Solving Linear Programs: The Basics A Summary

WARNING: this is just a summary of the material covered in the full slide-deck **Solving Linear Programs: The Basics** that will orient you as per the topics covered there; you are required to learn the full version, not just this summary!

- Introduction to convex analysis
- Convex and concave functions, the fundamental theorem of convex programming
- Convex geometry: polyhedra, the Minkowski-Weyl theorem (the Representation Theorem)
- Solving linear programs using the Minkowski-Weyl theorem
- Solving simple linear programs with the graphical method
- The feasible region (bounded, unbounded, empty) and optimal solutions (unique, alternative, unbounded)

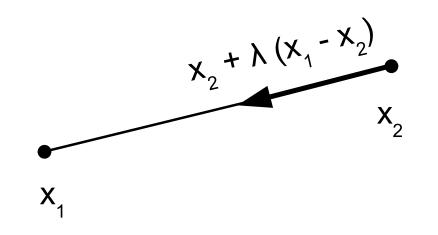
Convex Sets

• For each $0 \le \lambda \le 1$, the points arising as

$$\lambda \boldsymbol{x}_1 + (1-\lambda)\boldsymbol{x}_2$$

are called the convex combinations of vectors $m{x}_1$ and $m{x}_2$

• Geometrically, the convex combinations of x_1 and x_2 span the **line segment** between point x_1 and x_2

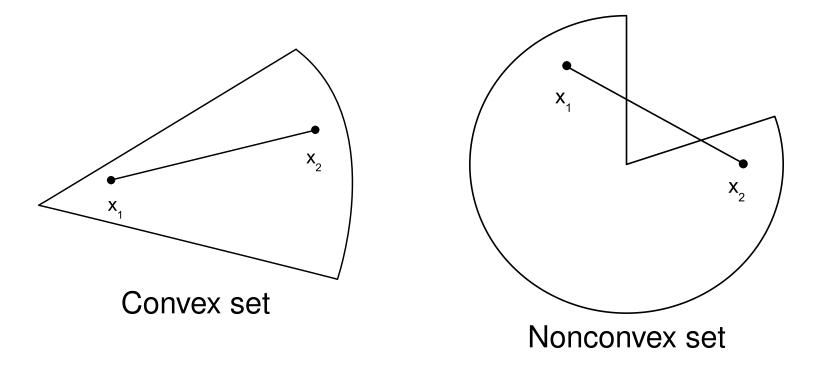


Convex Sets

• A set $X \subset \mathbb{R}^n$ is **convex** if for each points x_1 and x_2 in X it holds that

$$\forall \lambda \in [0,1] : \lambda \boldsymbol{x}_1 + (1-\lambda) \boldsymbol{x}_2 \in X$$

• In other words, X is convex if it contains all convex combinations of each of its points



Convex Sets: Examples

• The convex combinations of k points $\boldsymbol{x}_1, \boldsymbol{x}_2, \ldots, \boldsymbol{x}_k$:

$$X = \left\{ \sum_{i=1}^{k} \lambda_i \boldsymbol{x}_i : \sum_{i=1}^{k} \lambda_i = 1, \forall i \in \{1, \dots, k\} : \lambda_i \ge 0 \right\}$$
$$X = \operatorname{conv} \{ \boldsymbol{x}_i : 1 \le i \le k \}$$

- The 3-sphere: $X = \{ [x, y, z] : x^2 + y^2 + x^2 \le 1 \}$
- Vector space: $X = \{ x : Ax = 0 \}$
- Affine space (translated vector space): $X = \{ x : Ax = b \}$
- Feasible region of a linear program:

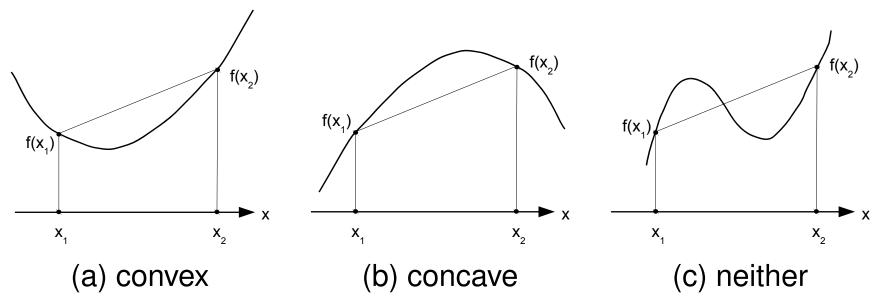
$$X = \{ \boldsymbol{x} : \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}, \boldsymbol{x} \ge \boldsymbol{0} \}$$
$$X = \{ \boldsymbol{x} : \boldsymbol{A}\boldsymbol{x} \le \boldsymbol{b} \}$$

