
Introduction to Linear Programming

• Examples: resource optimization, the transportation
problem, flow problems, portfolio design

• Generic form of linear programs, basic definitions, matrix
notation

• General assumptions on problems that can be modeled with
a linear program

• Miscellaneous topics: nonnegativity of variables,
minimization and maximization, standard and canonical
forms, transition between the two

• Notations and linear algebra: vectors, matrices,
multiplication of matrices, the Euclidean space, linear
independence, linear equations, basic solutions

– p. 1

Optimal Resource Allocation

• Exercise: a paper mill manufactures two types of paper,
standard and deluxe

◦ 1
2

m3 of wood is needed to manufacture 1 m2 of paper

(both standard or deluxe)

◦ producing 1 m2 of standard paper takes 1 man-hour,

whereas 1 m2 of deluxe paper requires 2 man-hours

◦ every week 40 m3 wood and 100 man-hours of
workforce is available

◦ the profit is 3 thousand USD per 1 m2 of standard paper

and 4 thousand USD per 1 m2 of deluxe paper

• Question: how much standard and how much deluxe paper
should be produced by the paper mill per week to maximize
profits?

– p. 2

Modeling 1: Selecting Variables

• Optimal Resource Allocation/Product Mix problem:
optimal allocation of resources in order to maximize
production profit

• Choose two variables:

◦ x1: the quantity produced from standard paper [m2]

◦ x2: the quantity produced from deluxe paper [m2]

• For instance, x1 = 12, x2 = 20 means: 12 m2 of standard

and 20 m2 of deluxe paper produced, for which the mill uses

◦ 1
2
∗ 12 + 1

2
∗ 20 = 16 m3 wood and

◦ 1 ∗ 12 + 2 ∗ 20 = 52 man-hours of workforce,

◦ meanwhile realizing 3 ∗ 12 + 4 ∗ 20 = 116 thousands
USD profits

– p. 3

Modeling 2: Constraints

• Resource constraint: the available quantity of wood (40

m3) limits the amount of paper that can be produced:

1
2
x1 +

1
2
x2 ≤ 40

• Labor constraint: the available workforce (100 man-hours)
also limits the possible production mixes:

x1 + 2x2 ≤ 100

• Nonnegativity:

x1 ≥ 0, x2 ≥ 0

– p. 4

Modeling 3: The Objective Function

• The profits: 3x1 + 4x2 [thousand USD]

• Objective: to maximize profits:

max 3x1 + 4x2

in a way so that the amount of wood and workforce used
does not exceed the available quantities

– p. 5

Linear Program

max 3x1 + 4x2

s.t. 1
2
x1 + 1

2
x2 ≤ 40

x1 + 2x2 ≤ 100

x1, x2 ≥ 0

– p. 6

Linear programs: Basic Definitions

• Maximization of the objective function that is a linear
function of the decision variables/activities, or the
minimization of a linear cost function

• The solution meets the constraints that are also linear
functions of the variables

• The linear scaling constants are called objective function
coefficients and constraint coefficients

• The combinations of variables x1, x2 that meet the
constraints are called feasible solutions or feasible points

• The set of feasible solutions is called the feasible region

• The feasible solutions that maximize the objective function
(minimize the cost function) are called the optimal
(feasible) solutions (there can be more than one)

• Decision variables may be subject to nonnegativity or
nonpositivity constraints

– p. 7

Modeling Assumptions

• A problem can be modeled and solved by a linear program
only if the following assumptions all hold true

◦ Linearity: the objective function and the constraints are
the sums of linear products of the variables
– Proportionality: each decision variable contributes to

the objective function/constraints proportionally,
independently from the value of other variables (there
are no economies or returns to scale or discounts)

– Additivity: the objective/constraints are the sums of
the (linear) contributions of the variables (there is no
substitution/interaction among the variables)

◦ Divisibility/Continuity: the values of decision variables
can be fractions

◦ Determinism: the objective function and constraint
coefficients are known constants

– p. 8

The General Form of Linear Programs

max c1x1 + c2x2 + . . . + cnxn

s.t. a11x1 + a12x2 + . . . + a1nxn ≤ b1
a21x1 + a22x2 + . . . + a2nxn ≤ b2

...
...

. . .
...

