
1

Optical Layer Monitoring Schemes for Fast Link
Failure Localization in All-Optical Networks

Bin Wu, Member, IEEE, Pin-Han Ho, Member, IEEE, Kwan L. Yeung, Member, IEEE,
János Tapolcai, Member, IEEE, and Hussein T. Mouftah, Member, IEEE,

I. INTRODUCTION

ALTHOUGH the problem of fault detection and localiza-
tion has been widely studied in general communication

networks [1]–[5], it continues to attract extensive research
attentions in optical networks [6]–[18] as WDM (Wavelength
Division Multiplexing) technology is widely deployed in the
past decade. Due to the high-speed nature and the vulnerability
of WDM-based all-optical networks, fast monitoring and fault
localization schemes play a vital role in immediate traffic
recovery against a particular component failure. A monitoring
scheme monitors the health of the network and helps to local-
ize a component failure, such as a fiber-cut [19], [20] which
is the most common failure in optical networks. According to
Bellcore statistics, the rate of fiber-cuts is about 1-5 cuts per
1000 km each year which corresponds with the results of [21].
If a fiber carries 160 wavelength channels and each operates at
10 Gbps (OC-192), a fiber-cut will result in 1.6 Tbps data loss
[22], [23]. This leads to great economic damage, as our daily
commercial, social and cultural activities have tremendously
relied on Internet which is built on top of the optical backbone
[19], [24], [25]. If a link failure can be accurately localized in a
timely manner, the disrupted traffic will be promptly rerouted
to bypass the failed link [26]. Accordingly, a fast monitoring
scheme helps to minimize service downtime and data loss as
well as economic damage.

Basically, either upper layer protocols or optical layer
schemes can work alone for fault monitoring. They can also
work together in a cross-layer manner. The choice generally
depends on the tradeoff between the desired hardware cost and
the fault detection time, and it may differ from case to case
in practical network implementations. Examples include fault
management mechanisms in some routing protocols such as
IS-IS (Intermediate System-Intermediate System) and OSPF
(Open Shortest Path First) [4], or cross-layer designs [7]. An

Bin Wu and Pin-Han Ho are with the Department of Electrical and
Computer Engineering, University of Waterloo, Waterloo, ON, Canada, N2L
3G1 (e-mail: b7wu@uwaterloo.ca, pinhan@bbcr.uwaterloo.ca).

Kwan L. Yeung is with the Department of Electrical and Electronic
Engineering, The University of Hong Kong, Pokfulam, Hong Kong (e-mail:
kyeung@eee. hku.hk).

János Tapolcai is with the Department of Telecommunications and
Media Informatics, Budapest University of Technology and Economics,
Budapest, Hungary (e-mail: tapolcai@tmit.bme.hu).

Hussein T. Mouftah is with the School of Information Technology
and Engineering (SITE), University of Ottawa, Ottawa, ON, Canada, K1N
6N5 (e-mail: mouftah@site.uottawa.ca).

information theoretic approach is also reported in [8], [9],
where link failures are localized by analyzing the syndromes
(i.e. measurement results) of a minimum number of probe
signals. The probe signals are sent onto a set of predetermined
lightpaths for fault diagnosis purpose, where a lightpath is
an all-optically connected path using a wavelength channel
on each link along the path. Compared with optical layer
monitoring schemes, upper layer protocols need less hardware
support but more signaling efforts for fault monitoring. As
a result, optical layer monitoring schemes generally respond
much faster to a failure event, and thus is preferred in
achieving fast link failure localization.

In an optical layer monitoring scheme, a link failure is
detected and localized simply based on the on-off status
of some supervisory optical signals. This requires additional
wavelength channels to transmit the supervisory optical sig-
nals, and some special devices called monitors [10] to check
the on-off status and generate alarms upon a failure event.
This hardware cost is necessary for achieving fast link failure
localization at the optical layer, and is to be minimized as
a major design objective. Meanwhile, reducing the required
number of monitors has more significant importance, because
it leads to less fault management efforts by managing only
a small set of monitors. Due to the transparency (i.e., the
all-optical property) of the network, an upstream link failure
generally triggers redundant alarms in the monitors equipped
at the downstream nodes. It is reported that a single fiber-
cut with only 16 disrupted wavelengths can lead to hundreds
of alarms in the network [11]. This not only increases the
management cost of the control plane, but also makes the
failure localization difficult. Therefore, minimizing the number
of required monitors (but without losing the accuracy of the
failure localization) can greatly simplify fault management
and make the network more scalable. By jointly considering
the costs of monitors and supervisory wavelength channels, a
monitoring cost can be defined (see (1) in Section II.A) which
provides a performance metric in comparing different optical
layer monitoring schemes.

We assume a single link failure in the network. With the
design objective of minimizing the monitoring cost, the goal
of a fast monitoring scheme is to accurately localize each
possible link failure (i.e., 100% link failure localization). At
present, optical layer monitoring schemes generally adopt link-
based monitors, where each individual link needs a dedicated
monitor. Obviously, 100% link failure localization can be
easily ensured in this case, but the number of required monitors
equals to the number of links in the network. To reduce

2

the amount of monitoring resources and management efforts,
a common approach is to predefine a set of supervisory
lightpaths and assign one monitor to each of them. As such,
one monitor is capable of generating alarm upon any link
failure on the supervisory lightpath [8], [9], [12]–[18]. If
multiple supervisory lightpaths pass through the failed link,
each of the monitors associated with the supervisory lightpaths
will generate an alarm due to the disruption of the supervisory
optical signal. Those alarm signals can be denoted by a binary
alarm code, where each binary bit indicates whether the
corresponding monitor alarms or not. If the set of supervisory
lightpaths are properly allocated such that each link failure will
trigger alarms in a unique set of monitors, then the failure can
be localized by identifying the unique alarm code.

In principle, the above mechanism can be interpreted into
a one-to-one mapping where each link failure is mapped onto
a unique alarm code. It is equivalent to coding each link in
the network, subject to a series of constraints including 100%
link failure localization, cost minimization, as well as net-
work topology and monitoring structure constraints (i.e., each
supervisory lightpath must be properly set up to transmit the
supervisory optical signal). Due to such a coding mechanism,
it is possible to use only a few bits (or monitors) to monitor
the health status of a large number of links. This is the key
point why 100% link failure localization can be achieved with
a dramatically reduced number of monitors (compared with
the conventional link-based monitoring scheme).

In the past, how to design the monitoring structure was
a key concern. Although it is now clear that the monitoring
structure should be constructed as supervisory ligthpaths, other
structures such as monitoring cycle (or m-cycle) [14] also
attracted a lot of research interests in previous studies [12]–
[16]. As far as we know, the concept of simple m-cycle
is first proposed in [14], where a set of simple cycles are
found to cover the network topology and provide supervisory
wavelengths for fault monitoring. A simple m-cycle is an
optical loopback of supervisory wavelengths and it passes
through each on-cycle node exactly once. It is implemented
by pre-cross-connecting a supervisory wavelength on each
on-cycle link. To design simple m-cycle solutions, heuristic
algorithms and ILP (Integer Linear Program) models [13]–
[15] are proposed.

The m-cycle concept is also extended to non-simple m-cycle
in [16]. In contrast to a simple m-cycle, a non-simple m-cycle
is allowed to pass through a node multiple times. Generally,
non-simple m-cycles can better explore mesh connectivity of
a network than simple m-cycles due to the more flexible
monitoring structure.

