Introduction to Linear Programming

- Examples: resource optimization, the transportation problem, flow problems, portfolio design
- Generic form of linear programs, basic definitions, matrix notation
- General assumptions on problems that can be modeled with a linear program
- Miscellaneous topics: nonnegativity of variables, minimization and maximization, standard and canonical forms, transition between the two
- Notations and linear algebra: vectors, matrices, multiplication of matrices, the Euclidean space, linear independence, linear equations, basic solutions

Optimal Resource Allocation

- Exercise: a paper mill manufactures two types of paper, standard and deluxe
- $\frac{1}{2} \mathrm{~m}^{3}$ of wood is needed to manufacture $1 \mathrm{~m}^{2}$ of paper (both standard or deluxe)
- producing $1 \mathrm{~m}^{2}$ of standard paper takes 1 man-hour, whereas $1 \mathrm{~m}^{2}$ of deluxe paper requires 2 man-hours
- every week $40 \mathrm{~m}^{3}$ wood and 100 man-hours of workforce is available
- the profit is 3 thousand USD per $1 \mathrm{~m}^{2}$ of standard paper and 4 thousand USD per $1 \mathrm{~m}^{2}$ of deluxe paper
- Question: how much standard and how much deluxe paper should be produced by the paper mill per week to maximize profits?

Modeling 1: Selecting Variables

- Optimal Resource Allocation/Product Mix problem: optimal allocation of resources in order to maximize production profit
- Choose two variables:
- x_{1} : the quantity produced from standard paper $\left[\mathrm{m}^{2}\right]$
- x_{2} : the quantity produced from deluxe paper $\left[\mathrm{m}^{2}\right]$
- For instance, $x_{1}=12, x_{2}=20$ means: $12 \mathrm{~m}^{2}$ of standard and $20 \mathrm{~m}^{2}$ of deluxe paper produced, for which the mill uses
- $\frac{1}{2} * 12+\frac{1}{2} * 20=16 \mathrm{~m}^{3}$ wood and
- $1 * 12+2 * 20=52$ man-hours of workforce,
- meanwhile realizing $3 * 12+4 * 20=116$ thousands USD profits

Modeling 2: Constraints

- Resource constraint: the available quantity of wood (40 m^{3}) limits the amount of paper that can be produced:

$$
\frac{1}{2} x_{1}+\frac{1}{2} x_{2} \leq 40
$$

- Labor constraint: the available workforce (100 man-hours) also limits the possible production mixes:

$$
x_{1}+2 x_{2} \leq 100
$$

- Nonnegativity:

$$
x_{1} \geq 0, \quad x_{2} \geq 0
$$

Modeling 3: The Objective Function

- The profits: $3 x_{1}+4 x_{2}$ [thousand USD]
- Objective: to maximize profits:

$$
\max 3 x_{1}+4 x_{2}
$$

in a way so that the amount of wood and workforce used does not exceed the available quantities

Linear Program

$$
\begin{array}{ll}
\max & 3 x_{1}+4 x_{2} \\
& \\
\text { s.t. } & \frac{1}{2} x_{1}+\frac{1}{2} x_{2} \leq 40 \\
& x_{1}+2 x_{2} \leq 100 \\
& x_{1}, \quad x_{2} \geq 0
\end{array}
$$

Linear programs: Basic Definitions

- Maximization of the objective function that is a linear function of the decision variables/activities, or the minimization of a linear cost function
- The solution meets the constraints that are also linear functions of the variables
- The linear scaling constants are called objective function coefficients and constraint coefficients
- The combinations of variables x_{1}, x_{2} that meet the constraints are called feasible solutions or feasible points
- The set of feasible solutions is called the feasible region
- The feasible solutions that maximize the objective function (minimize the cost function) are called the optimal (feasible) solutions (there can be more than one)
- Decision variables may be subject to nonnegativity or nonpositivity constraints

Modeling Assumptions

- A problem can be modeled and solved by a linear program only if the following assumptions all hold true
- Linearity: the objective function and the constraints are the sums of linear products of the variables
- Proportionality: each decision variable contributes to the objective function/constraints proportionally, independently from the value of other variables (there are no economies or returns to scale or discounts)
- Additivity: the objective/constraints are the sums of the (linear) contributions of the variables (there is no substitution/interaction among the variables)
- Divisibility/Continuity: the values of decision variables can be fractions
- Determinism: the objective function and constraint coefficients are known constants