...

am1x1 + am2x2 + . . . + amnxn ≤ bm

x1, x2, . . . , xn ≥ 0

– p. 9

The General Form of Linear Programs

• m: the number of rows, i.e., the number of constraints

• n: the number of columns, i.e., the number of variables

• cj : the objective coefficient for the j-th variable

•

n∑

j=1

cjxj : the objective/cost function

•

n∑

j=1

aijxj ≤ bi: the i-th constraint

◦ aij : constraint coefficients

◦ bi: the i-th “right-hand-side” (RHS)

– p. 10

The Matrix Form of Linear Programs

• The constraint matrix (m× n):

A =







a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn







• The objective function/cost vector (1× n, row vector):

cT = [c1 c2 . . . cn]

• The RHS vector (m× 1, column vector): b = [b1 b2 . . . bm]
T

• The vector of variables (n× 1, column vector):

x = [x1 x2 . . . xn]
T

– p. 11

The Matrix Form of Linear Programs

max
[
c1 c2 . . . cn

]
x

s.t.







a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn






x ≤







b1
b2

...

bm







x ≥ 0

max cTx

s.t. Ax ≤ b

x ≥ 0

– p. 12

Optimal Resource Allocation

max 3x1 + 4x2

s.t. 1
2
x1 +

1
2
x2 ≤ 40

x1 + 2x2 ≤ 100
x1, x2 ≥ 0

max
[

3 4
]
x

s.t.

[
1/2 1/2
1 2

]

x ≤

[
40
100

]

x ≥ 0

– p. 13

Electric Power Transmission

• Exercise: an electricity company supplies 4 cities out of 3
power plants; the demand at each city is given but the
capacity of the power plants is limited and the transmission
loss increases proportionally with the distance between a
city and a power plant

• Task: match cities to power plants in a way as to minimize
the overall transmission loss

– p. 14

Electric Power Transmission

• Transportation/transshipment problem: matching
demands to supplies in a way as to minimize loss

Plant City

Capacity City1 City2 City3 City4

Plant1 35 8 6 10 9

Plant2 50 9 12 13 7

Plant3 40 14 9 16 5

Demand 45 20 30 30

(Capacity: [GWh], Demand: [GWh], Cost: [million USD/GWh])

– p. 15

Modeling 1: Selecting Variables

• xij : the quantity of electricity to be transmitted from power

plant i to city j [GWh]

• For example, x14 means the quantity of electricity to be
transmitted from Plant1 to City4

– p. 16

Modeling 2: Constraints

• Supply constraints: the total amount of electricity to be
transmitted from power plant i cannot exceed its capacity:

4∑

j=1

xij ≤ capacityi

• Demand constraint: the amount of electricity to be
transmitted to city j must meet the demand and city j:

3∑

i=1

xij = demandj

• Nonnegativity: negative quantity of electricity cannot be
transmitted:

xij ≥ 0 ∀i ∈ {1, 2, 3}, ∀j ∈ {1, 2, 3, 4}

– p. 17

Modeling 3: The Cost Function

• The quantity of electricity transmitted from plant i to city j
equals xij , the cost of which due to transmission losses:

costijxij

• Objective: minimize the total cost:

min

3∑

i=1

4∑

j=1

costijxij

in a way so as to xij meet the demand, supply, and

nonnegativity constraints

– p. 18

Linear Program

min 8x11 + 6x12 + 10x13 + 9x14 + 9x21 + 12x22+

13x23 + 7x24 + 14x31 + 9x32 + 16x33 + 5x34

s.t. x11 + x12 + x13 + x14 ≤ 35
x21 + x22 + x23 + x24 ≤ 50
x31 + x32 + x33 + x34 ≤ 40

x11 + x21 + x31 = 45
x12 + x22 + x32 = 20
x13 + x23 + x33 = 30
x14 + x24 + x34 = 30

xij ≥ 0 ∀i ∈ {1, 2, 3},

∀j ∈ {1, 2, 3, 4}

– p. 19

Transshipment Problem: General Form

• Given m supply points,
where the capacity of the
i-th supply is si

• Given n demand points,
where the j-th demand is dj

• And the cost of transmission
of one unit of goods from
the supply point i to
demand point j is cij

• Minimize the total cost

– p. 20

Transshipment Problem: General Form

min

m∑

i=1

n∑

j=1

cijxij

s.t.