Recently, a new concept of monitoring trail (or m-trail) was
proposed [17], [18]. It differs from simple and non-simple
m-cycles by removing the cycle constraint, and thus an m-
trail can be taken as an acyclic supervisory lightpath with an
associated monitor equipped at the destination node of the
m-trail. Similar to a non-simple m-cycle, an m-trail can pass
through a node multiple times. In fact, it is shown in [27]
that simple cycle is a special case of non-simple cycle, and
both simple and non-simple cycles are special cases of trail
(i.e., they can be treated as closed trails). In general, m-trail

(a) Simple m-cycle

m

Supervisory
wavelength

Node with a
Monitor

Transceivers

2

0 3

1
4

(b) Solution

c1

c0 c2

(0,1) 0 1 1 3
(0,2) 0 0 1 1
(0,3) 0 1 0 2
(1,2) 1 0 1 5
(1,3) 1 1 0 6
(2,4) 1 0 0 4
(3,4) 1 0 0 4

c2 c1 c0Link

(c) Alarm code table

Decimal

Fig. 1. Fast link failure localization based on simple m-cycles.

provides the most flexible monitoring structure in exploring
mesh connectivity of the network, and thus achieves the
minimum monitoring cost compared with other optical layer
monitoring schemes. On the other hand, ILP-based optimal
design of m-trails [17] needs huge computation and thus is not
scalable. To this end, an efficient heuristic is proposed in [18].
Since minimizing the number of required monitors is very
important, multiple papers [13], [18] also analyze the bound
on the number of monitors based on some special topologies
such as ring and fully-meshed topologies.

The remaining part of this article summarizes the most up-
to-date research progress on optical layer monitoring schemes.
The concepts of simple, non-simple m-cycles and m-trails
are surveyed and the design philosophy of the corresponding
algorithms is studied. We also analyze the pros and cons of
each scheme, and provide some hints for pending issues and
future research topics in this area.

II. SIMPLE M-CYCLE

A. Concept of Simple m-Cycle

Fig. 1a shows the monitoring structure of a simple m-
cycle, which passes through each on-cycle node exactly once.
It is a loop-back optical pre-cross-connection of supervisory
wavelengths with a pair of optical transceivers and a dedicated
monitor. If any link on the m-cycle fails, optical supervisory
signal in the m-cycle will be disrupted. Accordingly, the
monitor detects the off-status of the supervisory signal and
generates an alarm.

Assume that an m-cycle solution consists of 𝑀 m-cycles
{𝑐0, 𝑐1, . . . , 𝑐𝑀−1}. Upon a particular link failure, optical su-
pervisory signals in all m-cycles passing through the failed link
will be disrupted, and the corresponding monitors will alarm.
A binary alarm code [𝑎𝑀−1, . . . , 𝑎1, 𝑎0] is thus obtained,
where 𝑎𝑖 = 1 means that the monitor on m-cycle 𝑐𝑖 alarms
and 𝑎𝑖 = 0 otherwise. Fig. 1b shows an example with three
m-cycles {𝑐0, 𝑐1, 𝑐2}. If link (0, 1) fails, the monitors on 𝑐0
and 𝑐1 will alarm to generate an alarm code [0, 1, 1]. Then, the
failure can be localized by referring to the predefined alarm
code table in Fig. 1c. Note that in the middle part of the
alarm code table, each row gives a binary alarm code for a
particular link failure, and each column matches an m-cycle
which passes through those links with a corresponding “1”
entry in this column.

If a path consists of at least two links and any intermediate
node on it has a nodal degree of two, we call the path a segment

3

(such as 2−4−3 in Fig. 1b). A cycle-based monitoring scheme
cannot distinguish individual failures on the same segment
(e.g. the two failures at links (2, 4) and (3, 4) in Fig. 1b). This
is because all the links on the same segment must be traversed
by the same set of m-cycles. Generally, if a pair of links forms
a cut [28] of the network topology, the corresponding link
failures cannot be distinguished by any cycle-based monitoring
scheme. To achieve 100% link failure localization, extra link-
based monitors and supervisory wavelengths are required.
In Fig. 1b, an extra link-based monitor and a supervisory
wavelength can be added to either (2, 4) or (3, 4) and thus
all individual link failures will be distinguishable. Although
the total number of monitors is increased from 3 to 4, it is
still less than 7, as required by a pure link-based monitoring
scheme.

Let the length of an m-cycle be the number of links it
passes through, or equivalently the number of supervisory
wavelength-links it requires. The total length of all cycles in
an m-cycle solution is called the cover length. Define the cost
ratio 𝑟 as the ratio of a monitor cost to the cost of a supervisory
wavelength-link. The cost of a monitor may denote only the
hardware cost of the monitor. But, if we want to take the
quantified fault management cost into account, it can also be
amortized into the cost of each monitor. Then, the monitoring
cost can be defined as

Monitoring cost = 𝑟 × number of monitors + cover length.
(1)

Assume 𝑟 = 5. For the solution in Fig. 1b with three simple
m-cycles, the cover length is 10 and the monitoring cost is
5× 3 + 10 = 25. If we need to achieve 100% link failure lo-
calization (default hereafter) with one more link-based monitor
and supervisory wavelength-link, the monitoring cost will be
increased to 25 + 5 + 1 = 31.

B. Simple m-Cycle Design

A Heuristic Spanning Tree (HST) algorithm is proposed in
[14] for simple m-cycle design. HST includes two steps. In
the first step, a spanning tree is constructed. The tree roots at
the node with the maximum node degree, and always extends
at the node with the maximum number of neighbors not yet
included in the tree, until a spanning tree is built. Let node 0
in Fig. 2a be the root. All links incident on node 0 are first
added to the tree. At this point, all the neighbors of nodes 0
and 5 have already been included in the tree, and each of the
nodes 1, 2, 3 and 4 has a common neighbor 5 not yet included
in the tree. Assume that the tree extends at node 4. Then, link
(4, 5) is added and a spanning tree is obtained. Those links in
the spanning tree are called trunks (denoted by bold lines), and
other links are called chords. In the second step, HST generates
a simple m-cycle from each chord, where all other links on
the m-cycle must be trunks. For example, in Fig. 2a the simple
m-cycle generated from chord (1, 4) is 𝑐0 : 1− 4− 0− 1 and
that from chord (1, 5) is 𝑐4 : 1− 5− 4− 0− 1.

Another algorithm M2-CYCLE (minimum-length m-cycle)
[15] always constructs m-cycles with the minimum cycle
length, as shown in Fig. 2b. M2-CYCLE also includes two

0

1 2

34

5

c0: 1–4–0–1
c1: 3–4–0–3
c2: 2–3–0–2
c3: 1–2–0–1
c4: 1–5–4–0–1
c5: 3–5–4–0–3
c6: 2–5–4–0–2

r=5
No. of monitors: 7
Cover length: 24
Monitoring cost: 59

c0

c1

c2

c3

c4

c5

c6

Spanning tree

(a) Solution returned by HST [14].

0

1 2

34

5

c0: 1–4–0–1
c1: 3–4–0–3
c2: 2–3–0–2
c3: 1–2–5–1
c4: 1–4–5–1
c5: 2–3–5–2

r=5
No. of monitors: 6
Cover length: 18
Monitoring cost: 48

c1

c0
c2

c3

c4 c5

(b) Solution returned by M2-CYCLE [15].

