Solving Linear Programs: The Basics

- Introduction to convex analysis: convexity, convex combination, hyperplanes, half-spaces, extreme points
- Convex and concave functions, the gradient, local and global optima, the fundamental theorem of convex programming
- Convex geometry: polyhedra, the Minkowski-Weyl theorem (the Representation Theorem)
- Solving linear programs using the Minkowski-Weyl theorem, the relation of optimal feasible solutions and extreme points
- Solving simple linear programs with the graphical method
- The feasible region (bounded, unbounded, empty) and optimal solutions (unique, alternative, unbounded)

Convex Sets

- For each $0 \leq \lambda \leq 1$, the expression

$$
\lambda \boldsymbol{x}_{1}+(1-\lambda) \boldsymbol{x}_{2}
$$

is called the convex combination of vectors \boldsymbol{x}_{1} and \boldsymbol{x}_{2}

- Geometrically, the convex combinations of \boldsymbol{x}_{1} and \boldsymbol{x}_{2} span the line segment between point \boldsymbol{x}_{1} and \boldsymbol{x}_{2}

Convex Sets

- A set $X \subset \mathbb{R}^{n}$ is convex if for each points \boldsymbol{x}_{1} and \boldsymbol{x}_{2} in X it holds that

$$
\forall \lambda \in[0,1]: \lambda \boldsymbol{x}_{1}+(1-\lambda) \boldsymbol{x}_{2} \in X
$$

- In other words, X is convex if it contains all convex combinations of each of its points

Convex set

Nonconvex set

Convex Sets: Examples

- The convex combinations of k points $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{k}$:

$$
\begin{gathered}
X=\left\{\sum_{i=1}^{k} \lambda_{i} \boldsymbol{x}_{i}: \sum_{i=1}^{k} \lambda_{i}=1, \forall i \in\{1, \ldots, k\}: \lambda_{i} \geq 0\right\} \\
X=\operatorname{conv}\left\{\boldsymbol{x}_{i}: 1 \leq i \leq k\right\}
\end{gathered}
$$

- The 3-sphere: $X=\left\{[x, y, z]: x^{2}+y^{2}+x^{2} \leq 1\right\}$
- Vector space: $X=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\mathbf{0}\}$
- Affine space (translated vector space): $X=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}\}$
- Feasible region of a linear program:

$$
\begin{gathered}
X=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\} \\
X=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\}
\end{gathered}
$$

Convex and Concave Functions

- A function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is convex on a convex set $X \subseteq \mathbb{R}^{n}$ if for each \boldsymbol{x}_{1} and \boldsymbol{x}_{2} in X :
$f\left(\lambda \boldsymbol{x}_{1}+(1-\lambda) \boldsymbol{x}_{2}\right) \leq \lambda f\left(\boldsymbol{x}_{1}\right)+(1-\lambda) f\left(\boldsymbol{x}_{2}\right) \quad \forall \lambda \in[0,1]$
- The line segment between any two points $f\left(\boldsymbol{x}_{1}\right)$ and $f\left(\boldsymbol{x}_{2}\right)$ on the graph of the function lies above or on the graph
- Function f is concave if $(-f)$ is convex

(a) convex

(b) concave

(c) neither

Convex and Concave Functions

- The set of points "above" the graph of some function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is called the epigraph of f

$$
\operatorname{epi}(f)=\left\{(\boldsymbol{x}, y): \boldsymbol{x} \in \mathbb{R}^{n}, y \in \mathbb{R}, y \geq f(\boldsymbol{x})\right\}
$$

- Simple convexity check: f is convex on set \mathbb{R}^{n} if and only if epi (f) is convex

Optimization on a Convex Set

- Given function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ and set X, solve the generic optimization problem max $f(\boldsymbol{x}): \boldsymbol{x} \in X$
- Some $\overline{\boldsymbol{x}} \in X$ is a global optimal solution (or global optimum) if for each $\boldsymbol{x} \in X: f(\overline{\boldsymbol{x}}) \geq f(\boldsymbol{x})$
- An $\overline{\boldsymbol{x}} \in X$ is a local optimum if there is a neighborhood $N_{\epsilon}(\overline{\boldsymbol{x}})$ of $\overline{\boldsymbol{x}}$ (an open ball of radius $\epsilon>0$ with centre $\overline{\boldsymbol{x}}$) so that $\forall \boldsymbol{x} \in N_{\epsilon}(\overline{\boldsymbol{x}}) \cap X: f(\overline{\boldsymbol{x}}) \geq f(\boldsymbol{x})$
point A is a local optimum and point B is a global optimum on the closed interval $\left[x_{1}, x_{2}\right]$