n∑

j=1

xij ≤ si ∀i ∈ {1, . . . ,m}

m∑

i=1

xij = dj ∀j ∈ {1, . . . , n}

xij ≥ 0 ∀i ∈ {1, . . . ,m},

∀j ∈ {1, . . . , n}

– p. 21

Direction of Optimization

• If the objective function represents

◦ profits: maximization

◦ cost: minimization

• Conversion:

max{cTx : Ax ≤ b,x ≥ 0} =

− 1 ∗min{−cTx : Ax ≤ b,x ≥ 0}

– p. 22

Constraints: Forms

• Inequality and equality: there are two types of constrains
in the transportation problem

◦ Supply constraint:
∑4

j=1
xij ≤ capacityi

◦ Demand constraint:
∑3

i=1 xij = demandj

• Conversion: inequality → equality

◦ “≤” type inequality: by adding an artificial slack variable
n∑

j=1

aijxj ≤ bi ⇐⇒

n∑

j=1

aijxj + xsi
= bi, xsi

≥ 0

– p. 23

Constraints: Forms

• Conversion: inequality → equality

◦ “≥” type inequality: by subtracting an artificial slack
variable

n∑

j=1

aijxj ≥ bi ⇐⇒

n∑

j=1

aijxj − xsi
= bi, xsi

≥ 0

• Conversion: equality → inequality

◦ a “=” type constraint can be substituted with a “≤” type
and a “≥” type constraint

n∑

j=1

aijxj = bi ⇐⇒

n∑

j=1

aijxj ≤ bi

n∑

j=1

aijxj ≥ bi

– p. 24

Nonnegativity

• In practice the variables are almost always constrained as
nonnegative

• Substituting a nonpositive variable: xj = −x′
j

xj ≤ 0 x′
j ≥ 0

aijxj ⇐⇒ −aijx
′
j

cjxj −cjx
′
j

• Substituting a free variable: xj = x′
j − x′′

j

xj S 0 x′
j ≥ 0, x′′

j ≥ 0

aijxj ⇐⇒ aij(x
′
j − x′′

j)
cjxj cj(x

′
j − x′′

j)

– p. 25

The Canonical and the Standard Forms

Minimization Maximization

Standard form

min cTx

s.t. Ax = b

x ≥ 0

max cTx

s.t. Ax = b

x ≥ 0

Canonical form

min cTx

s.t. Ax ≥ b

x ≥ 0

max cTx

s.t. Ax ≤ b

x ≥ 0

– p. 26

Logistics

• Exercise: a transportation company can use the below list
of freight ship routes between points A, B, C, D and E,
each with limited capacity (u, [t]) and operating at specific
price per tonne of cargo (c, [million USD/t])

c/u A B C D E

A - 2/7 1/10 - -

B - - - 4/6 -

C - - - 3/8 15/60

D - - - - 5/10

E - - - - -

• Task: to ship 15 tonnes of cargo from point A to point E at
minimal transportation cost

– p. 27

Logistics

• Flow problem: generalization of the transportation problem

◦ connection exists only between a subset of points

◦ capacity of connections is limited

• Connections make up a capacitated graph G(V,E), with V
being the ports and E being the set of ship routes

– p. 28

Flow problem

• xij : quantity of goods to be transported between point i and

j [t]

• x defines a flow on graph G(V,E):

◦ capacity constraint: ∀(i, j) ∈ E : xij ≤ uij

◦ flow conservation: the difference between the amount
of flow entering point i and the amount of flow leaving it
equals the difference of the demand and supply at i:

∀i ∈ V :
∑

j:(j,i)∈E

xji −
∑

j:(i,j)∈E

xij = di

◦ nonnegativity: ∀(i, j) ∈ E : xij ≥ 0

• Total cost:
∑

(i,j)∈E cijxij

– p. 29

Logistics

min 2xAB + xAC + 4xBD + 3xCD + 15xCE + 5xDE

s.t. −xAB − xAC = −15
xAB − xBD = 0

+ xAC − xCD − xCE = 0
xBD xCD − xDE = 0

xCE + xDE = 15
xAB ≤ 7

xAC ≤ 10
xBD ≤ 6

xCD ≤ 8
xCE ≤ 60

xDE ≤ 10

xAB , xAC , xBD , xCD , xCE , xDE ≥ 0

– p. 30

Logistics: Matrix Form

N =








−1 −1 0 0 0 0
1 0 −1 0 0 0
0 1 0 −1 −1 0
0 0 1 1 0 −1
0 0 0 0 1 1







, d =








−15
0
0
0
15








cT = [2 1 4 3 15 5], x =










xAB

xAC

xBD

xCD

xCE

xDE










, u =










7
10
6
8
60
10










– p. 31

The Minimal Cost Flow Problem

min cTx

s.t. Nx = d

x ≤ u

x ≥ 0

• Here the matrix N is representative for the graph G (see
later)

