Introduction to Linear Programming

- Examples: resource optimization, the transportation problem, flow problems, portfolio design
- Generic form of linear programs, basic definitions, matrix notation
- General assumptions on problems that can be modeled with a linear program
- Miscellaneous topics: nonnegativity of variables, minimization and maximization, standard and canonical forms, transition between the two
- Notations and linear algebra: vectors, matrices, multiplication of matrices, the Euclidean space, linear independence, linear equations, basic solutions

Optimal Resource Allocation

- **Exercise:** a paper mill manufactures two types of paper, standard and deluxe
 - $\circ~\frac{1}{2}~m^3$ of wood is needed to manufacture 1 m^2 of paper (both standard or deluxe)
 - producing 1 m² of standard paper takes 1 man-hour, whereas 1 m² of deluxe paper requires 2 man-hours
 - every week 40 m³ wood and 100 man-hours of workforce is available
 - the profit is 3 thousand USD per 1 m² of standard paper and 4 thousand USD per 1 m² of deluxe paper
- **Question:** how much standard and how much deluxe paper should be produced by the paper mill per week to maximize profits?

Modeling 1: Selecting Variables

- Optimal Resource Allocation/Product Mix problem: optimal allocation of resources in order to maximize production profit
- Choose two variables:
 - x_1 : the quantity produced from standard paper [m²] • x_2 : the quantity produced from deluxe paper [m²]
- For instance, $x_1 = 12$, $x_2 = 20$ means: 12 m² of standard and 20 m² of deluxe paper produced, for which the mill uses

$$\circ \frac{1}{2} * 12 + \frac{1}{2} * 20 = 16 \text{ m}^3 \text{ wood and}$$

- \circ 1 * 12 + 2 * 20 = 52 man-hours of workforce,
- $\circ~$ meanwhile realizing 3*12+4*20=116 thousands USD profits

Modeling 2: Constraints

• **Resource constraint:** the available quantity of wood (40 m³) limits the amount of paper that can be produced:

$$\frac{1}{2}x_1 + \frac{1}{2}x_2 \le 40$$

• Labor constraint: the available workforce (100 man-hours) also limits the possible production mixes:

$$x_1 + 2x_2 \le 100$$

• Nonnegativity:

$$x_1 \ge 0, \quad x_2 \ge 0$$

Modeling 3: The Objective Function

- The profits: $3x_1 + 4x_2$ [thousand USD]
- **Objective:** to maximize profits:

 $\max 3x_1 + 4x_2$

in a way so that the amount of wood and workforce used does not exceed the available quantities

Linear Program

Linear programs: Basic Definitions

- Maximization of the **objective function** that is a linear function of the **decision variables**/activities, or the minimization of a linear **cost function**
- The solution meets the **constraints** that are also linear functions of the variables
- The linear scaling constants are called **objective function coefficients** and **constraint coefficients**
- The combinations of variables x_1 , x_2 that meet the constraints are called **feasible solutions** or **feasible points**
- The set of feasible solutions is called the **feasible region**
- The feasible solutions that maximize the objective function (minimize the cost function) are called the **optimal** (feasible) solutions (there can be more than one)
- Decision variables may be subject to nonnegativity or nonpositivity constraints

Modeling Assumptions

- A problem can be modeled and solved by a linear program only if the following assumptions all hold true
 - Linearity: the objective function and the constraints are the sums of linear products of the variables
 - Proportionality: each decision variable contributes to the objective function/constraints proportionally, independently from the value of other variables (there are no economies or returns to scale or discounts)
 - Additivity: the objective/constraints are the sums of the (linear) contributions of the variables (there is no substitution/interaction among the variables)
 - Divisibility/Continuity: the values of decision variables can be fractions
 - **Determinism:** the objective function and constraint coefficients are known constants

The General Form of Linear Programs

The General Form of Linear Programs

- m: the number of **rows**, i.e., the number of constraints
- *n*: the number of **columns**, i.e., the number of variables
- c_j : the objective coefficient for the *j*-th variable
- $\sum_{j=1}^{n} c_j x_j$: the objective/cost function

