
Introduction to Linear Programming

• Examples: resource optimization, the transportation
problem, flow problems, portfolio design

• Generic form of linear programs, basic definitions, matrix
notation

• General assumptions on problems that can be modeled with
a linear program

• Miscellaneous topics: nonnegativity of variables,
minimization and maximization, standard and canonical
forms, transition between the two

• Notations and linear algebra: vectors, matrices,
multiplication of matrices, the Euclidean space, linear
independence, linear equations, basic solutions
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Optimal Resource Allocation

• Exercise: a paper mill manufactures two types of paper,
standard and deluxe

◦ 1
2

m3 of wood is needed to manufacture 1 m2 of paper

(both standard or deluxe)

◦ producing 1 m2 of standard paper takes 1 man-hour,

whereas 1 m2 of deluxe paper requires 2 man-hours

◦ every week 40 m3 wood and 100 man-hours of
workforce is available

◦ the profit is 3 thousand USD per 1 m2 of standard paper

and 4 thousand USD per 1 m2 of deluxe paper

• Question: how much standard and how much deluxe paper
should be produced by the paper mill per week to maximize
profits?
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Modeling 1: Selecting Variables

• Optimal Resource Allocation/Product Mix problem:
optimal allocation of resources in order to maximize
production profit

• Choose two variables:

◦ x1: the quantity produced from standard paper [m2]

◦ x2: the quantity produced from deluxe paper [m2]

• For instance, x1 = 12, x2 = 20 means: 12 m2 of standard

and 20 m2 of deluxe paper produced, for which the mill uses

◦ 1
2
∗ 12 + 1

2
∗ 20 = 16 m3 wood and

◦ 1 ∗ 12 + 2 ∗ 20 = 52 man-hours of workforce,

◦ meanwhile realizing 3 ∗ 12 + 4 ∗ 20 = 116 thousands
USD profits
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Modeling 2: Constraints

• Resource constraint: the available quantity of wood (40

m3) limits the amount of paper that can be produced:

1
2
x1 +

1
2
x2 ≤ 40

• Labor constraint: the available workforce (100 man-hours)
also limits the possible production mixes:

x1 + 2x2 ≤ 100

• Nonnegativity:

x1 ≥ 0, x2 ≥ 0
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Modeling 3: The Objective Function

• The profits: 3x1 + 4x2 [thousand USD]

• Objective: to maximize profits:

max 3x1 + 4x2

in a way so that the amount of wood and workforce used
does not exceed the available quantities
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Linear Program

max 3x1 + 4x2

s.t. 1
2
x1 + 1

2
x2 ≤ 40

x1 + 2x2 ≤ 100

x1, x2 ≥ 0
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Linear programs: Basic Definitions

• Maximization of the objective function that is a linear
function of the decision variables/activities, or the
minimization of a linear cost function

• The solution meets the constraints that are also linear
functions of the variables

• The linear scaling constants are called objective function
coefficients and constraint coefficients

• The combinations of variables x1, x2 that meet the
constraints are called feasible solutions or feasible points

• The set of feasible solutions is called the feasible region

• The feasible solutions that maximize the objective function
(minimize the cost function) are called the optimal
(feasible) solutions (there can be more than one)

• Decision variables may be subject to nonnegativity or
nonpositivity constraints
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Modeling Assumptions

• A problem can be modeled and solved by a linear program
only if the following assumptions all hold true

◦ Linearity: the objective function and the constraints are
the sums of linear products of the variables
– Proportionality: each decision variable contributes to

the objective function/constraints proportionally,
independently from the value of other variables (there
are no economies or returns to scale or discounts)

– Additivity: the objective/constraints are the sums of
the (linear) contributions of the variables (there is no
substitution/interaction among the variables)

◦ Divisibility/Continuity: the values of decision variables
can be fractions

◦ Determinism: the objective function and constraint
coefficients are known constants
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The General Form of Linear Programs

max c1x1 + c2x2 + . . . + cnxn

s.t. a11x1 + a12x2 + . . . + a1nxn ≤ b1
a21x1 + a22x2 + . . . + a2nxn ≤ b2

...
...