The General Form of Linear Programs

\max	$c_{1} x_{1}$	+	$c_{2} x_{2}$	+	\ldots	+	$c_{n} x_{n}$		
s.t.	$a_{11} x_{1}$	+	$a_{12} x_{2}$	+	\ldots	+	$a_{1 n} x_{n}$	\leq	b_{1}
	$a_{21} x_{1}$	+	$a_{22} x_{2}$	+	\ldots	+	$a_{2 n} x_{n}$	\leq	b_{2}
	\vdots		\vdots		\ddots		\vdots		\vdots
	$a_{m 1} x_{1}$	+	$a_{m 2} x_{2}$	+	\ldots	+	$a_{m n} x_{n}$	\leq	b_{m}
	x_{1},		x_{2},		\ldots,	x_{n}	≥ 0		

The General Form of Linear Programs

- m : the number of rows, i.e., the number of constraints
- n : the number of columns, i.e., the number of variables
- c_{j} : the objective coefficient for the j-th variable
- $\sum_{j=1}^{n} c_{j} x_{j}$: the objective/cost function
- $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}$: the i-th constraint
- $a_{i j}$: constraint coefficients
- b_{i} : the i-th "right-hand-side" (RHS)

The Matrix Form of Linear Programs

- The constraint matrix $(m \times n)$:

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

- The objective function/cost vector ($1 \times n$, row vector): $\boldsymbol{c}^{T}=\left[\begin{array}{llll}c_{1} & c_{2} & \ldots & c_{n}\end{array}\right]$
- The RHS vector ($m \times 1$, column vector): $\boldsymbol{b}=\left[\begin{array}{llll}b_{1} & b_{2} & \ldots & b_{m}\end{array}\right]^{T}$
- The vector of variables ($n \times 1$, column vector):

$$
\boldsymbol{x}=\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right]^{T}
$$

The Matrix Form of Linear Programs

$$
\begin{aligned}
\max & {\left[\begin{array}{cccc}
c_{1} & c_{2} & \ldots & c_{n}
\end{array}\right] \boldsymbol{x} } \\
\text { s.t. } & {\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right] \boldsymbol{x} }
\end{aligned}
$$

$$
\begin{array}{cc}
\max & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

Optimal Resource Allocation

$$
\begin{array}{cc}
\max & 3 x_{1}+4 x_{2} \\
\text { s.t. } & \frac{1}{2} x_{1}+\frac{1}{2} x_{2} \leq 40 \\
& x_{1}+2 x_{2} \leq 100 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

$\max \begin{array}{cc}{[3} & 4] \boldsymbol{x}\end{array}$
s.t. $\quad \begin{aligned} {\left[\begin{array}{rr}1 / 2 & 1 / 2 \\ 1 & 2\end{array}\right] \boldsymbol{x} } & \leq\left[\begin{array}{r}40 \\ 100\end{array}\right] \\ \boldsymbol{x} & \geq 0\end{aligned}$

Electric Power Transmission

- Exercise: an electricity company supplies 4 cities out of 3 power plants; the demand at each city is given but the capacity of the power plants is limited and the transmission loss increases proportionally with the distance between a city and a power plant
- Task: match cities to power plants in a way as to minimize the overall transmission loss

Electric Power Transmission

- Transportation/transshipment problem: matching demands to supplies in a way as to minimize loss

Plant		City			
	Capacity	City1	City2	City3	City4
Plant1	35	8	6	10	9
Plant2	50	9	12	13	7
Plant3	40	14	9	16	5
Demand		45	20	30	30

(Capacity: [GWh], Demand: [GWh], Cost: [million USD/GWh])

Modeling 1: Selecting Variables

- $x_{i j}$: the quantity of electricity to be transmitted from power plant i to city j [GWh]
- For example, x_{14} means the quantity of electricity to be transmitted from Plant1 to City4

Modeling 2: Constraints

- Supply constraints: the total amount of electricity to be transmitted from power plant i cannot exceed its capacity:

$$
\sum_{j=1}^{4} x_{i j} \leq \text { capacity }_{i}
$$

- Demand constraint: the amount of electricity to be transmitted to city j must meet the demand and city j :

$$
\sum_{i=1}^{3} x_{i j}=\text { demand }_{j}
$$

- Nonnegativity: negative quantity of electricity cannot be transmitted:

$$
x_{i j} \geq 0 \quad \forall i \in\{1,2,3\}, \forall j \in\{1,2,3,4\}
$$

Modeling 3: The Cost Function

- The quantity of electricity transmitted from plant i to city j equals $x_{i j}$, the cost of which due to transmission losses:

$$
\operatorname{cost}_{i j} x_{i j}
$$

- Objective: minimize the total cost:

$$
\min \sum_{i=1}^{3} \sum_{j=1}^{4} \operatorname{cost}_{i j} x_{i j}
$$

in a way so as to $x_{i j}$ meet the demand, supply, and nonnegativity constraints

