The Simplex Method

- Recall: the Representation Theorem and the Fundamental Theorem
- Basics: basic solutions, basic feasible solutions, and degenerate basic feasible solutions
- Iteration of the simplex method: the initial basic feasible solution, the linear program in the nonbasic variable space, the entering and leaving variables, the pivot
- Termination: termination with optimality

Linear Programs and Extreme Points

- The Fundamental Theorem: given a linear program $\max \left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\right\}$, if an optimal solution exists then there is at least one optimal solution that occurs at an extreme point of the feasible region
- If the polyhedron of the feasible region X is bounded then X can be written equivalently as a convex combination of its extreme points \boldsymbol{x}_{j} (Minkowski-Weyl)

$$
X=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\}=\operatorname{conv}\left(\boldsymbol{x}_{j}: j \in\{1, \ldots, k\}\right)
$$

- Recall: the convex combination

$$
\operatorname{conv}\left(\boldsymbol{x}_{j}\right)=\left\{\boldsymbol{x}: \boldsymbol{x}=\sum_{j=1}^{k} \lambda_{j} \boldsymbol{x}_{j}, \sum_{j=1}^{k} \lambda_{j}=1, \lambda_{j} \geq 0\right\}
$$

Linear Programs and Extreme Points

- An equivalent linear program using the coefficients of the convex combination λ_{j} as variables
$\max \left\{\sum_{j=1}^{k}\left(\boldsymbol{c}^{T} \boldsymbol{x}_{j}\right) \lambda_{j}: \sum_{j=1}^{k} \lambda_{j}=1, \lambda_{j} \geq 0 \quad \forall j \in\{1, \ldots, k\}\right\}$
- A solution is guaranteed to occur at an extreme point

$$
\begin{gathered}
\boldsymbol{x}_{\mathrm{opt}}=\underset{\boldsymbol{x}_{j}: j \in\{1, \ldots, k\}}{\operatorname{argmax}} \boldsymbol{c}^{T} \boldsymbol{x}_{j} \\
z_{\mathrm{opt}}=\max _{j \in\{1, \ldots, k\}} \boldsymbol{c}^{T} \boldsymbol{x}_{j}
\end{gathered}
$$

where $z_{\text {opt }}$ denotes the optimal objective function value

Extreme Point Solutions: Example

- Consider the below set of constraints

$$
\begin{array}{cc}
-x_{1}+x_{2} & \leq 2 \\
-x_{1}+2 x_{2} & \leq 6 \\
x_{1}, & x_{2}
\end{array}
$$

- Extreme points:

$$
\begin{aligned}
& \boldsymbol{x}_{1}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \boldsymbol{x}_{2}=\left[\begin{array}{l}
0 \\
2
\end{array}\right], \\
& \boldsymbol{x}_{3}=\left[\begin{array}{l}
2 \\
4
\end{array}\right]
\end{aligned}
$$

Extreme Point Solutions: Example

- Let us maximize the objective function $-4 x_{1}+x_{2}$

$$
\begin{aligned}
& \boldsymbol{c}^{T} \boldsymbol{x}_{1}=\left[\begin{array}{ll}
-4 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right]=0, \boldsymbol{c}^{T} \boldsymbol{x}_{2}=\left[\begin{array}{ll}
-4 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
2
\end{array}\right]=2, \\
& \boldsymbol{c}^{T} \boldsymbol{x}_{3}=\left[\begin{array}{ll}
-4 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
4
\end{array}\right]=-4
\end{aligned}
$$

- The solution is the extreme point that minimizes the scalar product $\boldsymbol{c}^{T} \boldsymbol{x}_{j}$

$$
\begin{gathered}
\boldsymbol{x}_{\mathrm{opt}}=\underset{\boldsymbol{x}_{j}: j \in\{1, \ldots, k\}}{\operatorname{argmax}} \boldsymbol{c}^{T} \boldsymbol{x}_{j}=\left[\begin{array}{l}
0 \\
2
\end{array}\right] \\
z_{\mathrm{opt}}=\max _{j \in\{1, \ldots, k\}} \boldsymbol{c}^{T} \boldsymbol{x}_{j}=2
\end{gathered}
$$

Extreme Point Solutions: Example

- If now the task is to maximize the objective function $-x_{1}+3 x_{2}$ then there is no bounded optimal solution
- Since now there is a direction \boldsymbol{d} and a feasible solution x_{0} so that, starting from the point \boldsymbol{x}_{0} along the direction \boldsymbol{d} we can obtain arbitrarily large objective function values
- That is, all solutions of the form $\boldsymbol{x}_{0}+\mu \boldsymbol{d}$ for any $\mu \geq 0$ are feasible and improve the objective function value
- For example, if $\boldsymbol{d}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\boldsymbol{x}_{0}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$, then the points along the ray $\boldsymbol{x}=\left[\begin{array}{l}2 \\ 4\end{array}\right]+\mu\left[\begin{array}{l}2 \\ 1\end{array}\right], \mu \geq 0$ are all feasible and the objective function value is $\boldsymbol{c}^{T}\left(\boldsymbol{x}_{0}+\mu \boldsymbol{d}\right)=\boldsymbol{c}^{T} \boldsymbol{x}_{0}+\mu \boldsymbol{c}^{T} \boldsymbol{d}$
- Lemma: if $\exists \boldsymbol{d}, \boldsymbol{x}_{0}$ so that $\boldsymbol{x}_{0}+\mu \boldsymbol{d}, \mu \geq 0$ is feasible and $\boldsymbol{c}^{T} \boldsymbol{d}>0$ then the optimal solution is unbounded

