Transmission Control
Protocol (TCP)

Sonkoly Balazs

sonkoly@tmit.bme.hu

2016.10.25.

TCP header format

source TCP user (16 bits)

destination TCP user (16 bits)

seq. number of the fi

32-bit words header
length (4 bits)

*URG: urgent
*ACK: acknowledgement
*PSH: push

*RST: reset
*SYN: synchronize

imboxw of tho novt doto hexito

number of data bytes beginning
with the one indicated in the
ack. field that receiver is willing

biI 0 ‘/ / \ I to accept (16 bits)
/ Source &Krt De?étinat}én port
» / \ Se?(uence number / /
O
3 }/4 @ Ackn<7<lvledgement number " /
Q ¥ ¥
N | data offset reserved Flags Advertised window
Y 3 Checksum Urgent pointer ,

Options + padding

A

error detection code (16 bits)

Data

points to the last byte in a
sequence of urigent data (16 bits)

extend to 4-byte units

2016.10.25.

TCP, Sonkoly Balazs, BME-TMIT

Connection setup

client (initiator) | sfarting sequence

2016.10.25.

ACK

number is chosen by
random

acknowledges
the receiver's
seq. number

 »

3-way handshake

TCP, Sonkoly Balazs, BME-TMIT

server

states its
current seq.
number

» acknowledges
the client’s seq.
number

Connection release

client (initiator) ~ server
independent release

FIN(x) in each direction!

 »

ACK(x+1)

el

FIN(Y)

S me

ACK(y+1)

 »

2-way handshake

2016.10.25. TCP, Sonkoly Balazs, BME-TMIT

‘ State transition diagram

AAAAAAAAAAAAAAAAA » unusual event

CONNECT/SYN (Step 1 of the 3-way-handshake)

event/action ————> client/receiver path (Start) _ D PPN
CLOSE!/- :
———3> server/sender path LISTEN/- A :
: CLOSE/-
(Step 2 of the 3-way-handshake) SYN/SYN+ACK | LISTEN |
l : Y
RST/- ; : SEND/SYN
SYN < ..). SYN
RECEIVED I U UUTURUIARURROON SYN/SYN+ACK (simultaneous open) ... SENT
Data exchange occurs
ACK/- - SYN+ACK/ACK
- - (Step 3 of the 3-way-handshake)
{ CLOSE/FIN
: CLOSE/FIN FINJACK
| Active open Passive open|
Y Y FIN/ACK Y
FINWAIT1 | > | CLOSING | | CLOSE WAIT |
FIN+ACK/ACK :
ACK/- CLOSE/FIN
Y Y
FINWAIT2 | > TmEwaIr | LAST ACK
FIN/ACK
Timeout
(Go back to start)_ -

Source: http://en.wikipedia.org/wiki/image:Tcp_state_diagram.svg

2016.10.25.

TCP, Sonkoly Balazs, BME-TMIT 5

TCP flow control — example

Assume 200 bytes in each segment!
... 1000, 1001 2400, 2401 1000, 1001 2400, 2401 ...

dy to send
shrinks its window with ;Z%Oyb;mzn

SN = 1201 ready to receive 1400 bytes
each transmission! SN_\)
1001 1601 2401 ... %’ 1601 2601 ...
|

ISN |, SNDNXT SN - acks 3 segments (600 bytes) but
' only prepared to receive 1000 bytes

1001 2001 2401 ... 1601 2001 2601 ...

| ACK = 1601 |

| W =1000 |

SND.NXT adjusts its window!

1001 1601 2001 2601 ...

I I SN = 2001

SN =
ISN SND.UNA SNDNXT %’ < 1000 bytes and rest
1601 2601 . %’ the original amount of credit 2601.. 4001
exhausts its credit! . A _ 1400

received new credit 2601 ... 4001

2016.10.25. TCP, Sonkoly Balazs, BME-TMIT 6

Slow start

Determine available capacity at first

TCP transmission is constrained

o awnd = min (adwnd, cwnd)
allowed window (in segments)
advertised window
o set by receiver
o unused credit + granted in the most recent ACK
congestion window
o set by sender
Algorithm
o setcwnd=1
o cwnd++ for each received ACK (~ doubled in one RTT)
o indication of loss
timeout
receipt of duplicate ACKs
o end of slow start
loss OR
cwnd exceeds a threshold (ssthresh)
Properties
o exponential growth (not very slow!)
o but slower growth compared to burst arrival

2016.10.25. TCP, Sonkoly Balazs, BME-TMIT

‘ Slow start — example

cwnd =1
cwnd =2
cwnd =4
cwnd =8

segment 1

[

ACK for segment 1

segment 2
segment 3

ACK for segments 2+ 2 '

segment 4

segment 5

segment 6
segment 7

6+7

ACK for segments 4+5% ‘

2016.10.25.