Linear Program

min

$$
8 x_{11}+6 x_{12}+10 x_{13}+9 x_{14}+9 x_{21}+12 x_{22}+
$$

$$
13 x_{23}+7 x_{24}+14 x_{31}+9 x_{32}+16 x_{33}+5 x_{34}
$$

$$
\begin{aligned}
& \text { s.t. } x_{11}+x_{12}+x_{13}+x_{14} \leq 35 \\
& x_{21}+x_{22}+x_{23}+x_{24} \leq 50 \\
& x_{31}+x_{32}+x_{33}+x_{34} \leq 40 \\
& x_{11}+x_{21}+x_{31}=45 \\
& x_{12}+x_{22}+x_{32}=20 \\
& x_{13}+x_{23}+x_{33}=30 \\
& x_{14}+x_{24}+x_{34}=30 \\
& x_{i j} \geq 0 \quad \forall i \in\{1,2,3\}, \\
& \forall j \in\{1,2,3,4\}
\end{aligned}
$$

Transshipment Problem: General Form

- Given m supply points, where the capacity of the i-th supply is s_{i}
- Given n demand points, where the j-th demand is d_{j}
- And the cost of transmission of one unit of goods from the supply point i to demand point j is $c_{i j}$
- Minimize the total cost

Transshipment Problem: General Form

$$
\begin{aligned}
\min \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} & \\
\text { s.t. } \sum_{j=1}^{n} x_{i j} \leq s_{i} & \forall i \in\{1, \ldots, m\} \\
\sum_{i=1}^{m} x_{i j}=d_{j} & \forall j \in\{1, \ldots, n\} \\
x_{i j} \geq 0 & \forall i \in\{1, \ldots, m\}, \\
& \forall j \in\{1, \ldots, n\}
\end{aligned}
$$

Direction of Optimization

- If the objective function represents
- profits: maximization
- cost: minimization
- Conversion:

$$
\begin{aligned}
\max \left\{\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x} \leq\right. & \boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\}= \\
& -1 * \min \left\{-\boldsymbol{c}^{T} \boldsymbol{x}: \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}
\end{aligned}
$$

Constraints: Forms

- Inequality and equality: there are two types of constrains in the transportation problem
- Supply constraint: $\sum_{j=1}^{4} x_{i j} \leq$ capacity $_{i}$
- Demand constraint: $\sum_{i=1}^{3} x_{i j}=$ demand $_{j}$
- Conversion: inequality \rightarrow equality
- " \leq " type inequality: by adding an artificial slack variable

$$
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \Longleftrightarrow \sum_{j=1}^{n} a_{i j} x_{j}+x_{s_{i}}=b_{i}, \quad x_{s_{i}} \geq 0
$$

Constraints: Forms

- Conversion: inequality \rightarrow equality
- " \geq " type inequality: by subtracting an artificial slack variable

$$
\sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} \Longleftrightarrow \sum_{j=1}^{n} a_{i j} x_{j}-x_{s_{i}}=b_{i}, \quad x_{s_{i}} \geq 0
$$

- Conversion: equality \rightarrow inequality
- a "=" type constraint can be substituted with a " \leq " type and a " \geq " type constraint

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j}=b_{i} \Longleftrightarrow & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \\
& \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i}
\end{aligned}
$$

Nonnegativity

- In practice the variables are almost always constrained as nonnegative
- Substituting a nonpositive variable: $x_{j}=-x_{j}^{\prime}$

$$
\begin{gathered}
x_{j} \leq 0 \\
a_{i j} x_{j} \\
c_{j} x_{j}
\end{gathered} \Longleftrightarrow \begin{aligned}
& x_{j}^{\prime} \geq 0 \\
& -a_{i j} x_{j}^{\prime} \\
& -c_{j} x_{j}^{\prime}
\end{aligned}
$$

- Substituting a free variable: $x_{j}=x_{j}^{\prime}-x_{j}^{\prime \prime}$

$$
\begin{gathered}
x_{j} \equiv 0 \\
a_{i j} x_{j}
\end{gathered} \Longleftrightarrow \begin{gathered}
x_{j}^{\prime} \geq 0, x_{j}^{\prime \prime} \geq 0 \\
c_{j} x_{j}
\end{gathered} \Longleftrightarrow \begin{gathered}
a_{i j}\left(x_{j}^{\prime}-x_{j}^{\prime \prime}\right) \\
c_{j}\left(x_{j}^{\prime}-x_{j}^{\prime \prime}\right)
\end{gathered}
$$

