
Solving Linear Programs: The Basics

A Summary

WARNING: this is just a summary of the material covered in the
full slide-deck Solving Linear Programs: The Basics that will
orient you as per the topics covered there; you are required to

learn the full version, not just this summary!

• Introduction to convex analysis

• Convex and concave functions, the fundamental theorem of
convex programming

• Convex geometry: polyhedra, the Minkowski-Weyl theorem
(the Representation Theorem)

• Solving linear programs using the Minkowski-Weyl theorem

• Solving simple linear programs with the graphical method

• The feasible region (bounded, unbounded, empty) and
optimal solutions (unique, alternative, unbounded)
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Convex Sets

• For each 0 ≤ λ ≤ 1, the points arising as

λx1 + (1− λ)x2

are called the convex combinations of vectors x1 and x2

• Geometrically, the convex combinations of x1 and x2 span
the line segment between point x1 and x2

– p. 2



Convex Sets

• A set X ⊂ Rn is convex if for each points x1 and x2 in X it
holds that

∀λ ∈ [0, 1] : λx1 + (1− λ)x2 ∈ X

• In other words, X is convex if it contains all convex
combinations of each of its points

Convex set
Nonconvex set
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Convex Sets: Examples

• The convex combinations of k points x1,x2, . . . ,xk:

X =

{

k
∑

i=1

λixi :

k
∑

i=1

λi = 1, ∀i ∈ {1, . . . , k} : λi ≥ 0

}

X = conv{xi : 1 ≤ i ≤ k}

• The 3-sphere: X = {[x, y, z] : x2 + y2 + x2 ≤ 1}

• Vector space: X = {x : Ax = 0}

• Affine space (translated vector space): X = {x : Ax = b}

• Feasible region of a linear program:

X = {x : Ax = b,x ≥ 0}

X = {x : Ax ≤ b}
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Convex and Concave Functions

• A function f : Rn 7→ R is convex on a convex set X ⊆ Rn

if for each x1 and x2 in X :

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) ∀λ ∈ [0, 1]

• The line segment between any two points f(x1) and f(x2)
on the graph of the function lies above or on the graph

• Function f is concave if (−f) is convex
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Optimization on a Convex Set

• Given function f : Rn 7→ R and set X , solve the generic

optimization problem max f(x) : x ∈ X

• Some x̄ ∈ X is a global optimal solution (or global

optimum) if for each x ∈ X : f(x̄) ≥ f(x)

• An x̄ ∈ X is a local optimum if there is a neighborhood

Nǫ(x̄) of x̄ (an open ball of radius ǫ > 0 with centre x̄) so

that ∀x ∈ Nǫ(x̄) ∩X : f(x̄) ≥ f(x)

point A is a local optimum
and point B is a global
optimum on the closed

interval [x1, x2]
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Optimization on a Convex Set

• Fundamental Theorem of Convex Programming: Let X

be a nonempty convex set in Rn and let f : Rn → R be a
concave function on X . Consider the optimization

problem max f(x) : x ∈ X . Then, if x̄ ∈ X is a local

optimal solution then it is also a global optimum

• Proof: in the slide-deck, please understand and learn!

• Bottomline: the Fundamental Theorem sets apart “simple”
(provably polynomial-time solvable) from “complex”
(hopeless, intractable) problems

• Convex program: minimization of a convex objective
function over a convex set = maximization of a concave
objective function over a convex set
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Hyperplanes and Half-spaces

• Hyperplane: all x ∈ Rn

satisfying the equation

a
T
x = b for some a

T row
n-vector (the normal
vector) and scalar b

• The hyperplane

X = {x : aT
x = b}

divides the space Rn into
two half-spaces

◦ “lower” half-space:

{x : aT
x ≤ b}

◦ “upper” half-space:

{x : aT
x > b}

• Hyperplanes and
half-spaces are convex
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Extreme Points

• Given a convex set X , a point x ∈ X is called an extreme
point of X if x cannot be obtained as the convex
combination of two points in X different from x:

x = λx1 + (1− λ)x2 and 0 ≤ λ ≤ 1 ⇒ x1 = x2 = x

• x1 and x4 are extreme
points, x2 and x3 are not

• extreme points correspond
to the “corner points” of a
convex set
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Polyhedra