Basic Feasible Solutions

- The notion of extreme points give a geometric interpretation for the optimal solution of a linear program
- In order to define systematic solver algorithm we need an algebraic interpretation: basic feasible solutions
- Consider a linear program whose the feasible region is given by the polyhedron $X=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\}$, where \boldsymbol{A} is an $m \times n$ matrix, \boldsymbol{b} is a column m-vector, and \boldsymbol{x} is a column n-vector
- Suppose that $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{A}, \boldsymbol{b})=m$
- Reordering columns of \boldsymbol{A} so that the first m columns are linearly independent, we write $\boldsymbol{A}=\left[\begin{array}{ll}\boldsymbol{B} & \boldsymbol{N}\end{array}\right]$ where
- \boldsymbol{B} is an $m \times m$ quadratic nonsingular matrix, called the basic matrix
- \boldsymbol{N} is an $m \times(n-m)$ matrix, called the nonbasic matrix

Basic Feasible Solutions

- Reorder x accordingly: $x=\left[\begin{array}{l}x_{B} \\ x_{N}\end{array}\right]$, where x_{B} contains the basic variables (or dependent variables) that belong to the columns of B, and x_{N} contains the nonbasic variables (or independent variables) that belong to the columns of N
- The constraint system in terms of the basis \boldsymbol{B}

$$
A x=\left[\begin{array}{ll}
\boldsymbol{B} & \boldsymbol{N}
\end{array}\right]\left[\begin{array}{l}
x_{B} \\
x_{N}
\end{array}\right]=\boldsymbol{B} \boldsymbol{x}_{B}+\boldsymbol{N} \boldsymbol{x}_{\boldsymbol{N}}=\boldsymbol{b}
$$

- Since B is nonsingular, we can multiply with the inverse B^{-1} from the left

$$
\boldsymbol{x}_{B}+\boldsymbol{B}^{-1} \boldsymbol{N} \boldsymbol{x}_{\boldsymbol{N}}=\boldsymbol{B}^{-1} \boldsymbol{b}
$$

Basic Feasible Solutions

- An explicit representation of the basic variables in the terms of the nonbasic variables

$$
\boldsymbol{x}_{\boldsymbol{B}}=\boldsymbol{B}^{-1} \boldsymbol{b}-\boldsymbol{B}^{-1} \boldsymbol{N} \boldsymbol{x}_{\boldsymbol{N}}
$$

- Note that \boldsymbol{x}_{N} can be chosen arbitrarily!
- Choosing $\boldsymbol{x}_{\boldsymbol{N}}=0$ gives the basic solution (in the basis \boldsymbol{B})

$$
\boldsymbol{x}_{\boldsymbol{B}}=\boldsymbol{B}^{-1} \boldsymbol{b}, \quad \boldsymbol{x}_{\boldsymbol{N}}=\mathbf{0}, \quad \boldsymbol{x}=\left[\begin{array}{c}
\boldsymbol{x}_{\boldsymbol{B}} \\
\boldsymbol{x}_{\boldsymbol{N}}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{B}^{-1} \boldsymbol{b} \\
\mathbf{0}
\end{array}\right]
$$

- If in addition $\boldsymbol{x}_{B} \geq \mathbf{0}$ then what we have obtained is a basic feasible solution

$$
\boldsymbol{x}_{B}=B^{-1} \boldsymbol{b} \geq \mathbf{0}, \quad \boldsymbol{x}_{N}=\mathbf{0}, \quad \boldsymbol{x}=\left[\begin{array}{c}
\boldsymbol{x}_{B} \\
\boldsymbol{x}_{N}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{B}^{-1} \boldsymbol{b} \\
\mathbf{0}
\end{array}\right] \geq \mathbf{0}
$$

Basic Feasible Solutions

- If all components of $\boldsymbol{x}_{\boldsymbol{B}}$ are strictly positive $\left(\boldsymbol{x}_{\boldsymbol{B}}>0\right)$ then \boldsymbol{x} is a nondegenerate basic (feasible) solution, otherwise it is a degenerate basic (feasible) solution
- Basic feasible solutions are essential as these give the algebraic interpretation for the geometric notion of extreme points (which we know are key to solving linear programs)
- Theorem: \boldsymbol{x} is a basic feasible solution for the linear program $\max \left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$ if and only if \boldsymbol{x} is an extreme point of the feasible region $X=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, $\boldsymbol{x} \geq \mathbf{0}\}$
- If, in addition, \boldsymbol{x} is also nondegenerate then it is generated by a single basis
- Iterating along basic feasible solutions (i.e., extreme points) we can solve a linear program to optimality: the simplex method

Basic Feasible Solutions: Example

- Consider the feasible region

$$
\begin{aligned}
x_{1}+x_{2} & \leq 6 \\
x_{2} & \leq 3 \\
x_{1}, & \geq 0
\end{aligned}
$$

- This is in canonical form (" \leq " type constraints), we need to convert to standard form ("=" type constraints)
- Introduce the slack variables x_{3} and x_{4}

Basic Feasible Solutions: Example

- The matrix of the constraint system

$$
\begin{aligned}
& \boldsymbol{A}=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{a}_{4}\right]= \\
& {\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

- \boldsymbol{A} is of full row rank so the size of the basic matrix \boldsymbol{B} is 2×2 and there can be $\binom{4}{2}$ of them
- Basic feasible solutions are the ones for which \boldsymbol{B} is nonsingular and

$$
\boldsymbol{B}^{-1} \boldsymbol{b} \geq \mathbf{0}
$$

Basic Feasible Solutions: Example

1. $\boldsymbol{B}=\left[\begin{array}{ll}\boldsymbol{a}_{1} & \boldsymbol{a}_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ gives a basic feasible solution

$$
\begin{aligned}
& \boldsymbol{x}_{\boldsymbol{B}}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\boldsymbol{B}^{-1} \boldsymbol{b}=\left[\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
6 \\
3
\end{array}\right]=\left[\begin{array}{l}
3 \\
3
\end{array}\right] \\
& \boldsymbol{x}_{\boldsymbol{N}}=\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text {, extreme point: }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
3
\end{array}\right]
\end{aligned}
$$