◦ node-arc incidence matrix

◦ notation: N

– p. 32

Logistics

• Exercise: this time not only one but two transportation
companies provide transshipment service over the
aforementioned ship routes: the first company carries 15
tonnes of goods from point A to point E whereas the
second one ships 20 tonnes between C and E

• Task: compute the minimal-cost allocation of transshipment
capacities, subject to ship capacities

– p. 33

Logistics

• xk
ij : the amount of goods to be shipped from point i to point

j by company k [t]

• The goods do not mix, therefore for each k the variables

xk
ij : (i, j) ∈ E define a flow, satisfying (independently from

other ks)

◦ the flow conservation constraints: Nxk = dk

◦ and nonnegativity: xk ≥ 0

• The total quantity of cargo allocated to a particular ship

cannot exceed its capacity: x1 + x2 ≤ u

– p. 34

Logistics

• For the first transportation company:

d1 =








−15
0
0
0
15







, x1 =










x1
AB

x1
AC

x1
BD

x1
CD

x1
CE

x1
DE










• For the second transportation company:

d2 =








0
0

−20
0
20







, x2 =










x2
AB

x2
AC

x2
BD

x2
CD

x2
CE

x2
DE










– p. 35

Multicommodity Flow Problem

min
∑

k∈K

cTxk

s.t. Nxk = dk ∀k ∈ K
∑

k∈K

xk ≤ u

xk ≥ 0 ∀k ∈ K

• K: the set of “goods” or commodities

– p. 36

Portfolio Design

• Exercise: the task is to design the financing for a 4 year
construction project

◦ construction works scheduled for the first year cost 2
million USD, 4 million in the second year, 8 million USD
in the third and 5 million in the fourth year

◦ costs will be covered by bonds (“debt instruments”) that
must be paid back continuously for 20 years from the
completion of the construction (“maturity is 20 years”)

◦ the expected bond interest rate is 7% for the first year,
6% for the second year, then 6.5% and 7.5%

◦ the money not spent on the construction can be invested
into short-term securities, for which interest rates for the
first year is 6%, 5.5% for the second year, and 4.5% for
the third year (in the fourth year it is not worth investing)

• Task: choose the optimal portfolio

– p. 37

Portfolio Design

• Determine the optimal schedule for bond issuance and
short-term investment

◦ bonds must be paid back, interest rates depend on the
year of issuance

◦ a fixed portion of the income must be spent to cover
construction costs

◦ the rest can be invested into short-term securities to
cover the bond coupons to be paid back

◦ how to schedule bond issuance and short-term
investment in each year in order to minimize the total
cost of the construction, given the anticipated interest
rates?

– p. 38

Portfolio Design

• xj : j = 1, . . . , 4: the quantity of bonds issued at the

beginning of year j [million USD]

• yj : j = 1, . . . , 3: assets invested into short-term securities

at the beginning of year j [million USD]

• In the first year, part of the income x1 must be spent on the
construction (2 million USD), the rest (y1) can be invested

x1 = 2 + y1

• In the second year

◦ income: from bond issuance x2 plus the amount earned
from previous year’s investments with premium (1.06y1)

◦ expenditure: construction work (4 million USD) plus
additional short-term investment (y2)

x2 + 1.06y1 = 4 + y2

– p. 39

Portfolio Design

• In the third year

◦ income: from bond issuance x3 plus the amount earned
from previous year’s investments with premium (1.055y2)

◦ expenditure: construction work (8 million USD) plus
additional short-term investment (y3)

x3 + 1.055y2 = 8 + y3

• In the fourth year

◦ income: from bond issuance x4 plus the amount earned
from previous year’s investments with premium (1.045y3)

◦ expenditure: construction work (5 million USD), no new
short-term investment (end of financial period)

x4 + 1.045y3 = 5

– p. 40

Portfolio Design

• Objective: minimize the premium (interest on bonds) that is
to be paid back to investors

