- Recall: the Representation Theorem and the Fundamental Theorem
- Basics: basic solutions, basic feasible solutions, and degenerate basic feasible solutions
- Iteration of the simplex method: the initial basic feasible solution, the linear program in the nonbasic variable space, the entering and leaving variables, the pivot
- Termination: termination with optimality

Linear Programs and Extreme Points

- The Fundamental Theorem: given a linear program $\max\{c^Tx : Ax \le b\}$, if an optimal solution exists then there is at least one optimal solution that occurs at an extreme point of the feasible region
- If the polyhedron of the feasible region X is bounded then X can be written equivalently as a convex combination of its extreme points x_i (Minkowski-Weyl)

$$X = \{ \boldsymbol{x} : \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b} \} = \operatorname{conv} (\boldsymbol{x}_j : j \in \{1, \dots, k\})$$

• Recall: the convex combination

$$\operatorname{conv}(\boldsymbol{x}_j) = \left\{ \boldsymbol{x} : \boldsymbol{x} = \sum_{j=1}^k \lambda_j \boldsymbol{x}_j, \sum_{j=1}^k \lambda_j = 1, \lambda_j \ge 0 \right\}$$

Linear Programs and Extreme Points

• An equivalent linear program using the coefficients of the convex combination λ_j as variables

$$\max\left\{\sum_{j=1}^{k} (\boldsymbol{c}^{T}\boldsymbol{x}_{j})\lambda_{j} : \sum_{j=1}^{k} \lambda_{j} = 1, \lambda_{j} \ge 0 \quad \forall j \in \{1, \dots, k\}\right\}$$

• A solution is guaranteed to occur at an extreme point

$$oldsymbol{x}_{ ext{opt}} = rgmax_{j:j\in\{1,...,k\}}oldsymbol{c}^Toldsymbol{x}_j \ z_{ ext{opt}} = \max_{j\in\{1,...,k\}}oldsymbol{c}^Toldsymbol{x}_j$$

where $z_{\rm opt}$ denotes the optimal objective function value

Extreme Point Solutions: Example

• Consider the below set of constraints

• Extreme points:

$$oldsymbol{x}_1 = egin{bmatrix} 0 \ 0 \end{bmatrix}, oldsymbol{x}_2 = egin{bmatrix} 0 \ 2 \end{bmatrix}, \ oldsymbol{x}_3 = egin{bmatrix} 2 \ 4 \end{bmatrix}$$

Extreme Point Solutions: Example

• Let us maximize the objective function $-4x_1 + x_2$

$$oldsymbol{c}^T oldsymbol{x}_1 = \begin{bmatrix} -4 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0, \ oldsymbol{c}^T oldsymbol{x}_2 = \begin{bmatrix} -4 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = 2,$$

 $oldsymbol{c}^T oldsymbol{x}_3 = \begin{bmatrix} -4 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} = -4$

• The solution is the extreme point that minimizes the scalar product $m{c}^T m{x}_j$

$$oldsymbol{x}_{ ext{opt}} = rgmax_{j:j\in\{1,...,k\}} oldsymbol{c}^T oldsymbol{x}_j = \begin{bmatrix} 0\\2 \end{bmatrix}$$
 $oldsymbol{z}_{ ext{opt}} = \max_{j\in\{1,...,k\}} oldsymbol{c}^T oldsymbol{x}_j = 2$

Extreme Point Solutions: Example

- If now the task is to maximize the objective function $-x_1 + 3x_2$ then there is no bounded optimal solution
- Since now there is a direction d and a feasible solution x_0 so that, starting from the point x_0 along the direction d we can obtain arbitrarily large objective function values
- That is, all solutions of the form $x_0 + \mu d$ for any $\mu \ge 0$ are feasible and improve the objective function value

• For example, if
$$d = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 and $x_0 = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$, then the points along the ray $x = \begin{bmatrix} 2 \\ 4 \end{bmatrix} + \mu \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\mu \ge 0$ are all feasible and the objective function value is $c^T(x_0 + \mu d) = c^T x_0 + \mu c^T d$