. . .
...

...

am1x1 + am2x2 + . . . + amnxn ≤ bm

x1, x2, . . . , xn ≥ 0
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The General Form of Linear Programs

• m: the number of rows, i.e., the number of constraints

• n: the number of columns, i.e., the number of variables

• cj : the objective coefficient for the j-th variable

•

n∑

j=1

cjxj : the objective/cost function

•

n∑

j=1

aijxj ≤ bi: the i-th constraint

◦ aij : constraint coefficients

◦ bi: the i-th “right-hand-side” (RHS)
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The Matrix Form of Linear Programs

• The constraint matrix (m× n):

A =







a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn







• The objective function/cost vector (1× n, row vector):

cT = [c1 c2 . . . cn]

• The RHS vector (m× 1, column vector): b = [b1 b2 . . . bm]
T

• The vector of variables (n× 1, column vector):

x = [x1 x2 . . . xn]
T
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The Matrix Form of Linear Programs

max
[
c1 c2 . . . cn

]
x

s.t.







a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn






x ≤







b1
b2

...

bm







x ≥ 0

max cTx

s.t. Ax ≤ b

x ≥ 0
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Optimal Resource Allocation

max 3x1 + 4x2

s.t. 1
2
x1 +

1
2
x2 ≤ 40

x1 + 2x2 ≤ 100
x1, x2 ≥ 0

max
[

3 4
]
x

s.t.

[
1/2 1/2
1 2

]

x ≤

[
40
100

]

x ≥ 0
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Electric Power Transmission

• Exercise: an electricity company supplies 4 cities out of 3
power plants; the demand at each city is given but the
capacity of the power plants is limited and the transmission
loss increases proportionally with the distance between a
city and a power plant

• Task: match cities to power plants in a way as to minimize
the overall transmission loss
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Electric Power Transmission

• Transportation/transshipment problem: matching
demands to supplies in a way as to minimize loss

Plant City

Capacity City1 City2 City3 City4

Plant1 35 8 6 10 9

Plant2 50 9 12 13 7

Plant3 40 14 9 16 5

Demand 45 20 30 30

(Capacity: [GWh], Demand: [GWh], Cost: [million USD/GWh])
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Modeling 1: Selecting Variables

• xij : the quantity of electricity to be transmitted from power

plant i to city j [GWh]

• For example, x14 means the quantity of electricity to be
transmitted from Plant1 to City4
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Modeling 2: Constraints

• Supply constraints: the total amount of electricity to be
transmitted from power plant i cannot exceed its capacity:

4∑

j=1

xij ≤ capacityi

• Demand constraint: the amount of electricity to be
transmitted to city j must meet the demand and city j:

3∑

i=1

xij = demandj

• Nonnegativity: negative quantity of electricity cannot be
transmitted:

xij ≥ 0 ∀i ∈ {1, 2, 3}, ∀j ∈ {1, 2, 3, 4}
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Modeling 3: The Cost Function

• The quantity of electricity transmitted from plant i to city j
equals xij , the cost of which due to transmission losses:

costijxij

• Objective: minimize the total cost:

min

3∑

i=1

4∑

j=1

costijxij

in a way so as to xij meet the demand, supply, and

nonnegativity constraints
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Linear Program

min 8x11 + 6x12 + 10x13 + 9x14 + 9x21 + 12x22+

13x23 + 7x24 + 14x31 + 9x32 + 16x33 + 5x34

s.t. x11 + x12 + x13 + x14 ≤ 35
x21 + x22 + x23 + x24 ≤ 50
x31 + x32 + x33 + x34 ≤ 40

x11 + x21 + x31 = 45
x12 + x22 + x32 = 20
x13 + x23 + x33 = 30
x14 + x24 + x34 = 30

xij ≥ 0 ∀i ∈ {1, 2, 3},

∀j ∈ {1, 2, 3, 4}
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Transshipment Problem: General Form