Fig. 2. Heuristics for simple m-cycle design.

steps. In the first step, the algorithm constructs a set of m-
cycles to cover the network topology (i.e., any link in the
network must be passed through by at least one m-cycle).
The set of m-cycles are constructed one by one, where the
algorithm repeatedly picks up a link uncovered so far and then
finds a minimum-length m-cycle to cover it. Based on the set
of m-cycles obtained, M2-CYCLE carries out a refinement
process in the second step to generate the final solution. In
particular, if two link failures still cannot be distinguished and
they do not form a cut of the network topology, M 2-CYCLE
adds an additional m-cycle to distinguish them. On the other
hand, some m-cycles may be redundant, which can be removed
from the solution without decreasing the accuracy of the link
failure localization. Such redundant m-cycles can be identified
and removed in the refinement process.

It is proved in [15] that M2-CYCLE always outperforms
HST. This can be intuitively understood from three aspects:
1) in an HST solution, all the on-cycle links of an m-cycle
must be trunks in the spanning tree, except one chord from
which the m-cycle is generated. Accordingly, m-cycles in HST
generally have larger cycle lengths than those minimum-length
m-cycles generated by M2-CYCLE; 2) the spanning tree in
HST is shared to construct every m-cycle and thus the trunks
are highly utilized. This is against the spirit that the set of
m-cycles are used to distinguish as many link failures as they
can, and thus should pass through different links as possible as
they can provide a better resolution in link failure localization;
and 3) due to the spanning tree based mechanism, all m-cycles
generated by HST are not redundant. Instead, M2-CYCLE may
generate some redundant m-cycles but will eventually remove

4

0
1

2

3

4

5

6

(a)

0
1

2

3

4

5

6

(b)

Fig. 3. Non-simple m-cycles.

them from the final solution. For example, the first step in
M2-CYCLE may generate a redundant cycle 3− 4− 5− 3 in
Fig. 2b, along which all the three possible link failures can
be distinguished by other surrounding m-cycles 𝑐 1, 𝑐4 and 𝑐5.
Such kind of redundant cycles are defined as inside tracks [15].
In a large-size network, there could be a lot of similar inside
tracks and all of them will be removed in the second step of
M2-CYCLE. As a result, M2-CYCLE may require much less
m-cycles than HST.

Besides HST and M2-CYCLE, the work in [13] provides
an ILP and a heuristic to generate monitoring solutions con-
sisting of simple m-cycles and paths, but with different design
objectives (e.g., the ILP in [13] minimizes the cover length
under the constraint of a single monitoring location).

Compared with non-simple m-cycle and m-trail design,
simple m-cycle design requires the least amount of running
time, but it generally produces the largest monitoring cost for
a given network.

III. NON-SIMPLE M-CYCLE

A. Concept of Non-Simple m-Cycle

Similar to a simple m-cycle, a non-simple m-cycle is also
a loopback optical pre-cross-connection of supervisory wave-
lengths as shown in Fig. 3. The difference is that a non-simple
m-cycle can pass through some nodes multiple times, and thus
could have different optical pre-cross-connection patterns of
supervisory wavelengths. In Fig. 3, some dotted arrows are
used to indicate the pre-cross-connection patterns of the non-
simple m-cycles. We can see that the two non-simple m-cycles
have the same set of on-cycle links but different optical pre-
cross-connection patterns. However, such a difference in m-
cycle implementation will not affect the monitoring result,
which is only based on the on-off status of the supervisory
optical signal but is independent of the pre-cross-connection
pattern of the m-cycle. As a result, the two non-simple m-
cycles in Fig. 3 can be practically treated as the same.

Compared with a simple m-cycle, a non-simple m-cycle
intends to consume more supervisory wavelength-links due
to its more complex optical structure. On the other hand, this
also means that more links can share the same monitor, which
helps to reduce the required number of monitors. In principle,
it is possible that multiple simple m-cycles are combined
into a single non-simple m-cycle by rearranging the pre-
cross-connection pattern at the intersection nodes. Although
non-simple m-cycles still keep the cyclic optical loopback
structure, they are more flexible than simple m-cycles in

d
c

a

b

Fig. 4. Multiple disjoint cycles generated by (2).

exploring the mesh connectivity of a network [27] due to the
weaker constraint on the monitoring structure.

B. Non-Simple m-Cycle Design

Compared with simple m-cycle design, the non-simple m-
cycle design is subject to much larger complexity. Due to the
flexible monitoring structure of non-simple m-cycles, it is not
easy to develop a heuristic similar to HST or M2-CYCLE
for non-simple m-cycle allocation. Similar approaches based
on candidate cycle enumeration are not practical in non-simple
m-cycle design, because the number of all possible non-simple
cycles in a network is much more than that of simple cycles,
and both numbers grow exponentially with the network size.

A new approach to design non-simple m-cycles is based on
ILP but without candidate cycle enumeration. In other words,
cycles are directly formulated in the ILP. As formulated in (2),
cycles can be defined by requiring each node in the network
to have an even number of on-cycle links incident on it [29].

∑
(𝑢,𝑣)∈𝐸

𝑒𝑗𝑢𝑣 = 2𝑧𝑗𝑢 ∀𝑢 ∈ V, ∀𝑗. (2)

In (2), 𝐸 is the set of all links in the network and 𝑉 is
the set of all nodes. 𝑒𝑗𝑢𝑣 is a binary variable where 𝑒𝑗𝑢𝑣 = 1
indicates that a particular cycle 𝑗 passes through link (𝑢, 𝑣) (0
otherwise). If 𝑧𝑗𝑢 is defined as a binary variable, there could
be at most two on-cycle links of cycle 𝑗 incident on a node 𝑢.
This defines simple cycles. On the other hand, if we define 𝑧 𝑗𝑢
as a general integer variable, then cycle 𝑗 can pass through a
node multiple times and thus non-simple cycles are enabled.

However, an issue in the above cycle formulation is that
multiple disjoint cycles can be generated by (2), although we
intend to formulate only a single cycle. As shown in Fig. 4,
every node has an even number of on-cycle links incident on
it, but we get two disjoint cycles without any common node
or link. In fact, multiple disjoint cycles can be generated, and
the exact number of cycles is still unknown.

In the optimal design of m-cycles, the above problem is not
allowed because we need to accurately count the number of
monitors required, which equals to the number of m-cycles.
Therefore, it is necessary to ensure that only a single cycle
is generated at a time. This is achieved by adding additional
constraints in the ILP to exclude all other cycles but keep only
one at a time. In particular, a flow-based analysis is carried out
in [16], where each node pair in the network is sequentially
checked to see whether a flow can exist between the two nodes.
The flow must go along only the on-cycle links, and it must

5

obey flow conservation [28] at all nodes except at the node
pair currently being checked (which serve as the source and
the sink of the flow). In Fig. 4, we can see that there are
multiple possible flows between nodes 𝑎 and 𝑏 as indicated
by the arrows, and thus the two nodes are on the same cycle.
On the contrary, we cannot find any flow between nodes 𝑎 and
𝑑 because they are on different cycles.

Based on the above flow analysis, the ILP ensures the
existence of at least one flow for any pair of on-cycle nodes,
or equivalently a single cycle is generated at a time. Note
that the flow-based analysis provides a logical approach and
it is independent of the pre-cross-connection pattern of the m-
cycle. For example, it does not matter which one of the three
flows in Fig. 4 exists between nodes 𝑎 and 𝑏, because we only
concern about whether a flow can exist or not.