Optimization on a Convex Set

- Theorem: Let X be a nonempty convex set in \mathbb{R}^{n} and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a concave function on X. Consider the optimization problem max $f(\boldsymbol{x}): \boldsymbol{x} \in X$. Then, if $\overline{\boldsymbol{x}} \in X$ is a local optimal solution then it is also a global optimum
- Proof: $\overline{\boldsymbol{x}} \in X$ is a local optimum, therefore there is nonempty neighborhood $N_{\epsilon}(\overline{\boldsymbol{x}}), \epsilon>0$ so that

$$
\forall \boldsymbol{x} \in N_{\epsilon}(\overline{\boldsymbol{x}}) \cap X: f(\overline{\boldsymbol{x}}) \geq f(\boldsymbol{x})
$$

- Suppose that $\overline{\boldsymbol{x}}$ is not a global optimal solution and therefore there exists $\hat{\boldsymbol{x}} \in X: f(\hat{\boldsymbol{x}})>f(\overline{\boldsymbol{x}})$
- Since X is convex it contains all convex combinations of $\hat{\boldsymbol{x}}$ and $\overline{\boldsymbol{x}}$ (i.e., the line segment between $\hat{\boldsymbol{x}}$ and $\overline{\boldsymbol{x}}$)
- Also, since $N_{\epsilon}(\overline{\boldsymbol{x}})$ is nonempty it contains points different from $\overline{\boldsymbol{x}}$ that are also on the line segment between $\hat{\boldsymbol{x}}$ and $\overline{\boldsymbol{x}}$

Optimization on a Convex Set

- Since f is concave, the graph of f lies above, or on the line segment joining $\hat{\boldsymbol{x}}$ and $\overline{\boldsymbol{x}}$

$$
\begin{array}{r}
\forall \lambda \in(0,1]: f(\lambda \hat{\boldsymbol{x}}+(1-\lambda) \overline{\boldsymbol{x}}) \geq \lambda f(\hat{\boldsymbol{x}})+(1-\lambda) f(\overline{\boldsymbol{x}}) \\
\quad{ }^{*} \lambda f(\overline{\boldsymbol{x}})+(1-\lambda) f(\overline{\boldsymbol{x}})=f(\overline{\boldsymbol{x}})
\end{array}
$$

- The strict inequality (marked with * above) comes from the assumption that $\overline{\boldsymbol{x}}$ is not a global optimum: $f(\hat{\boldsymbol{x}})>f(\overline{\boldsymbol{x}})$
- Consequently, all neighborhoods of \bar{x} contain feasible points $\boldsymbol{x} \neq \overline{\boldsymbol{x}}$ for which $f(\boldsymbol{x})>f(\overline{\boldsymbol{x}})$, which contradicts our assumption that $\overline{\boldsymbol{x}}$ is a local optimal solution
- Corollary: Let X be a nonempty convex set in \mathbb{R}^{n}, let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function on X, and let $\bar{x} \in X$ be a local optimal solution to the optimization problem $\min f(\boldsymbol{x}): \boldsymbol{x} \in X$. Then, $\overline{\boldsymbol{x}}$ is also a global optimal solution

The Gradient

- Given a set $X \subseteq \mathbb{R}^{n}$ and function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$. We call f differentiable at a point $\overline{\boldsymbol{x}} \in X$ if there exits $\nabla f(\overline{\boldsymbol{x}})$ gradient vector and function $\alpha: \mathbb{R}^{n} \mapsto \mathbb{R}$ so that for all $\boldsymbol{x} \in X$:

$$
f(\boldsymbol{x})=f(\overline{\boldsymbol{x}})+\nabla f(\overline{\boldsymbol{x}})^{T}(\boldsymbol{x}-\overline{\boldsymbol{x}})+\|\boldsymbol{x}-\overline{\boldsymbol{x}}\| \alpha(\overline{\boldsymbol{x}}, \boldsymbol{x}-\overline{\boldsymbol{x}})
$$

where $\lim _{\boldsymbol{x} \rightarrow \overline{\boldsymbol{x}}} \alpha(\overline{\boldsymbol{x}}, \boldsymbol{x}-\overline{\boldsymbol{x}})=0$

