
The Simplex Method

• Recall: the Representation Theorem and the Fundamental
Theorem

• Basics: basic solutions, basic feasible solutions, and
degenerate basic feasible solutions

• Iteration of the simplex method: the initial basic feasible
solution, the linear program in the nonbasic variable space,
the entering and leaving variables, the pivot

• Termination: termination with optimality
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Linear Programs and Extreme Points

• The Fundamental Theorem: given a linear program

max{cTx : Ax ≤ b}, if an optimal solution exists then

there is at least one optimal solution that occurs at an
extreme point of the feasible region

• If the polyhedron of the feasible region X is bounded then
X can be written equivalently as a convex combination of its
extreme points xj (Minkowski-Weyl)

X = {x : Ax ≤ b} = conv (xj : j ∈ {1, . . . , k})

• Recall: the convex combination

conv(xj) =

{

x : x =

k
∑

j=1

λjxj,

k
∑

j=1

λj = 1, λj ≥ 0

}
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Linear Programs and Extreme Points

• An equivalent linear program using the coefficients of the

convex combination λj as variables

max

{

k
∑

j=1

(cTxj)λj :

k
∑

j=1

λj = 1, λj ≥ 0 ∀j ∈ {1, . . . , k}

}

• A solution is guaranteed to occur at an extreme point

xopt = argmax
xj :j∈{1,...,k}

cTxj

zopt = max
j∈{1,...,k}

cTxj

where zopt denotes the optimal objective function value
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Extreme Point Solutions: Example

• Consider the below set of constraints

−x1 + x2 ≤ 2
−x1 + 2x2 ≤ 6
x1, x2 ≥ 0

• Extreme points:

x1 =

[

0
0

]

, x2 =

[

0
2

]

,

x3 =

[

2
4

]
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Extreme Point Solutions: Example

• Let us maximize the objective function −4x1 + x2

cTx1 = [−4 1]

[

0
0

]

= 0, cTx2 = [−4 1]

[

0
2

]

= 2,

cTx3 = [−4 1]

[

2
4

]

= −4

• The solution is the extreme point that minimizes the scalar

product cTxj

xopt = argmax
xj :j∈{1,...,k}

cTxj =

[

0
2

]

zopt = max
j∈{1,...,k}

cTxj = 2
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Extreme Point Solutions: Example

• If now the task is to maximize the objective function
−x1 + 3x2 then there is no bounded optimal solution

• Since now there is a direction d and a feasible solution x0

so that, starting from the point x0 along the direction d we
can obtain arbitrarily large objective function values

• That is, all solutions of the form x0 + µd for any µ ≥ 0 are
feasible and improve the objective function value

• For example, if d =

[

2
1

]

and x0 =

[

2
4

]

, then the points

along the ray x =

[

2
4

]

+ µ

[

2
1

]

, µ ≥ 0 are all feasible and

the objective function value is cT (x0 + µd) = cTx0 + µcTd

• Lemma: if ∃d,x0 so that x0 + µd, µ ≥ 0 is feasible and

cTd > 0 then the optimal solution is unbounded
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Basic Feasible Solutions

• The notion of extreme points give a geometric interpretation
for the optimal solution of a linear program

• In order to define systematic solver algorithm we need an
algebraic interpretation: basic feasible solutions

• Consider a linear program whose the feasible region is

given by the polyhedron X = {x : Ax = b,x ≥ 0}, where

A is an m× n matrix, b is a column m-vector, and x is a
column n-vector

• Suppose that rank(A) = rank(A, b) = m

• Reordering columns of A so that the first m columns are

linearly independent, we write A = [B N ] where

◦ B is an m×m quadratic nonsingular matrix, called the
basic matrix

◦ N is an m× (n−m) matrix, called the nonbasic matrix
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Basic Feasible Solutions

• Reorder x accordingly: x =

[

xB

xN

]

, where xB contains the

basic variables (or dependent variables) that belong to the
columns of B, and xN contains the nonbasic variables (or
independent variables) that belong to the columns of N

• The constraint system in terms of the basis B

Ax =
[

B N
]

[

xB

xN

]

= BxB +NxN = b

• Since B is nonsingular, we can multiply with the inverse

B−1 from the left

xB +B−1NxN = B−1b
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Basic Feasible Solutions

• An explicit representation of the basic variables in the terms
of the nonbasic variables

xB = B−1b−B−1NxN

• Note that xN can be chosen arbitrarily!