• Lemma: if $\exists d, x_0$ so that $x_0 + \mu d, \mu \ge 0$ is feasible and $c^T d > 0$ then the optimal solution is unbounded

- The notion of extreme points give a geometric interpretation for the optimal solution of a linear program
- In order to define systematic solver algorithm we need an algebraic interpretation: basic feasible solutions
- Consider a linear program whose the feasible region is given by the polyhedron $X = \{x : Ax = b, x \ge 0\}$, where A is an $m \times n$ matrix, b is a column m-vector, and x is a column n-vector
- Suppose that $\operatorname{rank}(\boldsymbol{A}) = \operatorname{rank}(\boldsymbol{A}, \boldsymbol{b}) = m$
- Reordering columns of A so that the first m columns are linearly independent, we write $A = \begin{bmatrix} B & N \end{bmatrix}$ where
 - $\circ~{\pmb B}$ is an $m\times m$ quadratic nonsingular matrix, called the basic matrix
 - $\circ N$ is an $m \times (n-m)$ matrix, called the **nonbasic** matrix

- Reorder x accordingly: $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}$, where x_B contains the **basic variables** (or dependent variables) that belong to the columns of B, and x_N contains the **nonbasic variables** (or independent variables) that belong to the columns of N
- The constraint system in terms of the basis $oldsymbol{B}$

$$egin{aligned} oldsymbol{A} oldsymbol{x} &= egin{bmatrix} oldsymbol{x} & oldsymbol{N} \end{bmatrix} egin{bmatrix} oldsymbol{x}_B \ oldsymbol{x}_N \end{bmatrix} &= oldsymbol{B} oldsymbol{x}_B + oldsymbol{N} oldsymbol{x}_N = oldsymbol{b} \end{aligned}$$

• Since B is nonsingular, we can multiply with the inverse B^{-1} from the left

$$x_B + B^{-1}Nx_N = B^{-1}b$$

• An explicit representation of the basic variables in the terms of the nonbasic variables

$$x_B = B^{-1}b - B^{-1}Nx_N$$

- Note that x_N can be chosen arbitrarily!
- Choosing $x_N = 0$ gives the **basic solution** (in the basis B)

$$oldsymbol{x}_{oldsymbol{B}}=oldsymbol{B}^{-1}oldsymbol{b}, \hspace{0.1cm}oldsymbol{x}_{oldsymbol{N}}=egin{bmatrix}oldsymbol{x}_{oldsymbol{B}}\oldsymbol{x}_{oldsymbol{N}}\end{bmatrix}=egin{bmatrix}oldsymbol{B}^{-1}oldsymbol{b}\oldsymbol{a}\\oldsymbol{0}\end{bmatrix}$$

• If in addition $x_B \ge 0$ then what we have obtained is a **basic** feasible solution

$$oldsymbol{x}_{oldsymbol{B}}=oldsymbol{B}^{-1}oldsymbol{b}\geq oldsymbol{0}, \hspace{0.1cm}oldsymbol{x}_{oldsymbol{N}}=oldsymbol{a}oldsymbol{B}^{-1}oldsymbol{b}\\ oldsymbol{0}oldsymbol{B}=oldsymbol{a}oldsymbol{B}^{-1}oldsymbol{b}\\ oldsymbol{0}oldsymbol{B}=oldsymbol{B}^{-1}oldsymbol{b}\\ oldsymbol{B}=oldsymbol{B}^{-1}olds$$

- If all components of x_B are strictly positive ($x_B > 0$) then x is a **nondegenerate basic (feasible) solution**, otherwise it is a **degenerate basic (feasible) solution**
- Basic feasible solutions are essential as these give the algebraic interpretation for the geometric notion of extreme points (which we know are key to solving linear programs)
- Theorem: x is a basic feasible solution for the linear program $\max\{c^Tx : Ax = b, x \ge 0\}$ if and only if x is an extreme point of the feasible region $X = \{x : Ax = b, x \ge 0\}$ $x \ge 0\}$
- If, in addition, *x* is also nondegenerate then it is generated by a single basis
- Iterating along basic feasible solutions (i.e., extreme points) we can solve a linear program to optimality: the simplex method

