
The Simplex Tableau

• Termination: optimality and unbounded optimal solutions

• The steps of the simplex method

• Degeneration and cycling

• Complexity (worst-case and practical)

• The simplex tableau

• Solving linear programs using the simplex tableau:
examples
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Recall: The Simplex Method

• Let A be an m×n matrix with rank(A) = rank(A, b) = m,

b be a column m-vector, x be a column n-vector, and cT be
a row n-vector, and consider the linear program

z = max cTx

s.t. Ax = b

x ≥ 0

• Let B be a basis and reorder the columns of A to obtain
A = [B N ]

• Furthermore, let x =

[

xB

xN

]

=

[

B−1b

0

]

the basic solution

generated by B and suppose that this basic solution is

feasible (B−1b ≥ 0)
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Recall: The Simplex Method

• The linear program in the nonbasic variable space:

max z0 +
∑

j∈N zjxj

s.t. xB = b̄−
∑

j∈N yjxj

xB,xN ≥ 0

where

◦ N denotes the set of nonbasic variables

◦ b̄ = B−1b

◦ yj denotes the column of the matrix B−1N that belongs

to the j-th nonbasic variable: yj = B−1aj

◦ z0 = cB
T
B

−1b = cB
T b̄

◦ zj is the component of the row vector cN
T − cB

TB−1N
that belongs to the j-th nonbasic variable
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Recall: The Simplex Method

• Pivot rules

◦ xk can enter the basis if zk > 0

◦ xr leaves the basis where r = argmin
i∈{1,...,m}

{

b̄i

yik
: yik > 0

}

• The optimality condition of the (primal) simplex method: the
basic feasible solution x̄ is optimal if

∀j ∈ N : zj ≤ 0

• In the below we assume that basic feasible solutions are
nondegenerate, i.e., b̄ > 0

• We handle the degenerate case later
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Termination with Unboundedness

• Given a basic feasible solution x, let xk be a nonbasic
variable so that zk > 0

max z0 + zkxk

s.t. x =

[

xB

xN

]

=

[

b̄

0

]

+

[

−yk

ek

]

xk

x ≥ 0

• Increasing xk increases the objective function (by zk > 0)

• We can keep on increasing xk until some basic variable
drops to zero:

xk ≤ min
i∈B

{

b̄i

yik
: yik > 0

}
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Termination with Unboundedness

• This test is well-defined only in the case when there is basic
variable i for which yik > 0

• If no such basic variable exists, that is, if yk ≤ 0, then no

basic variable blocks the growth of xk

• Theorem: the optimal solution of the linear program

max{cTx : Ax = b,x ≥ 0} is unbounded if there is basic

feasible solution x̄ and nonbasic variable xk so that zk > 0
and yk ≤ 0

• Proof: d =

[

−yk

ek

]

is a direction of the feasible region so

that all points along the ray x = x̄+ dλ, λ ≥ 0 are feasible

• In this case, for an constant K > 0 there is λ > 0 so that

cTx = z0 + λzk > K
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Unbounded Optimal Solution: Example

• Given the linear program in the canonical form

max x1 + 3x2

s.t. x1 − 2x2 ≤ 4
−x1 + x2 ≤ 3
x1, x2 ≥ 0

• Introducing slack variables x3 and x4:

A =

[

1 −2 1 0
−1 1 0 1

]

, b =

[

4
3

]

, cT = [1 3 0 0]

• Consider the basis matrix B = [a2 a3] =

[

−2 1
1 0

]

xB =

[

x2

x3

]

=

[

0 1
1 2

][

4
3

]

=

[

3
10

]

, xN =

[

x1

x4

]

=

[

0
0

]
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Unbounded Optimal Solution: Example

• The usual parameters to transition to the nonbasic space:

z0 = cB
T b̄ = 9

cN
T − cB

TB−1N = [1 0]− [3 0]

[

−1 1
−1 2

]

= [4 − 3]

B−1N =

[

0 1
1 2

][

1 0
−1 1

]

=

[

−1 1
−1 2

]

• The linear program in the nonbasic variable space:

max 9 + 4x1 − 3x4

s.t.

