
Solving Linear Programs: The Basics

• Introduction to convex analysis: convexity, convex
combination, hyperplanes, half-spaces, extreme points

• Convex and concave functions, the gradient, local and
global optima, the fundamental theorem of convex
programming

• Convex geometry: polyhedra, the Minkowski-Weyl theorem
(the Representation Theorem)

• Solving linear programs using the Minkowski-Weyl theorem,
the relation of optimal feasible solutions and extreme points

• Solving simple linear programs with the graphical method

• The feasible region (bounded, unbounded, empty) and
optimal solutions (unique, alternative, unbounded)
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Convex Sets

• For each 0 ≤ λ ≤ 1, the expression

λx1 + (1− λ)x2

is called the convex combination of vectors x1 and x2

• Geometrically, the convex combinations of x1 and x2 span
the line segment between point x1 and x2
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Convex Sets

• A set X ⊂ Rn is convex if for each points x1 and x2 in X it
holds that

∀λ ∈ [0, 1] : λx1 + (1− λ)x2 ∈ X

• In other words, X is convex if it contains all convex
combinations of each of its points

Convex set
Nonconvex set
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Convex Sets: Examples

• The convex combinations of k points x1,x2, . . . ,xk:

X =

{

k
∑

i=1

λixi :

k
∑

i=1

λi = 1, ∀i ∈ {1, . . . , k} : λi ≥ 0

}

X = conv{xi : 1 ≤ i ≤ k}

• The 3-sphere: X = {[x, y, z] : x2 + y2 + x2 ≤ 1}

• Vector space: X = {x : Ax = 0}

• Affine space (translated vector space): X = {x : Ax = b}

• Feasible region of a linear program:

X = {x : Ax = b,x ≥ 0}

X = {x : Ax ≤ b}
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Convex and Concave Functions

• A function f : Rn 7→ R is convex on a convex set X ⊆ Rn

if for each x1 and x2 in X :

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) ∀λ ∈ [0, 1]

• The line segment between any two points f(x1) and f(x2)
on the graph of the function lies above or on the graph

• Function f is concave if (−f) is convex

x
x
1

x
2

f(x
1
)

f(x
2
)

(a) convex

x
x
1

x
2

f(x
1
)

f(x
2
)

(b) concave

x
x
1

x
2

f(x
1
)

f(x
2
)

(c) neither
– p. 5



Convex and Concave Functions

• The set of points “above” the graph of some function

f : Rn 7→ R is called the epigraph of f

epi(f) = {(x, y) : x ∈ R
n, y ∈ R, y ≥ f(x)}

• Simple convexity check: f is convex on set Rn if and only if

epi(f) is convex

x

f(x)epi(f)
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Optimization on a Convex Set

• Given function f : Rn 7→ R and set X , solve the generic

optimization problem max f(x) : x ∈ X

• Some x̄ ∈ X is a global optimal solution (or global

optimum) if for each x ∈ X : f(x̄) ≥ f(x)

• An x̄ ∈ X is a local optimum if there is a neighborhood

Nǫ(x̄) of x̄ (an open ball of radius ǫ > 0 with centre x̄) so

that ∀x ∈ Nǫ(x̄) ∩X : f(x̄) ≥ f(x)

point A is a local optimum
and point B is a global
optimum on the closed

interval [x1, x2]
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Optimization on a Convex Set

• Theorem: Let X be a nonempty convex set in Rn and let

f : Rn → R be a concave function on X . Consider the

optimization problem max f(x) : x ∈ X . Then, if x̄ ∈ X is

a local optimal solution then it is also a global optimum

• Proof: x̄ ∈ X is a local optimum, therefore there is

nonempty neighborhood Nǫ(x̄), ǫ > 0 so that

∀x ∈ Nǫ(x̄) ∩X : f(x̄) ≥ f(x)

• Suppose that x̄ is not a global optimal solution and

therefore there exists x̂ ∈ X : f(x̂) > f(x̄)

• Since X is convex it contains all convex combinations of x̂
and x̄ (i.e., the line segment between x̂ and x̄)

