Solving Linear Programs: The Basics
 A Summary

WARNING: this is just a summary of the material covered in the full slide-deck Solving Linear Programs: The Basics that will orient you as per the topics covered there; you are required to learn the full version, not just this summary!

- Introduction to convex analysis
- Convex and concave functions, the fundamental theorem of convex programming
- Convex geometry: polyhedra, the Minkowski-Weyl theorem (the Representation Theorem)
- Solving linear programs using the Minkowski-Weyl theorem
- Solving simple linear programs with the graphical method
- The feasible region (bounded, unbounded, empty) and optimal solutions (unique, alternative, unbounded)

Convex Sets

- For each $0 \leq \lambda \leq 1$, the points arising as

$$
\lambda \boldsymbol{x}_{1}+(1-\lambda) \boldsymbol{x}_{2}
$$

are called the convex combinations of vectors \boldsymbol{x}_{1} and \boldsymbol{x}_{2}

- Geometrically, the convex combinations of \boldsymbol{x}_{1} and x_{2} span the line segment between point \boldsymbol{x}_{1} and \boldsymbol{x}_{2}

Convex Sets

- A set $X \subset \mathbb{R}^{n}$ is convex if for each points \boldsymbol{x}_{1} and \boldsymbol{x}_{2} in X it holds that

$$
\forall \lambda \in[0,1]: \lambda \boldsymbol{x}_{1}+(1-\lambda) \boldsymbol{x}_{2} \in X
$$

- In other words, X is convex if it contains all convex combinations of each of its points

Convex set

Nonconvex set

Convex Sets: Examples

- The convex combinations of k points $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{k}$:

$$
\begin{gathered}
X=\left\{\sum_{i=1}^{k} \lambda_{i} \boldsymbol{x}_{i}: \sum_{i=1}^{k} \lambda_{i}=1, \forall i \in\{1, \ldots, k\}: \lambda_{i} \geq 0\right\} \\
X=\operatorname{conv}\left\{\boldsymbol{x}_{i}: 1 \leq i \leq k\right\}
\end{gathered}
$$

- The 3-sphere: $X=\left\{[x, y, z]: x^{2}+y^{2}+x^{2} \leq 1\right\}$
- Vector space: $X=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\mathbf{0}\}$
- Affine space (translated vector space): $X=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\}$
- Feasible region of a linear program:

$$
\begin{gathered}
X=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\} \\
X=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\}
\end{gathered}
$$

Convex and Concave Functions

- A function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is convex on a convex set $X \subseteq \mathbb{R}^{n}$ if for each \boldsymbol{x}_{1} and \boldsymbol{x}_{2} in X :
$f\left(\lambda \boldsymbol{x}_{1}+(1-\lambda) \boldsymbol{x}_{2}\right) \leq \lambda f\left(\boldsymbol{x}_{1}\right)+(1-\lambda) f\left(\boldsymbol{x}_{2}\right) \quad \forall \lambda \in[0,1]$
- The line segment between any two points $f\left(\boldsymbol{x}_{1}\right)$ and $f\left(\boldsymbol{x}_{2}\right)$ on the graph of the function lies above or on the graph
- Function f is concave if $(-f)$ is convex

(a) convex

(b) concave

(c) neither

Optimization on a Convex Set

- Given function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ and set X, solve the generic optimization problem max $f(\boldsymbol{x}): \boldsymbol{x} \in X$
- Some $\overline{\boldsymbol{x}} \in X$ is a global optimal solution (or global optimum) if for each $\boldsymbol{x} \in X: f(\overline{\boldsymbol{x}}) \geq f(\boldsymbol{x})$
- An $\overline{\boldsymbol{x}} \in X$ is a local optimum if there is a neighborhood $N_{\epsilon}(\overline{\boldsymbol{x}})$ of $\overline{\boldsymbol{x}}$ (an open ball of radius $\epsilon>0$ with centre $\overline{\boldsymbol{x}}$) so that $\forall \boldsymbol{x} \in N_{\epsilon}(\overline{\boldsymbol{x}}) \cap X: f(\overline{\boldsymbol{x}}) \geq f(\boldsymbol{x})$
point A is a local optimum and point B is a global optimum on the closed interval $\left[x_{1}, x_{2}\right]$

Optimization on a Convex Set

- Fundamental Theorem of Convex Programming: Let X be a nonempty convex set in \mathbb{R}^{n} and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a concave function on X. Consider the optimization problem max $f(\boldsymbol{x}): \boldsymbol{x} \in X$. Then, if $\overline{\boldsymbol{x}} \in X$ is a local optimal solution then it is also a global optimum
- Proof: in the slide-deck, please understand and learn!
- Bottomline: the Fundamental Theorem sets apart "simple" (provably polynomial-time solvable) from "complex" (hopeless, intractable) problems
- Convex program: minimization of a convex objective function over a convex set = maximization of a concave objective function over a convex set