[

x2

x3

]

=

[

3
10

]

−

[

−1
−1

]

x1 −

[

1
2

]

x4

x1, x2, x3, x4 ≥ 0
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Unbounded Optimal Solution: Example

• Observing that y
1
< 0, the ray causing unboundedness:

x =







x1

x2

x3

x4







=







0
3
10
0







+







1
1
1
0







λ, λ ≥ 0

• In the space of the original
variables (omitting slacks):

[

x1

x2

]

=

[

0
3

]

+

[

1
1

]

λ : λ > 0

• Meanwhile, the objective
function grows without limit

according to 9 + 4λ
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The Simplex Method: Initialization

• Let A be an m×n matrix with rank(A) = rank(A, b) = m,

b be a column m-vector, x be a column n-vector, and cT be
a row n-vector, and consider the linear program

z = max cTx

s.t. Ax = b

x ≥ 0

• Suppose that all basic feasible solutions are nondegenerate

• The simplex method is an iterative algorithm to solve the
above linear program, which uses nothing else than a
subroutine to solve systems of linear equations and basic
linear algebra operations

• Initialization: find an initial basic feasible solution and the
corresponding basis B (see later on how to do this)
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The Simplex Method: Main Step

1. Solve the system BxB = b

• The solution is unique: xB = B−1b = b̄. Let xN = 0

2. Solve the system wTB = cB
T

• The solution is unique: wT = cB
TB−1

• For each nonbasic variable j obtain the reduced cost zj =

cj −wTaj and choose the entering variable as

k = argmax
j∈N

zj (Dantzig’s pivot rule)

3. If zk ≤ 0 then terminate:

[

xB

xN

]

is an optimal solution and

the optimal objective function value is cB
TxB

• Otherwise proceed to the next step
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The Simplex Method: Main Step

4. Solve the system Byk = ak

• The solution is unique: yk = B−1ak

• If yk ≤ 0 then terminate: the linear program is unbounded

along the ray

{[

b̄

0

]

+

[

−yk

ek

]

λ : λ ≥ 0

}

• Otherwise, proceed to the next step

5. Pivot: xk enters the basis and xBr
leaves, where

r = argmin
i∈{1,...,m}

{

b̄i

yik
: yik > 0

}

(minimum ratio test)

• Refresh the basis B (swap aBr
to ak), N , cB

T and cN
T ,

and go to the first step
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The Simplex Method: Complexity

• Theorem: if the simplex method does not encounter a
degenerate basis then it solves the linear program in a finite
number of steps or proves that the optimal solution is
unbounded

• Proof: in each step one of the below 3 cases can occur:

◦ if zk ≤ 0 then terminate with optimality

◦ if zk > 0 but yk ≤ 0 then terminate with unboundedness

◦ if zk > 0 and yk � 0 then xk enters and some xr leaves

the basis, so that b̄r
yrk

> 0 and the objective function

value strictly increases to zk
b̄r
yrk

> 0

• Thus, in each iteration we either terminate or find a new
basic feasible solution different from the current one

• The number of basic feasible solutions is finite
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Degeneration and Cycling

• If xk enters and xBr
leaves the basis and yk � 0:

Before the pivot After the pivot

z0 z0 + zk
b̄r
yrk

xB xB − b̄r
yrk

yk

xk = 0 xk =
b̄r
yrk

• The basis is degenerate if xB = b̄ ≯ 0

• In this case there is xBr
= b̄r = 0, and if in addition yrk > 0

then xBr
may xk: min

i∈{1,...,m}

{

b̄i

yik
: yik > 0

}

= 0

yrk

• The objective function value remains the same (z0): we stay
in the same extreme point during the pivot
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Degeneration and Cycling

• Cycling: jumping from one degenerate basic feasible
solution to the other the simplex stays indefinitely in the
same extreme point without improving the objective function

• Finite termination is not guaranteed in such cases

• Cycling is theoretically possible but rarely occurs in practice

• As we may choose the entering variable xk arbitrarily as
long as zk > 0, we can define different pivot rules:

◦ Dantzig’s pivot rule: k = argmaxj∈N zj

◦ Greedy: choose the variable that yields the largest gain
in the objective function

◦ Bland’s pivoting rule: choose the smallest index
nonbasic variable for which zj > 0 and if xBr

= 0 holds

for more than one basic variable choose the one with the
smallest index as the leaving variable

◦ Theorem: Bland’s pivoting rule prevents cycling
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The Simplex Method: Complexity

• The running time of the simplex method may be exponential
in the size of the linear program using Dantzig’s pivot rule

• In the worst-case the algorithm may visit each of the
(

n

m

)

basic feasible solutions

• In fact, for any deterministic pivot rule an example has been
found that yields exponential running time for the simplex

• Open question: is there a deterministic pivot rule that gives
a running time better than exponential?