In the ILP-based approach, another key issue is to formulate
a distinct alarm code for each distinguishable link failure.
To achieve this, decimal alarm codes are invented in [16]
which are decimal translations of the corresponding binary
alarm codes, as shown by the last column in Fig. 1c. Decimal
alarm codes can greatly help to reduce the complexity of
the ILP-based design, because we can directly check whether
two decimal alarm codes are equal or not without bit-wise
comparison (which is required in the binary alarm code
scenario).

Although ensuring unequal decimal alarm codes is a non-
linear task and thus is not easy to be formulated in an ILP,
we can find multiple ways to tackle this problem. The idea
in [16] is to let each decimal alarm code take a value from
the set of all possible candidate alarm codes, and meanwhile
avoid assigning the same value to two different link failures.
Assume that 𝐽 denotes the maximum number of m-cycles in
the solution (which needs to be properly estimated as in [16]).
Let 𝑎𝑢𝑣 be the decimal alarm code of link (𝑢, 𝑣), and 𝑦 𝑘𝑢𝑣
be a binary variable indicating whether a decimal value 𝑘 is
assigned to link (𝑢, 𝑣) (𝑦𝑘𝑢𝑣 = 1) or not (𝑦𝑘𝑢𝑣 = 0). Then, the
following set of constraints (3)-(6) ensures a distinct decimal
alarm code for each link failure (assume that all link failures
are distinguishable).

𝛼𝑢𝑣 =
∑
𝑗

2𝑗 × 𝑒𝑗𝑢𝑣 ∀(𝑢, 𝑣) ∈ 𝐸; (3)

𝛼𝑢𝑣 =
2𝐽−1∑
𝑘=1

𝑘 × 𝑦𝑘𝑢𝑣 ∀(𝑢, 𝑣) ∈ 𝐸; (4)

2𝐽−1∑
𝑘=1

𝑦𝑘𝑢𝑣 = 1, ∀(𝑢, 𝑣) ∈ 𝐸; (5)

∑
(𝑢,𝑣)∈𝐸

𝑦𝑘𝑢𝑣 ≤ 1, ∀𝑘 ∈ {1, 2, . . . , 2𝐽 − 1}. (6)

In particular, constraint (3) translates a binary alarm code
into a decimal one; constraint (4) formulates a decimal alarm
code into a combinatorial sum of all possible candidate alarm
codes {1, 2, . . . , 2𝐽 − 1}; constraint (5) specifies that one and
only one value in the candidate set {1, 2, . . . , 2𝐽 −1} must be
assigned to a specific link failure; finally, constraint (6) says
that no two link failures can take the same decimal alarm code.
Note that if two links form a cut of the network topology, any

cycle-based monitoring scheme cannot distinguish the two link
failures. Then, the ILP needs to be slightly modified as detailed
in [16]. To achieve 100% link failure localization in this case,
a common approach is to add additional link-based monitors
[14]–[16], as we also discussed earlier in the example in Fig.
1.

To achieve optimal design of m-cycles with the minimum
monitoring cost, the objective function is formulated as fol-
lows.

min

⎧⎨
⎩𝑟

∑
𝑗

𝑚𝑗 +
∑
𝑗

∑
(𝑢,𝑣)∈𝐸

𝑐𝑢𝑣𝑒
𝑗
𝑢𝑣

⎫⎬
⎭ . (7)

Basically, objective (7) is a direct translation of (1). In (7),
𝑚𝑗 = 1 means that cycle 𝑗 is an m-cycle in the solution and
𝑚𝑗 = 0 otherwise. 𝑐𝑢𝑣 is the cost of adding one supervisory
wavelength to link (𝑢, 𝑣) (𝑐𝑢𝑣 = 1 if hop-count is used as the
cost metric). So the first term in (7) denotes the number of
monitors, and the second term denotes the cover length. Note
that HST and M2-CYCLE heuristics can only generate simple
m-cycle solutions without any tradeoff between the number
of monitors and the cover length. Such a tradeoff is enabled
in the ILP-based approach by adjusting the value of 𝑟. Fig. 5
shows the optimal non-simple m-cycle solution for the same
network in Fig. 2. We can see that only four m-cycles are
required. Since we have preset a value of 𝐽 = 6 which is
larger than necessary, 𝑐1 and 𝑐4 are empty m-cycles which do
not pass through any link. Compared with the simple m-cycle
solutions in Fig. 2, both the number of required monitors and
the monitoring cost in Fig. 5 are much smaller.

However, ILP-based optimal design of non-simple m-cycles
needs a very long running time as indicated in Fig. 5, and thus
is not scalable at all. This is because the optimal ILP needs to
carry out the flow-based analysis, as well as ensuring a unique
alarm code for each distinguishable link failure as formulated
in (3)-(6).

To reduce the running time, a heuristic is proposed in [16],
which still adopts the ILP-based approach but the flow-based
analysis is removed. As a result, cycles are generated only
based on (2), and multiple disjoint cycles may coexist at
the same time (defined as a cycle set CS𝑗). Accordingly, the
heuristic cannot accurately count the number of m-cycles and
monitors. The objective of the heuristic is to minimize the
sum of all the decimal alarm codes plus the cover length. As
we can see from an alarm code table, if the sum of all the
decimal alarm codes is minimized, the required number of
bits in the binary alarm codes can be suppressed, which has a
direct effect in reducing the required number of m-cycles and
monitors. As a side effect, this also helps to reduce the total
number of 1𝑠 in the binary alarm codes, which is equivalent
to reducing the cover length. Generally, the former effect is
much greater than the latter [16]. So, the ILP-based heuristic
uses the sum of all the decimal alarm codes as a heuristic
measure for monitor cost. Similar to (7), the cover length can
be included in the objective function, and a heuristic cost ratio
𝛾 can also be applied to provide a way for achieving tradeoff
between the monitor cost and the cover length, although such
a tradeoff control is not as accurate as that in the optimal ILP

6

model. By removing the flow-based analysis, the ILP can be
greatly simplified with much shorter running time, but optimal
solutions are not ensured.

Figs. 6 and 7 show two solutions generated by the heuristic
ILP [16] for the same SmallNet topology [14], where the value
of the heuristic cost ratio 𝛾 is varied in the two figures to
achieve a tradeoff between the monitor cost and the cover
length.

IV. MONITORING TRAIL (M-TRAIL)

A. Concept of m-Trail

Although non-simple m-cycle is much more flexible than
simple m-cycle in exploring the mesh connectivity of a net-
work, it is still subject to the cycle constraint on the monitoring
structure. This limits the flexibility in coding each link with a
distinct alarm code. An apparent observation is that, without
the aid of link-based monitoring, a cycle-based monitoring
scheme cannot distinguish two link failures if the two links
form a cut of the network topology. If link-based monitoring
is used, although 100% link failure localization can always be
ensured, the m-cycle design algorithms discussed earlier still
fail in carrying out a joint design by optimizing the allocation
of both m-cycles and link-based monitors at the same time.

In fact, the monitoring structure is not necessarily cycle-
based. By removing the cycle constraint, the monitoring
structure can be arbitrary trails which are general supervisory
lightpaths. Such a monitoring structure is called monitoring
trail, or m-trail [17], [18]. Similar to a non-simple m-cycle, an
m-trail can pass through a node multiple times, and different
pre-cross-connection patterns of the supervisory wavelengths
do not affect the monitoring result.

