yk

—n. 24



The Simplex Tableau: Pivot

3. Subtract from the objective row the new row r multiplied by

2k
zZ | B, - TR, .. TR, TN, TN e RHS
Yrig E
Z 1 0 L —z AR Zi — Zz J 20 — 21 —X
Kyt J kYt 0 kYt
— Yrjg 7 b
T 0 1 ... =Yk 0 ) ;— J b1 — r
B Uk Y1 ylkyrk 1 y1k;yrk
Th o| o ... -t 0 Yry by
Yrk Yrk Yrk
— Yrqg 7 b
T 0 0 ... ZYmk = 1 .. . — . by, — T
B, Yk ymj Ymk Uk m Ymk Uk

e 1, has entered the basis so in the tableau obtained row r

now corresponds to ;.

e . has left the basis and changed to nonbasic

—n. 25




The Simplex Tableau: Example

e Consider the below linear program

max —I7 —
S.t. rT +
T1 T
—Z1

L1,

e (Convert to standard for by introducing slack variables:

max —r; — X9 -+ 4£U3
S.t. r1 + x9 + 2x3
rKi + To — X3

—X1 + X9 + T3

To -+
To -+
i —
To -+
L2,

+ 01'4
+ X4

AVARVANI VAN VAN

+ O.T5

O = DN O

_|_

0336

AVAR|

-\ YN
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The Simplex Tableau: Example

First we need to find an initial basis: let this be the columns

of the slack variables for now

Given a linear program max{c’z : Az < b,z > 0} in
canonical form the columns for the slack variables x.
always comprise a basis: max{c'xz : Ax + Iz, =
b,x > 0,xz, >0} and B = I is always nonsingular

If in a_ddition b > 0, then this basis is also feasible, since
thenb=B 'b=0b>0
Otherwise, finding an initial basis requires special steps
Solet B = [&4 as a6]

Row 0: cg” B 'N — en® = —cpn? as the objective
function coefficients of the basic variables x are all zero
(by x, being slacks) and so ¢! = 0, and similarly

20 — CBTB_lb =0

—n. 27



The Simplex Tableau: Example

e The initial simplex table (recall: row zero must be inverted!)

z| x1 x99 X3 x4 x5 xg | RHS
z |1 1 1 -4 0 0 0 O
x4 |0 1 1 2 1 0 0 9
xs | 0 1 1 -1 0 1 0] 2
x¢ |0 —1 1 | 1| O O 1| 4
e The current basis is not optimal since z3 = —4
e The entering variable is x3, as z3 = min ey z; = —4

e No unboundedness as y; is not negative: y;3 > 0

e The leaving variable is x¢, since y% = min{3,4} =4



Simplex Pivot: Example

1. Divide the row of x4 (the last row) by ys3 (now equals 1)

e Note that the rows of the tableau are identified by the
corresponding basic variable and not the row index

z| x1 X9 X3 x4 x5 x| RHS
z |1 1 1 —4 0 0 0| O
x, |0 1 1 2 1 0 0] 9
xs 0] 1 1 -1 0 1 0| 2
x¢ |0 —1 1 1, 0 0 1| 4




Simplex Pivot: Example

2. Subtract from the row of x4 (x5) the new row of x4 multiplied
by yar (ysk, respectively)
o SO0 subtract from the row of x, two times the row of x4

o idea is to obtain zero for y43 and y53 (marked in bold) by
elementary row operations

z| x4 X9 X3 x4 x5 x| RHS
z |1 1 1 —4 0 0 0] O
|0 3 -1 0 1 0 —2| 1
xs |0} 0O 2 0 0 1 1| 6
xg |0 —1 1 |1 0 0 1| 4




Simplex Pivot: Example

3. Subtract from row zero the row of x¢ multiplied by z3
o so add four times the row of x4 to row 0
o again, idea is to zero out z3 (marked in bold)!

Z| x1 X9 X3 x4 x5 x| RHS
z |1}/ -3 5 0 0 0 4] 16
s 0113 =1 0 1 0 =2
x50 0O 2 0 0 1 1| 6
x3 0] —1 1 0 0 1] 4

e Pivot ready, obtained the new basis B = {3, x4, 5}

e The last row of the tableau now belongs to the entering
variable x3, always worth marking in the tableau



The Simplex Tableau: Example

e Use of the simplex tableau

o the last element in row 0 (the objective row) specifies the
objective function value in the current basis, now z = 16

o the current values for the basic variables can be read
from the RHS column (if some value is negative then

there has been a mistake)
o If no negative values in row 0 then the current basis is

optimal
2| x1 X2 x3 x4 x5 x| RHS
z |11-3 5 0 0 0 4| 16
xs2 |0 3 =1 0 1 0 =2
x50 0O 2 0 0 1 1] 6
x3 |0 —1 1 0 0 1| 4