• Consider the feasible region

- This is in canonical form ("≤" type constraints), we need to convert to standard form ("=" type constraints)
- Introduce the slack variables x_3 and x_4

• The matrix of the constraint system

$$m{A} = [m{a}_1, m{a}_2, m{a}_3, m{a}_4] = \ egin{bmatrix} 1 & 1 & 0 \ 0 & 1 & 0 & 1 \end{bmatrix}$$

- A is of full row rank so the size of the basic matrix B is 2×2 and there can be $\binom{4}{2}$ of them
- Basic feasible solutions are the ones for which $m{B}$ is nonsingular and $m{B}^{-1}m{b} > m{0}$

1. $\boldsymbol{B} = [\boldsymbol{a}_1 \ \boldsymbol{a}_2] = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix}$ gives a basic feasible solution $\boldsymbol{x}_{\boldsymbol{B}} = \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \boldsymbol{B}^{-1}\boldsymbol{b} = \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} \begin{vmatrix} 6 \\ 3 \end{vmatrix} = \begin{vmatrix} 3 \\ 3 \end{vmatrix}$ $\boldsymbol{x_N} = \begin{vmatrix} x_3 \\ x_4 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$, extreme point: $\begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{vmatrix} 3 \\ 3 \end{vmatrix}$ 2. $\boldsymbol{B} = [\boldsymbol{a}_1 \ \boldsymbol{a}_4] = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix}$ gives a basic feasible solution $\boldsymbol{x}_{\boldsymbol{B}} = \begin{vmatrix} x_1 \\ x_4 \end{vmatrix} = \boldsymbol{B}^{-1}\boldsymbol{b} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} \begin{vmatrix} 6 \\ 3 \end{vmatrix} = \begin{vmatrix} 6 \\ 3 \end{vmatrix}$ $\boldsymbol{x_N} = \begin{vmatrix} x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$, extreme point: $\begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{vmatrix} 6 \\ 0 \end{vmatrix}$

3. $\boldsymbol{B} = [\boldsymbol{a}_2 \ \boldsymbol{a}_3] = \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$ gives a basic feasible solution $\boldsymbol{x}_{\boldsymbol{B}} = \begin{vmatrix} x_2 \\ x_3 \end{vmatrix} = \boldsymbol{B}^{-1}\boldsymbol{b} = \begin{vmatrix} 0 & 1 \\ 1 & -1 \end{vmatrix} \begin{vmatrix} 6 \\ 3 \end{vmatrix} = \begin{vmatrix} 3 \\ 3 \end{vmatrix}$ $\boldsymbol{x_N} = \begin{vmatrix} x_1 \\ x_4 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$, extreme point: $\begin{vmatrix} x_1 \\ x_2 \end{vmatrix} = \begin{vmatrix} 0 \\ 3 \end{vmatrix}$ 4. $\boldsymbol{B} = [\boldsymbol{a}_2 \ \boldsymbol{a}_4] = \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix}$ is not a feasible basis! $\boldsymbol{x}_{\boldsymbol{B}} = \begin{vmatrix} x_2 \\ x_4 \end{vmatrix} = \boldsymbol{B}^{-1}\boldsymbol{b} = \begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix} \begin{vmatrix} 6 \\ 3 \end{vmatrix} = \begin{vmatrix} 6 \\ -3 \end{vmatrix} \not\geq \boldsymbol{0}$ $\boldsymbol{x_N} = \begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

5.
$$B = [a_3 \ a_4] = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 gives a basic feasible solution
 $x_B = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}$
 $x_N = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, extreme point: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
6. $B = [a_1 \ a_3] = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ singular, does not generate a basic solution

Degenerate Basic Solutions: Example

• The constraint system converted to standard form introducing appropriate slack variables x_3 , x_4 , and x_5