Convex and Concave Functions

• A function $f : \mathbb{R}^n \mapsto \mathbb{R}$ is **convex** on a convex set $X \subseteq \mathbb{R}^n$ if for each x_1 and x_2 in X:

 $f(\lambda \boldsymbol{x}_1 + (1-\lambda)\boldsymbol{x}_2) \le \lambda f(\boldsymbol{x}_1) + (1-\lambda)f(\boldsymbol{x}_2) \quad \forall \lambda \in [0,1]$

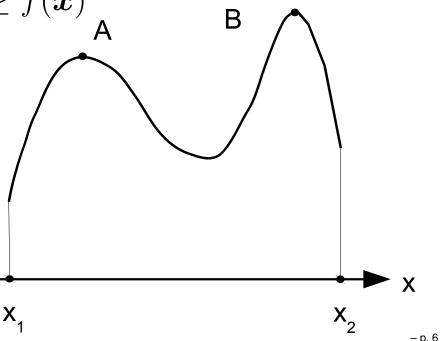
- The line segment between any two points $f(x_1)$ and $f(x_2)$ on the graph of the function lies above or on the graph
- Function f is **concave** if (-f) is convex



Optimization on a Convex Set

- Given function $f : \mathbb{R}^n \mapsto \mathbb{R}$ and set X, solve the generic optimization problem $\max f(x) : x \in X$
- Some $\bar{x} \in X$ is a global optimal solution (or global optimum) if for each $x \in X$: $f(\bar{x}) \ge f(x)$
- An $\bar{x} \in X$ is a local optimum if there is a neighborhood $N_{\epsilon}(\bar{x})$ of \bar{x} (an open ball of radius $\epsilon > 0$ with centre \bar{x}) so that $\forall x \in N_{\epsilon}(\bar{x}) \cap X$: $f(\bar{x}) \ge f(x)$

point *A* is a local optimum and point *B* is a global optimum on the closed interval $[x_1, x_2]$

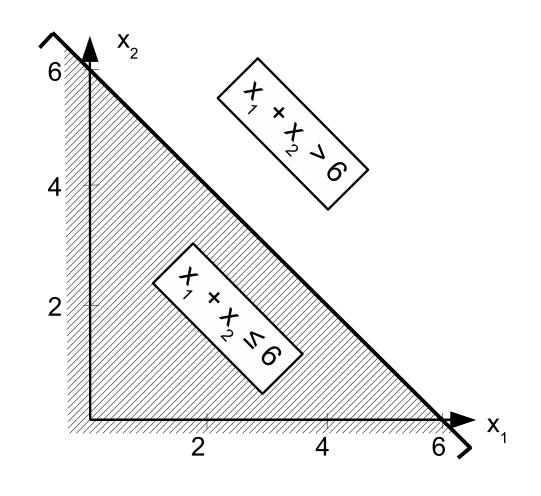


Optimization on a Convex Set

- Fundamental Theorem of Convex Programming: Let X be a nonempty convex set in \mathbb{R}^n and let $f : \mathbb{R}^n \to \mathbb{R}$ be a concave function on X. Consider the optimization problem max $f(x) : x \in X$. Then, if $\bar{x} \in X$ is a local optimal solution then it is also a global optimum
- **Proof:** in the slide-deck, please understand and learn!
- Bottomline: the Fundamental Theorem sets apart "simple" (provably polynomial-time solvable) from "complex" (hopeless, intractable) problems
- **Convex program:** minimization of a convex objective function over a convex set = maximization of a concave objective function over a convex set