• Also, since Nǫ(x̄) is nonempty it contains points different

from x̄ that are also on the line segment between x̂ and x̄
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Optimization on a Convex Set

• Since f is concave, the graph of f lies above, or on the line

segment joining x̂ and x̄

∀λ ∈ (0, 1] : f(λx̂+ (1− λ)x̄) ≥ λf(x̂) + (1− λ)f(x̄)

∗

> λf(x̄) + (1− λ)f(x̄) = f(x̄)

• The strict inequality (marked with * above) comes from the

assumption that x̄ is not a global optimum: f(x̂) > f(x̄)

• Consequently, all neighborhoods of x̄ contain feasible

points x 6= x̄ for which f(x) > f(x̄), which contradicts our

assumption that x̄ is a local optimal solution

• Corollary: Let X be a nonempty convex set in Rn, let

f : Rn → R be a convex function on X , and let x̄ ∈ X be
a local optimal solution to the optimization problem

min f(x) : x ∈ X . Then, x̄ is also a global optimal solution
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The Gradient

• Given a set X ⊆ Rn and function f : Rn 7→ R. We call f
differentiable at a point x̄ ∈ X if there exits ∇f(x̄)
gradient vector and function α : Rn 7→ R so that for all
x ∈ X :

f(x) = f(x̄) +∇f(x̄)T (x− x̄) + ‖x− x̄‖α(x̄,x− x̄) ,

where limx→x̄ α(x̄,x− x̄) = 0

• “Linearization” by approximating with the first-order Taylor

series: f(x) ≈ f(x̄) +∇f(x̄)T (x− x̄)

• If f is differentiable then the gradient is well-defined and can
be written as the vector of the partial derivatives:

∇f(x)T =
[

∂f(x)
∂x1

∂f(x)
∂x2

. . .
∂f(x)
∂xn

]
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Hyperplanes and Half-spaces

• Hyperplane: all x ∈ Rn

satisfying the equation

a
T
x = b for some a

T row
n-vector (the normal
vector) and scalar b

• The hyperplane

X = {x : aT
x = b}

divides the space Rn into
two half-spaces

◦ “lower” half-space:

{x : aT
x ≤ b}

◦ “upper” half-space:

{x : aT
x > b}

• Hyperplanes and
half-spaces are convex
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Extreme Points

• Given a convex set X , a point x ∈ X is called an extreme
point of X if x cannot be obtained as the convex
combination of two points in X different from x:

x = λx1 + (1− λ)x2 and 0 ≤ λ ≤ 1 ⇒ x1 = x2 = x

• x1 and x4 are extreme
points, x2 and x3 are not

• extreme points correspond
to the “corner points” of a
convex set
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Polyhedra

• A polyhedron is a geometric object with “flat” sides

Tetrahedron

Prism

Hexahedron

Pyramid

Septahedron

Polyhedron

Triangle

Quadrilateral

Polygon

• By the word “polyhedron” we will usually mean a “convex
polyhedron”
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Convex Polyhedra

• Definition 1: the intersection of finitely many (closed)
half-spaces

X = {x : aix ≤ bi, i ∈ {1, . . . ,m}} = {x : Ax ≤ b}

• Corollary: the feasible region of a linear program forms a
convex polyhedron

◦ canonical form: max{cTx : Ax ≤ b,x ≥ 0}

◦ standard form: max{cTx : Ax = b,x ≥ 0}

• Definition 2: convex combinations of finitely many points

X =

{

n
∑

i=1

λixi :

n
∑

i=1

λi = 1, ∀i ∈ {1, . . . , n} : λi ≥ 0

}
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The Minkowski-Weyl Theorem

• The Representation Theorem of Bounded Polyhedra: the
two definitions are equivalent

• The Strong Minkowski-Weyl Theorem: if the intersection
of finitely many half-spaces is bounded then it can be written
as the convex combination of finitely many extreme points

P = {x : Ax ≤ b} ⇔ P = conv{xj : 1 ≤ j ≤ k}

≡
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The Minkowski-Weyl Theorem: Example

Extreme points:
[

0
0

]