- "Linearization" by approximating with the first-order Taylor series: $f(\boldsymbol{x}) \approx f(\overline{\boldsymbol{x}})+\nabla f(\overline{\boldsymbol{x}})^{T}(\boldsymbol{x}-\overline{\boldsymbol{x}})$
- If f is differentiable then the gradient is well-defined and can be written as the vector of the partial derivatives:

$$
\nabla f(\boldsymbol{x})^{T}=\left[\begin{array}{llll}
\frac{\partial f(\boldsymbol{x})}{\partial x_{1}} & \frac{\partial f(\boldsymbol{x})}{\partial x_{2}} & \ldots & \frac{\partial f(\boldsymbol{x})}{\partial x_{n}}
\end{array}\right]
$$

Hyperplanes and Half-spaces

- Hyperplane: all $\boldsymbol{x} \in \mathbb{R}^{n}$ satisfying the equation $\boldsymbol{a}^{T} \boldsymbol{x}=b$ for some \boldsymbol{a}^{T} row n-vector (the normal vector) and scalar b
- The hyperplane $X=\left\{\boldsymbol{x}: \boldsymbol{a}^{T} \boldsymbol{x}=b\right\}$ divides the space \mathbb{R}^{n} into two half-spaces
- "lower" half-space:

$$
\left\{\boldsymbol{x}: \boldsymbol{a}^{T} \boldsymbol{x} \leq b\right\}
$$

- "upper" half-space:

$$
\left\{\boldsymbol{x}: \boldsymbol{a}^{T} \boldsymbol{x}>b\right\}
$$

- Hyperplanes and
 half-spaces are convex

Extreme Points

- Given a convex set X, a point $\boldsymbol{x} \in X$ is called an extreme point of X if \boldsymbol{x} cannot be obtained as the convex combination of two points in X different from \boldsymbol{x} :

$$
\boldsymbol{x}=\lambda \boldsymbol{x}_{1}+(1-\lambda) \boldsymbol{x}_{2} \text { and } 0 \leq \lambda \leq 1 \Rightarrow \boldsymbol{x}_{\mathbf{1}}=\boldsymbol{x}_{\mathbf{2}}=\boldsymbol{x}
$$

- \boldsymbol{x}_{1} and \boldsymbol{x}_{4} are extreme points, x_{2} and x_{3} are not
- extreme points correspond to the "corner points" of a convex set

Polyhedra

- A polyhedron is a geometric object with "flat" sides

- By the word "polyhedron" we will usually mean a "convex polyhedron"

Convex Polyhedra

- Definition 1: the intersection of finitely many (closed) half-spaces

$$
X=\left\{\boldsymbol{x}: \boldsymbol{a}_{i} \boldsymbol{x} \leq b_{i}, i \in\{1, \ldots, m\}\right\}=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\}
$$

- Corollary: the feasible region of a linear program forms a convex polyhedron
- canonical form: $\max \left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$
- standard form: $\max \left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$
- Definition 2: convex combinations of finitely many points

$$
X=\left\{\sum_{i=1}^{n} \lambda_{i} \boldsymbol{x}_{i}: \sum_{i=1}^{n} \lambda_{i}=1, \forall i \in\{1, \ldots, n\}: \lambda_{i} \geq 0\right\}
$$

The Minkowski-Weyl Theorem

- The Representation Theorem of Bounded Polyhedra: the two definitions are equivalent
- The Strong Minkowski-Weyl Theorem: if the intersection of finitely many half-spaces is bounded then it can be written as the convex combination of finitely many extreme points

$$
P=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}\} \Leftrightarrow P=\operatorname{conv}\left\{\boldsymbol{x}_{j}: 1 \leq j \leq k\right\}
$$

The Minkowski-Weyl Theorem: Example

Extreme points:

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
3
\end{array}\right],\left[\begin{array}{l}
6 \\
0
\end{array}\right]
$$

- Half-space intersection:

$$
\left.\begin{array}{cc}
X=\left\{x_{1}, x_{2}:\right. & x_{1}+x_{2}
\end{array} \leq 6 \begin{array}{c}
\leq 3 \\
x_{2}
\end{array} \leq \begin{array}{c}
\leq 3
\end{array}\right\}
$$

- Convex combination of extreme points:

$$
X=\operatorname{conv}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
3
\end{array}\right],\left[\begin{array}{l}
6 \\
0
\end{array}\right]\right)
$$