• Choosing xN = 0 gives the basic solution (in the basis B)

xB = B−1b, xN = 0, x =

[

xB

xN

]

=

[

B−1b

0

]

• If in addition xB ≥ 0 then what we have obtained is a basic
feasible solution

xB = B−1b ≥ 0, xN = 0, x =

[

xB

xN

]

=

[

B−1b

0

]

≥ 0
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Basic Feasible Solutions

• If all components of xB are strictly positive (xB > 0) then x
is a nondegenerate basic (feasible) solution, otherwise it
is a degenerate basic (feasible) solution

• Basic feasible solutions are essential as these give the
algebraic interpretation for the geometric notion of extreme
points (which we know are key to solving linear programs)

• Theorem: x is a basic feasible solution for the linear
program max{cTx : Ax = b,x ≥ 0} if and only if x is an

extreme point of the feasible region X = {x : Ax = b,

x ≥ 0}

• If, in addition, x is also nondegenerate then it is generated
by a single basis

• Iterating along basic feasible solutions (i.e., extreme points)
we can solve a linear program to optimality: the simplex
method
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Basic Feasible Solutions: Example

• Consider the feasible region

x1 + x2 ≤ 6
x2 ≤ 3

x1, x2 ≥ 0

• This is in canonical form (“≤” type constraints), we need to
convert to standard form (“=” type constraints)

• Introduce the slack variables x3 and x4

x1 + x2 + x3 = 6
x2 + x4 = 3

x1, x2, x3, x4 ≥ 0
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Basic Feasible Solutions: Example

• The matrix of the
constraint system

A = [a1,a2,a3,a4] =
[

1 1 1 0
0 1 0 1

]

• A is of full row rank so the
size of the basic matrix B
is 2× 2 and there can be
(

4

2

)

of them

• Basic feasible solutions
are the ones for which B
is nonsingular and

B−1b ≥ 0

2
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6

2 4 6
x
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x
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x
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[0 3]T

[6 0]T

[3 3]T
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Basic Feasible Solutions: Example

1. B = [a1 a2] =

[

1 1
0 1

]

gives a basic feasible solution

xB =

[

x1

x2

]

= B−1b =

[

1 −1
0 1

][

6
3

]

=

[

3
3

]

xN =

[

x3

x4

]

=

[

0
0

]

, extreme point:

[

x1

x2

]

=

[

3
3

]

2. B = [a1 a4] =

[

1 0
0 1

]

gives a basic feasible solution

xB =

[

x1

x4

]

= B−1b =

[

1 0
0 1

][

6
3

]

=

[

6
3

]

xN =

[

x2

x3

]

=

[

0
0

]

, extreme point:

[

x1

x2

]

=

[

6
0

]
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Basic Feasible Solutions: Example

3. B = [a2 a3] =

[

1 1
1 0

]

gives a basic feasible solution

xB =

[

x2

x3

]

= B−1b =

[

0 1
1 −1

][

6
3

]

=

[

3
3

]

xN =

[

x1

x4

]

=

[

0
0

]

, extreme point:

[

x1

x2

]

=

[

0
3

]

4. B = [a2 a4] =

[

1 0
1 1

]

is not a feasible basis!

xB =

[

x2

x4

]

= B−1b =

[

1 0
−1 1

][

6
3

]

=

[

6
−3

]

� 0

xN =

[

x1

x3

]

=

[

0
0

]
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Basic Feasible Solutions: Example

5. B = [a3 a4] =

[

1 0
0 1

]

gives a basic feasible solution

xB =

[

x3

x4

]

= B−1b =

[

1 0
0 1

][

6
3

]

=

[

6
3

]

xN =

[

x1

x2

]

=

[

0
0

]

, extreme point:

[

x1

x2

]

=

[

0
0

]

6. B = [a1 a3] =

[

1 1
0 0

]

singular, does not generate a

basic solution

– p. 15



Degenerate Basic Solutions: Example

• Introduce a new
“redundant” constraint

x1 + x2 ≤ 6
x2 ≤ 3

x1 + 2x2 ≤ 9
x1, x2 ≥ 0

2
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x
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2  
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x
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[0 0]T

[0 3]T

[6 0]T

[3 3]T

x
1  + 2x

2   9�

• The constraint system converted to standard form
introducing appropriate slack variables x3, x4, and x5

x1 + x2 + x3 = 6
x2 + x4 = 3

x1 + 2x2 + x5 = 9
x1, x2, x3, x4 x5 ≥ 0
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Degenerate Basic Solutions: Example