The Canonical and the Standard Forms

	Minimization	Maximization
Standard form	$\begin{aligned} \min & \boldsymbol{c}^{T} \boldsymbol{x} \\ \text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\ & \boldsymbol{x} \geq \mathbf{0} \end{aligned}$	$\begin{aligned} \max & \boldsymbol{c}^{T} \boldsymbol{x} \\ \text { s.t. } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \\ & \boldsymbol{x} \geq \mathbf{0} \end{aligned}$
Canonical form	$\begin{gathered} \min \boldsymbol{c}^{T} \boldsymbol{x} \\ \text { s.t. } \boldsymbol{A} \boldsymbol{x} \geq \boldsymbol{b} \\ \boldsymbol{x} \geq \mathbf{0} \end{gathered}$	$\begin{gathered} \max \boldsymbol{c}^{T} \boldsymbol{x} \\ \text { s.t. } \boldsymbol{A x} \leq \boldsymbol{b} \\ \boldsymbol{x} \geq \mathbf{0} \end{gathered}$

Logistics

- Exercise: a transportation company can use the below list of freight ship routes between points A, B, C, D and E, each with limited capacity $(u$, $[\mathrm{t}]$) and operating at specific price per tonne of cargo (c, [million USD/t])

c / u	A	B	C	D	E
A	-	$2 / 7$	$1 / 10$	-	-
B	-	-	-	$4 / 6$	-
C	-	-	-	$3 / 8$	$15 / 60$
D	-	-	-	-	$5 / 10$
E	-	-	-	-	-

- Task: to ship 15 tonnes of cargo from point A to point E at minimal transportation cost

Logistics

- Flow problem: generalization of the transportation problem
- connection exists only between a subset of points
- capacity of connections is limited
- Connections make up a capacitated graph $G(V, E)$, with V being the ports and E being the set of ship routes

Flow problem

- $x_{i j}$: quantity of goods to be transported between point i and j [t]
- x defines a flow on graph $G(V, E)$:
- capacity constraint: $\forall(i, j) \in E: x_{i j} \leq u_{i j}$
- flow conservation: the difference between the amount of flow entering point i and the amount of flow leaving it equals the difference of the demand and supply at i :

$$
\forall i \in V: \sum_{j:(j, i) \in E} x_{j i}-\sum_{j:(i, j) \in E} x_{i j}=d_{i}
$$

- nonnegativity: $\forall(i, j) \in E: x_{i j} \geq 0$
- Total cost: $\sum_{(i, j) \in E} c_{i j} x_{i j}$

Logistics

$$
\begin{aligned}
& \min 2 x_{A B}+x_{A C}+4 x_{B D}+3 x_{C D}+15 x_{C E}+5 x_{D E}
\end{aligned}
$$

$$
\begin{aligned}
& x_{A B}, \quad x_{A C}, \quad x_{B D}, \quad x_{C D}, \quad x_{C E}, \quad x_{D E} \geq 0
\end{aligned}
$$

Logistics: Matrix Form

$$
\begin{gathered}
\boldsymbol{N}=\left[\begin{array}{rrrrrr}
-1 & -1 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & -1 & 0 \\
0 & 0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right], \quad \boldsymbol{d}=\left[\begin{array}{r}
-15 \\
0 \\
0 \\
0 \\
15
\end{array}\right] \\
\boldsymbol{c}^{T}=\left[\begin{array}{llllll}
2 & 1 & 4 & 3 & 15 & 5
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{c}
x_{A B} \\
x_{A C} \\
x_{B D} \\
x_{C D} \\
x_{C E} \\
x_{D E}
\end{array}\right], \quad \boldsymbol{u}=\left[\begin{array}{r}
7 \\
10 \\
6 \\
8 \\
60 \\
10
\end{array}\right]
\end{gathered}
$$

The Minimal Cost Flow Problem

$$
\begin{array}{cc}
\min & \boldsymbol{c}^{T} \boldsymbol{x} \\
\text { s.t. } & \boldsymbol{N} \boldsymbol{x}=\boldsymbol{d} \\
& \boldsymbol{x} \leq \boldsymbol{u} \\
& \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

- Here the matrix \boldsymbol{N} is representative for the graph G (see later)
- node-arc incidence matrix
- notation: \boldsymbol{N}

Logistics

- Exercise: this time not only one but two transportation companies provide transshipment service over the aforementioned ship routes: the first company carries 15 tonnes of goods from point A to point E whereas the second one ships 20 tonnes between C and E
- Task: compute the minimal-cost allocation of transshipment capacities, subject to ship capacities