Degenerate Basic Solutions: Example

$$oldsymbol{A} = [oldsymbol{a}_1, oldsymbol{a}_2, oldsymbol{a}_3, oldsymbol{a}_4, oldsymbol{a}_5] = \left[egin{array}{ccccccc} 1 & 1 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 & 0 \ 1 & 2 & 0 & 0 & 1 \end{array}
ight]$$

• The basic feasible solution generated by the basic matrix $m{B} = [m{a}_1, m{a}_2, m{a}_3]$ is degenerate

1

$$\boldsymbol{x}_{\boldsymbol{B}} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \boldsymbol{B}^{-1}\boldsymbol{b} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 2 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 3 \\ 9 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix} \neq \boldsymbol{0}$$
$$\boldsymbol{x}_{\boldsymbol{N}} = \begin{bmatrix} x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ extreme point: } \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

Degenerate Basic Solutions: Example

• Similarly, $m{B} = [m{a}_1, m{a}_2, m{a}_4]$ also generates a degenerate basic feasible solution

$$\boldsymbol{x}_{B} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{4} \end{bmatrix} = \boldsymbol{B}^{-1}\boldsymbol{b} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 2 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 6 \\ 3 \\ 9 \end{bmatrix} = \begin{bmatrix} 2 & 0 & -1 \\ -1 & 0 & 1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \\ 9 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 0 \end{bmatrix} \neq \boldsymbol{0}$$
$$\boldsymbol{x}_{N} = \begin{bmatrix} x_{3} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \text{ extreme point: } \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

- Two basic feasible solutions give the same extreme point
- In 2 dimensions extreme points are generated by 2 hyperplanes
- At the extreme point $x = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ three hyperplanes meet!

- As shown, if a linear program is solvable then at least one optimal solution is guaranteed to occur at an extreme point of the feasible region
- Extreme points correspond to basic feasible solutions
- Unfortunately there can be $\binom{n}{m}$ of these, cannot generate all not even in moderate dimensions
- The simplex method, starting from an initial basic feasible solution, generates new basic feasible solutions iteratively that improve the objective function value
- In practice the simplex visits only a modest number of extreme points to find the optimal solution or prove unboundedness

• Let A be an $m \times n$ matrix with rank(A) = rank(A, b) = m, b be a column *m*-vector, x be a column *n*-vector, and c^T be a row *n*-vector, and consider the linear program

- Let B be an initial basis and $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix} = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix} \ge 0$ be the **basic feasible solution** for B and write $A = \begin{bmatrix} B & N \end{bmatrix}$
- Write the linear program in the space of nonbasic variables
- This way we obtain the explicit expression of the the basic variables and the objective function value in terms of the nonbasic variables

• The constraint system in the basis B:

$$egin{aligned} Ax &= egin{bmatrix} B & N \end{bmatrix}egin{bmatrix} x_B \ x_N \end{bmatrix} = b, \ ext{that} ext{ is } \ Bx_B + Nx_N = b \ x_B &= B^{-1}b - B^{-1}Nx_N \end{aligned}$$
 (*)

- Let N denote the set of nonbasic variables and denote the columns of the matrix $B^{-1}N$ by y_j for each $j \in N$, and let $\bar{b} = B^{-1}b$
- The basic variables in the nonbasic variable space:

$$oldsymbol{x}_{oldsymbol{B}} = oldsymbol{ar{b}} - \sum_{j \in N} oldsymbol{y}_j x_j$$

- Reorder the objective function so that the first m coefficients belong to the basic variables and the remaining n m variables to the nonbasic variables: $c^T = [c_B^T \ c_N^T]$
- Substituting (*):

$$egin{aligned} z &= oldsymbol{c}^T oldsymbol{x} = oldsymbol{c}_{oldsymbol{B}}^T oldsymbol{c}_{oldsymbol{N}}^T oldsymbol{x}_{oldsymbol{N}}^T oldsymbol{c}_{oldsymbol{N}}^T oldsymbol{x}_{oldsymbol{N}}^T oldsymbol{c}_{oldsymbol{N}}^T oldsymbol{x}_{oldsymbol{N}}^T oldsymb$$