• In practice, however, the simplex method is very fast:
usually the number of pivots it performs until optimality is
linear in m and n

• There exist provably polynomial time algorithms to solve
linear programs: Khachian’s Ellipsoid Algorithm,
Karmarkar’s algorithm
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The Simplex Tableau

• The simplex algorithm in requires solving three systems of
linear equations in each iteration: simple for a computer but
difficult for a human

• This can be avoided by using the simplex tableau

• Suppose that we have an initial basis B

• Let z be a new variable that specifies the current value of
the objective function:

z = cB
TxB + cN

TxN

• The linear program augmented with the new variable:

max z

s.t. z − cB
TxB − cN

TxN = 0
BxB + NxN = b

xB, xN ≥ 0
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The Simplex Tableau

• xN determines xB as xB +B−1NxN = B−1b

• Plus we know that z = cB
T
B

−1b+(cN
T − cB

TB−1N )xN

z + 0xB + (cB
TB−1N − cN

T )xN = cB
TB−1b

• In the nonbasic variable space:

max z

s.t. z + 0xB + (cB
TB−1N − cN

T )xN = cB
TB−1b

ImxB + B−1NxN = B−1b

xB, xN ≥ 0

• In tableau form (“tableau”: “tabular representation”, French)

z xB xN RHS

z 1 0 cB
TB−1N − cN

T cB
TB−1b row 0

xB 0 Im B−1N B−1b rows 1...m
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The Simplex Tableau

z xB1
. . . xBm

xN1
. . . xNn−m

RHS

z 1 0 . . . 0 z1 . . . zn−m z0

xB1
0 1 . . . 0 y1,1 . . . y1,n−m b̄1

...
...

...
. . .

...
...

. . .
...

...

xBm
0 0 . . . 1 ym,1 . . . ym,n−m b̄m

xB1
, xB2

, . . . , xBm
: basic variables

xN1
, xN2

, . . . , xNn−m
: nonbasic variables

zj : the component of cB
TB−1N − cN

T that belongs to the

nonbasic variable j and z0 = cB
TB−1b

b̄i: the i-th element of b̄ = B−1b

yij : element at the position (i, j) of matrix B−1N
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The Simplex Tableau: Entering Variable

• Unfortunately, the objective function has changed:

z +
∑

j∈N

zjxj = z0

• To improve the objective function value we need to find a
nonbasic variable k for which zk < 0

• The entering variable can be read from row 0

◦ Nonbasic variable k enters the basis for which

k = argmin
j∈N

zj

◦ Optimality condition:

zk = min
j∈N

zj ≥ 0
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The Simplex Tableau: Leaving Variable

• The basic variables according to the simplex tableau:

ImxB +B−1NxN = B−1b

• The current value of the basic variable xBi
can be read from

row i of the tableau:

xBi
+
∑

j∈N

yijxj = b̄i

◦ when xk is increased, xBi
decreases by yikxk

◦ we have unboundedness if no positive element occurs in
column k: yk ≤ 0

◦ the leaving variable: r = argmin
i∈{1,...,m}

{

b̄i

yik
: yik > 0

}
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The Simplex Tableau: Pivot

• Suppose k enters and r leaves the basis

• The simplex tableau before the pivot:

z xB1
. . . xBr

. . . xBm
. . . xNj

. . . xNk
. . . RHS

z 1 0 . . . 0 . . . 0 . . . zj . . . zk . . . z0

xB1
0 1 . . . 0 . . . 0 . . . y1j . . . y1k . . . b̄1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

xBr
0 0 . . . 1 . . . 0 . . . yrj . . . yrk . . . b̄r

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

xBm
0 0 . . . 0 . . . 1 . . . ymj . . . ymk . . . b̄m

– p. 22



The Simplex Tableau: Pivot

1. Divide row r by yrk

z xB1
. . . xBr

. . . xBm
. . . xNj

. . . xNk
. . . RHS

z 1 0 . . . 0 . . . 0 . . . zj . . . zk . . . z0

xB1
0 1 . . . 0 . . . 0 . . . y1j . . . y1k . . . b̄1

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

xBr
0 0 . . . 1

yrk
. . . 0 . . .

yrj
yrk

. . . 1 . . . b̄r
yrk

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

xBm
0 0 . . . 0 . . . 1 . . . ymj . . . ymk . . . b̄m
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The Simplex Tableau: Pivot

2. For each i = 1, 2, . . . ,m : i 6= r, subtract from row i the
new row r multiplied by yik

z xB1
. . . xBr

. . . xBm
. . . xNj

. . . xNk
. . . RHS

z 1 0 . . . 0 . . . 0 . . . zj . . . zk . . . z0

xB1
0 1 . . .

−y1k
yrk

. . . 0 . . . y1j − y1k
yrj
yrk

. . . 0 . . . b̄1 − y1k
b̄r
yrk

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

xBr
0 0 . . . 1

yrk
. . . 0 . . .

yrj
yrk

. . . 1 . . . b̄r
yrk

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

xBm
0 0 . . .