Hyperplanes and Half-spaces

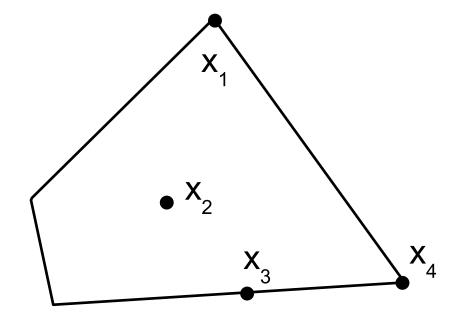
- Hyperplane: all $x \in \mathbb{R}^n$ satisfying the equation $a^T x = b$ for some a^T row *n*-vector (the **normal** vector) and scalar *b*
- The hyperplane $X = \{ \boldsymbol{x} : \boldsymbol{a}^T \boldsymbol{x} = b \}$ divides the space \mathbb{R}^n into two half-spaces
 - "lower" half-space: $\{ \boldsymbol{x} : \boldsymbol{a}^T \boldsymbol{x} \leq b \}$
 - "upper" half-space: $\{ \boldsymbol{x} : \boldsymbol{a}^T \boldsymbol{x} > b \}$
- Hyperplanes and half-spaces are convex



Extreme Points

Given a convex set X, a point x ∈ X is called an extreme point of X if x cannot be obtained as the convex combination of two points in X different from x:

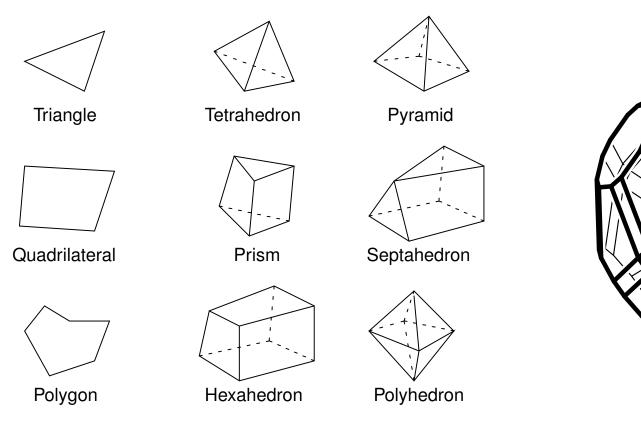
$$oldsymbol{x} = \lambda oldsymbol{x}_1 + (1-\lambda) oldsymbol{x}_2$$
 and $0 \leq \lambda \leq 1 \Rightarrow oldsymbol{x_1} = oldsymbol{x_2} = oldsymbol{x}$



- x_1 and x_4 are extreme points, x_2 and x_3 are not
- extreme points correspond to the "corner points" of a convex set

Polyhedra

• A polyhedron is a geometric object with "flat" sides



• By the word "polyhedron" we will usually mean a "convex polyhedron"

Convex Polyhedra

• **Definition 1:** the intersection of finitely many (closed) half-spaces

$$X = \{ \boldsymbol{x} : \boldsymbol{a}_i \boldsymbol{x} \le b_i, i \in \{1, \dots, m\} \} = \{ \boldsymbol{x} : \boldsymbol{A} \boldsymbol{x} \le \boldsymbol{b} \}$$

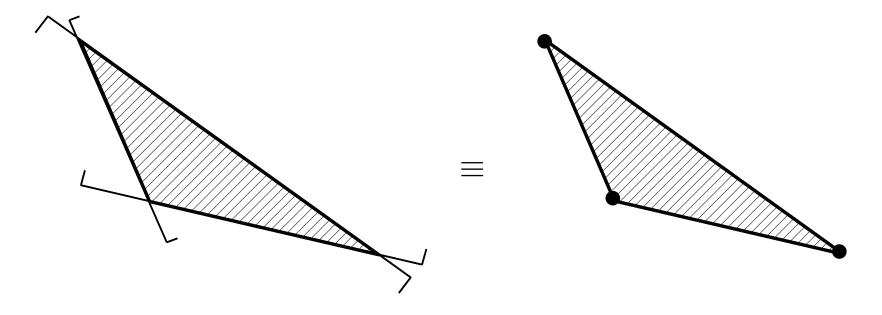
- Corollary: the feasible region of a linear program forms a convex polyhedron
 - \circ canonical form: $\max\{ \boldsymbol{c}^T \boldsymbol{x} : \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \boldsymbol{0} \}$
 - \circ standard form: $\max\{ \boldsymbol{c}^T \boldsymbol{x} : \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b}, \boldsymbol{x} \ge \boldsymbol{0} \}$
- **Definition 2:** convex combinations of finitely many points

$$X = \left\{ \sum_{i=1}^{n} \lambda_i \boldsymbol{x}_i : \sum_{i=1}^{n} \lambda_i = 1, \forall i \in \{1, \dots, n\} : \lambda_i \ge 0 \right\}$$