Fig. 8a shows the structure of an m-trail, where the two
triangles denote a pair of optical transceivers to support the
supervisory optical signal, and a dedicated monitor is equipped
at the sink node 𝑅. If any link on the m-trail fails, the monitor
detects the off-status of the supervisory optical signal and
generates an alarm. Fig. 8b shows an m-trail solution for the
same network in Fig. 1b, with the alarm code table in Fig. 8c.
Compared with the simple m-cycle solution in Fig. 1b which
requires three simple m-cycles and one link-based monitor to

2

0 3

1
4

(b) An m-trail solution

t1

t0

t2

(0,1) 1 0 1 5
(0,2) 1 1 1 7
(0,3) 1 0 0 4
(1,2) 0 1 1 3
(1,3) 1 1 0 6
(2,4) 0 0 1 1
(3,4) 0 1 0 2

t2 t1 t0Link

(c) Alarm code table

Decimal

(a) m-trail

R

T

a
b

c

d

e

Fig. 8. Fast link failure localization based on m-trails.

Simple m-cycle

Non-simple m-cycle

Link-based monitoring

Open trail

Non-link-based open trail

Closed trail

m-trail

Fig. 9. M-trail is a generalization of all monitoring structures.

achieve 100% link failure localization, only three m-trails and
monitors are required in Fig. 8b. Notably, the two links (2,
4) and (3, 4) form a cut of the network topology, but the
corresponding link failures can be distinguished by two m-
trails 𝑡0 and 𝑡1 due to their acyclic monitoring structure.

The concept of m-trail generalizes all the previously studied
monitoring structures, including simple, non-simple m-cycles
and link-based monitoring. In particular, simple and non-
simple m-cycles can be treated as closed trails, and link-based
monitoring is also a special case of m-trail. As a supervisory
lightpath, an m-trail can also take the general structure of
non-link-based open trail. Fig. 9 summarizes the relationship
among different monitoring structures studied so far.

B. M-Trail Design

We first consider the optimal design of m-trails using an ILP
approach. As shown in Fig. 10, we use on-trail vectors (vectors

0

1 2

34

5

c0: 0–1–2–5–1–4–0
c2: 0–3–4–1–5–4–0
c3: 0–2–1–5–3–0
c5: 0–1–4–3–2–0

r=5
No. of monitors: 4
Cover length: 22
Monitoring cost: 42
J=6
Running time: 30775.22 sec
Gap-to-optimality: 0% (optimal)

c0

c2

c3

c5

(0,1)
(0,2)
(0,3)
(0,4)
(1,2)
(1,4)
(1,5)
(2,3)
(2,5)
(3,4)
(3,5)
(4,5)

1 0 0 0 0 1
Link c5 c4 c3 c2 c1 c0 Decimal

33
40
12
5
9

37
13
32
1
36
8

1 0 1 0 0 0
0 0 1 1 0 0
0 0 0 1 0 1
0 0 1 0 0 1
1 0 0 1 0 1
0 0 1 1 0 1
1 0 0 0 0 0
0 0 0 0 0 1
1 0 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0 4

Fig. 5. Optimal non-simple m-cycle solution.

7

0.03
b

c

R

a

e

f
d

(a)

0.01

0.02

0.04

0.05 0.06

0.07

R

a

b

c

(b)

0.01

0.02
0.03

0.04

(c)

f

e

g

k

h

j

i

0.02

0.01

0.03

0.04

0.01

0.02

0.03

0.07

T

Fig. 10. Formulating a single m-trail using the voltage constraint.

for short) to denote the supervisory wavelengths of an m-trail
𝑡𝑗 . A vector 𝑢 → 𝑣 denotes a supervisory wavelength of 𝑡 𝑗
on link (𝑢, 𝑣), with the supervisory optical signal transmitted
from node 𝑢 to node 𝑣. Each m-trail 𝑡𝑗 has a unique source-
sink (i.e., 𝑇 − 𝑅) node pair. Let Δ𝑢 be the difference of the
number of outbound and inbound vectors at node 𝑢. For an

open trail, we have Δ𝑇 = 1, Δ𝑅 = −1, and Δ𝑢 = 0 for
𝑢 ∕= 𝑇 and 𝑢 ∕= 𝑅. In other words, the vectors must obey flow
conservation at each node, except at source 𝑇 and sink 𝑅. For
a closed trail, 𝑇 and 𝑅 denote the same node (we still use the
term “𝑇 −𝑅 node pair” for simplicity), and we have Δ𝑢 = 0
for each node 𝑢 in the network.

Similar to the ILP-based non-simple m-cycle design [16], it
is incomplete to formulate an m-trail only based on the above
flow conservation property, because multiple disjoint cycles
may be generated at the same time. As we can see in Fig.
10a, although flow conservation is not violated, we get an
open trail and a disjoint cycle.

To generate a single m-trail 𝑡𝑗 at a time, a voltage analysis
is carried out [17]. The purpose of the voltage analysis
is to complement the above flow-conservation-based m-trail
formulation, such that only a single m-trail is formulated by
excluding all other possible disjoint cycles. In particular, a
positive voltage value is defined for each vector 𝑢 → 𝑣

(0,1)
(0,5)
(0,6)
(1,2)
(1,6)
(1,7)
(2,3)
(2,7)
(2,8)
(3,4)
(3,8)

0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 1
0 0 0 1 0 1 1 0
0 0 0 1 0 0 1 1
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 0
0 0 0 1 0 0 0 0
0 0 0 1 0 1 1 1
0 0 0 1 0 0 1 0

Link CS7 CS6 CS5 CS4 CS3 CS2 CS1 CS0 Decimal
21
3
22
19
4
2
5
6
16
23
18

(4,5)
(4,8)
(4,9)
(5,6)
(5,9)
(6,7)
(6,8)
(6,9)
(7,8)
(7,9)
(8,9)

0 0 0 0 1 1 1 1
0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 1 0 1
0 0 0 0 1 0 1 0
0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 0

Link CS7 CS6 CS5 CS4 CS3 CS2 CS1 CS0 Decimal
15
20
12
1

13
10
17
8
9
7
14

(b) Alarm code table based on CSj.

J: 8
: 0

Running time: 152.14 sec
Gap-to-“optimality”: 4.53%
No. of monitors: 6
Cover length: 49

Heuristic ILP:

No. of monitors: 12
Cover length: 36

M2-CYCLE [16]:
No. of monitors: 13
Cover length: 43

HST [15]:

(c) Comparison with existing algorithms.

(a) SmallNet topology (with 10 nodes and 22 links) and m-cycles/cycle sets.

0

1
9

2 3

4

5

6

7 8

0

1
9

2 3

4

5

6

7 8

0

1
9

2 3

4

5

6

7 8

0

1
9

2 3

4

5

6

7 8

0

1
9

2 3

4

5

6

7 8

0

1
9

2 3

4

5

6

7 8

CS0/c0 CS1/c1 CS2 CS3/c3 CS4/c4

c2 c5

SmallNet topology

Fig. 6. M-cycle design based on the heuristic ILP for SmallNet with 𝐽 = 8 and 𝛾 = 0.