•
$$\sum_{j=1}^{n} a_{ij} x_j \le b_i$$
: the *i*-th constraint

- $\circ a_{ij}$: constraint coefficients
- \circ b_i : the *i*-th "right-hand-side" (RHS)

The Matrix Form of Linear Programs

• The constraint matrix $(m \times n)$:

$$\boldsymbol{A} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

- The objective function/cost vector (1 × n, row vector): $c^T = [c_1 \ c_2 \ \dots c_n]$
- The RHS vector ($m \times 1$, column vector): $\boldsymbol{b} = [b_1 \ b_2 \ \dots \ b_m]^T$
- The vector of variables ($n \times 1$, column vector):

$$\boldsymbol{x} = [x_1 \quad x_2 \quad \dots \quad x_n]^T$$

The Matrix Form of Linear Programs

$$\max \begin{bmatrix} c_1 & c_2 & \dots & c_n \end{bmatrix} \boldsymbol{x}$$

s.t.
$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \boldsymbol{x} \leq \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$
$$\boldsymbol{x} \geq \mathbf{0}$$

$$\begin{array}{ll} \max & \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\ & \boldsymbol{x} \geq \boldsymbol{0} \end{array}$$

Optimal Resource Allocation

$$\begin{array}{ll} \max & 3x_1 + 4x_2 \\ \text{s.t.} & \frac{1}{2}x_1 + \frac{1}{2}x_2 \le 40 \\ & x_1 + 2x_2 \le 100 \\ & x_1, x_2 \ge 0 \end{array}$$

$$\max \begin{bmatrix} 3 & 4 \end{bmatrix} \boldsymbol{x}$$

s.t.
$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & 2 \end{bmatrix} \boldsymbol{x} \leq \begin{bmatrix} 40 \\ 100 \end{bmatrix}$$
$$\boldsymbol{x} \geq 0$$

Electric Power Transmission

- **Exercise:** an electricity company supplies 4 cities out of 3 power plants; the demand at each city is given but the capacity of the power plants is limited and the transmission loss increases proportionally with the distance between a city and a power plant
- **Task:** match cities to power plants in a way as to minimize the overall transmission loss

Electric Power Transmission

• Transportation/transshipment problem: matching demands to supplies in a way as to minimize loss

Plant		City			
	Capacity	City1	City2	City3	City4
Plant1	35	8	6	10	9
Plant2	50	9	12	13	7
Plant3	40	14	9	16	5
Demand		45	20	30	30

(Capacity: [GWh], Demand: [GWh], Cost: [million USD/GWh])

Modeling 1: Selecting Variables

- x_{ij} : the quantity of electricity to be transmitted from power plant *i* to city *j* [GWh]
- For example, x_{14} means the quantity of electricity to be transmitted from *Plant1* to *City4*

Modeling 2: Constraints

• **Supply constraints:** the total amount of electricity to be transmitted from power plant *i* cannot exceed its capacity:

$$\sum_{j=1}^{4} x_{ij} \leq \mathsf{capacity}_i$$

• **Demand constraint:** the amount of electricity to be transmitted to city *j* must meet the demand and city *j*:

$$\sum_{i=1}^{3} x_{ij} = \mathsf{demand}_{j}$$

• **Nonnegativity:** negative quantity of electricity cannot be transmitted:

$$x_{ij} \ge 0 \qquad \forall i \in \{1, 2, 3\}, \ \forall j \in \{1, 2, 3, 4\}$$

Modeling 3: The Cost Function

• The quantity of electricity transmitted from plant *i* to city *j* equals x_{ij} , the cost of which due to transmission losses:

 $cost_{ij}x_{ij}$

• **Objective:** minimize the total cost:

$$\min\sum_{i=1}^{3}\sum_{j=1}^{4}\operatorname{cost}_{ij}x_{ij}$$

in a way so as to x_{ij} meet the demand, supply, and nonnegativity constraints

Linear Program

min $8x_{11} + 6x_{12} + 10x_{13} + 9x_{14} + 9x_{21} + 12x_{22} + 13x_{23} + 7x_{24} + 14x_{31} + 9x_{32} + 16x_{33} + 5x_{34}$

s.t.
$$\begin{aligned} x_{11} + x_{12} + x_{13} + x_{14} &\leq 35 \\ x_{21} + x_{22} + x_{23} + x_{24} &\leq 50 \\ x_{31} + x_{32} + x_{33} + x_{34} &\leq 40 \\ x_{11} + x_{21} + x_{31} &= 45 \\ x_{12} + x_{22} + x_{32} &= 20 \\ x_{13} + x_{23} + x_{33} &= 30 \\ x_{14} + x_{24} + x_{34} &= 30 \end{aligned}$$

$$x_{ij} \ge 0 \quad \forall i \in \{1, 2, 3\},$$

 $\forall j \in \{1, 2, 3, 4\}$

Transshipment Problem: General Form

- Given *m* supply points, where the capacity of the *i*-th supply is *s*_{*i*}
- Given *n* demand points, where the *j*-th demand is *d_j*
- And the cost of transmission of one unit of goods from the supply point *i* to demand point *j* is c_{ij}
- Minimize the total cost

Transshipment Problem: General Form

$$\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

s.t.
$$\sum_{j=1}^{n} x_{ij} \le s_i \qquad \forall i \in \{1, \dots, m\}$$
$$\sum_{i=1}^{m} x_{ij} = d_j \qquad \forall j \in \{1, \dots, n\}$$
$$x_{ij} \ge 0 \qquad \forall i \in \{1, \dots, m\},$$
$$\forall j \in \{1, \dots, n\}$$

Direction of Optimization

- If the objective function represents
 - profits: maximization
 - cost: minimization
- Conversion:

$$\max\{\boldsymbol{c}^T\boldsymbol{x}:\boldsymbol{A}\boldsymbol{x}\leq\boldsymbol{b},\boldsymbol{x}\geq\boldsymbol{0}\}=\\-1*\min\{-\boldsymbol{c}^T\boldsymbol{x}:\boldsymbol{A}\boldsymbol{x}\leq\boldsymbol{b},\boldsymbol{x}\geq\boldsymbol{0}\}$$

Constraints: Forms

- Inequality and equality: there are two types of constrains in the transportation problem
 - Supply constraint: $\sum_{j=1}^{4} x_{ij} \leq \text{capacity}_i$
 - Demand constraint: $\sum_{i=1}^{3} x_{ij} = \text{demand}_{j}$
- Conversion: inequality \rightarrow equality
 - \circ " \leq " type inequality: by **adding** an artificial **slack** variable

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \iff \sum_{j=1}^{n} a_{ij} x_j + x_{s_i} = b_i, \quad x_{s_i} \ge 0$$

Constraints: Forms

- Conversion: inequality \rightarrow equality
 - • "≥" type inequality: by subtracting an artificial slack
 variable

$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \iff \sum_{j=1}^{n} a_{ij} x_j - x_{s_i} = b_i, \quad x_{s_i} \ge 0$$

• Conversion: equality \rightarrow inequality

 $\circ~$ a "=" type constraint can be substituted with a " \leq " type and a " \geq " type constraint

$$\sum_{j=1}^{n} a_{ij} x_j = b_i \iff \sum_{j=1}^{n} a_{ij} x_j \le b_i$$
$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i$$

Nonnegativity

- In practice the variables are almost always constrained as nonnegative
- Substituting a nonpositive variable: $x_j = -x'_j$

$$\begin{array}{ccc} x_j \leq 0 & & x'_j \geq 0 \\ a_{ij}x_j & \Longleftrightarrow & -a_{ij}x'_j \\ c_jx_j & & -c_jx'_j \end{array}$$

• Substituting a free variable: $x_j = x'_j - x''_j$

$$\begin{array}{ccc} x_j \lessapprox 0 & x'_j \ge 0, \ x''_j \ge 0 \\ a_{ij}x_j & \Longleftrightarrow & a_{ij}(x'_j - x''_j) \\ c_jx_j & & c_j(x'_j - x''_j) \end{array}$$