• Let $z_0 = c_B^T \mathbf{B}^{-1} \mathbf{b}$ and denote the components of $c_N^T - c_B^T \mathbf{B}^{-1} \mathbf{N}$ by z_j for each $j \in N$

$$z = z_0 + \sum_{j \in N} z_j x_j$$

• Theorem: the linear program in the nonbasic variable space is given by

$$\begin{array}{ll} \max & z_0 + \sum_{j \in N} z_j x_j \\ \text{s.t.} & \boldsymbol{x_B} = \bar{\boldsymbol{b}} - \sum_{j \in N} \boldsymbol{y}_j x_j \\ & \boldsymbol{x_B}, \boldsymbol{x_N} \geq \boldsymbol{0} \end{array}$$

where

- $\circ~N$ denotes the set of nonbasic variables
- $\circ \ ar{m{b}} = m{B}^{-1}m{b}$
- y_j denotes the column of the matrix $B^{-1}N$ that belongs to the *j*-th nonbasic variable

$$\circ \ z_0 = \boldsymbol{c_B}^T \mathbf{B}^{-1} \boldsymbol{b} = \boldsymbol{c_B}^T \bar{\boldsymbol{b}}$$

• z_j is the component of the row vector $c_N^T - c_B^T B^{-1} N$ that belongs to the *j*-th nonbasic variable

The Simplex Method: Example

• Consider the linear program

• Introducing slack variables and converting to standard form:

$$\max \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix} \boldsymbol{x}$$
$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$$
$$x_1, x_2, x_3, x_4 \ge 0$$

The Simplex Method: Example

• Let
$$B = [a_2, a_3]$$
, then $B = \{2, 3\}$, $N = \{1, 4\}$
 $B = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}$, $B^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}$, $N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$,
 $c_B^T = [1 & 0]$, $c_N^T = [1 & 0]$
 $\bar{b} = B^{-1}b = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$
 $B^{-1}N = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix}$
 $z_0 = c_B^T \bar{b} = [1 & 0] \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 1$
 $c_N^T - c_B^T B^{-1}N = [1 & 0] - [1 & 0] \begin{bmatrix} 0 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = [1 & -1]$

The Simplex Method: Example

• The linear program in the nonbasic variable space:

max
$$1 + x_1 - x_4$$

s.t. $\begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} x_1 - \begin{bmatrix} 1 \\ -2 \end{bmatrix} x_4$
 $x_1, x_2, x_3, x_4 \ge 0$

• The linear program in the nonbasic variable space:

$$\begin{array}{ll} \max & z_0 + \sum_{j \in N} z_j x_j \\ \text{s.t.} & \boldsymbol{x_B} = \bar{\boldsymbol{b}} - \sum_{j \in N} \boldsymbol{y}_j x_j \\ & \boldsymbol{x_B}, \boldsymbol{x_N} \geq \boldsymbol{0} \end{array}$$

• Since
$$egin{bmatrix} x_B \ x_N \end{bmatrix}$$
 is a basic solution we have $x_N=0$

- The importance of the above form is that it specifies
 - the value of the objective function z_0 and the basic variables $x_B = \bar{b}$ in the current basis, and
 - the way basic variables and the objective function would change if we started to increase some nonbasic variable from zero

- For instance, if we increased x_4 from zero to 1 while leaving x_1 unchanged at 0
 - $\circ\;$ the objective function value would decrease from 1 to zero as $z_4=-1\;$
 - x_2 would decrease from 1 to zero since $y_{24} = 1$

• x_3 would increase from 2 to 4 as $y_{34} = -2$

• It is not worth increasing x_4 as this would reduce the objective function value!