2. $\boldsymbol{B}=\left[\begin{array}{ll}\boldsymbol{a}_{1} & \boldsymbol{a}_{4}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ gives a basic feasible solution

$$
\begin{aligned}
& \boldsymbol{x}_{\boldsymbol{B}}=\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]=\boldsymbol{B}^{-1} \boldsymbol{b}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
6 \\
3
\end{array}\right]=\left[\begin{array}{l}
6 \\
3
\end{array}\right] \\
& \boldsymbol{x}_{\boldsymbol{N}}=\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text {, extreme point: }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
6 \\
0
\end{array}\right]
\end{aligned}
$$

Basic Feasible Solutions: Example

3. $\boldsymbol{B}=\left[\begin{array}{ll}\boldsymbol{a}_{2} & \boldsymbol{a}_{3}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ gives a basic feasible solution

$$
\begin{aligned}
& \boldsymbol{x}_{\boldsymbol{B}}=\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]=\boldsymbol{B}^{-1} \boldsymbol{b}=\left[\begin{array}{rr}
0 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
6 \\
3
\end{array}\right]=\left[\begin{array}{l}
3 \\
3
\end{array}\right] \\
& \boldsymbol{x}_{\boldsymbol{N}}=\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text {, extreme point: }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
\end{aligned}
$$

4. $\boldsymbol{B}=\left[\begin{array}{ll}\boldsymbol{a}_{2} & \boldsymbol{a}_{4}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ is not a feasible basis!

$$
\begin{aligned}
\boldsymbol{x}_{\boldsymbol{B}} & =\left[\begin{array}{l}
x_{2} \\
x_{4}
\end{array}\right]=\boldsymbol{B}^{-1} \boldsymbol{b}=\left[\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
6 \\
3
\end{array}\right]=\left[\begin{array}{r}
6 \\
-3
\end{array}\right] \nsupseteq \mathbf{0} \\
\boldsymbol{x}_{\boldsymbol{N}} & =\left[\begin{array}{l}
x_{1} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Basic Feasible Solutions: Example

5. $\boldsymbol{B}=\left[\begin{array}{ll}\boldsymbol{a}_{3} & \boldsymbol{a}_{4}\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ gives a basic feasible solution

$$
\begin{aligned}
& \boldsymbol{x}_{\boldsymbol{B}}=\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]=\boldsymbol{B}^{-1} \boldsymbol{b}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
6 \\
3
\end{array}\right]=\left[\begin{array}{l}
6 \\
3
\end{array}\right] \\
& \boldsymbol{x}_{\boldsymbol{N}}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \text { extreme point: }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

6. $\boldsymbol{B}=\left[\begin{array}{ll}\boldsymbol{a}_{1} & \boldsymbol{a}_{3}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ singular, does not generate a basic solution

Degenerate Basic Solutions: Example

- Introduce a new "redundant" constraint

$$
\begin{aligned}
x_{1}+x_{2} & \leq 6 \\
x_{2} & \leq 3 \\
x_{1}+2 x_{2} & \leq 9 \\
x_{1}, & x_{2}
\end{aligned}
$$

- The constraint system converted to standard form introducing appropriate slack variables x_{3}, x_{4}, and x_{5}

$x_{1}+x_{2}+x_{3}$	
x_{2}	
	$=6$
$x_{1}+x_{4}$	
x_{1},	
x_{2},	x_{3},

Degenerate Basic Solutions: Example

$$
\boldsymbol{A}=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}, \boldsymbol{a}_{4}, \boldsymbol{a}_{5}\right]=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 2 & 0 & 0 & 1
\end{array}\right]
$$

- The basic feasible solution generated by the basic matrix $\boldsymbol{B}=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right]$ is degenerate

$$
\begin{aligned}
& \boldsymbol{x}_{\boldsymbol{B}}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\boldsymbol{B}^{-1} \boldsymbol{b}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
1 & 2 & 0
\end{array}\right]^{-1}\left[\begin{array}{l}
6 \\
3 \\
9
\end{array}\right]= \\
& {\left[\begin{array}{rrr}
0 & -2 & 1 \\
0 & 1 & 0 \\
1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
6 \\
3 \\
9
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
0
\end{array}\right] \ngtr \mathbf{0}} \\
& \boldsymbol{x}_{\boldsymbol{N}}=\left[\begin{array}{l}
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \text { extreme point: }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
3
\end{array}\right]
\end{aligned}
$$

Degenerate Basic Solutions: Example

- Similarly, $\boldsymbol{B}=\left[\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \boldsymbol{a}_{4}\right]$ also generates a degenerate basic feasible solution

$$
\begin{aligned}
& \boldsymbol{x}_{\boldsymbol{B}}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{4}
\end{array}\right]=\boldsymbol{B}^{-1} \boldsymbol{b}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 2 & 0
\end{array}\right]^{-1}\left[\begin{array}{l}
6 \\
3 \\
9
\end{array}\right]= \\
& {\left[\begin{array}{rrr}
2 & 0 & -1 \\
-1 & 0 & 1 \\
1 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
6 \\
3 \\
9
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
0
\end{array}\right] \ngtr \mathbf{0}} \\
& \boldsymbol{x}_{\boldsymbol{N}}=\left[\begin{array}{l}
x_{3} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \text { extreme point: }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
3
\end{array}\right]
\end{aligned}
$$

- Two basic feasible solutions give the same extreme point
- In 2 dimensions extreme points are generated by 2 hyperplanes
- At the extreme point $\boldsymbol{x}=\left[\begin{array}{l}3 \\ 3\end{array}\right]$ three hyperplanes meet!