The Minkowski-Weyl Theorem

- The Representation Theorem of Bounded Polyhedra: the two definitions are equivalent
- The Strong Minkowski-Weyl Theorem: if the intersection of finitely many half-spaces is bounded then it can be written as the convex combination of finitely many extreme points

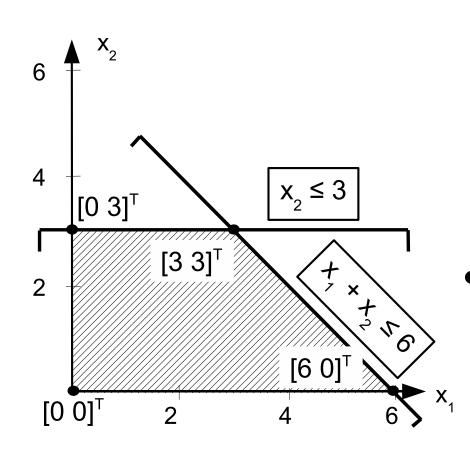
$$P = \{ \boldsymbol{x} : \boldsymbol{A}\boldsymbol{x} \le \boldsymbol{b} \} \Leftrightarrow P = \operatorname{conv} \{ \boldsymbol{x}_j : 1 \le j \le k \}$$



Linear Programs and Extreme Points

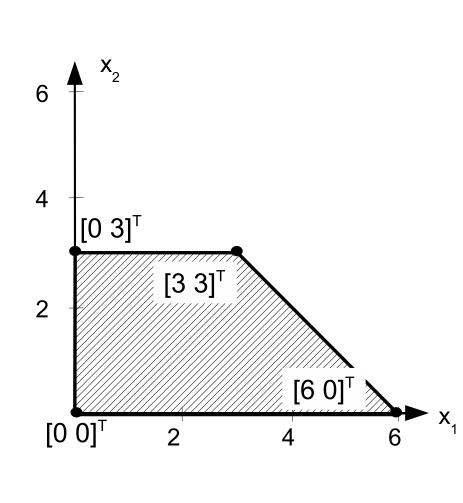
- The Fundamental Theorem of Linear Programming: if the feasible region of a linear program is bounded then the at least one optimal solution is guaranteed to occur at an extreme point of the feasible region
- **Proof:** in the slide-deck, please understand and learn!
- **Bottomline:** it is not necessary to explore the entire "interior" of the feasible region, it is enough to consider a finite set of extreme points
- The simplex algorithm will do exactly that

Extreme points: Example



- Extreme points: $\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \end{bmatrix}, \begin{bmatrix} 6 \\ 0 \end{bmatrix}$

Extreme points: Example



• Compute the objective function value $c^T x_j$ for each extreme point x_j :

 $\boldsymbol{c}^T \boldsymbol{x}_1 = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{vmatrix} 0 \\ 0 \end{vmatrix} = 0$ $oldsymbol{c}^Toldsymbol{x}_2 = \begin{bmatrix} 1 & 2 \end{bmatrix} egin{bmatrix} 0 \ 3 \end{bmatrix} = 6$ $\boldsymbol{c}^T \boldsymbol{x}_3 = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{vmatrix} 3 \\ 3 \end{vmatrix} = \begin{bmatrix} 9 \end{bmatrix}$ $\boldsymbol{c}^T \boldsymbol{x}_4 = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{vmatrix} 6 \\ 0 \end{vmatrix} = 6$

Optimal Resource Allocation Revisited

- **Exercise:** a paper mill manufactures two types of paper, standard and deluxe
 - $\circ~\frac{1}{2}~m^3$ of wood is needed to manufacture 1 m^2 of paper (both standard or deluxe)
 - producing 1 m² of standard paper takes 1 man-hour, whereas 1 m² of deluxe paper requires 2 man-hours
 - every week 40 m³ wood and 100 man-hours of workforce is available
 - the profit is 3 thousand USD per 1 m² of standard paper and 4 thousand USD per 1 m² of deluxe paper
- **Question:** how much standard and how much deluxe paper should be produced by the paper mill per week to maximize profits?