Linear Programs and Extreme Points

- The Fundamental Theorem of Linear Programming: if the feasible region of a linear program is bounded then the at least one optimal solution is guaranteed to occur at an extreme point of the feasible region
- Proof: given the below linear program

$$
\begin{array}{rc}
\max & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

- May also be cast in the form $\max \left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A}^{\prime} \boldsymbol{x} \leq \boldsymbol{b}^{\prime}\right\}$

$$
\begin{array}{rcrl}
\max & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x} & \leq \boldsymbol{b} \\
& -\boldsymbol{A} \boldsymbol{x} & \leq-\boldsymbol{b} \\
& -\boldsymbol{x} & \leq \mathbf{0}
\end{array}
$$

Lineáris Programs and Extreme Points

- The feasible region $X=\{\boldsymbol{x}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\}$ of any linear program is a polyhedron
- Suppose now that X is bounded and let the extreme points of X be $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{k}$
- Using the strong Minkowski-Weyl theorem, X can be written as the convex combination of its extreme points

$$
\begin{aligned}
\forall \boldsymbol{x} \in X: \quad \boldsymbol{x} & =\sum_{j=1}^{k} \lambda_{j} \boldsymbol{x}_{j} \\
\sum_{j=1}^{k} \lambda_{j} & =1 \\
\lambda_{j} & \geq 0
\end{aligned}
$$

Lineáris Programs and Extreme Points

- Substitute the above \boldsymbol{x} into the linear program
- Observe that \boldsymbol{x} automatically satisfies the constraints!
- The objective function: $\max \boldsymbol{c}^{T}\left(\sum_{j=1}^{k} \lambda_{j} \boldsymbol{x}_{j}\right)=$ $\max \sum_{j=1}^{k}\left(\boldsymbol{c}^{T} \boldsymbol{x}_{j}\right) \lambda_{j}$
- We have obtained another linear program in which the variables are now the scalars λ_{j}

$$
\begin{aligned}
\max & \sum_{j=1}^{k}\left(\boldsymbol{c}^{T} \boldsymbol{x}_{j}\right) \lambda_{j} \\
\text { s.t. } & \sum_{j=1}^{k} \lambda_{j}=1 \\
& \lambda_{j} \geq 0 \quad \forall j \in\{1, \ldots, k\}
\end{aligned}
$$

Lineáris Programs and Extreme Points

- Our goal is to obtain the maximum of the linear program $\sum_{j=1}^{k}\left(\boldsymbol{c}^{T} \boldsymbol{x}_{j}\right) \lambda_{j}: \sum_{j=1}^{k} \lambda_{j}=1, \lambda_{j} \geq 0$
- It is easy to see that it is enough to find the extreme point for which $\boldsymbol{c}^{T} \boldsymbol{x}_{j}$ is maximal, let this extreme point be \boldsymbol{x}_{p}
- Then, $\lambda_{p}=1, \lambda_{j}=0: j \neq p$ solves the new linear program and the optimal objective function value is $\boldsymbol{c}^{T} \boldsymbol{x}_{p}$.
- We have proved only for the bounded case, but the theorem also holds for the linear programs with unbounded feasible region
- In general a linear program cannot be written in the equivalent using extreme points (which would then be easy to solve), since the number of extreme points is exponential
- In lower dimensions it can: graphical method

Extreme points: Example

$$
\begin{array}{cl}
\max & x_{1}+2 x_{2} \\
\mathrm{s.t.} & x_{1}+x_{2} \leq 6 \\
& \\
& x_{2} \leq 3 \\
& x_{1}, \\
x_{2} \geq 0
\end{array}
$$

- Extreme points:

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
3
\end{array}\right],\left[\begin{array}{l}
6 \\
0
\end{array}\right]
$$

Extreme points: Example

- Compute the objective function value $\boldsymbol{c}^{T} \boldsymbol{x}_{j}$ for
 each extreme point \boldsymbol{x}_{j} :

$$
\begin{aligned}
& \boldsymbol{c}^{T} \boldsymbol{x}_{1}=\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
0
\end{array}\right]=0 \\
& \boldsymbol{c}^{T} \boldsymbol{x}_{2}=\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
3
\end{array}\right]=6 \\
& \boldsymbol{c}^{T} \boldsymbol{x}_{3}=\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
3 \\
3
\end{array}\right]=9 \\
& \boldsymbol{c}^{T} \boldsymbol{x}_{4}=\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left[\begin{array}{l}
6 \\
0
\end{array}\right]=6
\end{aligned}
$$

Optimal Resource Allocation Revisited

- Exercise: a paper mill manufactures two types of paper, standard and deluxe
- $\frac{1}{2} \mathrm{~m}^{3}$ of wood is needed to manufacture $1 \mathrm{~m}^{2}$ of paper (both standard or deluxe)
- producing $1 \mathrm{~m}^{2}$ of standard paper takes 1 man-hour, whereas $1 \mathrm{~m}^{2}$ of deluxe paper requires 2 man-hours
- every week $40 \mathrm{~m}^{3}$ wood and 100 man-hours of workforce is available
- the profit is 3 thousand USD per $1 \mathrm{~m}^{2}$ of standard paper and 4 thousand USD per $1 \mathrm{~m}^{2}$ of deluxe paper
- Question: how much standard and how much deluxe paper should be produced by the paper mill per week to maximize profits?