The Simplex Method

- As shown, if a linear program is solvable then at least one optimal solution is guaranteed to occur at an extreme point of the feasible region
- Extreme points correspond to basic feasible solutions
- Unfortunately there can be $\binom{n}{m}$ of these, cannot generate all not even in moderate dimensions
- The simplex method, starting from an initial basic feasible solution, generates new basic feasible solutions iteratively that improve the objective function value
- In practice the simplex visits only a modest number of extreme points to find the optimal solution or prove unboundedness

The Simplex Method

- Let \boldsymbol{A} be an $m \times n$ matrix with $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{A}, \boldsymbol{b})=m$, \boldsymbol{b} be a column m-vector, \boldsymbol{x} be a column n-vector, and \boldsymbol{c}^{T} be a row n-vector, and consider the linear program

$$
\begin{array}{rc}
z=\max & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

- Let \boldsymbol{B} be an initial basis and $\boldsymbol{x}=\left[\begin{array}{l}x_{B} \\ x_{N}\end{array}\right]=\left[\begin{array}{c}\boldsymbol{B}^{-1} \boldsymbol{b} \\ 0\end{array}\right] \geq \mathbf{0}$ be the basic feasible solution for \boldsymbol{B} and write $\boldsymbol{A}=\left[\begin{array}{ll}\boldsymbol{B} & \boldsymbol{N}\end{array}\right]$
- Write the linear program in the space of nonbasic variables
- This way we obtain the explicit expression of the the basic variables and the objective function value in terms of the nonbasic variables

The Simplex Method

- The constraint system in the basis \boldsymbol{B} :

$$
\begin{gather*}
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{ll}
\boldsymbol{B} & \boldsymbol{N}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x}_{\boldsymbol{B}} \\
\boldsymbol{x}_{N}
\end{array}\right]=\boldsymbol{b}, \text { that is } \boldsymbol{B} \boldsymbol{x}_{\boldsymbol{B}}+\boldsymbol{N} \boldsymbol{x}_{\boldsymbol{N}}=\boldsymbol{b} \\
\boldsymbol{x}_{\boldsymbol{B}}=\boldsymbol{B}^{-1} \boldsymbol{b}-\boldsymbol{B}^{-1} \boldsymbol{N} \boldsymbol{x}_{\boldsymbol{N}} \tag{*}
\end{gather*}
$$

- Let N denote the set of nonbasic variables and denote the columns of the matrix $\boldsymbol{B}^{-1} \boldsymbol{N}$ by \boldsymbol{y}_{j} for each $j \in N$, and let $\bar{b}=\boldsymbol{B}^{-1} \boldsymbol{b}$
- The basic variables in the nonbasic variable space:

$$
\boldsymbol{x}_{\boldsymbol{B}}=\overline{\boldsymbol{b}}-\sum_{j \in N} \boldsymbol{y}_{j} x_{j}
$$

The Simplex Method

- Reorder the objective function so that the first m coefficients belong to the basic variables and the remaining $n-m$ variables to the nonbasic variables: $\boldsymbol{c}^{T}=\left[\begin{array}{ll}\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} & \boldsymbol{c}_{\boldsymbol{N}}{ }^{T}\end{array}\right]$
- Substituting (*):

$$
\begin{array}{r}
z=\boldsymbol{c}^{T} \boldsymbol{x}=\left[\begin{array}{ll}
\boldsymbol{c}_{\boldsymbol{B}}^{T} & \boldsymbol{c}_{\boldsymbol{N}}^{T}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x}_{\boldsymbol{B}} \\
\boldsymbol{x}_{\boldsymbol{N}}
\end{array}\right]=\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{x}_{\boldsymbol{B}}+\boldsymbol{c}_{\boldsymbol{N}}{ }^{T} \boldsymbol{x}_{\boldsymbol{N}}= \\
\boldsymbol{c}_{\boldsymbol{B}}^{T}\left(\mathbf{B}^{-1} \boldsymbol{b}-\boldsymbol{B}^{-1} \boldsymbol{N} \boldsymbol{x}_{\boldsymbol{N}}\right)+\boldsymbol{c}_{\boldsymbol{N}}{ }^{T} \boldsymbol{x}_{\boldsymbol{N}}= \\
\boldsymbol{c}_{\boldsymbol{B}}^{T} \mathbf{B}^{-1} \boldsymbol{b}+\left(\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}-\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}\right) \boldsymbol{x}_{\boldsymbol{N}}
\end{array}
$$

- Let $z_{0}=\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \mathbf{B}^{-1} \boldsymbol{b}$ and denote the components of $\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}-\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}$ by z_{j} for each $j \in N$

$$
z=z_{0}+\sum_{j \in N} z_{j} x_{j}
$$

The Simplex Method

- Theorem: the linear program in the nonbasic variable space is given by

$$
\begin{array}{cc}
\max & z_{0}+\sum_{j \in N} z_{j} x_{j} \\
\text { s.t. } & \boldsymbol{x}_{\boldsymbol{B}}=\overline{\boldsymbol{b}}-\sum_{j \in N} \boldsymbol{y}_{j} x_{j} \\
& \boldsymbol{x}_{\boldsymbol{B}}, \boldsymbol{x}_{\boldsymbol{N}} \geq \mathbf{0}
\end{array}
$$

where

- N denotes the set of nonbasic variables
- $\overline{\boldsymbol{b}}=\boldsymbol{B}^{-1} \boldsymbol{b}$
- \boldsymbol{y}_{j} denotes the column of the matrix $\boldsymbol{B}^{-1} \boldsymbol{N}$ that belongs to the j-th nonbasic variable
- $z_{0}=\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \mathbf{B}^{-1} \boldsymbol{b}=\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \overline{\boldsymbol{b}}$
- z_{j} is the component of the row vector $\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}-\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}$ that belongs to the j-th nonbasic variable