J: 9
: 1024

Running time: 1795.15 sec
Gap-to-“optimality”: 2.88%
No. of monitors: 9
Cover length: 35

Heuristic ILP model:

No. of monitors: 12
Cover length: 36

M2-CYCLE [16]:

0

1
9

2 3

4

5

6

7 8
4 4

0

1
9

2 3

4

5

6

7 8

CS0

0

1
9

2 3

4

5

6

7 8

(0,1)
(0,5)
(0,6)
(1,2)
(1,6)
(1,7)
(2,3)
(2,7)
(2,8)
(3,4)
(3,8)

1 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0
0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1

Link CS8CS7 CS6 CS5 CS4 CS3 CS2 CS1 CS0 Decimal
(4,5)
(4,8)
(4,9)
(5,6)
(5,9)
(6,7)
(6,8)
(6,9)
(7,8)
(7,9)
(8,9)

66
3

64
258
80
4

10
20
8
6
2

256
272
16
32
264
40
128
34

130
1

129

Link CS8CS7 CS6 CS5 CS4 CS3 CS2 CS1 CS0 Decimal
0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1
0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0
0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 1 0 1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0

CS7

CS8

0

1
9

2 3

4

5

6

7 8

CS6

0

1
9

2 3

5

6

7 8

CS5

0

1
9

2 3

4

5

6

7 8

CS4

0

1
9

2 3

4

5

6

7 8

CS3

0

1
9

2 3

4

5

6

7 8

CS2

0

1
9

2 3

5

6

7 8

CS1

Fig. 7. M-cycle design based on the heuristic ILP for SmallNet with 𝐽 = 9 and 𝛾 = 1024.

8

on 𝑡𝑗 , as denoted by a fraction next to each vector in Fig.
10. If a link (𝑢, 𝑣) is not traversed by 𝑡𝑗 , by default the
corresponding voltage value is 0. For any node traversed by 𝑡 𝑗
except sink 𝑅, the sum of the voltage values of its outbound
vectors must be larger than that of its inbound vectors. This
is called the voltage constraint. Voltage value only provides
an analytical tool to support our voltage analysis, and it does
not have any physical meaning in real world. Accordingly,
the specific voltage values are not important as long as the
voltage constraint is obeyed. Note that the voltage constraint
does not apply to sink 𝑅. If an m-trail 𝑡𝑗 traverses any node
at most once as shown in Figs. 10a & 10b, the voltage values
of the vectors must keep increasing along 𝑡𝑗 , except at sink
𝑅 where a voltage decrease may occur. In Fig. 10a, we can
find a feasible set of voltage values for those vectors on the
open trail. Since the cycle does not pass through sink 𝑅, the
voltage values of those on-cycle vectors must keep increasing
along the cycle. Then, a voltage conflict will occur due to the
cyclic structure, and the voltage constraint cannot be satisfied
at every node (e.g. at node 𝑑).

Based on the above mechanism, the ILP can exclude all
other disjoint cycles but generate a single m-trail at a time. On
the other hand, if a closed trail (i.e., a cycle) passes through
sink 𝑅 as shown in Fig. 10b, voltage conflict will not occur
because the voltage constraint does not apply to sink 𝑅. Since
the ILP ensures a single 𝑇 − 𝑅 node pair for each m-trail,
only the trail passing through the unique 𝑇 − 𝑅 node pair is
kept and all other disjoint trails will be excluded. Note that
the voltage constraint can also be applied to the case where
some nodes are traversed multiple times by an m-trail [17], as
illustrated in Fig. 10c. With the above voltage analysis, the ILP
can accurately count the number of m-trails in the solution.
Accordingly, the total cost of all monitors can be properly
formulated.

To assign a distinct alarm code to each possible link failure,
the concept of decimal alarm codes is used to avoid bit-
wise comparisons in the corresponding binary alarm codes.
Although the set of constraints (3)-(6) can be directly used in
m-trail design, a huge number of variables will be involved.
As we can see in constraints (4)-(6), 𝑦𝑘𝑢𝑣 will introduce
(2𝐽 − 1) × ∣𝐸∣ variables to the ILP solver, where 𝐽 is the
maximum number of m-cycles or m-trails in the solution and
∣𝐸∣ is the total number of links in the network. This number
increases exponentially with 𝐽 , and thus the ILP running time
will be dramatically increased if the network size is large.

To reduce the required number of ILP variables, an approach
is proposed in [17] to allocate a distinct alarm code for
each link failure. Specifically, a binary variable 𝑓 𝑥𝑦

𝑢𝑣 is defined
to indicate the inequality between two decimal alarm codes
𝛼𝑢𝑣 and 𝛼𝑥𝑦 . 𝑓𝑥𝑦𝑢𝑣 = 1 means 𝛼𝑢𝑣 > 𝛼𝑥𝑦 and 𝑓𝑥𝑦𝑢𝑣 = 0
means 𝛼𝑢𝑣 < 𝛼𝑥𝑦 . Let (𝑢, 𝑣), (𝑥, 𝑦) ∈ 𝐸 : (𝑢, 𝑣) ∕= (𝑥, 𝑦)
denote two distinct links (𝑢, 𝑣) and (𝑥, 𝑦). With a predefined
small positive constant 𝛽, the following constraints (8)-(9) can
efficiently ensure 𝛼𝑢𝑣 ∕= 𝛼𝑥𝑦 . Otherwise, the two constraints
cannot hold at the same time, no matter whether the binary
variable 𝑓𝑥𝑦𝑢𝑣 takes the value of 0 or 1.

𝛽 + 𝛽 (𝛼𝑢𝑣 − 𝛼𝑥𝑦) ≤ 𝑓𝑥𝑦𝑢𝑣 ∀(𝑢, 𝑣), (𝑥, 𝑦) ∈ 𝐸 (8)

(𝑢, 𝑣) ∕= (𝑥, 𝑦);

𝛽 + 𝛽 (𝛼𝑥𝑦 − 𝛼𝑢𝑣) ≤ 1− 𝑓𝑥𝑦𝑢𝑣 ∀(𝑢, 𝑣), (𝑥, 𝑦) ∈ 𝐸 (9)

(𝑢, 𝑣) ∕= (𝑥, 𝑦).

In constraints (8)-(9), the specific value of 𝛽 is not impor-
tant, as long as it is a positive value small enough to ensure
𝛽+𝛽×∣𝛼𝑢𝑣−𝛼𝑥𝑦∣ ≤ 1. For example, if we allow 9 m-trails in
the solution, the candidate set of all the decimal alarm codes
is {1, 2, . . . , 29−1}, and 𝛽 can be predefined in 0 < 𝛽 ≤ 1

512 .
In contrast to the (29−1)×∣𝐸∣ variables (i.e., 𝑦𝑘𝑢𝑣) in (4)-(6),
the number of variables (i.e., 𝑓 𝑥𝑦

𝑢𝑣) in (8)-(9) is dramatically
reduced to ∣𝐸∣×(∣𝐸∣−1)

2 .
The objective function in m-trail design is similar to (7) and

is formulated by minimizing the monitoring cost in (1). We
will not give the details of the ILP in this article, and interested
readers may refer to [17]. With the ILP-based approach, an
efficient tradeoff between the monitor cost and the cover length
can be achieved by adjusting the value of the cost ratio 𝑟. Since
m-trail is the most general monitoring structure and it takes all
the previously studied monitoring structures as special cases
(see Fig. 9), an m-trail solution can always ensure 100% link
failure localization for any network topology. On the other
hand, optimal design of m-trails ensures the true optimality
of the monitoring resource allocation, because all possible
monitoring structures are jointly optimized.