A = [a1,a2,a3,a4,a5] =

[

1 1 1 0 0
0 1 0 1 0
1 2 0 0 1

]

• The basic feasible solution generated by the basic matrix

B = [a1,a2,a3] is degenerate

xB =

[

x1

x2

x3

]

= B−1b =

[

1 1 1
0 1 0
1 2 0

]−1 [
6
3
9

]

=

[

0 −2 1
0 1 0
1 1 −1

][

6
3
9

]

=

[

3
3
0

]

≯ 0

xN =

[

x4

x5

]

=

[

0
0

]

, extreme point:

[

x1

x2

]

=

[

3
3

]
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Degenerate Basic Solutions: Example

• Similarly, B = [a1,a2,a4] also generates a degenerate

basic feasible solution

xB =

[

x1

x2

x4

]

= B−1b =

[

1 1 0
0 1 1
1 2 0

]−1 [
6
3
9

]

=

[

2 0 −1
−1 0 1
1 1 −1

][

6
3
9

]

=

[

3
3
0

]

≯ 0

xN =

[

x3

x5

]

=

[

0
0

]

, extreme point:

[

x1

x2

]

=

[

3
3

]

• Two basic feasible solutions give the same extreme point

• In 2 dimensions extreme points are generated by 2
hyperplanes

• At the extreme point x = [ 33 ] three hyperplanes meet!
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The Simplex Method

• As shown, if a linear program is solvable then at least one
optimal solution is guaranteed to occur at an extreme point
of the feasible region

• Extreme points correspond to basic feasible solutions

• Unfortunately there can be
(

n

m

)

of these, cannot generate

all not even in moderate dimensions

• The simplex method, starting from an initial basic feasible
solution, generates new basic feasible solutions iteratively
that improve the objective function value

• In practice the simplex visits only a modest number of
extreme points to find the optimal solution or prove
unboundedness
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The Simplex Method

• Let A be an m×n matrix with rank(A) = rank(A, b) = m,

b be a column m-vector, x be a column n-vector, and cT be
a row n-vector, and consider the linear program

z = max cTx

s.t. Ax = b

x ≥ 0

• Let B be an initial basis and x =

[

xB

xN

]

=

[

B−1b

0

]

≥ 0 be

the basic feasible solution for B and write A = [B N ]

• Write the linear program in the space of nonbasic variables

• This way we obtain the explicit expression of the the basic
variables and the objective function value in terms of the
nonbasic variables
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The Simplex Method

• The constraint system in the basis B:

Ax =
[

B N
]

[

xB

xN

]

= b, that is BxB +NxN = b

xB = B−1b−B−1NxN (*)

• Let N denote the set of nonbasic variables and denote the
columns of the matrix B−1N by yj for each j ∈ N , and let

b̄ = B−1b

• The basic variables in the nonbasic variable space:

xB = b̄−
∑

j∈N

yjxj
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The Simplex Method

• Reorder the objective function so that the first m coefficients
belong to the basic variables and the remaining n−m

variables to the nonbasic variables: cT = [cB
T cN

T ]

• Substituting (*):

z = cTx = [cB
T cN

T ]

[

xB

xN

]

= cB
TxB + cN

TxN =

cB
T (B−1b−B−1NxN ) + cN

TxN =

cB
T
B

−1b+ (cN
T − cB

TB−1N )xN

• Let z0 = cB
T
B

−1b and denote the components of

cN
T − cB

TB−1N by zj for each j ∈ N

z = z0 +
∑

j∈N

zjxj
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The Simplex Method

• Theorem: the linear program in the nonbasic variable
space is given by

max z0 +
∑

j∈N zjxj

s.t. xB = b̄−
∑

j∈N yjxj

xB,xN ≥ 0

where

◦ N denotes the set of nonbasic variables

◦ b̄ = B−1b

◦ yj denotes the column of the matrix B−1N that belongs

to the j-th nonbasic variable

◦ z0 = cB
T
B

−1b = cB
T b̄

◦ zj is the component of the row vector cN
T − cB

TB−1N
that belongs to the j-th nonbasic variable
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The Simplex Method: Example

• Consider the linear program

max x1 + x2

s.t. x1 + 2x2 ≤ 4
x2 ≤ 1

x1, x2 ≥ 0

• Introducing slack variables and converting to standard form:

max
[

1 1 0 0
]

x
[

1 2 1 0
0 1 0 1

]

x =

[

4
1

]

x1, x2, x3, x4 ≥ 0
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The Simplex Method: Example

• Let B = [a2,a3], then B = {2, 3}, N = {1, 4}

B =

[

2 1
1 0

]