The Simplex Method: Example

- Consider the linear program

$$
\begin{array}{clll}
\max & x_{1} & +x_{2} & \\
\text { s.t. } & x_{1}+2 x_{2} & \leq 4 \\
& & & x_{2} \\
& \leq 1 \\
& x_{1}, & x_{2} \geq 0
\end{array}
$$

- Introducing slack variables and converting to standard form:

$$
\begin{aligned}
& \max \left[\begin{array}{llll}
1 & 1 & 0 & 0
\end{array}\right] \boldsymbol{x} \\
&\left.\qquad \begin{array}{llll}
1 & 2 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right] \boldsymbol{x}=\left[\begin{array}{l}
4 \\
1
\end{array}\right] \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

The Simplex Method: Example

- Let $\boldsymbol{B}=\left[\boldsymbol{a}_{2}, \boldsymbol{a}_{3}\right]$, then $B=\{2,3\}, N=\{1,4\}$
$\boldsymbol{B}=\left[\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right], \boldsymbol{B}^{-1}=\left[\begin{array}{rr}0 & 1 \\ 1 & -2\end{array}\right], \boldsymbol{N}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$,
$\boldsymbol{c}_{\boldsymbol{B}}{ }^{T}=\left[\begin{array}{ll}1 & 0\end{array}\right], \boldsymbol{c}_{\boldsymbol{N}}{ }^{T}=\left[\begin{array}{ll}1 & 0\end{array}\right]$
$\overline{\boldsymbol{b}}=\mathbf{B}^{-1} \boldsymbol{b}=\left[\begin{array}{rr}0 & 1 \\ 1 & -2\end{array}\right]\left[\begin{array}{l}4 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
$\boldsymbol{B}^{-1} \boldsymbol{N}=\left[\begin{array}{rr}0 & 1 \\ 1 & -2\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{rr}0 & 1 \\ 1 & -2\end{array}\right]$
$z_{0}=\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \overline{\boldsymbol{b}}=\left[\begin{array}{ll}1 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=1$
$\boldsymbol{c}_{\boldsymbol{N}}{ }^{T}-\boldsymbol{c}_{\boldsymbol{B}}{ }^{T} \boldsymbol{B}^{-1} \boldsymbol{N}=\left[\begin{array}{ll}1 & 0\end{array}\right]-\left[\begin{array}{ll}1 & 0\end{array}\right]\left[\begin{array}{rr}0 & 1 \\ 1 & -2\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=$ $\left[\begin{array}{ll}1 & 0\end{array}\right]-\left[\begin{array}{ll}0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & -1\end{array}\right]$

The Simplex Method: Example

- The linear program in the nonbasic variable space:

$$
\begin{array}{cc}
\max & 1+x_{1}-x_{4} \\
\text { s.t. } \quad\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]= & {\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\left[\begin{array}{l}
0 \\
1
\end{array}\right] x_{1}-\left[\begin{array}{r}
1 \\
-2
\end{array}\right] x_{4}} \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

The basic feasible solution generated by the current basis matrix B :

$$
\boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
2 \\
0
\end{array}\right]
$$

The Simplex Method: Pivot

- The linear program in the nonbasic variable space:

$$
\begin{array}{cc}
\max & z_{0}+\sum_{j \in N} z_{j} x_{j} \\
\text { s.t. } & \boldsymbol{x}_{\boldsymbol{B}}=\overline{\boldsymbol{b}}-\sum_{j \in N} \boldsymbol{y}_{j} x_{j} \\
& \boldsymbol{x}_{\boldsymbol{B}}, \boldsymbol{x}_{\boldsymbol{N}} \geq \mathbf{0}
\end{array}
$$

- Since $\left[\begin{array}{l}x_{B} \\ \boldsymbol{x}_{N}\end{array}\right]$ is a basic solution we have $\boldsymbol{x}_{\boldsymbol{N}}=\mathbf{0}$
- The importance of the above form is that it specifies
- the value of the objective function z_{0} and the basic variables $\boldsymbol{x}_{B}=\overline{\boldsymbol{b}}$ in the current basis, and
- the way basic variables and the objective function would change if we started to increase some nonbasic variable from zero

The Pivot: Example

max

$$
\begin{aligned}
& 1+x_{1}-x_{4} \\
& \text { max } \\
& \text { s.t. } \quad\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]= {\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\left[\begin{array}{l}
0 \\
1
\end{array}\right] x_{1}-\left[\begin{array}{r}
1 \\
-2
\end{array}\right] x_{4}{ }^{2} } \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

- For instance, if we increased x_{4} from zero to 1 while leaving x_{1} unchanged at 0
- the objective function value would decrease from 1 to zero as $z_{4}=-1$
- x_{2} would decrease from 1 to zero since $y_{24}=1$
- x_{3} would increase from 2 to 4 as $y_{34}=-2$
- It is not worth increasing x_{4} as this would reduce the objective function value!

