Introduction to Linear Programming: A Summary

WARNING: this is just a summary of the material covered in the full slide-deck **Introduction to Linear Programming** that will orient you as per the topics covered there; you are required to learn the full version, not just this summary!

- Example: resource optimization
- Generic form of linear programs, basic definitions, matrix notation
- Miscellaneous topics: nonnegativity of variables, minimization and maximization, standard and canonical forms, transition between the two
- Notations and linear algebra

Optimal Resource Allocation

- **Exercise:** a paper mill manufactures two types of paper, standard and deluxe
 - $\circ~\frac{1}{2}~m^3$ of wood is needed to manufacture 1 m^2 of paper (both standard or deluxe)
 - producing 1 m² of standard paper takes 1 man-hour, whereas 1 m² of deluxe paper requires 2 man-hours
 - every week 40 m³ wood and 100 man-hours of workforce is available
 - the profit is 3 thousand USD per 1 m² of standard paper and 4 thousand USD per 1 m² of deluxe paper
- **Question:** how much standard and how much deluxe paper should be produced by the paper mill per week to maximize profits?

Modeling 1: Selecting Variables

- Optimal Resource Allocation/Product Mix problem: optimal allocation of resources in order to maximize production profit
- Choose two variables:
 - x_1 : the quantity produced from the standard paper [m²] • x_2 : the quantity produced from the deluxe paper [m²]
- For instance, $x_1 = 12$, $x_2 = 20$ means: 12 m² of standard and 20 m² of deluxe paper produced, for which the mill uses

$$\circ \frac{1}{2} * 12 + \frac{1}{2} * 20 = 16 \text{ m}^3 \text{ wood and}$$

- \circ 1 * 12 + 2 * 20 = 52 man-hours of workforce,
- $\circ~$ meanwhile realizing 3*12+4*20=116 thousands USD profits

Modeling 2: Constraints

• **Resource constraint:** the available quantity of wood (40 m³) limits the amount of paper that can be produced:

$$\frac{1}{2}x_1 + \frac{1}{2}x_2 \le 40$$

• Labor constraint: the available workforce (100 man-hours) also limits the possible production mixes:

$$x_1 + 2x_2 \le 100$$

• Nonnegativity:

$$x_1 \ge 0, \quad x_2 \ge 0$$

Modeling 3: The Objective Function

- The profits: $3x_1 + 4x_2$ [thousand USD]
- **Objective:** to maximize profits:

 $\max 3x_1 + 4x_2$

in a way so that the amount of wood and workforce used does not exceed the available quantities

Linear Program

Linear programs: Basic Definitions

- Maximization of the **objective function** that is a linear function of the **decision variables**/activities, or the minimization of a linear **cost function**
- The solution meets the **constraints** that are also linear functions of the variables
- The linear scaling constants are called **objective function coefficients** and **constraint coefficients**
- The combinations of variables x_1 , x_2 that meet the constraints are called **feasible solutions** or **feasible points**
- The set of feasible solutions is called the **feasible region**
- The feasible solutions that maximize the objective function (minimize the cost function) are called the **optimal** (feasible) solutions (there can be more than one)
- Decision variables may be subject to nonnegativity or nonpositivity constraints

The General Form of Linear Programs

The General Form of Linear Programs

- m: the number of **rows**, i.e., the number of constraints
- n: the number of **columns**, i.e., the number of variables
- c_j : the objective coefficient for the *j*-th variable
- $\sum_{j=1}^{n} c_j x_j$: the objective/cost function

•
$$\sum_{j=1}^{n} a_{ij} x_j \le b_i$$
: the *i*-th constraint

- $\circ a_{ij}$: constraint coefficients
- \circ b_i : the *i*-th "right-hand-side" (RHS)

The Matrix Form of Linear Programs

$$\max \begin{bmatrix} c_1 & c_2 & \dots & c_n \end{bmatrix} \boldsymbol{x}$$

s.t.
$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \boldsymbol{x} \leq \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$
$$\boldsymbol{x} \geq \mathbf{0}$$

$$\begin{array}{ll} \max & \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\ & \boldsymbol{x} \geq \boldsymbol{0} \end{array}$$

Direction of Optimization

- If the objective function represents
 - profits: maximization
 - cost: minimization
- Conversion:

$$\max\{\boldsymbol{c}^T\boldsymbol{x}:\boldsymbol{A}\boldsymbol{x}\leq\boldsymbol{b},\boldsymbol{x}\geq\boldsymbol{0}\}=\\-1*\min\{-\boldsymbol{c}^T\boldsymbol{x}:\boldsymbol{A}\boldsymbol{x}\leq\boldsymbol{b},\boldsymbol{x}\geq\boldsymbol{0}\}$$

Constraints: Forms

- Inequality and equality: there are two types of constrains in the transportation problem
 - Supply constraint: $\sum_{j=1}^{4} x_{ij} \leq \text{capacity}_i$
 - Demand constraint: $\sum_{i=1}^{3} x_{ij} = \text{demand}_{j}$
- Conversion: inequality \rightarrow equality
 - \circ " \leq " type inequality: by **adding** an artificial **slack** variable

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \iff \sum_{j=1}^{n} a_{ij} x_j + x_{s_i} = b_i, \quad x_{s_i} \ge 0$$

Constraints: Forms

- Conversion: inequality \rightarrow equality
 - • "≥" type inequality: by subtracting an artificial slack
 variable

$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \iff \sum_{j=1}^{n} a_{ij} x_j - x_{s_i} = b_i, \quad x_{s_i} \ge 0$$

• Conversion: equality \rightarrow inequality

 $\circ~$ a "=" type constraint can be substituted with a " \leq " type and a " \geq " type constraint

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \iff \sum_{j=1}^{n} a_{ij} x_j \le b_i$$
$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i$$

Nonnegativity

- In practice the variables are almost always constrained as nonnegative
- Substituting a nonpositive variable: $x_j = -x'_j$

$$\begin{array}{ccc} x_j \leq 0 & & x'_j \geq 0 \\ a_{ij}x_j & \Longleftrightarrow & -a_{ij}x'_j \\ c_jx_j & & -c_jx'_j \end{array}$$

• Substituting a free variable: $x_j = x'_j - x''_j$

$$\begin{array}{ccc} x_j \lessapprox 0 & x'_j \ge 0, \ x''_j \ge 0 \\ a_{ij}x_j & \Longleftrightarrow & a_{ij}(x'_j - x''_j) \\ c_jx_j & & c_j(x'_j - x''_j) \end{array}$$

The Canonical and the Standard Forms

	Minimization	Maximization
Standard form	$ \begin{array}{l} \min \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} \ \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array} $	$\begin{array}{l} \max \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} \ \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array}$
Canonical form	$ \begin{array}{c} \min \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} \ \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array} $	$\begin{array}{l} \max \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} \ \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array}$

Linear Algebra: A Reminder

- Vectors (column and row), operations on vectors, linear independence and the basis
- Matrices, operations on matrices, matrix rank and singularity, the determinant
- Solving systems of linear equations
- Make sure you understand all the above: we will use these basic linear algebraic definitions everywhere and silently assume that you are familiar with the background