Fig. 11 shows an optimal m-trail solution generated by the
ILP [17] for a simple network topology. Clearly, m-trail 𝑡 2
is a closed trail, or an m-cycle. Fig. 12 shows an m-trail
solution for the SmallNet Topology [14]. In both examples, 𝐽
is predefined larger than necessary. The final solution contains
less than 𝐽 m-trails, and others are empty trails which do not
pass through any link. For example, 𝑡3, 𝑡5 and 𝑡6 in Fig. 12 are
empty trails. Basically, empty trails can be removed from the
alarm code table by rearranging the value of all the decimal
alarm codes accordingly.

Since the ILP-based approach is not scalable, a two-step
heuristic is proposed in [18] for scalable m-trail design in
large-size networks. The first step is called Random Code
Assignment (RCA), where a unique (temporary) alarm code
is assigned to each link failure in a random manner, with
the key spirit of ensuring 100% link failure localization first.
The second step is an iterative process called Random Code
Swapping (RCS), which shapes the monitoring structures
obtained from RCA into m-trails.

In RCS, each bit in all binary alarm codes is sequentially
analyzed to check whether one or a set of disjoint m-trails
are formed or not. Note that an m-trail must obey flow
conservation at all nodes except at the source 𝑇 and the sink
𝑅, but the monitoring structures obtained from RCA may not
satisfy this constraint. Accordingly, RCS initiates an iterative
process to find those nodes with odd degree of on-trail vectors.
By properly swapping alarm codes between some pairs of
links based on a bit-wise analysis, RCS gradually reduces the
number of nodes with odd degree of on-trail vectors, until an
m-trail (or an m-trail and a set of disjoint m-cycles) is formed,

9

which means there are at most two nodes in the network
with odd degree of on-trail vectors. This process is iteratively
carried out bit-by-bit from the LSB (Least Significant Bit) of
the binary alarm codes to the MSB (Most Significant Bit),
until all the monitoring structures are shaped into m-trails and
m-cycles.

When swapping two alarm codes between a pair of links,
the algorithm ensures that all the previously formed m-trails
(i.e., those binary bits analyzed so far) will not be changed.
Whenever it is found that the number of bits (i.e., the length of
a binary alarm code, or equivalently the number of monitors)
is not sufficient for ensuring 100% link failure localization,
a new bit is added as the MSB of the binary alarm codes.
This increases the length of the binary alarm codes by one,
but doubles the size of the candidate alarm code set such
that more candidate alarm codes can be used for swapping.
Eventually, 100% link failure localization, which is initially
ensured in RCA, will be kept throughout the RCS process, and
all monitoring structures will be shaped into m-trails by RCS.
In short, RCA carries out an initial alarm code assignment
to ensure 100% link failure localization, and RCS aims at
shaping the monitoring structures into m-trails by swapping
some alarm codes based on the flow conservation constraint.

The above idea is illustrated by a simple example in Fig.

13, where the network topology is the same as that in Fig.
11. Fig. 13a shows the result of RCA, where a set of decimal
alarm codes 1-9 is randomly assigned to the links with their
binary translations in the brackets. The LSBs of all the binary
alarm codes are first analyzed, where a “1” denotes an on-trail
vector and a “0” otherwise. The resulting vectors are indicated
by the dashed lines in Fig. 13a. We can see that four nodes
0, 1, 2 and 3 have odd number of dashed lines incident on
each. If we swap the alarm codes between two links (0, 2)
and (1, 2), the updated alarm code assignment is shown in
Fig. 13b. The number of nodes with odd degree of vectors is
reduced from 4 to 2, and the structure consisting of the dashed
lines in Fig. 13a is shaped into the broad-brush m-trail in Fig.
13b. Since an m-trail is obtained, the analysis on the LSBs of
the binary alarm codes is complete. Then, RCS turns to check
the second bit, where the vectors indicated by “1” are denoted
by the dotted lines in Fig. 13b.

At this point, four nodes 0, 1, 5 and 6 have odd number
of dotted lines incident on each. If we swap the alarm codes
between two links (0, 2) and (1, 6), the updated alarm code
assignment is shown in Fig. 13c. This time, the structure
consisting of the dotted lines in Fig. 13b is shaped into the
broad-brush m-trail in Fig. 13c. Note that we can swap the
alarm codes of links (0, 2) and (1, 6), because the LSBs of

(0,1)
(0,2)
(1,2)
(1,6)
(2,3)

1
3
8
9

10

2
6
4
5

Link t3 t2 t1 t0 Decimal

0 0 0 1
0 0 1 1
1 0 0 0
1 0 0 1
1 0 1 0

0 0 1 0
0 1 1 0
0 1 0 0
0 1 0 1

Link t3 t2 t1 t0 Decimal

(3,4)
(4,5)
(4,6)
(5,6)

0

1

2 3 4

6

5

t0

t1

t2

t3

Predefined parameters (see [18] for details): J=12, =5, =0.01, =0.0001, B=34

Results: ILP running time=12.70 sec, Gap to optimality=0% (Optimal), Number of m-trails=4, Monitoring cost=34

Fig. 11. Optimal m-trail solution for a simple network topology.

(0,1)
(0,5)
(0,6)
(1,2)
(1,6)
(1,7)
(2,3)
(2,7)
(2,8)
(3,4)
(3,8)

1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0
1 0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0

Link t8 t7 t6 t5 t4 t3 t2 t1 t0 Decimal
(4,5)
(4,8)
(4,9)
(5,6)
(5,9)
(6,7)
(6,8)
(6,9)
(7,8)
(7,9)
(8,9)

0 0 0 0 0 0 1 0 1
0 1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 1 0 1 0 0
1 1 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

5
129
132
4
3

20
388
272
260
128
256

384
6

262
18
258
144
17
2

257
1

16

Link t8 t7 t6 t5 t4 t3 t2 t1 t0 Decimal

0

1
9

2 3

4

5

6

7 8

0

1
9

2 3

4

5

6

7 8

0

1
9

2 3

4

5

6

7 8

0

1
9

2 3

4

5

6

7 8

0

1
9

2 3

4

5

6

7 8

0

1
9

2 3

4

5

6

7 8

t0

J=9
r=5
=0.01
=0.001

B=69

Solution time=761.84 sec
Gap to optimality=1.43%
Number of m-trails=6
Monitoring cost=70

Predefined parameters (see [18] for details):

Result:

t1 t2 t4 t7 t8

Fig. 12. M-trail solution for the SmallNet topology with 10 nodes and 22 links.

10

their binary alarm codes are the same. In RCS, if we want to
swap the alarm codes of two link failures, all the previously
analyzed bits of the two binary alarm codes must be the same,
such that the swapping will not change the m-trails obtained
so far. Otherwise, we have to add another bit as the new MSB
to provide more candidate alarm codes for swapping.