Hyperplanes and Half-spaces

- Hyperplane: all $\boldsymbol{x} \in \mathbb{R}^{n}$ satisfying the equation $\boldsymbol{a}^{T} \boldsymbol{x}=b$ for some \boldsymbol{a}^{T} row n-vector (the normal vector) and scalar b
- The hyperplane $X=\left\{\boldsymbol{x}: \boldsymbol{a}^{T} \boldsymbol{x}=b\right\}$ divides the space \mathbb{R}^{n} into two half-spaces
- "lower" half-space:

$$
\left\{\boldsymbol{x}: \boldsymbol{a}^{T} \boldsymbol{x} \leq b\right\}
$$

- "upper" half-space:

$$
\left\{\boldsymbol{x}: \boldsymbol{a}^{T} \boldsymbol{x}>b\right\}
$$

- Hyperplanes and
 half-spaces are convex

Extreme Points

- Given a convex set X, a point $\boldsymbol{x} \in X$ is called an extreme point of X if \boldsymbol{x} cannot be obtained as the convex combination of two points in X different from \boldsymbol{x} :

$$
\boldsymbol{x}=\lambda \boldsymbol{x}_{1}+(1-\lambda) \boldsymbol{x}_{2} \text { and } 0 \leq \lambda \leq 1 \Rightarrow \boldsymbol{x}_{\mathbf{1}}=\boldsymbol{x}_{\mathbf{2}}=\boldsymbol{x}
$$

- \boldsymbol{x}_{1} and \boldsymbol{x}_{4} are extreme points, x_{2} and x_{3} are not
- extreme points correspond to the "corner points" of a convex set

Polyhedra

- A polyhedron is a geometric object with "flat" sides

- By the word "polyhedron" we will usually mean a "convex polyhedron"

Convex Polyhedra

- Definition 1: the intersection of finitely many (closed) half-spaces

$$
X=\left\{\boldsymbol{x}: \boldsymbol{a}_{i} \boldsymbol{x} \leq b_{i}, i \in\{1, \ldots, m\}\right\}=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\}
$$

- Corollary: the feasible region of a linear program forms a convex polyhedron
- canonical form: $\max \left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$
- standard form: $\max \left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$
- Definition 2: convex combinations of finitely many points

$$
X=\left\{\sum_{i=1}^{n} \lambda_{i} \boldsymbol{x}_{i}: \sum_{i=1}^{n} \lambda_{i}=1, \forall i \in\{1, \ldots, n\}: \lambda_{i} \geq 0\right\}
$$

The Minkowski-Weyl Theorem

- The Representation Theorem of Bounded Polyhedra: the two definitions are equivalent
- The Strong Minkowski-Weyl Theorem: if the intersection of finitely many half-spaces is bounded then it can be written as the convex combination of finitely many extreme points

$$
P=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\} \Leftrightarrow P=\operatorname{conv}\left\{\boldsymbol{x}_{j}: 1 \leq j \leq k\right\}
$$

Linear Programs and Extreme Points

- The Fundamental Theorem of Linear Programming: if the feasible region of a linear program is bounded then the at least one optimal solution is guaranteed to occur at an extreme point of the feasible region
- Proof: in the slide-deck, please understand and learn!
- Bottomline: it is not necessary to explore the entire "interior" of the feasible region, it is enough to consider a finite set of extreme points
- The simplex algorithm will do exactly that

Extreme points: Example

$$
\begin{array}{cl}
\max & x_{1}+2 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 6 \\
& \\
& x_{2} \leq 3 \\
& x_{1}, \\
x_{2} \geq 0
\end{array}
$$

- Extreme points:

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
3
\end{array}\right],\left[\begin{array}{l}
6 \\
0
\end{array}\right]
$$

Extreme points: Example

- Compute the objective function value $\boldsymbol{c}^{T} \boldsymbol{x}_{j}$ for
 each extreme point \boldsymbol{x}_{j} :

$$
\begin{aligned}
& \boldsymbol{c}^{T} \boldsymbol{x}_{1}=\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right]=0 \\
& \boldsymbol{c}^{T} \boldsymbol{x}_{2}=\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
3
\end{array}\right]=6 \\
& \boldsymbol{c}^{T} \boldsymbol{x}_{3}=\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
3 \\
3
\end{array}\right]=9 \\
& \boldsymbol{c}^{T} \boldsymbol{x}_{4}=\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
6 \\
0
\end{array}\right]=6
\end{aligned}
$$

Optimal Resource Allocation Revisited

- Exercise: a paper mill manufactures two types of paper, standard and deluxe
- $\frac{1}{2} \mathrm{~m}^{3}$ of wood is needed to manufacture $1 \mathrm{~m}^{2}$ of paper (both standard or deluxe)
- producing $1 \mathrm{~m}^{2}$ of standard paper takes 1 man-hour, whereas $1 \mathrm{~m}^{2}$ of deluxe paper requires 2 man-hours
- every week $40 \mathrm{~m}^{3}$ wood and 100 man-hours of workforce is available
- the profit is 3 thousand USD per $1 \mathrm{~m}^{2}$ of standard paper and 4 thousand USD per $1 \mathrm{~m}^{2}$ of deluxe paper
- Question: how much standard and how much deluxe paper should be produced by the paper mill per week to maximize profits?

Graphical Solution