, B−1 =

[

0 1
1 −2

]

, N =

[

1 0
0 1

]

,

cB
T = [1 0], cN

T = [1 0]

b̄ = B
−1b =

[

0 1
1 −2

][

4
1

]

=

[

1
2

]

B−1N =

[

0 1
1 −2

][

1 0
0 1

]

=

[

0 1
1 −2

]

z0 = cB
T b̄ = [1 0]

[

1
2

]

= 1

cN
T − cB

TB−1N = [1 0]− [1 0]

[

0 1
1 −2

][

1 0
0 1

]

=

[1 0]− [0 1] = [1 − 1]
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The Simplex Method: Example

• The linear program in the nonbasic variable space:

max 1 + x1 − x4

s.t.

[

x2

x3

]

=

[

1
2

]

−

[

0
1

]

x1 −

[

1
−2

]

x4

x1, x2, x3, x4 ≥ 0

2

4

2 4 6
x

1

x
2

x
1  + 2x

2   4�

x
2
  1�[0 1]T

The basic feasible solution
generated by the current basis

matrix B:

x =







x1

x2

x3

x4







=







0
1
2
0






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The Simplex Method: Pivot

• The linear program in the nonbasic variable space:

max z0 +
∑

j∈N zjxj

s.t. xB = b̄−
∑

j∈N yjxj

xB,xN ≥ 0

• Since

[

xB

xN

]

is a basic solution we have xN = 0

• The importance of the above form is that it specifies

◦ the value of the objective function z0 and the basic

variables xB = b̄ in the current basis, and

◦ the way basic variables and the objective function would
change if we started to increase some nonbasic variable
from zero
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The Pivot: Example

max 1 + x1 − x4

s.t.

[

x2

x3

]

=

[

1
2

]

−

[

0
1

]

x1 −

[

1
−2

]

x4

x1, x2, x3, x4 ≥ 0

2

4

2 4 6
x

1

x
2

x
1  + 2x

2   4�

x
2
  1�[0 1]T

• For instance, if we increased x4 from zero to 1 while leaving
x1 unchanged at 0

◦ the objective function value would decrease from 1 to
zero as z4 = −1

◦ x2 would decrease from 1 to zero since y24 = 1

◦ x3 would increase from 2 to 4 as y34 = −2

• It is not worth increasing x4 as this would reduce the
objective function value!
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The Pivot: Example

max 1 + x1 − x4

s.t.

[

x2

x3

]

=

[

1
2

]

−

[

0
1

]

x1 −

[

1
−2

]

x4

x1, x2, x3, x4 ≥ 0

2

4

2 4 6
x

1

x
2

x
1  + 2x

2   4�

x
2
  1�[0 1]T

• If we increased other nonbasic variable, x1, from zero to 1
◦ the objective function would grow from 1 to 2 by z1 = 1
◦ x2 would not change since y21 = 0

◦ x3 would fall from 2 to 1 as y31 = 1

• Worth increasing x1 as this increases the objective function!

• Increase x1 until some basic variable becomes negative

• For x1 = 2, x3 changes to 0 and negative for any x1 > 2
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The Simplex Method: Pivot

• Consider the nonbasic variable xk whose expansion would
produce the largest gain in the objective function value

k = argmax
j∈N

zj

• Fix every other nonbasic variable at zero and increase xk

z = z0 + zkxk








xB1

xB2

...

xBm









=









b̄1
b̄2
...

b̄m









−









y1k
y2k
...

ymk









xk
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The Simplex Method: Pivot

• Nonbasic variable xk can be increased until some basic
variable drops to zero

• Let xi : i ∈ B some basic variable for which yik > 0

• Increasing the nonbasic variable xk, xi is nonnegative as
long as

0 ≤ xi = b̄i − yikxk

xk ≤
b̄i

yik

• The first basic variable xr that drops to zero:

r = argmin
i∈{1,...,m}

{

b̄i

yik
: yik > 0

}
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The Simplex Method: Pivot

• Let the current basis be nongenenerate (b̄ > 0) and

assume that ∃k ∈ N : zk > 0 and ∃i ∈ B : yik > 0

• Let k = argmax
j∈N

zj and r = argmin
i∈B

{

b̄i

yik
: yik > 0

}

• Increasing xk from zero to b̄r
yrk

:

z = z0 + zk
b̄r
yrk

xk =
b̄r
yrk

> 0, xr = 0

xBi
= b̄i −

yik
yrk

b̄r i ∈ B \ {r}

xj = 0 j ∈ N \ {k}

• The objective function value grows, i.e., z > z0 as zk
b̄r
yrk

> 0
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The Simplex Method: Pivot