,

[

0
3

]

,

[

3
3

]

,

[

6
0

]

• Half-space intersection:

X = {x1, x2 : x1 + x2 ≤ 6
x2 ≤ 3

x1, x2 ≥ 0 }

• Convex combination of ex-
treme points:

X = conv
(

[

0
0

]

,

[

0
3

]

,

[

3
3

]

,

[

6
0

]

)
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Linear Programs and Extreme Points

• The Fundamental Theorem of Linear Programming: if
the feasible region of a linear program is bounded then the
at least one optimal solution is guaranteed to occur at an
extreme point of the feasible region

• Proof: given the below linear program

max c
T
x

s.t. Ax = b

x ≥ 0

• May also be cast in the form max{cTx : A′
x ≤ b

′}

max c
T
x

s.t. Ax ≤ b

−Ax ≤ −b

−x ≤ 0
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Lineáris Programs and Extreme Points

• The feasible region X = {x : Ax = b,x ≥ 0} of any linear

program is a polyhedron

• Suppose now that X is bounded and let the extreme points
of X be x1, x2, . . ., xk

• Using the strong Minkowski-Weyl theorem, X can be
written as the convex combination of its extreme points

∀x ∈ X : x =

k
∑

j=1

λjxj

k
∑

j=1

λj =1

λj ≥ 0
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Lineáris Programs and Extreme Points

• Substitute the above x into the linear program

• Observe that x automatically satisfies the constraints!

• The objective function: max cT (
∑k

j=1
λjxj) =

max
∑k

j=1
(cTxj)λj

• We have obtained another linear program in which the

variables are now the scalars λj

max

k
∑

j=1

(cTxj)λj

s.t.

k
∑

j=1

λj = 1

λj ≥ 0 ∀j ∈ {1, . . . , k}
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Lineáris Programs and Extreme Points

• Our goal is to obtain the maximum of the linear program
∑k

j=1
(cTxj)λj :

∑k

j=1
λj = 1, λj ≥ 0

• It is easy to see that it is enough to find the extreme point for

which c
T
xj is maximal, let this extreme point be xp

• Then, λp = 1, λj = 0 : j 6= p solves the new linear program

and the optimal objective function value is c
T
xp.

• We have proved only for the bounded case, but the theorem
also holds for the linear programs with unbounded feasible
region

• In general a linear program cannot be written in the
equivalent using extreme points (which would then be easy
to solve), since the number of extreme points is exponential

• In lower dimensions it can: graphical method
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Extreme points: Example

max x1 + 2x2

s.t. x1 + x2 ≤ 6
x2 ≤ 3

x1, x2 ≥ 0

• Extreme points:
[

0
0

]

,

[

0
3

]

,

[

3
3

]

,

[

6
0

]
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Extreme points: Example

• Compute the objective

function value c
T
xj for

each extreme point xj :

c
T
x1 = [1 2]

[

0
0

]

= 0

c
T
x2 = [1 2]

[

0
3

]

= 6

c
T
x3 = [1 2]

[

3
3

]

= 9

c
T
x4 = [1 2]

[

6
0

]

= 6
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Optimal Resource Allocation Revisited

• Exercise: a paper mill manufactures two types of paper,
standard and deluxe

◦ 1
2

m3 of wood is needed to manufacture 1 m2 of paper

(both standard or deluxe)

◦ producing 1 m2 of standard paper takes 1 man-hour,

whereas 1 m2 of deluxe paper requires 2 man-hours

◦ every week 40 m3 wood and 100 man-hours of
workforce is available

◦ the profit is 3 thousand USD per 1 m2 of standard paper

and 4 thousand USD per 1 m2 of deluxe paper

• Question: how much standard and how much deluxe paper
should be produced by the paper mill per week to maximize
profits?
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Graphical Solution

max 3x1 + 4x2

s.t. 1
2
x1 +

1
2
x2 ≤ 40

x1 + 2x2 ≤ 100
x1, x2 ≥ 0

• 2 variables: 2 dimensions

• Nonnegative variables: feasible
solutions lie in the positive or-
thant
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Graphical Solution

