
The Simplex Method: A Summary

WARNING: this is just a summary of the material covered in the
full slide-deck The Simplex Method that will orient you as per

the topics covered there; you are required to learn the full
version, not just this summary!

• Recall: linear programs and the two “Fundamental
Theorems”

• Basics: basic solutions, basic feasible solutions, and
degenerate basic feasible solutions

• Iteration of the simplex method: the initial basic feasible
solution, the linear program in the nonbasic variable space,
the entering and leaving variables, the pivot

• Termination: termination with optimality and alternative
optima
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Linear Programs Are Convex Programs

• A linear program asks for the maximum of an objective

function cTx over a feasible region {x : Ax ≤ b} ⊆ Rn

◦ the objective is linear: both convex and concave

◦ the feasible region is a polyhedron: convex by definition

• Recall, a polyhedron is a geometric object with “flat sides”:
the intersection of finitely many halfspaces

a half-space a convex polyhedron

• A linear program is a convex program
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Linear Programs Are Convex Programs

• Fundamental Theorem of Convex Programming: Let X

be a nonempty convex set in Rn and let f : Rn → R be a
concave function on X . Then, if some x̄ ∈ X is a local
optimum of the optimization problem max f(x) : x ∈ X
then x̄ is also a global optimum

• It is enough to search for a local optimum (much easier)

• The “hill-climbing” algorithm is correct for linear programs:

◦ start from a feasible point, try to find a direction moving
along which improves the objective function

◦ if no such direction exists, point is a local optimum so it
is also a global one, terminate with the current point

◦ otherwise, move along the direction as long as possible
to get a “better” feasible solution

◦ repeat the iteration
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Linear Programs and Extreme Points

• If the polyhedron of the feasible region X is bounded then
X can be written equivalently as a convex combination of its
extreme points xj (Minkowski-Weyl)

X = {x : Ax ≤ b} = conv (xj : j ∈ {1, . . . , k})

• Half-space representation ≡ extreme-point representation

≡

• The Fundamental Theorem of LP: given a linear program

max{cTx : Ax ≤ b}, if an optimal solution exists then

there is at least one optimal solution that occurs at an
extreme point of the feasible region
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The Simplex Algorithm: Idea

• The simplex algorithm for solving linear programs is a
culmination of the above ideas

1. The simplex algorithm uses the hill-climbing scheme:
move along an improving feasible direction if possible or
conclude that the current solution is a global optimum

2. The simplex algorithm considers only the extreme
points of the feasible region: no need to search in the
interior of the feasible set

• As such, the simplex algorithm considers only the finite set
of extreme points: terminates in finite steps

• Although not a polynomial-time algorithm, it is still perhaps
the most practical choice for solving linear programs
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Basic Feasible Solutions

• The notion of extreme points gives a purely geometric
interpretation for the optimal solution of a linear program

• In order to define systematic solver algorithm we need an
algebraic interpretation: basic feasible solutions

• Consider a linear program whose the feasible region is

given by the polyhedron X = {x : Ax = b,x ≥ 0}, where

A is an m× n matrix, b is a column m-vector, and x is a
column n-vector

• Suppose that rank(A) = rank(A, b) = m

• Reordering columns of A so that the first m columns are

linearly independent, we write A = [B N ] where

◦ B is an m×m quadratic nonsingular matrix, called the
basic matrix

◦ N is an m× (n−m) matrix, called the nonbasic matrix
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Basic Feasible Solutions

• Reorder x accordingly: x =

[

xB

xN

]

, where xB contains the

basic variables (or dependent variables) that belong to the
columns of B, and xN contains the nonbasic variables (or
independent variables) that belong to the columns of N

• An explicit representation of the basic variables in the terms
of the nonbasic variables (xN can be chosen arbitrarily!)

xB = B−1b−B−1NxN

• Choosing xN = 0 gives the basic solution (in the basis B)

xB = B−1b, xN = 0, x =

[

xB

xN

]

=

[

B−1b

0

]

• If xB ≥ 0 then (xB,xN ) is a basic feasible solution
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Basic Feasible Solutions