• Maturity is 20 years, according to the interest rate at the
year of issuance

◦ interest on the bonds issued in the first year:

(20 ∗ 0.07)x1

◦ interest on the bonds issued in the second year:

(20 ∗ 0.06)x2

◦ interest on the bonds issued in the third year:

(20 ∗ 0.065)x3

◦ interest on the bonds issued in the fourth year:

(20 ∗ 0.075)x4

– p. 41

Portfolio Design

min (20 ∗ 0.07)x1 + (20 ∗ 0.06)x2 +

(20 ∗ 0.065)x3 + (20 ∗ 0.075)x4

s.t. x1 − y1 = 2

1.06y1 + x2 − y2 = 4

1.055y2 + x3 − y3 = 8

1.045y3 + x4 = 5

xj ≥ 0 ∀i ∈ {1, . . . , 4}

yj ≥ 0 ∀i ∈ {1, . . . , 3}

– p. 42

Applications of Linear Programming

• Management science/Operations research

◦ resource allocation

◦ portfolio design

• Logistics

◦ transportation problems

◦ production planning

• Telecommunications

◦ network optimization

◦ routing and traffic engineering

– p. 43

Notation: Vectors

• Column n-vector: x = [xi] =







x1

x2
...

xn







, with elements xi

• Row m-vector: xT = [xj] =
[
x1 . . . xm

]
, elements (or

components) xj , notation (.)T is for transposition

• Vectors are sometimes also called points

• Zero vector: 0 and 1-vector (each element equals 1): 1

• The i-th canonical unit vector: ei, ei
T

ei
T =

[
0 0 . . . 1 . . . 0

]

︸ ︷︷ ︸
1 at position i

– p. 44

Operations on Vectors

• Sum of vectors: according to the Parallelogram Law

x+ y =







x1

x2
...

xn






+







y1
y2
...

yn







=







x1 + y1
x2 + y2

...

xn + yn







• Multiplying a vector with a scalar: λx = [λxi]

• The scalar product of a row n-vector and a column
n-vector

xTy =

n∑

i=1

xiyi

– p. 45

Linear Independence

• A vector b is a linear combination of vectors a1, a2, . . .,

ak, if b =

k∑

i=1

λiai for some real scalars λ1, λ2, . . . , λk

• Vectors a1,a2, . . . ,ak are linearly independent, if

k∑

i=1

λiai = 0 ⇒ ∀i = {1, 2, . . . , k} : λi = 0

• Real n-vectors a1,a2, . . . ,ak ∈ Rn span the vector space

V ⊆ Rn, if each vector b ∈ V can be written as a linear
combination of vectors ai

• The minimal set of n-vectors a1, a2, . . ., ak that span V is
called a basis of V , and k is the dimension of V

– p. 46

Notation: Matrices

• A mátrix A of size m× n

A = [aij] =







a11 a12 · · · a1n
a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn






=







a1

a2

...

am






= [a1,a2, . . . ,an]

• A zero matrix is a matrix whose all elements are 0

• The n× n (canonical) unit matrix

In =







1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1







– p. 47

Operations on Matrices

• Sum of matrices: of A and B are m× n then

A+B = [aij + bij]

• Matrix multiplication: the multiple of matrix A (m× p) and
matrix B (p× n) is matrix C = AB (m× n)

cij =

p∑

k=1

aikbkj = aibj

• If A is n× n quadratic and there is matrix A−1 so that

AA−1 = In, then A−1 is called the inverse of A

• The maximal number of linearly independent rows (or
columns) of A is called the rank of A

• The inverse exists if all rows (or columns) of A are linearly
independent (A is nonsingular)

– p. 48

Determinant

• The determinant of a real valued n× n matrix A is

detA =

n∑

i=1

aijAij ,

where aij is the element in position (i, j) of A and Aij is the

cofactor of aij , which is obtained by removing row i and

column j from A and then taking the determinant multiplied

by (−1)i+j

• detA = detAT

• if B is obtained by swapping two columns or rows of A then

detB = − detA

• A is nonsingular if and only if detA 6= 0

– p. 49

Systems of Linear Equations

• Let A be an m× n matrix and let b be a column m-vector

• We seek a column n-vector x so that Ax = b

• If b is linearly independent from the column vectors of A
then it cannot be written as the linear combination of A’s
columns: no solution exists