• The first constraint

1
2
x1 +

1
2
x2 ≤ 40

cuts a half-space
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Graphical Solution

• The second constraint

x1 + 2x2 ≤ 100

also defines a half-space
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Graphical Solution

• The feasible region is exactly
the intersection of the two half-
spaces and the positive orthant
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Graphical Solution

• The objective function:
3x1 + 4x2

• Normal vector:
[

3
4

]

• Solution: the furthest point of
the feasible region in the direc-
tion of the normal vector of the
objective function
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Graphical Solution

Megoldás

• Standard paper: x∗

1 = 60 m2

• Deluxe paper: x∗

2 = 20 m2

• Profits: 260 thousand USD
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A Problem of Logistics

• Transshipment problem:

◦ from point A to point C

◦ 15 tonnes of goods

◦ ship capacities are 10
tonnes each

◦ cost ([thousand USD per
tonne]): cAB = 2, cBC = 4,
cAC = 3

◦ objective: minimize costs
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A Problem of Logistics

min 2xAB + 4xBC + 3xAC

s.t. −xAB − xAC = −15
−xAB + xBC = 0
xBC + xAC = 15
0 ≤ xAB ≤ 10
0 ≤ xBC ≤ 10
0 ≤ xAC ≤ 10
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Graphical Solution

• The first constraint

−xAB − xAC = −15

defines a hyperplane
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Graphical Solution

• The first constraint

−xAB + xBC = 0

also defines a hyperplane
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Graphical Solution

• The third constraint is
redundant

• The intersection of the two hy-
perplanes and the positive or-
thant contains all feasible flow
allocations
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Graphical Solution

• The capacity constraints define
a hyper-rectangle

0 ≤ xAB ≤ 10
0 ≤ xBC ≤ 10
0 ≤ xAC ≤ 10
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Graphical Solution

• The intersection of the feasible
flow set and the above
hyper-rectangle corresponds to
the feasible region
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Graphical Solution

• The furthest point along the
inverse(!) of the normal vector

[2 4 3]T (inverse as the the

optimization is minimization)

xAB = 5

xBC = 5

xAC = 10
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The Feasible Region

X = {[x1, x2] : x1 + x2 ≤ 6

−x1 + 2x2 ≤ 8

x1, x2 ≥ 0 }

Bounded: there is a large
enough neighborhood of the

origin that contains the entire
feasible region
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The Feasible Region

X = {[x1, x2] : −x1 + 2x2 ≤ 8

x1, x2 ≥ 0 }

Unbounded: there is point
x ∈ X and vector d so that
the ray from point x along

direction d lies entirely within
the feasible region:

∀λ > 0 : x+ λd ∈ X
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The Feasible Region

X = {[x1, x2] : x1 + x2 ≤ 2

−x1 + 2x2 ≤ −4

x1, x2 ≥ 0 }

Empty: the intersection of the
half-spaces is empty
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The Optimal Solution

max 3x1 + x2

s.t. x1 + x2 ≤ 6
−x1 + 2x2 ≤ 8

x1, x2 ≥ 0

Unique optimal solution on
bounded feasible region: the
objective is maximized at a
unique point
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The Optimal Solution

max −x1 + x2

s.t. −x1 + 2x2 ≤ 8
x1, x2 ≥ 0

Unique optimal solution on an
unbounded feasible region
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The Optimal Solution

max −x1 + 2x2

s.t. x1 + x2 ≤ 6
−x1 + 2x2 ≤ 8

x1, x2 ≥ 0

Alternative optimal solutions
on a bounded feasible
region: the objective function
attains its maximum at more
than one distinct points
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The Optimal Solution

max −x1 + 2x2

s.t. −x1 + 2x2 ≤ 8
x1, x2 ≥ 0

Alternative optimal solutions
on an unbounded feasible
region
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The Optimal Solution

max x1 + x2

s.t. −x1 + 2x2 ≤ 8
x1, x2 ≥ 0

Unbounded optimal solution:
the objective function value
can be increased without limit
inside the feasible region
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