- If we increased other nonbasic variable, x_1 , from zero to 1
 - \circ the objective function would grow from 1 to 2 by $z_1 = 1$
 - $\circ x_2$ would not change since $y_{21} = 0$
 - $\circ x_3$ would fall from 2 to 1 as $y_{31} = 1$
- Worth increasing x_1 as this increases the objective function!
- Increase x_1 until some basic variable becomes negative
- For $x_1 = 2$, x_3 changes to 0 and negative for any $x_1 > 2$

• Consider the nonbasic variable x_k whose expansion would produce the largest gain in the objective function value

$$k = \operatorname*{argmax}_{j \in N} z_j$$

• Fix every other nonbasic variable at zero and increase x_k

$$\begin{aligned} z &= z_0 + z_k x_k \\ \begin{bmatrix} x_{B_1} \\ x_{B_2} \\ \vdots \\ x_{B_m} \end{bmatrix} &= \begin{bmatrix} \bar{b}_1 \\ \bar{b}_2 \\ \vdots \\ \bar{b}_m \end{bmatrix} - \begin{bmatrix} y_{1k} \\ y_{2k} \\ \vdots \\ y_{mk} \end{bmatrix} x_k \end{aligned}$$

- Nonbasic variable x_k can be increased until some basic variable drops to zero
- Let $x_i : i \in B$ some basic variable for which $y_{ik} > 0$
- Increasing the nonbasic variable x_k , x_i is nonnegative as long as

$$0 \le x_i = \overline{b}_i - y_{ik} x_k$$

 $x_k \le \frac{\overline{b}_i}{y_{ik}}$

• The first basic variable x_r that drops to zero:

$$r = \operatorname*{argmin}_{i \in \{1, \dots, m\}} \left\{ \frac{\overline{b}_i}{y_{ik}} : y_{ik} > 0 \right\}$$

• Let the current basis be nongenerate ($\bar{b} > 0$) and assume that $\exists k \in N : z_k > 0$ and $\exists i \in B : y_{ik} > 0$

• Let
$$k = \underset{j \in N}{\operatorname{argmax}} z_j$$
 and $r = \underset{i \in B}{\operatorname{argmin}} \left\{ \frac{\overline{b}_i}{y_{ik}} : y_{ik} > 0 \right\}$

• Increasing x_k from zero to $\frac{b_r}{y_{rk}}$:

$$z = z_0 + z_k \frac{\overline{b}_r}{y_{rk}}$$

$$x_k = \frac{\overline{b}_r}{y_{rk}} > 0, x_r = 0$$

$$x_{B_i} = \overline{b}_i - \frac{y_{ik}}{y_{rk}} \overline{b}_r \qquad i \in B \setminus \{r\}$$

$$x_j = 0 \qquad j \in N \setminus \{k\}$$

• The objective function value grows, i.e., $z > z_0$ as $z_k \frac{b_r}{y_{rk}} > 0$

- This transformation is called the **pivot**, during which
 - $\circ\;$ the nonbasic variable x_k increases from zero and enters the basis
 - \circ the basic variable x_r drops to zero and **leaves** the basis
 - all remaining nonbasic variables remain zero and all remaining basic variables remain nonnegative
- **Theorem:** the pivot results a new basic feasible solution
- The proof (omitted here) would go by observing that it is enough to show that the new basis is nonsingular, since all variables remain nonnegative duting the pivot
- Then using a basic result from linear algebra to show that this is guaranteed by the choice for *r*:

$$r = \operatorname*{argmin}_{i \in \{1, \dots, m\}} \left\{ \frac{\bar{b}_i}{y_{ik}} : y_{ik} > 0 \right\}$$

• x_1 enters the basis since

$$z_1 = \max_{j \in N} z_j = \max\{1, -1\} = 1$$

• x_3 leaves the basis as

$$\frac{\bar{b}_3}{y_{31}} = \min_{i \in B} \left\{ \frac{\bar{b}_i}{y_{ik}} : y_{ik} > 0 \right\} = \min\{2\} = 2$$

The new point obtained after the pivot:

The linear program in the new basis:

max
$$3 - x_3 + x_4$$

s.t.
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \end{bmatrix} x_3 - \begin{bmatrix} -2 \\ 1 \end{bmatrix} x_4$$

$$x_1, x_2, x_3, x_4 \ge 0$$

The Simplex Method: Optimality

• Recall: the pivot rules

 $\circ x_k$ can enter the basis if $z_k > 0$

•
$$x_r$$
 leaves the basis if $r = \underset{i \in \{1,...,m\}}{\operatorname{argmin}} \left\{ \frac{\overline{b}_i}{y_{ik}} : y_{ik} > 0 \right\}$