The Canonical and the Standard Forms

	Minimization	Maximization
Standard form	$ \begin{array}{l} \min \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} \ \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array} $	$\begin{array}{l} \max \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} \ \boldsymbol{A} \boldsymbol{x} = \boldsymbol{b} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array}$
Canonical form	$ \begin{array}{c} \min \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} \ \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array} $	$\begin{array}{l} \max \boldsymbol{c}^T \boldsymbol{x} \\ \text{s.t.} \ \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\ \boldsymbol{x} \geq \boldsymbol{0} \end{array}$

• **Exercise:** a transportation company can use the below list of freight ship routes between points *A*, *B*, *C*, *D* and *E*, each with limited capacity (*u*, [t]) and operating at specific price per tonne of cargo (*c*, [million USD/t])

c/u	A	В	С	D	E
A	-	2/7	1/10	-	-
В	-	-	-	4/6	-
С	-	-	-	3/8	15/60
D	-	-	-	-	5/10
E	-	-	-	-	-

• **Task:** to ship 15 tonnes of cargo from point A to point E at minimal transportation cost

- Flow problem: generalization of the transportation problem
 - connection exists only between a subset of points
 - $\circ~$ capacity of connections is limited
- Connections make up a capacitated graph G(V, E), with V being the ports and E being the set of ship routes

Flow problem

- x_{ij} : quantity of goods to be transported between point i and j [t]
- x defines a flow on graph G(V, E):
 - capacity constraint: $\forall (i, j) \in E : x_{ij} \leq u_{ij}$
 - **flow conservation:** the difference between the amount of flow entering point *i* and the amount of flow leaving it equals the difference of the demand and supply at *i*:

$$\forall i \in V : \sum_{j:(j,i)\in E} x_{ji} - \sum_{j:(i,j)\in E} x_{ij} = d_i$$

• nonnegativity: $\forall (i, j) \in E : x_{ij} \geq 0$

• Total cost: $\sum_{(i,j)\in E} c_{ij} x_{ij}$

Logistics: Matrix Form

$$\boldsymbol{N} = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}, \quad \boldsymbol{d} = \begin{bmatrix} -15 \\ 0 \\ 0 \\ 0 \\ 15 \end{bmatrix}$$
$$\boldsymbol{c}^{T} = \begin{bmatrix} 2 & 1 & 4 & 3 & 15 & 5 \end{bmatrix}, \quad \boldsymbol{x} = \begin{bmatrix} x_{AB} \\ x_{AC} \\ x_{BD} \\ x_{CD} \\ x_{DE} \end{bmatrix}, \quad \boldsymbol{u} = \begin{bmatrix} 7 \\ 10 \\ 6 \\ 8 \\ 60 \\ 10 \end{bmatrix}$$

The Minimal Cost Flow Problem

- Here the matrix ${\boldsymbol N}$ is representative for the graph G (see later)
 - node-arc incidence matrix
 - \circ notation: N

- **Exercise:** this time not only one but two transportation companies provide transshipment service over the aforementioned ship routes: the first company carries 15 tonnes of goods from point *A* to point *E* whereas the second one ships 20 tonnes between *C* and *E*
- **Task:** compute the minimal-cost allocation of transshipment capacities, subject to ship capacities

- x^k_{ij}: the amount of goods to be shipped from point i to point
 j by company k [t]
- The goods do not mix, therefore for each k the variables $x_{ij}^k : (i, j) \in E$ define a flow, satisfying (independently from other ks)
 - \circ the flow conservation constraints: $Nx^k = d^k$
 - \circ and nonnegativity: $oldsymbol{x}^k \geq oldsymbol{0}$
- The total quantity of cargo allocated to a particular ship cannot exceed its capacity: $m{x}^1 + m{x}^2 \leq m{u}$

- For the first transportation company: $d^{1} = \begin{bmatrix} -15\\0\\0\\15\end{bmatrix}, \quad x^{1} = \begin{bmatrix} x_{AB}^{1}\\x_{AC}^{1}\\x_{BD}^{1}\\x_{CD}^{1}\\x_{CD}^{1}\\x_{DE}^{1}\end{bmatrix}$
- For the second transportation company: $d^{2} = \begin{bmatrix} 0\\0\\-20\\0\\20 \end{bmatrix}, \quad x^{2} = \begin{bmatrix} x_{AB}^{2}\\x_{AC}^{2}\\x_{BD}^{2}\\x_{CD}^{2}\\x_{CD}^{2}\\x_{DE}^{2} \end{bmatrix}$