The Pivot: Example

max

$$
\left.\begin{array}{c}
1+x_{1}-x_{4} \\
\text { max } \\
\text { s.t. } \quad\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]= \\
\\
\\
\\
\\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0 \\
2
\end{array}\right]-\left[\begin{array}{l}
0 \\
1
\end{array}\right] x_{1}-\left[\begin{array}{r}
1 \\
-2
\end{array}\right] x_{4}{ }^{2} .
$$

- If we increased other nonbasic variable, x_{1}, from zero to 1
- the objective function would grow from 1 to 2 by $z_{1}=1$
- x_{2} would not change since $y_{21}=0$
- x_{3} would fall from 2 to 1 as $y_{31}=1$
- Worth increasing x_{1} as this increases the objective function!
- Increase x_{1} until some basic variable becomes negative
- For $x_{1}=2, x_{3}$ changes to 0 and negative for any $x_{1}>2$

The Simplex Method: Pivot

- Consider the nonbasic variable x_{k} whose expansion would produce the largest gain in the objective function value

$$
k=\underset{j \in N}{\operatorname{argmax}} z_{j}
$$

- Fix every other nonbasic variable at zero and increase x_{k}

$$
\begin{aligned}
z & =z_{0}+z_{k} x_{k} \\
{\left[\begin{array}{c}
x_{B_{1}} \\
x_{B_{2}} \\
\vdots \\
x_{B_{m}}
\end{array}\right] } & =\left[\begin{array}{c}
\bar{b}_{1} \\
\bar{b}_{2} \\
\vdots \\
\bar{b}_{m}
\end{array}\right]-\left[\begin{array}{c}
y_{1 k} \\
y_{2 k} \\
\vdots \\
y_{m k}
\end{array}\right] x_{k}
\end{aligned}
$$

The Simplex Method: Pivot

- Nonbasic variable x_{k} can be increased until some basic variable drops to zero
- Let $x_{i}: i \in B$ some basic variable for which $y_{i k}>0$
- Increasing the nonbasic variable x_{k}, x_{i} is nonnegative as long as

$$
\begin{gathered}
0 \leq x_{i}=\bar{b}_{i}-y_{i k} x_{k} \\
x_{k} \leq \frac{\bar{b}_{i}}{y_{i k}}
\end{gathered}
$$

- The first basic variable x_{r} that drops to zero:

$$
r=\underset{i \in\{1, \ldots, m\}}{\operatorname{argmin}}\left\{\frac{\bar{b}_{i}}{y_{i k}}: y_{i k}>0\right\}
$$

The Simplex Method: Pivot

- Let the current basis be nongenenerate $(\bar{b}>0)$ and assume that $\exists k \in N: z_{k}>0$ and $\exists i \in B: y_{i k}>0$
- Let $k=\underset{j \in N}{\operatorname{argmax}} z_{j}$ and $r=\underset{i \in B}{\operatorname{argmin}}\left\{\frac{\bar{b}_{i}}{y_{i k}}: y_{i k}>0\right\}$
- Increasing x_{k} from zero to $\frac{\bar{b}_{r}}{y_{r k}}$:

$$
\begin{array}{cc}
z=z_{0}+z_{k} \frac{\bar{b}_{r}}{y_{r k}} & \\
x_{k}=\frac{\bar{b}_{r}}{y_{r k}}>0, x_{r}=0 & \\
x_{B_{i}}=\bar{b}_{i}-\frac{y_{i k}}{y_{r k}} \bar{b}_{r} & i \in B \backslash\{r\} \\
x_{j}=0 & j \in N \backslash\{k\}
\end{array}
$$

- The objective function value grows, i.e., $z>z_{0}$ as $z_{k} \frac{\bar{b}_{r}}{y_{r k}}>0$

The Simplex Method: Pivot

- This transformation is called the pivot, during which
- the nonbasic variable x_{k} increases from zero and enters the basis
- the basic variable x_{r} drops to zero and leaves the basis
- all remaining nonbasic variables remain zero and all remaining basic variables remain nonnegative
- Theorem: the pivot results a new basic feasible solution
- The proof (omitted here) would go by observing that it is enough to show that the new basis is nonsingular, since all variables remain nonnegative duting the pivot
- Then using a basic result from linear algebra to show that this is guaranteed by the choice for r :

$$
r=\underset{i \in\{1, \ldots, m\}}{\operatorname{argmin}}\left\{\frac{\bar{b}_{i}}{y_{i k}}: y_{i k}>0\right\}
$$

The Pivot: Example

\max $1+x_{1}-x_{4}$
s.t. $\left[\begin{array}{l}x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 2\end{array}\right]-\left[\begin{array}{l}0 \\ 1\end{array}\right] x_{1}-\left[\begin{array}{r}1 \\ -2\end{array}\right] x_{4}{ }^{2}$

$$
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
$$

- x_{1} enters the basis since

$$
z_{1}=\max _{j \in N} z_{j}=\max \{1,-1\}=1
$$

- x_{3} leaves the basis as

$$
\frac{\bar{b}_{3}}{y_{31}}=\min _{i \in B}\left\{\frac{\bar{b}_{i}}{y_{i k}}: y_{i k}>0\right\}=\min \{2\}=2
$$

The Pivot: Example

The new point obtained after the pivot:
$k=1, r=3$
$B=\{1,2\}, N=\{3,4\}$
$z=z_{0}+z_{k} \frac{\bar{b}_{r}}{y_{r k}}=1+2=3$
$x_{1}=\frac{\bar{b}_{r}}{y_{r k}}=2$
$x_{2}=\bar{b}_{2}-\frac{y_{2 k}}{y_{3 k}} \bar{b}_{3}=1-0=1$
$x_{3}=\bar{b}_{3}-\frac{y_{3 k}}{y_{3 k}} \bar{b}_{3}=2-2=0$
$x_{4}=0$
$\boldsymbol{x}=\left[\begin{array}{llll}2 & 1 & 0 & 0\end{array}\right]^{T}$

The Pivot: Example

$$
\begin{gathered}
B=\{1,2\}, N=\{3,4\}, \quad 4 \\
\boldsymbol{B}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right], \boldsymbol{N}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],
\end{gathered}
$$