- If for all $j \in N : z_j \leq 0$ holds then it is not worth increasing any of the nonbasic variables, since the objective function value could not be increased this way
- **Theorem:** the optimality condition for the simplex method

$$\forall j \in N : z_j \le 0$$

- **Proof:** if for some basic feasible solution x we have $\forall j \in N : z_j \leq 0$, then x is a local optimum
- Since the feasible region is convex and the objective function is concave, x is also a global optimum

Termination with Optimality: Example

• Continuing with our running example, in the current basis:

max
$$3 - x_3 + x_4$$

s.t.
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} - \begin{bmatrix} 1 \\ 0 \end{bmatrix} x_3 - \begin{bmatrix} -2 \\ 1 \end{bmatrix} x_4$$

$$x_1, x_2, x_3, x_4 \ge 0$$

- This basic feasible solution is not optimal since $z_4 > 0$
- Correspondingly, in the next pivot
 - $\circ x_4$ enters the basis, and
 - $\circ x_2$ leaves the basis because

$$\frac{\bar{b}_2}{y_{24}} = \min_{i \in B} \left\{ \frac{\bar{b}_i}{y_{i4}} : y_{i4} > 0 \right\} = \min\{1\} = 1$$

Termination with Optimality: Example

• The linear program in the new basis:

$$B = \{1, 4\}, N = \{2, 3\}, \boldsymbol{c_B}^T = \begin{bmatrix} 1 & 0 \end{bmatrix}, \boldsymbol{c_N}^T = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, N = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}, B^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• The basic feasible solution
$$\boldsymbol{x} = \begin{bmatrix} 4 & 0 & 0 & 1 \end{bmatrix}^T$$
 is optimal
max $4 - x_2 - x_3$
s.t. $\begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \end{bmatrix} x_2 - \begin{bmatrix} 1 \\ 0 \end{bmatrix} x_3$
 $x_1, x_2, x_3, x_4 \ge 0$

The Simplex Method: Geometry

Termination in a Unique Optimum

- Definition: the feasible solution \bar{x} to the linear program $\max\{c^T x : Ax = b, x \ge 0\}$ is a unique optimal solution if for each $x \ne \bar{x}$ feasible solution $c^T x < c^T \bar{x}$
- Theorem: the basic feasible solution \bar{x} is a unique optimal solution if $\forall j \in N : z_j < 0$
- **Proof:** let x be any feasible solution different from \bar{x} and let the corresponding objective function value be z
- Let N denote the set of nonbasic variables corresponding to $\bar{\pmb{x}},$ then

$$z = z_0 + \sum_{j \in N} z_j x_j$$

• We observe that there is $j \in N$ so that $x_j > 0$ (otherwise $x = \bar{x}$) and from $\forall j \in N : z_j < 0$ it follows that $z < z_0$

Unique Optimum: Example

• Consider the basic feasible solution $\boldsymbol{x} = [4 \quad 0 \quad 0 \quad 1]^T$ for the running example

$$B = \{1, 4\}, N = \{2, 3\}$$
$$B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, N = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix}, B^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$c_B^T = \begin{bmatrix} 1 & 0 \end{bmatrix}, c_N^T = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

• $z_2 < 0$, $z_3 < 0$: \boldsymbol{x} is unique optimum

Termination with Alternative Optima

- Suppose that \bar{x} is an optimal basic feasible solution (i.e., $\forall j \in N : z_j \leq 0$), but there is a nonbasic variable, say, k, for which the optimality condition holds with equality: $z_k = 0$
- If \bar{x} is nondegenerate then x_k can be increased from zero by some $\epsilon > 0$ small enugh so that no basic variable becomes negative

$$z = z_0 + z_k x_k = z_0 + 0 x_k$$
$$\begin{bmatrix} x_{B_1} \\ \vdots \\ x_{B_m} \end{bmatrix} = \begin{bmatrix} \overline{b}_1 \\ \vdots \\ \overline{b}_m \end{bmatrix} - \begin{bmatrix} y_{1k} \\ \vdots \\ y_{mk} \end{bmatrix} x_k$$