• Let rank(A) = rank(A, b) = k

• Reorder the rows of A and b so that the first k rows contain
the linearly independent rows

A =

[
A1

A2

]

, b =

[
b1
b2

]

,

where A1 is k × n with rank(A1) = k and A2 is

(m− k)× n, and b1 is a column k-vector and b2 is a

column (m− k)-vector
– p. 50

Systems of Linear Equations

• If A1x = b1 then A2x = b2 automatically holds, as the

rows of [A2 b2] can be written as a linear combination of the

rows of [A1 b1]: we can safely ignore the rows of A2x = b2

• Since rank(A1) = k, we can select k linearly independent

columns from A1

• Rearrange the columns of A1 so that the first k columns are

linearly independent: A1 = [B N] where

◦ B is a k × k quadratic, nonsingular matrix, called the
basis matrix

◦ N is k × (n− k), called the (nonbasic matrix)

• Similarly, reorder the elements of x accordingly:

x =

[
xB

xN

]

, where xB contains the variables corresponding

to the columns of B and xN contains the rest

– p. 51

Systems of Linear Equations

• The rearranged system

[B N]

[
xB

xN

]

= b1, vagyis BxB +NxN = b1

• Multiply by the inverse of B from the left and rearrange

xB = B−1b1 −B−1NxN

• If k = n then we have a unique solution: xB = B−1b1
(basic solution)

• If k < n then xN can be chosen arbitrarily, the number of
solutions is infinite

– p. 52

Systems of Linear Equations: Example

x1 + 2x2 + x3 − 2x4 = 10
− x1 + 2x2 − x3 + x4 = 6

x2 + x3 = 2

• In matrix form

[
1 2 1 −2

−1 2 −1 1
0 1 1 0

]

x =

[
10
6
2

]

• We search for a basic solution: perform Gaussian

Elimination on (A, b)





1 2 1 −2 10
−1 2 −1 1 6
0 1 1 0 2





– p. 53

Systems of Linear Equations: Example

• Add the first row to the second one:





1 2 1 −2 10

0 4 0 −1 16
0 1 1 0 2





• Similarly




1 0 1 −3
2

2
0 1 0 −1

4
4

0 0 1 1
4

−2





[
1 0 0 −7

4
4

0 1 0 −1
4

4
0 0 1 1

4
−2

]

– p. 54

Systems of Linear Equations: Example

• The original system: Ax = b

• Choosind the first 3 columns as basis: [B N]

[
xB

xN

]

= b

• Multiply from the left with B−1

B−1[B N]

[
xB

xN

]

= [I B−1N]

[
xB

xN

]

= B−1b

• Substituting into the form xB = B−1b−B−1NxN

[
x1

x2

x3

]

=

[
4
4

−2

]

−

[
−7

4

−1
4
1
4

]

x4

• x4 can be chosen arbitrarily
– p. 55

	Introduction to Linear Programming
	Optimal Resource Allocation
	Modeling 1: Selecting Variables
	Modeling 2: Constraints
	Modeling 3: The Objective Function
	Linear Program
	Linear programs: Basic Definitions
	Modeling Assumptions
	The General Form of Linear Programs
	The General Form of Linear Programs
	The Matrix Form of Linear Programs
	The Matrix Form of Linear Programs
	Optimal Resource Allocation
	Electric Power Transmission
	Electric Power Transmission
	Modeling 1: Selecting Variables
	Modeling 2: Constraints
	Modeling 3: The Cost Function
	Linear Program
	Transshipment Problem: General Form
	Transshipment Problem: General Form
	Direction of Optimization
	Constraints: Forms
	Constraints: Forms
	Nonnegativity
	The Canonical and the Standard Forms
	Logistics
	Logistics
	Flow problem
	Logistics
	Logistics: Matrix Form
	The Minimal Cost Flow Problem
	Logistics
	Logistics
	Logistics
	Multicommodity Flow Problem
	Portfolio Design
	Portfolio Design
	Portfolio Design
	Portfolio Design
	Portfolio Design
	Portfolio Design
	Applications of Linear Programming
	Notation: Vectors
	Operations on Vectors
	Linear Independence
	Notation: Matrices
	Operations on Matrices
	Determinant
	Systems of Linear Equations
	Systems of Linear Equations
	Systems of Linear Equations
	Systems of Linear Equations: Example
	Systems of Linear Equations: Example
	Systems of Linear Equations: Example