TCP, Sonkoly Balazs, BME-TMIT

Slow start — sequence plot

cwnd=16 [data segments =
5 ACKs o
O
- cwnd doubles every
cwnd = 8 - round-trip time
O D.
= ()
Sequence No m ®
= (€]
= ()
= <]
cwnd = 4 = o
u e
= @
cwnd = 2 o
cwnd =1 o °
.
RTT

Time

2016.10.25. TCP, Sonkoly Balazs, BME-TMIT

Congestion avoidance

Easy to drive the network in saturation
but hard for the network to recover
Slow start is too aggressive
Solution: slow start + linear growth in cwnd
Initialization
o cwnd = 1
o ssthresh =(e.g.) 65,535 bytes (OR arbitrarily high — RFC 2581)
After timeout
o ssthresh = cwnd / 2
o cwnd = 1 — slow startuntil cwnd == ssthresh
o for cwnd > ssthresh
increase cwnd by one for each RTT (Additive Increase)

in practice: cwnd = cwnd + 1 <== foreach RTT
1

in segments: cwnd = cwnd + 1 <= for each ACK
cwn
2
inbytes: W = W 4 MSS = W + MSS
cwnd W

2016.10.25. TCP, Sonkoly Balazs, BME-TMIT

10

Congestion avoidance

cwnd

ssthresh

Slow
Start

loss and
timeout

_____]/ \ / network
RTO
<>

Congestion
Avoidance

Slow
Start

limit of the

time

Goals (RFC 1122)

o keep cwnd around optimal size as much as possible
o Slow start

increase cwnd rapidly to reach maximum safety transfer rate as fast as
possible

max. safety: half of the rate that caused packet loss (conservative!)
o Congestion avoidance
increase cwnd slowly to avoid packet losses as long as possible

2016.10.25.

TCP, Sonkoly Balazs, BME-TMIT

11

Congestion avoidance — sequence plot

Sequence No

2016.10.25.

cwnd = 10
|
|
|
|
|
|
=

cwnd = 9 =
| @
] ®
5] ®
| ()
| ()
: :
|
cwnd = 8 m ®
| ()
[])
| ()
| ()
| ()
= ()
= @
= ()
] ()
@
S RTT
()
()
[
(]
Time

TCP, Sonkoly Balazs, BME-TMIT

data segments &

ACKs o
cwnd is increased

by 1 for each RTT

12

Fast retransmit

After a segment lost TCP may be slow to retransmit
if this is the only missing segment

o it delays the whole flow transmission

o receiver has to wait for the missing segment
Solution: retransmit packet without waiting for RTO!

receiver

o if receives a segment out of order — ACK for the last inordered segment
that was received

o continues repeat this ACK until missing segment arrives
source

o when receives a duplicate ACK it means
the segment following the ACKed segment was delayed
o no action needed
segment was lost
o retransmission needed
test
o wait for the next ACK
o 3 dup ACKs — retransmit the segment

TCP Tahoe (implemented in 4.3 BSD Tahoe, Net/1, ~1988)

2016.10.25. TCP, Sonkoly Balazs, BME-TMIT

13

Fast retransmit — example

Sender Receiver

SN = 100; A = 801
N = 1201 A = 1001

o
SN A = 120
2N = 180;
C - 1208
= 20 —
< (A- 12053 [3 dup ACKs

cumulative ACk

2016.10.25. TCP, Sonkoly Balazs, BME-TMIT

Fast retransmit (I'CP Tahoe) — sequence plot

slow start

>

O
O
Sequence No :I
g
O
o coBodsas — fast retransmit
&
@
(]
[
e

|

> > 3rd dup ACK

RTT

..O......Ill.u

v

Time

15

TCP, Sonkoly Balazs, BME-TMIT

2016.10.25.