• Any choice $0 < x_k \le \epsilon$ yields alternative optimal solutions since the objective function value does not change due to $z_k = 0$

Termination with Alternative Optima

• The linear program as the function of the nonbasic variable x_k , let $z_k = 0$ and all other $z_j \le 0$

max
$$z_0 + 0x_k$$

s.t. $\boldsymbol{x} = \begin{bmatrix} \boldsymbol{x}_B \\ \boldsymbol{x}_N \end{bmatrix} = \begin{bmatrix} \bar{\boldsymbol{b}} \\ \boldsymbol{0} \end{bmatrix} + \begin{bmatrix} -\boldsymbol{y}_k \\ \boldsymbol{e}_k \end{bmatrix} x_k$
 $\boldsymbol{x} \ge \boldsymbol{0}$

where, as usual, y_k is the column of $B^{-1}N$ that belongs to k and e_k is the k-th canonical unit vector

• We obtain alternative optimal as long as $x_B \geq 0$

$$oldsymbol{x} = egin{bmatrix} oldsymbol{ar{b}} \\ oldsymbol{0} \end{bmatrix} + \lambda egin{bmatrix} -oldsymbol{y}_k \\ oldsymbol{e}_k \end{bmatrix} \qquad 0 \leq \lambda \leq \min_{i \in B} \left\{ rac{ar{b}_i}{y_{ik}} : y_{ik} > 0
ight\}$$

• Consider the linear program

• Introducing slack variables to convert to standard form:

• Choose the basis as $oldsymbol{B} = [oldsymbol{a}_1 \quad oldsymbol{a}_4] = egin{bmatrix} 1 & 0 \ -1 & 1 \end{bmatrix}$,

$$\boldsymbol{B}^{-1} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

• The corresponding basic feasible solution $\boldsymbol{x}_{B} = \bar{\boldsymbol{b}} = \begin{bmatrix} x_{1} \\ x_{4} \end{bmatrix} = \boldsymbol{B}^{-1}\boldsymbol{b} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ $\boldsymbol{x}_{N} = \begin{bmatrix} x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

• The parameters corresponding to this basis

$$\boldsymbol{c_B}^T = \begin{bmatrix} 2 & 0 \end{bmatrix}, \boldsymbol{c_N}^T = \begin{bmatrix} 4 & 0 \end{bmatrix}$$
$$\boldsymbol{B}^{-1} \boldsymbol{N} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}$$
$$\boldsymbol{z_0} = \boldsymbol{c_B}^T \boldsymbol{\bar{b}} = \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \end{bmatrix} = 8$$
$$\boldsymbol{c_N}^T - \boldsymbol{c_B}^T \boldsymbol{B}^{-1} \boldsymbol{N} = \begin{bmatrix} 4 & 0 \end{bmatrix} - \begin{bmatrix} 2 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 0 \end{bmatrix} - \begin{bmatrix} 4 & 2 \end{bmatrix} = \begin{bmatrix} 0 & -2 \end{bmatrix}$$

• The linear program in the nonbasic variable space:

max
s.t.
$$\begin{bmatrix}
x_1 \\
x_4
\end{bmatrix} =
\begin{bmatrix}
4 \\
5
\end{bmatrix} -
\begin{bmatrix}
2 \\
3
\end{bmatrix} x_2 -
\begin{bmatrix}
1 \\
1
\end{bmatrix} x_3$$

$$x_1, x_2, x_3, x_4 \ge 0$$

• Alternative optimal solutions:

$$\boldsymbol{x} = \begin{bmatrix} 4\\0\\0\\5 \end{bmatrix} + \lambda \begin{bmatrix} -2\\1\\0\\-3 \end{bmatrix} : 0 < \lambda \le \frac{5}{3}$$

• All convex combinations of the points $\begin{bmatrix} 4 & 0 \end{bmatrix}^T$ and $\begin{bmatrix} \frac{2}{3} & \frac{5}{3} \end{bmatrix}^T$