The Simplex Tableau: Example

e The current basis is not optimal as z; = —3
e Thus x; enters the basis
e No unboundedness because y,; > 0, x4 leaves the basis

z| x1 T T3 T4 x5 x¢ | RHS
z (11-3 5 0 0 0 4] 16
x4 |01 3] =1 0 1 0 =2
x5 | O o 2 0 0 1 1] 6
x3/0/—-1 1 1 0 0 1| 4

e Divide by 3 the row of x4, then add the row obtained to the
x3 row in order to zero out y3;, and finally add 3 times the
objective row to eliminate z;



The Simplex Tableau: Example

z\lxy X9 X3 T4 Ty xg | RHS
z |11 0 4 0 1 0 2| 17
00| 1 -1 o L o —2| 1
x50 0 2 0 0 1 1| ©
3| 0] 0 % 1 % 0 % %3

The new basis is optimal

The objective function value can be read from the last

element of row 0;: z = 17

The basic variables from the RHS column:

The optimal solution: ' = |

Wl

_ -1 -
1 3
Xy | = 0

13
T 19
|73 |3

0 %] (note the indices!)

—n. 34



The Simplex Tableau: Example

e Solve the below linear program

max —2x; -+

S.1.

2£U1 —
X1,

ro + 3x3

3r2 + 3
2372 + 45[33

%)
:C27

AVARVANI VAN VAN

X3

S W= O

e (Convert to standard for by introducing slack variables:

max —2x
S.t. 2%1
L1,

_|_

L2
3332
25132

L2
L9,

+ 35173
+ X3
-+ 4563

X3,

+ 01'4
+ 24

+ O.I'5

+ 0376
+ L6
L6

IV

S W~ O



The Simplex Tableau: Example

Choosing the slacks as the basis, the initial simplex tableau:

2| x1 T2 T3 x4 x5 x¢ | RHS
z |1 2 -1 =3 0 0 0| O
xs |0 2 =3 |1 1 0 0| O
xzs |0 0O -2 4 0 1 0| 1
e | 0] —1 —1 o 0 0 1| 3

3 enters the basis and z, leaves

Subtract 4 times the row of x, from x5’s row and add three
times it to row 0

Degenerate pivot since b, = 0: after the picot we’ll remain
at the same extreme point

—n. 36



The Simplex Tableau: Example

e The simplex tableau after the pivot:

z | ro X3 x4 s Ig | RHS
z |1 8 =10 0 3 0 0| O
x3|0] 2 =3 1 1 0 0] O
x5 |0 -8 (10 0 —4 1 0] 1
|0/ —-1 -1 0 0 0 1| 3

e 1, enters and x; leaves the basis

—n. 37



The Simplex Tableau: Example

e The new simplex tableau after the pivot:

z| x1 X2 T3 T4 x5 x¢ | RHS
z |1 o 0 0 —1 1 0] 1
x3 | 0 —% 0 1 —% 1—30 0 1—30
2|0 —2 1 0 —2 & 0] &
|0/ -2 0 0 —2 & 1| &

e The entering variable is x4

e The column y, for x4 is all negative: x4 can be freely
iIncreased without any basic variable dropping to zero and
blocking x4, meanwhile the objective function value grows
without limit

e Unbounded optimal solution

—n. 38



The Simplex Tableau: Example

e Using the simplex tableau we can also obtain the ray
x + A\d : A > 0 causing unboundedness

o a is the current basic feasible solution
o d comes from the column of the simplex tableau that

corresponds to variable x4

0
1
0

—

S O5

31

10

Ny O oo O

e Take note of the indices and the plus/minus signs!

—n. 39



	The Simplex Tableau
	Recall: The Simplex Method
	Recall: The Simplex Method
	Recall: The Simplex Method
	Termination with Unboundedness
	Termination with Unboundedness
	Unbounded Optimal Solution: Example
	Unbounded Optimal Solution: Example
	Unbounded Optimal Solution: Example
	The Simplex Method: Initialization
	The Simplex Method: Main Step
	The Simplex Method: Main Step
	The Simplex Method: Complexity
	Degeneration and Cycling
	Degeneration and Cycling
	The Simplex Method: Complexity
	The Simplex Tableau
	The Simplex Tableau
	The Simplex Tableau
	The Simplex Tableau: Entering Variable
	The Simplex Tableau: Leaving Variable
	The Simplex Tableau: Pivot
	The Simplex Tableau: Pivot
	The Simplex Tableau: Pivot
	The Simplex Tableau: Pivot
	The Simplex Tableau: Example
	The Simplex Tableau: Example
	The Simplex Tableau: Example
	Simplex Pivot: Example
	Simplex Pivot: Example
	Simplex Pivot: Example
	The Simplex Tableau: Example
	The Simplex Tableau: Example
	The Simplex Tableau: Example
	The Simplex Tableau: Example
	The Simplex Tableau: Example
	The Simplex Tableau: Example
	The Simplex Tableau: Example
	The Simplex Tableau: Example