• This transformation is called the pivot, during which

◦ the nonbasic variable xk increases from zero and enters
the basis

◦ the basic variable xr drops to zero and leaves the basis

◦ all remaining nonbasic variables remain zero and all
remaining basic variables remain nonnegative

• Theorem: the pivot results a new basic feasible solution

• The proof (omitted here) would go by observing that it is
enough to show that the new basis is nonsingular, since all
variables remain nonnegative duting the pivot

• Then using a basic result from linear algebra to show that
this is guaranteed by the choice for r:

r = argmin
i∈{1,...,m}

{

b̄i

yik
: yik > 0

}
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The Pivot: Example

max 1 + x1 − x4

s.t.

[

x2

x3

]

=

[

1
2

]

−

[

0
1

]

x1 −

[

1
−2

]

x4

x1, x2, x3, x4 ≥ 0

2

4

2 4 6
x

1

x
2

x
1  + 2x

2   4�

x
2
  1�[0 1]T

• x1 enters the basis since

z1 = max
j∈N

zj = max{1,−1} = 1

• x3 leaves the basis as

b̄3

y31
= min

i∈B

{

b̄i

yik
: yik > 0

}

= min{2} = 2
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The Pivot: Example

The new point obtained after
the pivot:
k = 1, r = 3
B = {1, 2}, N = {3, 4}

z = z0 + zk
b̄r
yrk

= 1 + 2 = 3

x1 =
b̄r
yrk

= 2

x2 = b̄2 −
y2k
y3k

b̄3 = 1− 0 = 1

x3 = b̄3 −
y3k
y3k

b̄3 = 2− 2 = 0

x4 = 0
x = [2 1 0 0]T

2

4

2 4 6
x

1

x
2

[0 1]T [2 1]T
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The Pivot: Example

B = {1, 2}, N = {3, 4},

B =

[

1 2
0 1

]

, N =

[

1 0
0 1

]

,

B−1 =

[

1 −2
0 1

]

cB
T = [1 1], cN

T = [0 0]

2

4

2 4 6
x

1

x
2

[2 1]T

• The linear program in the new basis:

max 3− x3 + x4

s.t.

[

x1

x2

]

=

[

2
1

]

−

[

1
0

]

x3 −

[

−2
1

]

x4

x1, x2, x3, x4 ≥ 0
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The Simplex Method: Optimality

• Recall: the pivot rules

◦ xk can enter the basis if zk > 0

◦ xr leaves the basis if r = argmin
i∈{1,...,m}

{

b̄i

yik
: yik > 0

}

• If for all j ∈ N : zj ≤ 0 holds then it is not worth increasing

any of the nonbasic variables, since the objective function
value could not be increased this way

• Theorem: the optimality condition for the simplex method

∀j ∈ N : zj ≤ 0

• Proof: if for some basic feasible solution x we have
∀j ∈ N : zj ≤ 0, then x is a local optimum

• Since the feasible region is convex and the objective
function is concave, x is also a global optimum
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Termination with Optimality: Example

• Continuing with our running example, in the current basis:

max 3− x3 + x4

s.t.

[

x1

x2

]

=

[

2
1

]

−

[

1
0

]

x3 −

[

−2
1

]

x4

x1, x2, x3, x4 ≥ 0

• This basic feasible solution is not optimal since z4 > 0

• Correspondingly, in the next pivot

◦ x4 enters the basis, and

◦ x2 leaves the basis because

b̄2

y24
= min

i∈B

{

b̄i

yi4
: yi4 > 0

}

= min{1} = 1
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Termination with Optimality: Example

• The linear program in the new basis:

B = {1, 4}, N = {2, 3}, cB
T = [1 0], cN

T = [1 0]

B =

[

1 0
0 1

]

,N =

[

2 1
1 0

]

,B−1 =

[

1 0
0 1

]

• The basic feasible solution x =
[4 0 0 1]T is optimal

max 4− x2 − x3

s.t.