Fast retransmit — TCP Tahoe

Fast retransmit

A_SS_thieih (after 3 dup ACKs) limit of the
I / network
| congestion /] additve] 00000 T
-8 Slow Avoidance Increase
% Start
Slow
Start
>
time
TCP Tahoe

o slow start and congestion avoidance phases

o+ fast retransmit

Problem

o after fast retransmit we know that congestion occured

o BUT make slow start is too conservative

o we know that consecutive packets have been received

o Tahoe is very sensitive to packet loss (1% loss rate may cause 50-75% decrease in throughput!)
Solution: two type of congestion

o RTO expires — serious congestion

o 3 dup ACKs — no serious congestion (at least 3 packets could arrive)

2016.10.25. TCP, Sonkoly Balazs, BME-TMIT

Fast recovery

Goal: avoid slow start!
after receiving the third dup ACK

2 ssthresh = cwnd / 2

a retransmit the segment (fast retransmit)

o cwnd = ssthresh + 3 (inflating the window)
a

if additional dup ACKs arrives
cwnd = cwnd + 1 (inflatingthe window)
transmit a segment if possible
a if the next ACK arrives (for new segment)
cwnd = ssthresh (deflating the window)

Inflating the window
a dup ACK means — one packet arrived and cached at receiver
o one new packet can be sent

2016.10.25. TCP, Sonkoly Balazs, BME-TMIT 17

Fast recovery — example

transmitted
segments

SND.UNA + SND.WND

fast retransmit > g jﬂgﬂ’
after 3 dup 7 Er/ |
/’/D ' Yl :
ACKs X . . T
o T ReT SND.UNA
source is unable |4 | |
to send segments | | >
. A

until cwnd ~ | |
regains its |

|

|

|

former value

ssthresh = cwnd/2
cwnd = cwnd/2 + 3

T~

cwhd = cwnd+1

§o]
[
] -
L cwnd = cwnd+1

—— ________§;__
@

cwnd = ssthresh

at each received

cwnd = cwnd+1

(cong. avoidance)

source is fransmitting
segments

2016.10.25.

| |
per RTT | dup ACK | per RTT
|\ J :\ II\ J:\)
g Y tme Y ¥
stable flow linear congestion

avoidance

TCP, Sonkoly Balazs, BME-TMIT

| | .
\ | o cumulative

| | . | a® ACK arrives

| N—U‘D—l—V

| ! =™ RJT

I I

18

Fast recovery (TCP Reno) — sequence plot

Sequence No

Transmitting
segments

2016.10.25.

(if cwnd allows)\A

@
°)
congestion avoidance

A =
(]
]
cwnd=9| § fast recovery
g &
g v cumulative
O o ..Q...< ACK arrives
(] @ -
g o T ownde+ cwnd=4
5] ®
0 e—> 0
® 3rd dup ACK
.‘. RTT fast retransmit
o.. cwnd=9/2+3=7
Time]
19

TCP, Sonkoly Balazs, BME-TMIT

Fast recovery — TCP Reno

A i ..
ssthresh Fast retransmit limit of the

AR

Congestion Avoidance
<«—— Additive Increase
Multiplicative Decrease

cwnd

Fast recovery

time
TCP Reno
implemented in 4.3 BSD Reno, Net/2, ~1990
Slow start

Congestion avoidance: AIMD (Additive Increase Multiplicative Decrease)

a

a

a

o Fast retransmit

o Fast recovery

Problem

o multiple losses from a single window??

2016.10.25. TCP, Sonkoly Balazs, BME-TMIT

20

Summary of the algorithm (TCP Reno)

Initialization

o cwnd =1 (segment)

o ssthresh = 65,535 bytes

TCP sender sends segment: effwnd

o maxwnd = min(cwnd, adwnd)

o effwnd = maxwnd — (lastbytesent — lastbyteacked)
Congestion avoidance

o cwnd =cwnd + 1 for each RTT

timeout o cwnd = cwnd + 1/cwnd for each ACK

o if congestion:
ssthresh = max(2, min(cwnd, adwnd)/2)

cwnd > ssthresh

Slow start
o ownd=1
new ACK duplicate ACKs timeout o cwnd = cwnd + 1 for each ACK

o if cwnd > ssthresh — congestion avoidance

Fast recovery
o cwnd = ssthresh + 3
o if additional dup ACKs
cwnd = cwnd + 1
transmit segment if effwnd > 0
o ifnew ACK
cwnd = ssthresh
congestion avoidance

fast retransmit + fast recovery

2016.10.25. TCP, Sonkoly Balazs, BME-TMIT 21