−ymk

yrk
. . . 1 . . . ymj − ymk

yrj
yrk

. . . 0 . . . b̄m − ymk
b̄r
yrk

– p. 24



The Simplex Tableau: Pivot

3. Subtract from the objective row the new row r multiplied by
zk

z xB1
. . . xBr

. . . xBm
. . . xNj

. . . xNk
. . . RHS

z 1 0 . . . −zk
y1k
yrk

. . . 0 . . . zj − zk
yrj
yrk

. . . 0 . . . z0 − zk
b̄r
yrk

xB1
0 1 . . .

−y1k
yrk

. . . 0 . . . y1j − y1k
yrj
yrk

. . . 0 . . . b̄1 − y1k
b̄r
yrk

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

xk 0 0 . . . 1

yrk
. . . 0 . . .

yrj
yrk

. . . 1 . . . b̄r
yrk

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

xBm
0 0 . . .

−ymk

yrk
. . . 1 . . . ymj − ymk

yrj
yrk

. . . 0 . . . b̄m − ymk
b̄r
yrk

• xk has entered the basis so in the tableau obtained row r
now corresponds to xk

• xBr
has left the basis and changed to nonbasic
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The Simplex Tableau: Example

• Consider the below linear program

max −x1 − x2 + 4x3

s.t. x1 + x2 + 2x3 ≤ 9
x1 + x2 − x3 ≤ 2

−x1 + x2 + x3 ≤ 4
x1, x2, x3 ≥ 0

• Convert to standard for by introducing slack variables:

max −x1 − x2 + 4x3 + 0x4 + 0x5 + 0x6

s.t. x1 + x2 + 2x3 + x4 = 9
x1 + x2 − x3 + x5 = 2

−x1 + x2 + x3 + x6 = 4
x1, x2, x3, x4, x5, x6 ≥ 0
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The Simplex Tableau: Example

• First we need to find an initial basis: let this be the columns
of the slack variables for now

• Given a linear program max{cTx : Ax ≤ b,x ≥ 0} in

canonical form the columns for the slack variables xs

always comprise a basis: max{cTx : Ax+ Ixs =
b,x ≥ 0,xs ≥ 0} and B = I is always nonsingular

• If in addition b ≥ 0, then this basis is also feasible, since

then b̄ = B−1b = b ≥ 0

• Otherwise, finding an initial basis requires special steps

• So let B = [a4 a5 a6]

• Row 0: cB
TB−1N − cN

T = −cN
T as the objective

function coefficients of the basic variables xs are all zero

(by xs being slacks) and so cB
T = 0, and similarly

z0 = cB
TB−1b = 0
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The Simplex Tableau: Example

• The initial simplex table (recall: row zero must be inverted!)

z x1 x2 x3 x4 x5 x6 RHS

z 1 1 1 −4 0 0 0 0

x4 0 1 1 2 1 0 0 9

x5 0 1 1 −1 0 1 0 2

x6 0 −1 1 1 0 0 1 4

• The current basis is not optimal since z3 = −4

• The entering variable is x3, as z3 = minj∈N zj = −4

• No unboundedness as y
3

is not negative: yi3 > 0

• The leaving variable is x6, since
b̄6
y63

= min{9

2
, 4} = 4
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Simplex Pivot: Example

1. Divide the row of x6 (the last row) by y63 (now equals 1)

• Note that the rows of the tableau are identified by the
corresponding basic variable and not the row index

z x1 x2 x3 x4 x5 x6 RHS

z 1 1 1 −4 0 0 0 0

x4 0 1 1 2 1 0 0 9

x5 0 1 1 −1 0 1 0 2

x6 0 −1 1 1 0 0 1 4
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Simplex Pivot: Example

2. Subtract from the row of x4 (x5) the new row of x6 multiplied
by y4k (y5k, respectively)

◦ so subtract from the row of x4 two times the row of x6

◦ idea is to obtain zero for y43 and y53 (marked in bold) by
elementary row operations

z x1 x2 x3 x4 x5 x6 RHS

z 1 1 1 −4 0 0 0 0

x4 0 3 −1 0 1 0 −2 1

x5 0 0 2 0 0 1 1 6

x6 0 −1 1 1 0 0 1 4
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Simplex Pivot: Example

3. Subtract from row zero the row of x6 multiplied by z3
◦ so add four times the row of x6 to row 0
◦ again, idea is to zero out z3 (marked in bold)!