Multicommodity Flow Problem

$$\min \sum_{k \in K} \boldsymbol{c}^T \boldsymbol{x}^k$$
s.t. $\boldsymbol{N} \boldsymbol{x}^k = \boldsymbol{d}^k \quad \forall k \in K$

$$\sum_{k \in K} \boldsymbol{x}^k \leq \boldsymbol{u}$$
 $\boldsymbol{x}^k > \boldsymbol{0} \quad \forall k \in K$

• *K*: the set of "goods" or commodities

- **Exercise:** the task is to design the financing for a 4 year construction project
 - construction works scheduled for the first year cost 2 million USD, 4 million in the second year, 8 million USD in the third and 5 million in the fourth year
 - costs will be covered by bonds ("debt instruments") that must be paid back continuously for 20 years from the completion of the construction ("maturity is 20 years")
 - the expected bond interest rate is 7% for the first year,
 6% for the second year, then 6.5% and 7.5%
 - the money *not* spent on the construction can be invested into short-term securities, for which interest rates for the first year is 6%, 5.5% for the second year, and 4.5% for the third year (in the fourth year it is not worth investing)
- Task: choose the optimal portfolio

- Determine the optimal schedule for bond issuance and short-term investment
 - bonds must be paid back, interest rates depend on the year of issuance
 - a fixed portion of the income must be spent to cover construction costs
 - the rest can be invested into short-term securities to cover the bond coupons to be paid back
 - how to schedule bond issuance and short-term investment in each year in order to minimize the total cost of the construction, given the anticipated interest rates?

- $x_j : j = 1, ..., 4$: the quantity of bonds issued at the beginning of year j [million USD]
- $y_j : j = 1, ..., 3$: assets invested into short-term securities at the beginning of year j [million USD]
- In the first year, part of the income x_1 must be spent on the construction (2 million USD), the rest (y_1) can be invested

$$x_1 = 2 + y_1$$

- In the second year
 - income: from bond issuance x_2 plus the amount earned from previous year's investments with premium $(1.06y_1)$
 - expenditure: construction work (4 million USD) plus additional short-term investment (y_2)

$$x_2 + 1.06y_1 = 4 + y_2$$

- In the third year
 - income: from bond issuance x_3 plus the amount earned from previous year's investments with premium $(1.055y_2)$
 - expenditure: construction work (8 million USD) plus additional short-term investment (y_3)

 $x_3 + 1.055y_2 = 8 + y_3$

- In the fourth year
 - income: from bond issuance x_4 plus the amount earned from previous year's investments with premium $(1.045y_3)$
 - expenditure: construction work (5 million USD), no new short-term investment (end of financial period)

 $x_4 + 1.045y_3 = 5$

- **Objective:** minimize the premium (interest on bonds) that is to be paid back to investors
- Maturity is 20 years, according to the interest rate at the year of issuance
 - interest on the bonds issued in the first year: $(20 * 0.07)x_1$
 - interest on the bonds issued in the second year: $(20 * 0.06)x_2$
 - interest on the bonds issued in the third year: $(20 * 0.065)x_3$
 - interest on the bonds issued in the fourth year: $(20 * 0.075)x_4$

$$\begin{array}{ll} \min & (20*0.07)x_1 + (20*0.06)x_2 + \\ & (20*0.065)x_3 + (20*0.075)x_4 \\ \text{s.t.} & x_1 - y_1 = 2 \\ & 1.06y_1 + x_2 - y_2 = 4 \\ & 1.055y_2 + x_3 - y_3 = 8 \\ & 1.045y_3 + x_4 = 5 \\ & x_j \ge 0 \qquad \qquad \forall i \in \{1, \dots, 4\} \\ & y_j \ge 0 \qquad \qquad \forall i \in \{1, \dots, 3\} \end{array}$$

Applications of Linear Programming

- Management science/Operations research
 - resource allocation
 - portfolio design
- Logistics
 - transportation problems
 - production planning
- Telecommunications
 - network optimization
 - routing and traffic engineering