- The linear program in the new basis:

$$
\max \quad 3-x_{3}+x_{4}
$$

$$
\begin{aligned}
\text { s.t. }\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]= & {\left[\begin{array}{l}
2 \\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right] x_{3}-\left[\begin{array}{r}
-2 \\
1
\end{array}\right] x_{4} } \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

The Simplex Method: Optimality

- Recall: the pivot rules
- x_{k} can enter the basis if $z_{k}>0$
- x_{r} leaves the basis if $r=\underset{i \in\{1, \ldots, m\}}{\operatorname{argmin}}\left\{\frac{\bar{b}_{i}}{y_{i k}}: y_{i k}>0\right\}$
- If for all $j \in N: z_{j} \leq 0$ holds then it is not worth increasing any of the nonbasic variables, since the objective function value could not be increased this way
- Theorem: the optimality condition for the simplex method

$$
\forall j \in N: z_{j} \leq 0
$$

- Proof: if for some basic feasible solution \boldsymbol{x} we have $\forall j \in N: z_{j} \leq 0$, then \boldsymbol{x} is a local optimum
- Since the feasible region is convex and the objective function is concave, \boldsymbol{x} is also a global optimum

Termination with Optimality: Example

- Continuing with our running example, in the current basis:

$$
\begin{array}{cc}
\max & 3-x_{3}+x_{4} \\
\text { s.t. } & {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=} \\
& {\left[\begin{array}{l}
2 \\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
0
\end{array}\right] x_{3}-\left[\begin{array}{r}
-2 \\
1
\end{array}\right] x_{4}} \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

- This basic feasible solution is not optimal since $z_{4}>0$
- Correspondingly, in the next pivot
- x_{4} enters the basis, and
- x_{2} leaves the basis because

$$
\frac{\bar{b}_{2}}{y_{24}}=\min _{i \in B}\left\{\frac{\bar{b}_{i}}{y_{i 4}}: y_{i 4}>0\right\}=\min \{1\}=1
$$

Termination with Optimality: Example

- The linear program in the new basis:

$$
\begin{aligned}
& B=\{1,4\}, N=\{2,3\}, \boldsymbol{c}_{\boldsymbol{B}}^{T}=\left[\begin{array}{ll}
1 & 0
\end{array}\right], \boldsymbol{c}_{\boldsymbol{N}}^{T}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \\
& \boldsymbol{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \boldsymbol{N}=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right], \boldsymbol{B}^{-1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

- The basic feasible solution $\boldsymbol{x}=$ $\left[\begin{array}{cccc}4 & 0 & 0 & 1\end{array}\right]^{T}$ is optimal
max

$$
\begin{gathered}
4-x_{2}-x_{3} \\
\text { max } \\
\text { s.t. } \quad\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
4 \\
1
\end{array}\right]-\left[\begin{array}{l}
2 \\
1
\end{array}\right] x_{2}-\left[\begin{array}{l}
1 \\
0
\end{array}\right] x_{3} \\
\\
x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{gathered}
$$

The Simplex Method: Geometry

Termination in a Unique Optimum

- Definition: the feasible solution $\overline{\boldsymbol{x}}$ to the linear program $\max \left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$ is a unique optimal solution if for each $\boldsymbol{x} \neq \overline{\boldsymbol{x}}$ feasible solution $\boldsymbol{c}^{T} \boldsymbol{x}<\boldsymbol{c}^{T} \overline{\boldsymbol{x}}$
- Theorem: the basic feasible solution $\overline{\boldsymbol{x}}$ is a unique optimal solution if $\forall j \in N: z_{j}<0$
- Proof: let \boldsymbol{x} be any feasible solution different from $\overline{\boldsymbol{x}}$ and let the corresponding objective function value be z
- Let N denote the set of nonbasic variables corresponding to $\overline{\boldsymbol{x}}$, then

$$
z=z_{0}+\sum_{j \in N} z_{j} x_{j}
$$

- We observe that there is $j \in N$ so that $x_{j}>0$ (otherwise $\boldsymbol{x}=\overline{\boldsymbol{x}})$ and from $\forall j \in N: z_{j}<0$ it follows that $z<z_{0}$

Unique Optimum: Example

- Consider the basic feasible solution $\boldsymbol{x}=\left[\begin{array}{llll}4 & 0 & 0 & 1\end{array}\right]^{T}$ for the running example

$$
\begin{aligned}
& B=\{1,4\}, N=\{2,3\} \\
& \boldsymbol{B}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \boldsymbol{N}=\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right], \boldsymbol{B}^{-1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \boldsymbol{c}_{\boldsymbol{B}}{ }^{T}=\left[\begin{array}{ll}
1 & 0
\end{array}\right], \boldsymbol{c}_{\boldsymbol{N}}{ }^{T}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
\end{aligned}
$$

max

$$
4-x_{2}-x_{3}
$$

s.t. $\left[\begin{array}{l}x_{1} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}4 \\ 1\end{array}\right]-\left[\begin{array}{l}2 \\ 1\end{array}\right] x_{2}-\left[\begin{array}{l}1 \\ 0\end{array}\right] x_{3}$

$x_{1}, x_{2}, x_{3}, x_{4} \geq 0$

- $z_{2}<0, z_{3}<0: \boldsymbol{x}$ is unique optimum

Termination with Alternative Optima

- Suppose that $\overline{\boldsymbol{x}}$ is an optimal basic feasible solution (i.e., $\forall j \in N: z_{j} \leq 0$), but there is a nonbasic variable, say, k, for which the optimality condition holds with equality: $z_{k}=0$
- If $\overline{\boldsymbol{x}}$ is nondegenerate then x_{k} can be increased from zero by some $\epsilon>0$ small enugh so that no basic variable becomes negative

$$
\begin{aligned}
z & =z_{0}+z_{k} x_{k}=z_{0}+0 x_{k} \\
{\left[\begin{array}{c}
x_{B_{1}} \\
\vdots \\
x_{B_{m}}
\end{array}\right] } & =\left[\begin{array}{c}
\bar{b}_{1} \\
\vdots \\
\bar{b}_{m}
\end{array}\right]-\left[\begin{array}{c}
y_{1 k} \\
\vdots \\
y_{m k}
\end{array}\right] x_{k}
\end{aligned}
$$