Logistics

- $x_{i j}^{k}$: the amount of goods to be shipped from point i to point j by company k [t]
- The goods do not mix, therefore for each k the variables $x_{i j}^{k}:(i, j) \in E$ define a flow, satisfying (independently from other k s)
- the flow conservation constraints: $\boldsymbol{N} \boldsymbol{x}^{k}=\boldsymbol{d}^{k}$
- and nonnegativity: $\boldsymbol{x}^{k} \geq \mathbf{0}$
- The total quantity of cargo allocated to a particular ship cannot exceed its capacity: $\boldsymbol{x}^{1}+\boldsymbol{x}^{2} \leq \boldsymbol{u}$

Logistics

- For the first transportation company:

$$
\boldsymbol{d}^{1}=\left[\begin{array}{r}
-15 \\
0 \\
0 \\
0 \\
15
\end{array}\right], \quad \boldsymbol{x}^{1}=\left[\begin{array}{c}
x_{A B}^{1} \\
x_{A C}^{1} \\
x_{B D}^{1} \\
x_{C D}^{1} \\
x_{C E}^{1} \\
x_{D E}^{1}
\end{array}\right]
$$

- For the second transportation company

$$
\boldsymbol{d}^{2}=\left[\begin{array}{r}
0 \\
0 \\
-20 \\
0 \\
20
\end{array}\right], \quad \boldsymbol{x}^{2}=\left[\begin{array}{c}
x_{A B}^{2} \\
x_{A C}^{2} \\
x_{B D}^{2} \\
x_{C D}^{2} \\
x_{C E}^{2} \\
x_{D E}^{2}
\end{array}\right]
$$

Multicommodity Flow Problem

$$
\begin{array}{lll}
\min & \sum_{k \in K} \boldsymbol{c}^{T} \boldsymbol{x}^{k} \\
\text { s.t. } & \boldsymbol{N} \boldsymbol{x}^{k}=\boldsymbol{d}^{k} \quad \forall k \in K \\
& \sum_{k \in K} \boldsymbol{x}^{k} \leq \boldsymbol{u} \\
& \boldsymbol{x}^{k} \geq \mathbf{0} \quad \forall k \in K
\end{array}
$$

- K : the set of "goods" or commodities

Portfolio Design

- Exercise: the task is to design the financing for a 4 year construction project
- construction works scheduled for the first year cost 2 million USD, 4 million in the second year, 8 million USD in the third and 5 million in the fourth year
- costs will be covered by bonds ("debt instruments") that must be paid back continuously for 20 years from the completion of the construction ("maturity is 20 years")
- the expected bond interest rate is 7% for the first year, 6% for the second year, then 6.5% and 7.5%
- the money not spent on the construction can be invested into short-term securities, for which interest rates for the first year is $6 \%, 5.5 \%$ for the second year, and 4.5% for the third year (in the fourth year it is not worth investing)
- Task: choose the optimal portfolio

Portfolio Design

- Determine the optimal schedule for bond issuance and short-term investment
- bonds must be paid back, interest rates depend on the year of issuance
- a fixed portion of the income must be spent to cover construction costs
- the rest can be invested into short-term securities to cover the bond coupons to be paid back
- how to schedule bond issuance and short-term investment in each year in order to minimize the total cost of the construction, given the anticipated interest rates?

Portfolio Design

- $x_{j}: j=1, \ldots, 4$: the quantity of bonds issued at the beginning of year j [million USD]
- $y_{j}: j=1, \ldots, 3$: assets invested into short-term securities at the beginning of year j [million USD]
- In the first year, part of the income x_{1} must be spent on the construction (2 million USD), the rest (y_{1}) can be invested

$$
x_{1}=2+y_{1}
$$

- In the second year
- income: from bond issuance x_{2} plus the amount earned from previous year's investments with premium (1.06y y_{1})
- expenditure: construction work (4 million USD) plus additional short-term investment (y_{2})

$$
x_{2}+1.06 y_{1}=4+y_{2}
$$

Portfolio Design

- In the third year
- income: from bond issuance x_{3} plus the amount earned from previous year's investments with premium (1.055y y_{2})
- expenditure: construction work (8 million USD) plus additional short-term investment $\left(y_{3}\right)$

$$
x_{3}+1.055 y_{2}=8+y_{3}
$$

- In the fourth year
- income: from bond issuance x_{4} plus the amount earned from previous year's investments with premium $\left(1.045 y_{3}\right)$
- expenditure: construction work (5 million USD), no new short-term investment (end of financial period)

$$
x_{4}+1.045 y_{3}=5
$$

Portfolio Design

- Objective: minimize the premium (interest on bonds) that is to be paid back to investors
- Maturity is 20 years, according to the interest rate at the year of issuance
- interest on the bonds issued in the first year: $(20 * 0.07) x_{1}$
- interest on the bonds issued in the second year: $(20 * 0.06) x_{2}$
- interest on the bonds issued in the third year: $(20 * 0.065) x_{3}$
- interest on the bonds issued in the fourth year: $(20 * 0.075) x_{4}$