• Given m supply points,
where the capacity of the
i-th supply is si

• Given n demand points,
where the j-th demand is dj

• And the cost of transmission
of one unit of goods from
the supply point i to
demand point j is cij

• Minimize the total cost
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Transshipment Problem: General Form

min

m∑

i=1

n∑

j=1

cijxij

s.t.

n∑

j=1

xij ≤ si ∀i ∈ {1, . . . ,m}

m∑

i=1

xij = dj ∀j ∈ {1, . . . , n}

xij ≥ 0 ∀i ∈ {1, . . . ,m},

∀j ∈ {1, . . . , n}
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Direction of Optimization

• If the objective function represents

◦ profits: maximization

◦ cost: minimization

• Conversion:

max{cTx : Ax ≤ b,x ≥ 0} =

− 1 ∗min{−cTx : Ax ≤ b,x ≥ 0}
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Constraints: Forms

• Inequality and equality: there are two types of constrains
in the transportation problem

◦ Supply constraint:
∑4

j=1
xij ≤ capacityi

◦ Demand constraint:
∑3

i=1 xij = demandj

• Conversion: inequality → equality

◦ “≤” type inequality: by adding an artificial slack variable
n∑

j=1

aijxj ≤ bi ⇐⇒

n∑

j=1

aijxj + xsi
= bi, xsi

≥ 0
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Constraints: Forms

• Conversion: inequality → equality

◦ “≥” type inequality: by subtracting an artificial slack
variable

n∑

j=1

aijxj ≥ bi ⇐⇒

n∑

j=1

aijxj − xsi
= bi, xsi

≥ 0

• Conversion: equality → inequality

◦ a “=” type constraint can be substituted with a “≤” type
and a “≥” type constraint

n∑

j=1

aijxj = bi ⇐⇒

n∑

j=1

aijxj ≤ bi

n∑

j=1

aijxj ≥ bi
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Nonnegativity

• In practice the variables are almost always constrained as
nonnegative

• Substituting a nonpositive variable: xj = −x′
j

xj ≤ 0 x′
j ≥ 0

aijxj ⇐⇒ −aijx
′
j

cjxj −cjx
′
j

• Substituting a free variable: xj = x′
j − x′′

j

xj S 0 x′
j ≥ 0, x′′

j ≥ 0

aijxj ⇐⇒ aij(x
′
j − x′′

j )
cjxj cj(x

′
j − x′′

j )
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The Canonical and the Standard Forms

Minimization Maximization

Standard form

min cTx

s.t. Ax = b

x ≥ 0

max cTx

s.t. Ax = b

x ≥ 0

Canonical form

min cTx

s.t. Ax ≥ b

x ≥ 0

max cTx

s.t. Ax ≤ b

x ≥ 0
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Logistics

• Exercise: a transportation company can use the below list
of freight ship routes between points A, B, C, D and E,
each with limited capacity (u, [t]) and operating at specific
price per tonne of cargo (c, [million USD/t])

c/u A B C D E

A - 2/7 1/10 - -

B - - - 4/6 -

C - - - 3/8 15/60

D - - - - 5/10

E - - - - -

• Task: to ship 15 tonnes of cargo from point A to point E at
minimal transportation cost
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Logistics

• Flow problem: generalization of the transportation problem

◦ connection exists only between a subset of points

◦ capacity of connections is limited

• Connections make up a capacitated graph G(V,E), with V
being the ports and E being the set of ship routes
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Flow problem

• xij : quantity of goods to be transported between point i and

j [t]

• x defines a flow on graph G(V,E):

◦ capacity constraint: ∀(i, j) ∈ E : xij ≤ uij

◦ flow conservation: the difference between the amount
of flow entering point i and the amount of flow leaving it
equals the difference of the demand and supply at i:

∀i ∈ V :
∑

j:(j,i)∈E

xji −
∑

j:(i,j)∈E

xij = di

◦ nonnegativity: ∀(i, j) ∈ E : xij ≥ 0

• Total cost:
∑

(i,j)∈E cijxij
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Logistics

min 2xAB + xAC + 4xBD + 3xCD + 15xCE + 5xDE

s.t. −xAB − xAC = −15
xAB − xBD = 0

+ xAC − xCD − xCE = 0
xBD xCD − xDE = 0

xCE + xDE = 15
xAB ≤ 7

xAC ≤ 10
xBD ≤ 6

xCD ≤ 8
xCE ≤ 60

xDE ≤ 10

xAB , xAC , xBD , xCD , xCE , xDE ≥ 0
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Logistics: Matrix Form

N =








−1 −1 0 0 0 0
1 0 −1 0 0 0
0 1 0 −1 −1 0
0 0 1 1 0 −1
0 0 0 0 1 1







, d =








−15
0
0
0
15








cT = [ 2 1 4 3 15 5], x =










xAB

xAC

xBD

xCD

xCE

xDE










, u =










7
10
6
8
60
10









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The Minimal Cost Flow Problem

min cTx

s.t. Nx = d

x ≤ u

x ≥ 0

• Here the matrix N is representative for the graph G (see
later)

◦ node-arc incidence matrix

◦ notation: N
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Logistics

• Exercise: this time not only one but two transportation
companies provide transshipment service over the
aforementioned ship routes: the first company carries 15
tonnes of goods from point A to point E whereas the
second one ships 20 tonnes between C and E

• Task: compute the minimal-cost allocation of transshipment
capacities, subject to ship capacities
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Logistics

• xk
ij : the amount of goods to be shipped from point i to point

j by company k [t]

• The goods do not mix, therefore for each k the variables

xk
ij : (i, j) ∈ E define a flow, satisfying (independently from

other ks)

◦ the flow conservation constraints: Nxk = dk

◦ and nonnegativity: xk ≥ 0

• The total quantity of cargo allocated to a particular ship

cannot exceed its capacity: x1 + x2 ≤ u
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Logistics

• For the first transportation company:

d1 =








−15
0
0
0
15







, x1 =










x1
AB

x1
AC

x1
BD

x1
CD

x1
CE

x1
DE










• For the second transportation company:

d2 =








0
0

−20
0
20







, x2 =










x2
AB

x2
AC

x2
BD

x2
CD

x2
CE

x2
DE









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Multicommodity Flow Problem

min
∑

k∈K

cTxk

s.t. Nxk = dk ∀k ∈ K
∑

k∈K

xk ≤ u

xk ≥ 0 ∀k ∈ K

• K: the set of “goods” or commodities
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Portfolio Design

• Exercise: the task is to design the financing for a 4 year
construction project

◦ construction works scheduled for the first year cost 2
million USD, 4 million in the second year, 8 million USD
in the third and 5 million in the fourth year

◦ costs will be covered by bonds (“debt instruments”) that
must be paid back continuously for 20 years from the
completion of the construction (“maturity is 20 years”)

◦ the expected bond interest rate is 7% for the first year,
6% for the second year, then 6.5% and 7.5%

◦ the money not spent on the construction can be invested
into short-term securities, for which interest rates for the
first year is 6%, 5.5% for the second year, and 4.5% for
the third year (in the fourth year it is not worth investing)

• Task: choose the optimal portfolio

– p. 37



Portfolio Design

• Determine the optimal schedule for bond issuance and
short-term investment

◦ bonds must be paid back, interest rates depend on the
year of issuance

◦ a fixed portion of the income must be spent to cover
construction costs

◦ the rest can be invested into short-term securities to
cover the bond coupons to be paid back

◦ how to schedule bond issuance and short-term
investment in each year in order to minimize the total
cost of the construction, given the anticipated interest
rates?
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Portfolio Design

• xj : j = 1, . . . , 4: the quantity of bonds issued at the

beginning of year j [million USD]

• yj : j = 1, . . . , 3: assets invested into short-term securities

at the beginning of year j [million USD]

• In the first year, part of the income x1 must be spent on the
construction (2 million USD), the rest (y1) can be invested

x1 = 2 + y1

• In the second year

◦ income: from bond issuance x2 plus the amount earned
from previous year’s investments with premium (1.06y1)