- Any choice $0<x_{k} \leq \epsilon$ yields alternative optimal solutions since the objective function value does not change due to $z_{k}=0$

Termination with Alternative Optima

- The linear program as the function of the nonbasic variable x_{k}, let $z_{k}=0$ and all other $z_{j} \leq 0$

$$
\max
$$

$$
\begin{gathered}
\text { s.t. } \quad \boldsymbol{x}=\left[\begin{array}{l}
\boldsymbol{x}_{\boldsymbol{B}} \\
\boldsymbol{x}_{\boldsymbol{N}}
\end{array}\right]=\left[\begin{array}{l}
\overline{\boldsymbol{b}} \\
\mathbf{0}
\end{array}\right]+\left[\begin{array}{r}
-\boldsymbol{y}_{k} \\
\boldsymbol{e}_{k}
\end{array}\right] x_{k} \\
\boldsymbol{x} \geq \mathbf{0}
\end{gathered}
$$

where, as usual, \boldsymbol{y}_{k} is the column of $\boldsymbol{B}^{-1} \boldsymbol{N}$ that belongs to k and e_{k} is the k-th canonical unit vector

- We obtain alternative optimal as long as $\boldsymbol{x}_{\boldsymbol{B}} \geq \mathbf{0}$

$$
\boldsymbol{x}=\left[\begin{array}{l}
\overline{\boldsymbol{b}} \\
\mathbf{0}
\end{array}\right]+\lambda\left[\begin{array}{r}
-\boldsymbol{y}_{k} \\
\boldsymbol{e}_{k}
\end{array}\right] \quad 0 \leq \lambda \leq \min _{i \in B}\left\{\frac{\bar{b}_{i}}{y_{i k}}: y_{i k}>0\right\}
$$

Alternative Optima: Example

- Consider the linear program

$$
\begin{array}{cc}
\max & 2 x_{1}+4 x_{2} \\
\text { s.t. } & x_{1}+2 x_{2} \leq 4 \\
& -x_{1}+x_{2} \leq 1 \\
& x_{1},
\end{array} x_{2}, \geq 0
$$

- Introducing slack variables to convert to standard form:

Alternative Optima: Example

- Choose the basis as $\boldsymbol{B}=\left[\begin{array}{ll}\boldsymbol{a}_{1} & \boldsymbol{a}_{4}\end{array}\right]=\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right]$,

$$
B^{-1}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]
$$

- The corresponding basic feasible solution

$$
\begin{aligned}
& \boldsymbol{x}_{\boldsymbol{B}}=\overline{\boldsymbol{b}}=\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]=\boldsymbol{B}^{-1} \boldsymbol{b}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
1
\end{array}\right]=\left[\begin{array}{l}
4 \\
5
\end{array}\right] \\
& \boldsymbol{x}_{\boldsymbol{N}}=\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Alternative Optima: Example

- The parameters corresponding to this basis

$$
\begin{gathered}
\boldsymbol{c}_{\boldsymbol{B}}^{T}=\left[\begin{array}{ll}
2 & 0
\end{array}\right], \boldsymbol{c}_{\boldsymbol{N}}{ }^{T}=\left[\begin{array}{ll}
4 & 0
\end{array}\right] \\
\boldsymbol{B}^{-1} \boldsymbol{N}=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right] \\
z_{0}=\boldsymbol{c}_{\boldsymbol{B}}^{T} \overline{\boldsymbol{b}}=\left[\begin{array}{ll}
2 & 0
\end{array}\right]\left[\begin{array}{l}
4 \\
5
\end{array}\right]=8 \\
\boldsymbol{c}_{\boldsymbol{N}^{T}-\boldsymbol{c}_{\boldsymbol{B}}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}=\left[\begin{array}{ll}
4 & 0
\end{array}\right]-\left[\begin{array}{ll}
2 & 0
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
3 & 1
\end{array}\right]}^{=\left[\begin{array}{ll}
4 & 0
\end{array}\right]-\left[\begin{array}{ll}
4 & 2
\end{array}\right]=\left[\begin{array}{ll}
0 & -2
\end{array}\right]} \text { : }
\end{gathered}
$$

Alternative Optima: Example

- The linear program in the nonbasic variable space:

$$
\begin{gathered}
\max \\
\begin{aligned}
& 8+0 x_{2}-2 x_{3} \\
\text { s.t. } \quad\left[\begin{array}{l}
x_{1} \\
x_{4}
\end{array}\right]= & {\left[\begin{array}{l}
4 \\
5
\end{array}\right]-\left[\begin{array}{l}
2 \\
3
\end{array}\right] x_{2}-\left[\begin{array}{l}
1 \\
1
\end{array}\right] x_{3} } \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
\end{gathered}
$$

- Alternative optimal solutions:

$$
\boldsymbol{x}=\left[\begin{array}{l}
4 \\
0 \\
0 \\
5
\end{array}\right]+\lambda\left[\begin{array}{r}
-2 \\
1 \\
0 \\
-3
\end{array}\right]: 0<\lambda \leq \frac{5}{3}
$$

- All convex combinations of the points $\left[\begin{array}{ll}4 & 0\end{array}\right]^{T}$ and $\left[\begin{array}{ll}\frac{2}{3} & \frac{5}{3}\end{array}\right]^{T}$

