Solving Linear Programs: The Basics
A Summary

WARNING: this is just a summary of the material covered in the

full slide-deck Solving Linear Programs: The Basics that will

orient you as per the topics covered there; you are required to
learn the full version, not just this summary!

e Introduction to convex analysis

e Convex and concave functions, the fundamental theorem of
convex programming

e Convex geometry: polyhedra, the Minkowski-Weyl theorem
(the Representation Theorem)

e Solving linear programs using the Minkowski-Weyl theorem
e Solving simple linear programs with the graphical method

e The feasible region (bounded, unbounded, empty) and
optimal solutions (unique, alternative, unbounded)



Convex Sets

e Foreach 0 < A\ <1, the points arising as
Axy + (1 — N

are called the convex combinations of vectors x; and x,

e Geometrically, the convex combinations of x; and a5 span
the line segment between point x; and x5
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Convex Sets

e Aset X C R"is convex if for each points x; and x, in X it
holds that

VAe[0,1]: A+ (1 — Naxy € X

e In other words, X is convex if it contains all convex
combinations of each of its points

Convex set

Nonconvex set



Convex Sets: Examples

The convex combinations of i points ©, @, ..., x:
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X =conv{zx; : 1 <i <k}

The 3-sphere: X = {[z,y, 2] : 2% + 9% + 22 < 1}

Vector space: X = {x : Ax = 0}

Affine space (translated vector space): X = {x : Ax = b}
Feasible region of a linear program:

X={x:Ax=0b,x > 0}
X ={x: Ax < b}



Convex and Concave Functions

e A function f : R” — R is convex on a convex set X C R"
if for each ;1 and x5 In X:

FOz1+ (1= A)a2) < Af(21) + (1= A)f(z2) VA €0, 1]

e The line segment between any two points f(x;) and f(x-)
on the graph of the function lies above or on the graph

e Function f is concave if (— f) is convex
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(a) convex (b) concave (c) neither



Optimization on a Convex Set

e Given function f : R" — IR and set X, solve the generic
optimization problem max f(x) : © € X

e Some € X is a global optimal solution (or global
optimum) if for each € X: f(x) > f(x)

e Anx € X is alocal optimum if there is a neighborhood
N () of & (an open ball of radius ¢ > 0 with centre &) so

that V& € N.(Z) N X: f(&) > f(x) 5
A

point A is a local optimum
and point B is a global
optimum on the closed

Interval [2171 , I’Q]




Optimization on a Convex Set

Fundamental Theorem of Convex Programming: Let X
be a nonempty convex set in R” and let f : R™ — R be a
concave function on X. Consider the optimization
problem max f(x) : ® € X. Then, if x € X is a local
optimal solution then it is also a global optimum

Proof: in the slide-deck, please understand and learn!

Bottomline: the Fundamental Theorem sets apart “simple
(provably polynomial-time solvable) from “complex”
(hopeless, intractable) problems

Convex program: minimization of a convex objective

function over a convex set = maximization of a concave
objective function over a convex set



Hyperplanes and Half-spaces

e Hyperplane: all x € R"
satisfying the equation

a'x = b for some a’ row
n-vector (the normal A

vector) and scalar b
e The hyperplane

X={x:a'x =10}
divides the space R" into
two half-spaces

o “lower” half-space:

{x:a’x < b}
o “upper”’ half-space:

{x:a'x > b} %

e Hyperplanes and
half-spaces are convex



Extreme Points

e Given a convex set X, a point x € X is called an extreme
point of X if £ cannot be obtained as the convex
combination of two points in X different from a:

r=X 1+ (l—-Nxand0 < \< 1=z =23 ==

e 1, and x4 are extreme
points, x5 and a3 are not

e extreme points correspond
to the “corner points” of a
convex set




Polyhedra

e A polyhedron is a geometric object with “flat” sides
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Triangle Tetrahedron Pyramid
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Quadrilateral
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Polygon Hexahedron Polyhedron

e By the word “polyhedron” we will usually mean a “convex
polyhedron”
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Convex Polyhedra

e Definition 1: the intersection of finitely many (closed)
half-spaces

X=Ax:a;x<b,ie{l,... m}} ={x: Az < b}

e Corollary: the feasible region of a linear program forms a
convex polyhedron

o canonical form: max{c'x : Ax < b,z > 0}
o standard form: max{c'x : Ax = b,z > 0}
e Definition 2: convex combinations of finitely many points
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The Minkowski-Weyl Theorem

e The Representation Theorem of Bounded Polyhedra: the
two definitions are equivalent

e The Strong Minkowski-Weyl Theorem: if the intersection
of finitely many half-spaces is bounded then it can be written
as the convex combination of finitely many extreme points

P={x: Ax <b} & P=convi{x;:1 <5<k}
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Linear Programs and Extreme Points

The Fundamental Theorem of Linear Programming: if
the feasible region of a linear program is bounded then the
at least one optimal solution is guaranteed to occur at an
extreme point of the feasible region

Proof: in the slide-deck, please understand and learn!

Bottomline: it is not necessary to explore the entire
“Interior” of the feasible region, it is enough to consider a
finite set of extreme points

The simplex algorithm will do exactly that
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Extreme points: Example
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Extreme points: Example

e Compute the objective

function value ¢’ x; for
A % each extreme point x;:

c'zy=[1 2
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Optimal Resource Allocation Revisited

e EXxercise: a paper mill manufactures two types of paper,
standard and deluxe

o £ m® of wood is needed to manufacture 1 m? of paper
(both standard or deluxe)

o producing 1 m? of standard paper takes 1 man-hour,
whereas 1 m? of deluxe paper requires 2 man-hours
o every week 40 m® wood and 100 man-hours of
workforce is available
o the profit is 3 thousand USD per 1 m? of standard paper
and 4 thousand USD per 1 m? of deluxe paper
¢ Question: how much standard and how much deluxe paper

should be produced by the paper mill per week to maximize
profits?
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Graphical Solution

max 3x1 + 4x
S.t. %xl + %:1;2 < 40
r1 + 220 < 100

r1, Ty > 0

e 2 variables: 2 dimensions

e Nonnegative variables: feasible
solutions lie in the positive or-
thant

1 % > X
60 80 100

—n. 17



Graphical Solution

e T[he first constraint
%331 + %372 < 40
cuts a half-space

40 |

20 1

—n. 18



20 1

Graphical Solution

e The second constraint
T + 25132 S 100

also defines a half-space
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Graphical Solution

A x
100{ 2
80 |
e The feasible region is exactly
the intersection of the two half-
60 | spaces and the positive orthant

40
20 -
> x
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Graphical Solution

A x
100{ 2
e The objective function:
e Normal vector: | ]
60 | e Solution: the furthest point of

the feasible region in the direc-

tion of the normal vector of the
objective function

! ! ' —- X
20 40 60 80 100 '
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Graphical Solution

A x
100} 2
80 | Solution
e Standard paper: x¥ = 60 m?
50 | e Deluxe paper: 25 = 20 m?

e Profits: 260 thousand USD

! ! ' —- X
20 40 60 80 100 '
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