• A polyhedron is a geometric object with “flat” sides

Tetrahedron

Prism

Hexahedron

Pyramid

Septahedron

Polyhedron

Triangle

Quadrilateral

Polygon

• By the word “polyhedron” we will usually mean a “convex
polyhedron”
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Convex Polyhedra

• Definition 1: the intersection of finitely many (closed)
half-spaces

X = {x : aix ≤ bi, i ∈ {1, . . . ,m}} = {x : Ax ≤ b}

• Corollary: the feasible region of a linear program forms a
convex polyhedron

◦ canonical form: max{cTx : Ax ≤ b,x ≥ 0}

◦ standard form: max{cTx : Ax = b,x ≥ 0}

• Definition 2: convex combinations of finitely many points

X =

{

n
∑

i=1

λixi :

n
∑

i=1

λi = 1, ∀i ∈ {1, . . . , n} : λi ≥ 0

}
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The Minkowski-Weyl Theorem

• The Representation Theorem of Bounded Polyhedra: the
two definitions are equivalent

• The Strong Minkowski-Weyl Theorem: if the intersection
of finitely many half-spaces is bounded then it can be written
as the convex combination of finitely many extreme points

P = {x : Ax ≤ b} ⇔ P = conv{xj : 1 ≤ j ≤ k}

≡
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Linear Programs and Extreme Points

• The Fundamental Theorem of Linear Programming: if
the feasible region of a linear program is bounded then the
at least one optimal solution is guaranteed to occur at an
extreme point of the feasible region

• Proof: in the slide-deck, please understand and learn!

• Bottomline: it is not necessary to explore the entire
“interior” of the feasible region, it is enough to consider a
finite set of extreme points

• The simplex algorithm will do exactly that
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Extreme points: Example

max x1 + 2x2

s.t. x1 + x2 ≤ 6
x2 ≤ 3

x1, x2 ≥ 0

• Extreme points:
[

0
0

]

,

[

0
3

]

,

[

3
3

]

,

[

6
0

]
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Extreme points: Example

• Compute the objective

function value c
T
xj for

each extreme point xj :

c
T
x1 = [1 2]

[

0
0

]

= 0

c
T
x2 = [1 2]

[

0
3

]

= 6

c
T
x3 = [1 2]

[

3
3

]

= 9

c
T
x4 = [1 2]

[

6
0

]

= 6
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Optimal Resource Allocation Revisited

• Exercise: a paper mill manufactures two types of paper,
standard and deluxe

◦ 1

2
m3 of wood is needed to manufacture 1 m2 of paper

(both standard or deluxe)

◦ producing 1 m2 of standard paper takes 1 man-hour,

whereas 1 m2 of deluxe paper requires 2 man-hours

◦ every week 40 m3 wood and 100 man-hours of
workforce is available

◦ the profit is 3 thousand USD per 1 m2 of standard paper

and 4 thousand USD per 1 m2 of deluxe paper

• Question: how much standard and how much deluxe paper
should be produced by the paper mill per week to maximize
profits?
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Graphical Solution

max 3x1 + 4x2

s.t. 1

2
x1 +

1

2
x2 ≤ 40

x1 + 2x2 ≤ 100
x1, x2 ≥ 0

• 2 variables: 2 dimensions

• Nonnegative variables: feasible
solutions lie in the positive or-
thant
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Graphical Solution

• The first constraint

1

2
x1 +

1

2
x2 ≤ 40

cuts a half-space
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Graphical Solution

• The second constraint

x1 + 2x2 ≤ 100

also defines a half-space
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Graphical Solution

• The feasible region is exactly
the intersection of the two half-
spaces and the positive orthant
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Graphical Solution

• The objective function:
3x1 + 4x2

• Normal vector:
[

3
4

]

• Solution: the furthest point of
the feasible region in the direc-
tion of the normal vector of the
objective function

– p. 21



Graphical Solution

Solution

• Standard paper: x∗

1
= 60 m2

• Deluxe paper: x∗

2
= 20 m2

• Profits: 260 thousand USD
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