• If all components of xB are strictly positive (xB > 0) then x
is a nondegenerate basic (feasible) solution, otherwise it
is a degenerate basic (feasible) solution

• Basic feasible solutions are essential as these give the
algebraic interpretation for the geometric notion of extreme
points (which we know are key to solving linear programs)

• Theorem: given a linear program max{cTx : Ax = b,

x ≥ 0}, x is a basic feasible solution if and only if x is an

extreme point of the feasible region X = {x : Ax = b,

x ≥ 0}

• Iterating along basic feasible solutions (i.e., extreme points)
we can solve a linear program to optimality: the simplex
method
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The Simplex Method

• Let A be an m×n matrix with rank(A) = rank(A, b) = m,

b be a column m-vector, x be a column n-vector, and cT be
a row n-vector, and consider the linear program

z = max cTx

s.t. Ax = b

x ≥ 0

• Let B be an initial basis and x =

[

xB

xN

]

=

[

B−1b

0

]

≥ 0 be

the basic feasible solution for B and write A = [B N ]

• We rewrite the linear program in the space of nonbasic
variables
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The Simplex Method

• Theorem: the linear program in the nonbasic variable
space is given by

max z0 +
∑

j∈N zjxj

s.t. xB = b̄−
∑

j∈N yjxj

xB,xN ≥ 0

where

◦ N denotes the set of nonbasic variables

◦ b̄ = B−1b

◦ yj denotes the column of the matrix B−1N that belongs

to the j-th nonbasic variable

◦ z0 = cB
T
B

−1b = cB
T b̄

◦ zj is the component of the row vector cN
T − cB

TB−1N
that belongs to the j-th nonbasic variable
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The Simplex Method: Example

• Consider the linear program

max x1 + x2

s.t. x1 + 2x2 ≤ 4
x2 ≤ 1

x1, x2 ≥ 0

• Introducing slack variables and converting to standard form:

max
[

1 1 0 0
]

x
[

1 2 1 0
0 1 0 1

]

x =

[

4
1

]

x1, x2, x3, x4 ≥ 0
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The Simplex Method: Example

• Converting in the space of nonbasic variables N = {1, 4}:

max 1 + x1 − x4

s.t.

[

x2

x3

]

=

[

1
2

]

−

[

0
1

]

x1 −

[

1
−2

]

x4

x1, x2, x3, x4 ≥ 0
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The Simplex Method: Pivot

• Theorem: the optimality condition for the simplex method

∀j ∈ N : zj ≤ 0

• Easily, if for some basic feasible solution x we have
∀j ∈ N : zj ≤ 0, then x is a local optimum, ans so also a

global optimum

• Otherwise, let xk be a nonbasic variable with zk > 0

• Increasing xk improves the objective function, but this can
be done only as long as no basic variable drops to zero

• The first basic variable xr that drops to zero:

r = argmin
i∈{1,...,m}

{

b̄i

yik
: yik > 0

}
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The Simplex Method: Pivot

• This transformation is called the pivot, during which

◦ the nonbasic variable xk with zk > 0 increases from zero
and enters the basis

◦ the basic variable xr drops to zero and leaves the basis

r = argmin
i∈{1,...,m}

{

b̄i

yik
: yik > 0

}

◦ all remaining nonbasic variables remain zero and all
remaining basic variables remain nonnegative

• Theorem: the pivot results a new basic feasible solution
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Unique and Alternative Optima

• Definition: the feasible solution x̄ to the linear program

max{cTx : Ax = b,x ≥ 0} is a unique optimal solution

if for each feasible solution x 6= x̄ we have cTx < cT x̄

• Theorem: the basic feasible solution x̄ is a unique optimal
solution if ∀j ∈ N : zj < 0

• Easily, as the objective function in the nonbasic space

equals z = z0 +
∑

j∈N zjxj , the condition ∀j ∈ N : zj < 0

means that increasing any xk will lead strictly worse
solutions

• Otherwise, if ∀j ∈ N : zj ≤ 0 holds but there is xk : zk = 0
then there are alternative optimal solutions
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