Portfolio Design

min

$$
\begin{aligned}
& (20 * 0.07) x_{1}+(20 * 0.06) x_{2}+ \\
& (20 * 0.065) x_{3}+(20 * 0.075) x_{4}
\end{aligned}
$$

s.t.

$$
\begin{array}{cl}
x_{1}-y_{1}=2 & \\
1.06 y_{1}+x_{2}-y_{2}=4 & \\
1.055 y_{2}+x_{3}-y_{3}=8 & \\
1.045 y_{3}+x_{4}=5 & \forall i \in\{1, \ldots, 4\} \\
x_{j} \geq 0 & \forall i \in\{1, \ldots, 3\} \\
y_{j} \geq 0 &
\end{array}
$$

Applications of Linear Programming

- Management science/Operations research
- resource allocation
- portfolio design
- Logistics
- transportation problems
- production planning
- Telecommunications
- network optimization
- routing and traffic engineering

Notation: Vectors

- Column n-vector: $\boldsymbol{x}=\left[x_{i}\right]=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]$, with elements x_{i}
- Row m-vector: $\boldsymbol{x}^{T}=\left[x_{j}\right]=\left[\begin{array}{lll}x_{1} & \ldots & x_{m}\end{array}\right]$, elements (or components) x_{j}, notation (. $)^{T}$ is for transposition
- Vectors are sometimes also called points
- Zero vector: 0 and $\mathbf{1}$-vector (each element equals 1): 1
- The i-th canonical unit vector: $e_{i}, e_{i}{ }^{T}$

$$
\boldsymbol{e}_{\boldsymbol{i}}^{T}=\underbrace{\left[\begin{array}{ccccc}
0 & 0 & \ldots & 1 & \ldots
\end{array}\right.}_{1 \text { at position } i}
$$

Operations on Vectors

- Sum of vectors: according to the Parallelogram Law

$$
\boldsymbol{x}+\boldsymbol{y}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]+\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right]
$$

- Multiplying a vector with a scalar: $\lambda \boldsymbol{x}=\left[\lambda x_{i}\right]$
- The scalar product of a row n-vector and a column n-vector

$$
\boldsymbol{x}^{T} \boldsymbol{y}=\sum_{i=1}^{n} x_{i} y_{i}
$$

Linear Independence

- A vector \boldsymbol{b} is a linear combination of vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots$, \boldsymbol{a}_{k}, if $\boldsymbol{b}=\sum_{i=1}^{k} \lambda_{i} \boldsymbol{a}_{i}$ for some real scalars $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$
- Vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{k}$ are linearly independent, if

$$
\sum_{i=1}^{k} \lambda_{i} \boldsymbol{a}_{i}=\mathbf{0} \Rightarrow \forall i=\{1,2, \ldots, k\}: \lambda_{i}=0
$$

- Real n-vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{k} \in \mathbb{R}^{n}$ span the vector space $V \subseteq \mathbb{R}^{n}$, if each vector $\boldsymbol{b} \in V$ can be written as a linear combination of vectors \boldsymbol{a}_{i}
- The minimal set of n-vectors $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{k}$ that span V is called a basis of V, and k is the dimension of V

Notation: Matrices

- A mátrix \boldsymbol{A} of size $m \times n$

$$
\boldsymbol{A}=\left[a_{i j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]=\left[\begin{array}{c}
\boldsymbol{a}^{\mathbf{1}} \\
\boldsymbol{a}^{\mathbf{2}} \\
\vdots \\
\boldsymbol{a}^{\boldsymbol{m}}
\end{array}\right]=\left[\boldsymbol{a}_{\mathbf{1}}, \boldsymbol{a}_{\mathbf{2}}, \ldots, \boldsymbol{a}_{\boldsymbol{n}}\right]
$$

- A zero matrix is a matrix whose all elements are 0
- The $n \times n$ (canonical) unit matrix

$$
\boldsymbol{I}_{n}=\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right]
$$

Operations on Matrices

- Sum of matrices: of \boldsymbol{A} and \boldsymbol{B} are $m \times n$ then

$$
\boldsymbol{A}+\boldsymbol{B}=\left[a_{i j}+b_{i j}\right]
$$

- Matrix multiplication: the multiple of matrix $\boldsymbol{A}(m \times p)$ and matrix $\boldsymbol{B}(p \times n)$ is matrix $\boldsymbol{C}=\boldsymbol{A} \boldsymbol{B}(m \times n)$

$$
c_{i j}=\sum_{k=1}^{p} a_{i k} b_{k j}=\boldsymbol{a}^{i} \boldsymbol{b}_{\boldsymbol{j}}
$$