[

x1

x4

]

=

[

4
1

]

−

[

2
1

]

x2 −

[

1
0

]

x3

x1, x2, x3, x4 ≥ 0

2

4

2 4 6
x

1

x
2

[2 1]T

[4 0]T
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The Simplex Method: Geometry
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Termination in a Unique Optimum

• Definition: the feasible solution x̄ to the linear program

max{cTx : Ax = b,x ≥ 0} is a unique optimal solution

if for each x 6= x̄ feasible solution cTx < cT x̄

• Theorem: the basic feasible solution x̄ is a unique optimal
solution if ∀j ∈ N : zj < 0

• Proof: let x be any feasible solution different from x̄ and let
the corresponding objective function value be z

• Let N denote the set of nonbasic variables corresponding to
x̄, then

z = z0 +
∑

j∈N

zjxj

• We observe that there is j ∈ N so that xj > 0 (otherwise

x = x̄) and from ∀j ∈ N : zj < 0 it follows that z < z0
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Unique Optimum: Example

• Consider the basic feasible solution x = [4 0 0 1]T for

the running example

B = {1, 4}, N = {2, 3}

B =

[

1 0
0 1

]

,N =

[

2 1
1 0

]

,B−1 =

[

1 0
0 1

]

cB
T = [1 0], cN

T = [1 0]

max 4− x2 − x3

s.t.

[

x1

x4

]

=

[

4
1

]

−

[

2
1

]

x2 −

[

1
0

]

x3

x1, x2, x3, x4 ≥ 0

• z2 < 0, z3 < 0: x is unique optimum

2

4

2 4 6
x

1

x
2

[4 0]T
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Termination with Alternative Optima

• Suppose that x̄ is an optimal basic feasible solution (i.e.,
∀j ∈ N : zj ≤ 0), but there is a nonbasic variable, say, k,

for which the optimality condition holds with equality: zk = 0

• If x̄ is nondegenerate then xk can be increased from zero
by some ǫ > 0 small enugh so that no basic variable
becomes negative

z = z0 + zkxk = z0 + 0xk




xB1

...

xBm



 =





b̄1
...

b̄m



−





y1k
...

ymk



 xk

• Any choice 0 < xk ≤ ǫ yields alternative optimal solutions
since the objective function value does not change due to
zk = 0
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Termination with Alternative Optima

• The linear program as the function of the nonbasic variable
xk, let zk = 0 and all other zj ≤ 0

max z0 + 0xk

s.t. x =

[

xB

xN

]

=

[

b̄

0

]

+

[

−yk

ek

]

xk

x ≥ 0

where, as usual, yk is the column of B−1N that belongs to

k and ek is the k-th canonical unit vector

• We obtain alternative optimal as long as xB ≥ 0

x =

[

b̄

0

]

+ λ

[

−yk

ek

]

0 ≤ λ ≤ min
i∈B

{

b̄i

yik
: yik > 0

}
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Alternative Optima: Example

• Consider the linear program

max 2x1 + 4x2

s.t. x1 + 2x2 ≤ 4
−x1 + x2 ≤ 1
x1, x2, ≥ 0

• Introducing slack variables to convert to standard form:

max 2x1 + 4x2

s.t. x1 + 2x2 + x3 = 4
−x1 + x2 + x4 = 1
x1, x2, x3, x4 ≥ 0
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Alternative Optima: Example

• Choose the basis as B = [a1 a4] =

[

1 0
−1 1

]

,

B−1 =

[

1 0
1 1

]

• The corresponding basic feasible solution

xB = b̄ =

[

x1

x4

]

= B−1b =

[

1 0
1 1

][

4
1

]

=

[

4
5

]

xN =

[

x2

x3

]

=

[

0
0

]
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Alternative Optima: Example

• The parameters corresponding to this basis

cB
T = [2 0], cN

T = [4 0]

B−1N =

[

1 0
1 1

][

2 1
1 0

]

=

[

2 1
3 1

]

z0 = cB
T b̄ = [2 0]

[

4
5

]

= 8

cN
T − cB

TB−1N = [4 0]− [2 0]

[

2 1
3 1

]

= [4 0]− [4 2] = [0 − 2]
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Alternative Optima: Example

• The linear program in the nonbasic variable space:

max 8 + 0x2 − 2x3

s.t.

[

x1

x4

]

=

[

4
5

]

−

[

2
3

]

x2 −

[

1
1

]

x3

x1, x2, x3, x4 ≥ 0

• Alternative optimal solutions:

x =







4
0
0
5







+ λ







−2
1
0

−3







: 0 < λ ≤ 5

3

• All convex combinations of the
points [4 0]T and [2

3

5

3
]T

2

4

2 4 6
x

1

x
2

x
1  + 2x

2   4�
-x 1

+x
2
 

 1
�

[0 1]T

[0 0]T

[2/3 5/3]T

[4 0]T
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