Graphical Solution

A Problem of Logistics

- Transshipment problem:
- from point A to point C
- 15 tonnes of goods
- ship capacities are 10 tonnes each
- cost ([thousand USD per tonne]): $c_{A B}=2, c_{B C}=4$, $c_{A C}=3$

- objective: minimize costs

A Problem of Logistics

$$
\begin{array}{cc}
\min & 2 x_{A B}+4 x_{B C}+3 x_{A C} \\
\text { s.t. } & -x_{A B}-x_{A C}=-15 \\
& -x_{A B}+x_{B C}=0 \\
& x_{B C}+x_{A C}=15 \\
& 0 \leq x_{A B} \leq 10 \\
& 0 \leq x_{B C} \leq 10 \\
& 0 \leq x_{A C} \leq 10
\end{array}
$$

Graphical Solution

- The first constraint

$$
-x_{A B}-x_{A C}=-15
$$

defines a hyperplane

Graphical Solution

- The first constraint

$$
-x_{A B}+x_{B C}=0
$$

also defines a hyperplane

Graphical Solution

- The third constraint is redundant
- The intersection of the two hyperplanes and the positive orthant contains all feasible flow allocations

Graphical Solution

$$
\begin{aligned}
& \text { ints } \\
& 10 \\
& 10 \\
& 10
\end{aligned}
$$

- The capacity constraints define a hyper-rectangle

$$
\begin{aligned}
& 0 \leq x_{A B} \leq 10 \\
& 0 \leq x_{B C} \leq 10 \\
& 0 \leq x_{A C} \leq 10
\end{aligned}
$$

Graphical Solution

- The intersection of the feasible flow set and the above hyper-rectangle corresponds to the feasible region

Graphical Solution

- The furthest point along the inverse(!) of the normal vector $\left[\begin{array}{ccc}2 & 4 & 3\end{array}\right]^{T}$ (inverse as the the optimization is minimization)

$$
\begin{aligned}
& x_{A B}=5 \\
& x_{B C}=5 \\
& x_{A C}=10
\end{aligned}
$$

15
10
5

The Feasible Region

The Feasible Region

$$
\begin{array}{rc}
X=\left\{\left[x_{1}, x_{2}\right]:\right. & -x_{1}+2 x_{2} \leq 8 \\
& \left.x_{1}, x_{2} \geq 0\right\}
\end{array}
$$

Unbounded: there is point $\boldsymbol{x} \in X$ and vector \boldsymbol{d} so that the ray from point \boldsymbol{x} along direction d lies entirely within the feasible region:

$$
\forall \lambda>0: \boldsymbol{x}+\lambda \boldsymbol{d} \in X
$$

The Feasible Region

The Optimal Solution

$$
\begin{array}{cc}
\max & 3 x_{1}+x_{2} \\
\mathrm{s.t.} & x_{1}+x_{2} \leq 6 \\
& -x_{1}+2 x_{2} \leq 8 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Unique optimal solution on bounded feasible region: the objective is maximized at a unique point

The Optimal Solution

$$
\begin{array}{cc}
\max & -x_{1}+x_{2} \\
\text { s.t. } & -x_{1}+2 x_{2} \leq 8 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Unique optimal solution on an unbounded feasible region

The Optimal Solution

$$
\begin{array}{cc}
\max & -x_{1}+2 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 6 \\
& -x_{1}+2 x_{2} \leq 8 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Alternative optimal solutions on a bounded feasible region: the objective function attains its maximum at more than one distinct points

The Optimal Solution

$$
\begin{array}{rc}
\max & -x_{1}+2 x_{2} \\
\text { s.t. } & -x_{1}+2 x_{2} \leq 8 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Alternative optimal solutions on an unbounded feasible region

The Optimal Solution

$$
\begin{array}{rc}
\max & x_{1}+x_{2} \\
\text { s.t. } & -x_{1}+2 x_{2} \leq 8 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

Unbounded optimal solution: the objective function value can be increased without limit inside the feasible region