- If \boldsymbol{A} is $n \times n$ quadratic and there is matrix \boldsymbol{A}^{-1} so that $\boldsymbol{A} \boldsymbol{A}^{-1}=\boldsymbol{I}_{n}$, then \boldsymbol{A}^{-1} is called the inverse of \boldsymbol{A}
- The maximal number of linearly independent rows (or columns) of \boldsymbol{A} is called the rank of \boldsymbol{A}
- The inverse exists if all rows (or columns) of \boldsymbol{A} are linearly independent (\boldsymbol{A} is nonsingular)

Determinant

- The determinant of a real valued $n \times n$ matrix \boldsymbol{A} is

$$
\operatorname{det} \boldsymbol{A}=\sum_{i=1}^{n} a_{i j} A_{i j}
$$

where $a_{i j}$ is the element in position (i, j) of \boldsymbol{A} and $A_{i j}$ is the cofactor of $a_{i j}$, which is obtained by removing row i and column j from \boldsymbol{A} and then taking the determinant multiplied by $(-1)^{i+j}$

- $\operatorname{det} \boldsymbol{A}=\operatorname{det} \boldsymbol{A}^{T}$
- if \boldsymbol{B} is obtained by swapping two columns or rows of \boldsymbol{A} then $\operatorname{det} \boldsymbol{B}=-\operatorname{det} \boldsymbol{A}$
- \boldsymbol{A} is nonsingular if and only if $\operatorname{det} \boldsymbol{A} \neq 0$

Systems of Linear Equations

- Let \boldsymbol{A} be an $m \times n$ matrix and let \boldsymbol{b} be a column m-vector
- We seek a column n-vector \boldsymbol{x} so that $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$
- If \boldsymbol{b} is linearly independent from the column vectors of \boldsymbol{A} then it cannot be written as the linear combination of A 's columns: no solution exists
- Let $\operatorname{rank}(\boldsymbol{A})=\operatorname{rank}(\boldsymbol{A}, \boldsymbol{b})=k$
- Reorder the rows of \boldsymbol{A} and \boldsymbol{b} so that the first k rows contain the linearly independent rows

$$
\boldsymbol{A}=\left[\begin{array}{l}
\boldsymbol{A}_{1} \\
\boldsymbol{A}_{2}
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{l}
\boldsymbol{b}_{1} \\
\boldsymbol{b}_{2}
\end{array}\right]
$$

where \boldsymbol{A}_{1} is $k \times n$ with $\operatorname{rank}\left(\boldsymbol{A}_{1}\right)=k$ and \boldsymbol{A}_{2} is $(m-k) \times n$, and \boldsymbol{b}_{1} is a column k-vector and \boldsymbol{b}_{2} is a column $(m-k)$-vector

Systems of Linear Equations

- If $\boldsymbol{A}_{1} \boldsymbol{x}=\boldsymbol{b}_{1}$ then $\boldsymbol{A}_{2} \boldsymbol{x}=\boldsymbol{b}_{2}$ automatically holds, as the rows of $\left[\boldsymbol{A}_{2} \boldsymbol{b}_{2}\right]$ can be written as a linear combination of the rows of $\left[\boldsymbol{A}_{1} \boldsymbol{b}_{1}\right]$: we can safely ignore the rows of $\boldsymbol{A}_{2} \boldsymbol{x}=\boldsymbol{b}_{2}$
- Since $\operatorname{rank}\left(\boldsymbol{A}_{1}\right)=k$, we can select k linearly independent columns from \boldsymbol{A}_{1}
- Rearrange the columns of \boldsymbol{A}_{1} so that the first k columns are linearly independent: $\boldsymbol{A}_{1}=[\boldsymbol{B} \boldsymbol{N}]$ where
- \boldsymbol{B} is a $k \times k$ quadratic, nonsingular matrix, called the basis matrix
- \boldsymbol{N} is $k \times(n-k)$, called the (nonbasic matrix)
- Similarly, reorder the elements of \boldsymbol{x} accordingly:
$\boldsymbol{x}=\left[\begin{array}{l}\boldsymbol{x}_{B} \\ \boldsymbol{x}_{N}\end{array}\right]$, where \boldsymbol{x}_{B} contains the variables corresponding to the columns of \boldsymbol{B} and $\boldsymbol{x}_{\boldsymbol{N}}$ contains the rest