Notation: Vectors

• Column *n*-vector:
$$\boldsymbol{x} = [x_i] = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
, with elements x_i

- Row *m*-vector: $\boldsymbol{x}^T = [x_j] = \begin{bmatrix} x_1 & \dots & x_m \end{bmatrix}$, elements (or components) x_j , notation $(.)^T$ is for transposition
- Vectors are sometimes also called **points**
- Zero vector: 0 and 1-vector (each element equals 1): 1
- The *i*-th canonical unit vector: e_i , e_i^T

$$\boldsymbol{e_i}^T = \begin{bmatrix} 0 & 0 & \dots & 1 & \dots & 0 \end{bmatrix}$$
1 at position *i*

Operations on Vectors

• Sum of vectors: according to the Parallelogram Law

$$\boldsymbol{x} + \boldsymbol{y} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

- Multiplying a vector with a scalar: $\lambda x = [\lambda x_i]$
- The scalar product of a row *n*-vector and a column *n*-vector

$$\boldsymbol{x}^T \boldsymbol{y} = \sum_{i=1}^n x_i y_i$$

Linear Independence

• A vector \boldsymbol{b} is a linear combination of vectors $\boldsymbol{a}_1, \, \boldsymbol{a}_2, \, \ldots,$

$$oldsymbol{a}_k$$
, if $oldsymbol{b}=\sum_{i=1}^\kappa\lambda_ioldsymbol{a}_i$ for some real scalars $\lambda_1,\lambda_2,\ldots,\lambda_k$

• Vectors $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_k$ are linearly independent, if

$$\sum_{i=1}^{k} \lambda_i \boldsymbol{a}_i = \boldsymbol{0} \Rightarrow \forall i = \{1, 2, \dots, k\} : \lambda_i = 0$$

- Real *n*-vectors *a*₁, *a*₂, ..., *a*_k ∈ ℝⁿ span the vector space V ⊆ ℝⁿ, if each vector *b* ∈ V can be written as a linear combination of vectors *a*_i
- The minimal set of *n*-vectors a_1, a_2, \ldots, a_k that span V is called a **basis** of V, and k is the **dimension** of V

Notation: Matrices

• A mátrix \boldsymbol{A} of size $m \times n$

$$\boldsymbol{A} = [a_{ij}] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} \boldsymbol{a^1} \\ \boldsymbol{a^2} \\ \vdots \\ \boldsymbol{a^m} \end{bmatrix} = [\boldsymbol{a_1}, \boldsymbol{a_2}, \dots, \boldsymbol{a_n}]$$

- A zero matrix is a matrix whose all elements are 0
- The $n \times n$ (canonical) **unit matrix**

$$\boldsymbol{I}_{n} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Operations on Matrices

• Sum of matrices: of \boldsymbol{A} and \boldsymbol{B} are $m\times n$ then

$$\boldsymbol{A} + \boldsymbol{B} = [a_{ij} + b_{ij}]$$

• Matrix multiplication: the multiple of matrix A ($m \times p$) and matrix B ($p \times n$) is matrix C = AB ($m \times n$)

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj} = \boldsymbol{a^{i}b_{j}}$$

- If A is $n \times n$ quadratic and there is matrix A^{-1} so that $AA^{-1} = I_n$, then A^{-1} is called the **inverse** of A
- The maximal number of linearly independent rows (or columns) of A is called the **rank** of A
- The inverse exists if all rows (or columns) of A are linearly independent (A is **nonsingular**)

Determinant

• The **determinant** of a real valued $n \times n$ matrix \boldsymbol{A} is

$$\det \mathbf{A} = \sum_{i=1}^{n} a_{ij} A_{ij} ,$$

where a_{ij} is the element in position (i, j) of A and A_{ij} is the **cofactor** of a_{ij} , which is obtained by removing row i and column j from A and then taking the determinant multiplied by $(-1)^{i+j}$

- det $\boldsymbol{A} = \det \boldsymbol{A}^T$
- if $m{B}$ is obtained by swapping two columns or rows of $m{A}$ then $\det m{B} = -\det m{A}$
- \boldsymbol{A} is nonsingular if and only if $\det \boldsymbol{A} \neq 0$