◦ expenditure: construction work (4 million USD) plus
additional short-term investment (y2)

x2 + 1.06y1 = 4 + y2
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Portfolio Design

• In the third year

◦ income: from bond issuance x3 plus the amount earned
from previous year’s investments with premium (1.055y2)

◦ expenditure: construction work (8 million USD) plus
additional short-term investment (y3)

x3 + 1.055y2 = 8 + y3

• In the fourth year

◦ income: from bond issuance x4 plus the amount earned
from previous year’s investments with premium (1.045y3)

◦ expenditure: construction work (5 million USD), no new
short-term investment (end of financial period)

x4 + 1.045y3 = 5
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Portfolio Design

• Objective: minimize the premium (interest on bonds) that is
to be paid back to investors

• Maturity is 20 years, according to the interest rate at the
year of issuance

◦ interest on the bonds issued in the first year:

(20 ∗ 0.07)x1

◦ interest on the bonds issued in the second year:

(20 ∗ 0.06)x2

◦ interest on the bonds issued in the third year:

(20 ∗ 0.065)x3

◦ interest on the bonds issued in the fourth year:

(20 ∗ 0.075)x4
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Portfolio Design

min (20 ∗ 0.07)x1 + (20 ∗ 0.06)x2 +

(20 ∗ 0.065)x3 + (20 ∗ 0.075)x4

s.t. x1 − y1 = 2

1.06y1 + x2 − y2 = 4

1.055y2 + x3 − y3 = 8

1.045y3 + x4 = 5

xj ≥ 0 ∀i ∈ {1, . . . , 4}

yj ≥ 0 ∀i ∈ {1, . . . , 3}
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Applications of Linear Programming

• Management science/Operations research

◦ resource allocation

◦ portfolio design

• Logistics

◦ transportation problems

◦ production planning

• Telecommunications

◦ network optimization

◦ routing and traffic engineering
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Notation: Vectors

• Column n-vector: x = [xi] =







x1

x2
...

xn







, with elements xi

• Row m-vector: xT = [xj] =
[
x1 . . . xm

]
, elements (or

components) xj , notation (.)T is for transposition

• Vectors are sometimes also called points

• Zero vector: 0 and 1-vector (each element equals 1): 1

• The i-th canonical unit vector: ei, ei
T

ei
T =

[
0 0 . . . 1 . . . 0

]

︸ ︷︷ ︸
1 at position i
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Operations on Vectors

• Sum of vectors: according to the Parallelogram Law

x+ y =







x1

x2
...

xn






+







y1
y2
...

yn







=







x1 + y1
x2 + y2

...

xn + yn







• Multiplying a vector with a scalar: λx = [λxi]

• The scalar product of a row n-vector and a column
n-vector

xTy =

n∑

i=1

xiyi
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Linear Independence

• A vector b is a linear combination of vectors a1, a2, . . .,

ak, if b =

k∑

i=1

λiai for some real scalars λ1, λ2, . . . , λk

• Vectors a1,a2, . . . ,ak are linearly independent, if

k∑

i=1

λiai = 0 ⇒ ∀i = {1, 2, . . . , k} : λi = 0

• Real n-vectors a1,a2, . . . ,ak ∈ Rn span the vector space

V ⊆ Rn, if each vector b ∈ V can be written as a linear
combination of vectors ai

• The minimal set of n-vectors a1, a2, . . ., ak that span V is
called a basis of V , and k is the dimension of V
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Notation: Matrices

• A mátrix A of size m× n

A = [aij] =







a11 a12 · · · a1n
a21 a22 · · · a2n
...

. . .
...

am1 am2 · · · amn






=







a1

a2

...

am






= [a1,a2, . . . ,an]

• A zero matrix is a matrix whose all elements are 0

• The n× n (canonical) unit matrix

In =







1 0 · · · 0
0 1 · · · 0
...

. . .
...