Systems of Linear Equations

- The rearranged system

$$
\left[\begin{array}{ll}
\boldsymbol{B} & \boldsymbol{N}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x}_{\boldsymbol{B}} \\
\boldsymbol{x}_{\boldsymbol{N}}
\end{array}\right]=\boldsymbol{b}_{1}, \text { vagyis } \boldsymbol{B} \boldsymbol{x}_{\boldsymbol{B}}+\boldsymbol{N} \boldsymbol{x}_{\boldsymbol{N}}=\boldsymbol{b}_{1}
$$

- Multiply by the inverse of \boldsymbol{B} from the left and rearrange

$$
\boldsymbol{x}_{\boldsymbol{B}}=\boldsymbol{B}^{-1} \boldsymbol{b}_{1}-\boldsymbol{B}^{-1} \boldsymbol{N} \boldsymbol{x}_{\boldsymbol{N}}
$$

- If $k=n$ then we have a unique solution: $\boldsymbol{x}_{\boldsymbol{B}}=\boldsymbol{B}^{-1} \boldsymbol{b}_{1}$ (basic solution)
- If $k<n$ then $\boldsymbol{x}_{\boldsymbol{N}}$ can be chosen arbitrarily, the number of solutions is infinite

Systems of Linear Equations: Example

$$
\begin{aligned}
x_{1}+2 x_{2}+x_{3}-2 x_{4} & =10 \\
-x_{1}+2 x_{2}-x_{3}+x_{4} & =6 \\
x_{2}+x_{3} & =2
\end{aligned}
$$

- In matrix form

$$
\left[\begin{array}{rrrr}
1 & 2 & 1 & -2 \\
-1 & 2 & -1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right] \boldsymbol{x}=\left[\begin{array}{r}
10 \\
6 \\
2
\end{array}\right]
$$

- We search for a basic solution: perform Gaussian Elimination on $(\boldsymbol{A}, \boldsymbol{b})$

$$
\left[\begin{array}{rrrr|r}
1 & 2 & 1 & -2 & 10 \\
-1 & 2 & -1 & 1 & 6 \\
0 & 1 & 1 & 0 & 2
\end{array}\right]
$$

Systems of Linear Equations: Example

- Add the first row to the second one:

$$
\left[\begin{array}{rrrr|r}
1 & 2 & 1 & -2 & 10 \\
0 & 4 & 0 & -1 & 16 \\
0 & 1 & 1 & 0 & 2
\end{array}\right]
$$

- Similarly

$$
\begin{aligned}
& {\left[\begin{array}{rrrr|r}
1 & 0 & 1 & -\frac{3}{2} & 2 \\
0 & 1 & 0 & -\frac{1}{4} & 4 \\
0 & 0 & 1 & \frac{1}{4} & -2
\end{array}\right]} \\
& {\left[\begin{array}{rrrr|r}
1 & 0 & 0 & -\frac{7}{4} & 4 \\
0 & 1 & 0 & -\frac{1}{4} & 4 \\
0 & 0 & 1 & \frac{1}{4} & -2
\end{array}\right]}
\end{aligned}
$$

Systems of Linear Equations: Example

- The original system: $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$
- Choosind the first 3 columns as basis: $[\boldsymbol{B} \boldsymbol{N}]\left[\begin{array}{l}\boldsymbol{x}_{\boldsymbol{B}} \\ \boldsymbol{x}_{\boldsymbol{N}}\end{array}\right]=\boldsymbol{b}$
- Multiply from the left with \boldsymbol{B}^{-1}

$$
\boldsymbol{B}^{-1}[\boldsymbol{B} \boldsymbol{N}]\left[\begin{array}{l}
\boldsymbol{x}_{\boldsymbol{B}} \\
\boldsymbol{x}_{\boldsymbol{N}}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{I} & \boldsymbol{B}^{-1} \boldsymbol{N}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{x}_{\boldsymbol{B}} \\
\boldsymbol{x}_{\boldsymbol{N}}
\end{array}\right]=\boldsymbol{B}^{-1} \boldsymbol{b}
$$

- Substituting into the form $\boldsymbol{x}_{\boldsymbol{B}}=\boldsymbol{B}^{-1} \boldsymbol{b}-\boldsymbol{B}^{-1} \boldsymbol{N} \boldsymbol{x}_{\boldsymbol{N}}$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
4 \\
4 \\
-2
\end{array}\right]-\left[\begin{array}{r}
-\frac{7}{4} \\
-\frac{1}{4} \\
\frac{1}{4}
\end{array}\right] x_{4}
$$

- x_{4} can be chosen arbitrarily