Systems of Linear Equations

- Let \boldsymbol{A} be an $m \times n$ matrix and let \boldsymbol{b} be a column m-vector
- We seek a column *n*-vector \boldsymbol{x} so that $\boldsymbol{A}\boldsymbol{x}=\boldsymbol{b}$
- If *b* is linearly independent from the column vectors of *A* then it cannot be written as the linear combination of *A*'s columns: no solution exists
- Let rank(A) = rank(A, b) = k
- Reorder the rows of *A* and *b* so that the first *k* rows contain the linearly independent rows

$$oldsymbol{A} = egin{bmatrix} oldsymbol{A}_1 \ oldsymbol{A}_2 \end{bmatrix}, \ oldsymbol{b} = egin{bmatrix} oldsymbol{b}_1 \ oldsymbol{b}_2 \end{bmatrix}$$
 ,

where A_1 is $k \times n$ with $rank(A_1) = k$ and A_2 is $(m - k) \times n$, and b_1 is a column k-vector and b_2 is a column (m - k)-vector

Systems of Linear Equations

- If $A_1x = b_1$ then $A_2x = b_2$ automatically holds, as the rows of $[A_2 \ b_2]$ can be written as a linear combination of the rows of $[A_1 \ b_1]$: we can safely ignore the rows of $A_2x = b_2$
- Since rank(A₁) = k, we can select k linearly independent columns from A₁
- Rearrange the columns of A_1 so that the first k columns are linearly independent: $A_1 = [B \ N]$ where
 - $\circ~{\pmb B}$ is a $k\times k$ quadratic, nonsingular matrix, called the basis matrix
 - N is $k \times (n k)$, called the (nonbasic matrix)
- Similarly, reorder the elements of x accordingly:

 $x = egin{bmatrix} x_B \ x_N \end{bmatrix}$, where x_B contains the variables corresponding to the columns of B and x_N contains the rest

Systems of Linear Equations

• The rearranged system

$$egin{array}{lll} egin{array}{c} egin{arra$$

• Multiply by the inverse of ${\boldsymbol{B}}$ from the left and rearrange

$$x_B = B^{-1}b_1 - B^{-1}Nx_N$$

- If k = n then we have a unique solution: $x_B = B^{-1}b_1$ (basic solution)
- If k < n then x_N can be chosen arbitrarily, the number of solutions is infinite

Systems of Linear Equations: Example

• In matrix form

$$\begin{bmatrix} 1 & 2 & 1 & -2 \\ -1 & 2 & -1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 10 \\ 6 \\ 2 \end{bmatrix}$$

• We search for a basic solution: perform Gaussian Elimination on $({\bm A}, {\bm b})$

Systems of Linear Equations: Example

• Add the first row to the second one:

$$\begin{bmatrix} 1 & 2 & 1 & -2 & | & 10 \\ 0 & 4 & 0 & -1 & | & 16 \\ 0 & 1 & 1 & 0 & | & 2 \end{bmatrix}$$

Similarly

Systems of Linear Equations: Example

- The original system: Ax = b
- Choosind the first 3 columns as basis: $[B \ N] \ igg| igg| x_B \ x_N \ igg| = b$
- Multiply from the left with B^{-1}

$$oldsymbol{B} egin{array}{c} oldsymbol{B}^{-1} [oldsymbol{B} \ oldsymbol{N}] \left[oldsymbol{x}_{oldsymbol{N}}
ight] = [oldsymbol{I} \ oldsymbol{B}^{-1} oldsymbol{N}] \left[oldsymbol{x}_{oldsymbol{N}}
ight] = oldsymbol{B}^{-1} oldsymbol{b} \left[oldsymbol{x}_{oldsymbol{N}}
ight] = oldsymbol{B}^{-1} oldsymbol{b}$$

• Substituting into the form $x_B = B^{-1}b - B^{-1}Nx_N$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ -2 \end{bmatrix} - \begin{bmatrix} -\frac{7}{4} \\ -\frac{1}{4} \\ \frac{1}{4} \end{bmatrix} x_4$$

• x_4 can be chosen arbitrarily