0 0 · · · 1






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Operations on Matrices

• Sum of matrices: of A and B are m× n then

A+B = [aij + bij]

• Matrix multiplication: the multiple of matrix A (m× p) and
matrix B (p× n) is matrix C = AB (m× n)

cij =

p∑

k=1

aikbkj = aibj

• If A is n× n quadratic and there is matrix A−1 so that

AA−1 = In, then A−1 is called the inverse of A

• The maximal number of linearly independent rows (or
columns) of A is called the rank of A

• The inverse exists if all rows (or columns) of A are linearly
independent (A is nonsingular)
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Determinant

• The determinant of a real valued n× n matrix A is

detA =

n∑

i=1

aijAij ,

where aij is the element in position (i, j) of A and Aij is the

cofactor of aij , which is obtained by removing row i and

column j from A and then taking the determinant multiplied

by (−1)i+j

• detA = detAT

• if B is obtained by swapping two columns or rows of A then

detB = − detA

• A is nonsingular if and only if detA 6= 0
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Systems of Linear Equations

• Let A be an m× n matrix and let b be a column m-vector

• We seek a column n-vector x so that Ax = b

• If b is linearly independent from the column vectors of A
then it cannot be written as the linear combination of A’s
columns: no solution exists

• Let rank(A) = rank(A, b) = k

• Reorder the rows of A and b so that the first k rows contain
the linearly independent rows

A =

[
A1

A2

]

, b =

[
b1
b2

]

,

where A1 is k × n with rank(A1) = k and A2 is

(m− k)× n, and b1 is a column k-vector and b2 is a

column (m− k)-vector
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Systems of Linear Equations

• If A1x = b1 then A2x = b2 automatically holds, as the

rows of [A2 b2] can be written as a linear combination of the

rows of [A1 b1]: we can safely ignore the rows of A2x = b2

• Since rank(A1) = k, we can select k linearly independent

columns from A1

• Rearrange the columns of A1 so that the first k columns are

linearly independent: A1 = [B N ] where

◦ B is a k × k quadratic, nonsingular matrix, called the
basis matrix

◦ N is k × (n− k), called the (nonbasic matrix)

• Similarly, reorder the elements of x accordingly:

x =

[
xB

xN

]

, where xB contains the variables corresponding

to the columns of B and xN contains the rest
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Systems of Linear Equations

• The rearranged system

[B N ]

[
xB

xN

]

= b1, vagyis BxB +NxN = b1

• Multiply by the inverse of B from the left and rearrange

xB = B−1b1 −B−1NxN

• If k = n then we have a unique solution: xB = B−1b1
(basic solution)

• If k < n then xN can be chosen arbitrarily, the number of
solutions is infinite

– p. 52



Systems of Linear Equations: Example

x1 + 2x2 + x3 − 2x4 = 10
− x1 + 2x2 − x3 + x4 = 6

x2 + x3 = 2

• In matrix form

[
1 2 1 −2

−1 2 −1 1
0 1 1 0

]

x =

[
10
6
2

]

• We search for a basic solution: perform Gaussian

Elimination on (A, b)





1 2 1 −2 10
−1 2 −1 1 6
0 1 1 0 2




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Systems of Linear Equations: Example

• Add the first row to the second one:





1 2 1 −2 10

0 4 0 −1 16
0 1 1 0 2





• Similarly




1 0 1 −3
2

2
0 1 0 −1

4
4

0 0 1 1
4

−2





[
1 0 0 −7

4
4

0 1 0 −1
4

4
0 0 1 1

4
−2

]
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Systems of Linear Equations: Example

• The original system: Ax = b

• Choosind the first 3 columns as basis: [B N ]

[
xB

xN

]

= b

• Multiply from the left with B−1

B−1[B N ]

[
xB

xN

]

= [I B−1N ]

[
xB

xN

]

= B−1b

• Substituting into the form xB = B−1b−B−1NxN

[
x1

x2

x3

]

=

[
4
4

−2

]

−

[
−7

4

−1
4
1
4

]

x4

• x4 can be chosen arbitrarily
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