z x1 x2 x3 x4 x5 x6 RHS

z 1 −3 5 0 0 0 4 16

x4 0 3 −1 0 1 0 −2 1

x5 0 0 2 0 0 1 1 6

x3 0 −1 1 1 0 0 1 4

• Pivot ready, obtained the new basis B = {x3, x4, x5}

• The last row of the tableau now belongs to the entering
variable x3, always worth marking in the tableau
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The Simplex Tableau: Example

• Use of the simplex tableau

◦ the last element in row 0 (the objective row) specifies the
objective function value in the current basis, now z = 16

◦ the current values for the basic variables can be read
from the RHS column (if some value is negative then
there has been a mistake)

◦ if no negative values in row 0 then the current basis is
optimal

z x1 x2 x3 x4 x5 x6 RHS

z 1 −3 5 0 0 0 4 16

x4 0 3 −1 0 1 0 −2 1

x5 0 0 2 0 0 1 1 6

x3 0 −1 1 1 0 0 1 4
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The Simplex Tableau: Example

• The current basis is not optimal as z1 = −3

• Thus x1 enters the basis

• No unboundedness because y41 > 0, x4 leaves the basis

z x1 x2 x3 x4 x5 x6 RHS

z 1 −3 5 0 0 0 4 16

x4 0 3 −1 0 1 0 −2 1

x5 0 0 2 0 0 1 1 6

x3 0 −1 1 1 0 0 1 4

• Divide by 3 the row of x4, then add the row obtained to the
x3 row in order to zero out y31, and finally add 3 times the
objective row to eliminate z1
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The Simplex Tableau: Example

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 4 0 1 0 2 17

x1 0 1 −1

3
0 1

3
0 −2

3

1

3

x5 0 0 2 0 0 1 1 6

x3 0 0 2

3
1 1

3
0 1

3

13

3

• The new basis is optimal

• The objective function value can be read from the last
element of row 0: z = 17

• The basic variables from the RHS column:

[

x1

x5

x3

]

=

[

1

3

6
13

3

]

• The optimal solution: xT = [1
3

0 13

3
] (note the indices!)
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The Simplex Tableau: Example

• Solve the below linear program

max −2x1 + x2 + 3x3

s.t. 2x1 − 3x2 + x3 ≤ 0
− 2x2 + 4x3 ≤ 1

−x1 − x2 ≤ 3
x1, x2, x3 ≥ 0

• Convert to standard for by introducing slack variables:

max −2x1 + x2 + 3x3 + 0x4 + 0x5 + 0x6

s.t. 2x1 − 3x2 + x3 + x4 = 0
− 2x2 + 4x3 + x5 = 1

−x1 − x2 + x6 = 3
x1, x2, x3, x4, x5, x6 ≥ 0
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The Simplex Tableau: Example

• Choosing the slacks as the basis, the initial simplex tableau:

z x1 x2 x3 x4 x5 x6 RHS

z 1 2 −1 −3 0 0 0 0

x4 0 2 −3 1 1 0 0 0

x5 0 0 −2 4 0 1 0 1

x6 0 −1 −1 0 0 0 1 3

• x3 enters the basis and x4 leaves

• Subtract 4 times the row of x4 from x5’s row and add three
times it to row 0

• Degenerate pivot since b4 = 0: after the picot we’ll remain
at the same extreme point
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The Simplex Tableau: Example

• The simplex tableau after the pivot:

z x1 x2 x3 x4 x5 x6 RHS

z 1 8 −10 0 3 0 0 0

x3 0 2 −3 1 1 0 0 0

x5 0 −8 10 0 −4 1 0 1

x6 0 −1 −1 0 0 0 1 3

• x2 enters and x5 leaves the basis
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The Simplex Tableau: Example

• The new simplex tableau after the pivot:

z x1 x2 x3 x4 x5 x6 RHS

z 1 0 0 0 −1 1 0 1

x3 0 −2

5
0 1 −1

5

3

10
0 3

10

x2 0 −4

5
1 0 −2

5

1

10
0 1

10

x6 0 −9

5
0 0 −2

5

1

10
1 31

10

• The entering variable is x4

• The column y
4

for x4 is all negative: x4 can be freely
increased without any basic variable dropping to zero and
blocking x4, meanwhile the objective function value grows
without limit

• Unbounded optimal solution

– p. 38



The Simplex Tableau: Example

• Using the simplex tableau we can also obtain the ray

x̄+ λd : λ ≥ 0 causing unboundedness

◦ x̄ is the current basic feasible solution

◦ d comes from the column of the simplex tableau that
corresponds to variable x4

x =















x1

x2

x3

x4

x5

x6















=















0
1

10
3

10

0
0
31

10















+















0
2

5
1

5

1
0
2

5















λ, λ ≥ 0

• Take note of the indices and the plus/minus signs!
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