An issue in RCS is that multiple disjoint m-trails may be
generated when we analyze a particular bit in the binary alarm
codes. For the example in Fig. 13, when we analyze the second
bit, the alarm code 1 (0001) of link (0, 1) and 7 (0111) of link
(4, 6) also have the same LSB of “1”. As a result, we can also
swap the alarm codes of links (0, 1) and (4, 6) as indicated by
the dotted arrow in Fig. 13c, instead of swapping the alarm
codes between links (0, 2) and (1, 6) as we have done earlier.
If so, the number of nodes with odd degree of vectors will
also be reduced from 4 (i.e., nodes 0, 1, 5 and 6 as indicated
by the dotted lines in Fig. 13b) to 2 (i.e., nodes 4 and 5 as
indicated by the dotted lines in Fig. 13c). Instead of having a
single m-trail as shown by the dotted broad-brush line in Fig.
13c, a link-based m-trail at link (4, 5) and a disjoint m-cycle
0 − 1 − 2 − 0 will be generated, as shown by the (regular)
dotted lines in Fig. 13c.

V. BOUNDS ON THE NUMBER OF MONITORS

As formulated in (1), the monitoring cost can be defined as
a weighted sum of the monitor cost (denoted by the number of
monitors) and the cover length. On the other hand, the required
number of monitors has attracted more research attentions
[13], [16], [18] than the cover length. In addition to decreasing
the hardware cost, reducing the required number of monitors
can greatly simplify the fault management and thus make the
network more scalable.

In simple m-cycle design, the required number of monitors
increases linearly with the network size. For example, the
spanning tree based algorithm HST [14] generates a simple
m-cycle from each chord. Let 𝐸 be the set of all the links
and 𝑉 be the set of all the nodes in the network. Because
a network has ∣𝑉 ∣ − 1 trunks and ∣𝐸∣ − ∣𝑉 ∣ + 1 chords, an
HST solution contains exactly ∣𝐸∣ − ∣𝑉 ∣ + 1 m-cycles, plus
additional link-based monitors if required for achieving 100%
link failure localization. Although the number of required
monitors is generally less than ∣𝐸∣ (which is required by the
conventional link-based monitoring), it still increases linearly
with the network size.

The work in [16] proposes the ILP-based approach and
the concept of non-simple m-cycles. Besides introducing an

efficient tradeoff between the monitor cost and the cover
length (which cannot be achieved in HST and M2-CYCLE),
a more significant contribution of [16] is that the required
number of monitors is dramatically reduced. In [16], the m-
cycle design problem is translated into the binary coding of
individual link failures, subject to the network topology and
the cycle constraints. Since each m-cycle matches one bit
in the binary alarm codes, the required number of m-cycles
is dramatically reduced from 𝑂(∣𝐸∣) to 𝑂(log2 ∣𝐸∣) (note
that only the number of m-cycles is considered, and some
necessary link-based monitors for achieving 100% link failure
localization is not counted here). This is due to the more
flexible monitoring structure of non-simple m-cycles, which
greatly weakens the cycle constraint compared with simple
m-cycles, and thus gives more flexibility to the binary coding
of the link failures.

However, the cycle constraint is still not removed in non-
simple m-cycle design. The monitoring structure is still limited
to either simple/non-simple m-cycles or link-based monitors,
and other open trails are not considered. Besides, the monitor-
ing resource allocation is not jointly optimized by considering
both m-cycles and link-based monitors at the same time. All
the above limitations prevent the number of required monitors
from being reduced further. With the concept of m-trails
proposed in [17], all those limitations are removed, and thus
the minimum number of required monitors can be achieved
for 100% link failure localization.

However, this does not mean that the number of monitors
required by an m-trail solution is always in 𝑂(log2 ∣𝐸∣). Note
that in non-simple m-cycle design, 𝑂(log2 ∣𝐸∣) only counts
the number of m-cycles. If we count the total number of
required monitors, some additional link-based monitors still
need to be considered. Due to the diversity of the network
topologies, in some extreme cases the required number of
link-based monitors could be very huge for achieving 100%
link failure localization.. For example, in a ring topology, an
m-cycle design is not feasible at all, and every link needs
a link-based monitor if the general m-trail structure is not
adopted. If m-trail design is considered, it is proved in [18] that
⌈∣𝐸∣/2⌉ monitors are always sufficient for 100% link failure
localization in any two-connected network, and it is also the
necessary number of monitors for a ring network. Obviously,
this is much larger than 𝑂(log2 ∣𝐸∣). On the other hand,
solutions generated from the ILP indicate that exactly log 2 ∣𝐸∣
m-trails and monitors are sufficient for achieving 100% link
failure localization in a fully-meshed topology, but it is very

0

1

2

5

6

43

1 (0001)

2 (0010)

3 (0011)

4 (0100) 5 (0101)

6 (0110)

7 (0111)

8 (1000)

9 (1001)

0

1

2

5

6

43

1 (0001)

3 (0011)

2 (0010)

4 (0100) 5 (0101)

6 (0110)

7 (0111)

8 (1000)

9 (1001)

0

1

2

5

6

43

1 (0001)

9 (1001)

2 (0010)

4 (0100) 5 (0101)

6 (0110)

7 (0111)

8 (1000)

3 (0011)

(a) (b) (c)

Fig. 13. Heuristic m-trail design algorithm based on RCA and RCS.

11

hard to find a theoretical proof for this observation. Instead, an
upper bound of 6+⌈log2 (∣𝐸∣+ 1)⌉ monitors is proved in [18]
for achieving 100% link failure localization in a fully-meshed
topology.

A general observation is that the required number of moni-
tors decreases as the average node degree increases. Although
increasing the average node degree leads to more links in the
network and thus intuitively more m-trails and monitors may
be required, it actually increases the network connectivity and
thus relaxes the topology constraint on coding the link failures.
Based on the heuristic solutions obtained in various randomly
generated networks, it is shown in [18] that for most networks
with moderate node degree, the required number of m-trails
and monitors is only slightly above log2 ∣𝐸∣. As a result, an
m-trail based monitoring scheme can greatly simplify the fault
management in a large-size network.

VI. FUTURE RESEARCH TOPICS

Although our experiments indicate that a fully-meshed net-
work needs exactly log2 ∣𝐸∣ m-trails and monitors to achieve
100% link failure localization, finding a theoretical proof for
this observation is still an open problem. Due to the diversity
of the network topologies, more results other than those
observed in [18] are expected on how the required number
of monitors changes with the network topologies. Besides, it
would be an interesting supplement to take the cover length
into similar studies.

In this article, we showed that m-trail provides the most
general optical layer monitoring structure by including all the
previously studied structures. However, non-simple m-cycle
design may be desired in some applications, especially when
we hope that the same node can send out the supervisory
optical signal and meanwhile check the content or the quality
of the loopback optical signal. Compared with an m-cycle,
an open m-trail separates the optical transmitter and receiver
at two different nodes. This may introduce additional cost,
but it can be easily incorporated into the optimization process
by slightly modifying the ILP. Besides, in the monitoring
schemes we studied, monitors can be equipped at an arbitrary
set of nodes, and thus there is no additional constraint on
the monitoring sites. In practice, we may hope that the set
of monitors can be equipped at some given nodes, or at a
centralized manager to facilitate the alarm code collection and
distribution. We noticed that similar engineering implementa-
tions have been considered in [13]. Such requirements can also
be formulated in our ILP by adding some extra constraints.

Note that all the schemes reviewed in this article consider
only a single link failure in the network. Based on the
monitoring structures and design approaches discussed in this
article, a direct extension is to consider fault localization in
optical networks under multiple failures or SRLG (Shared
Risk Link Group) constraints. In fact, some researchers have
initiated similar work. In particular, the work in [12] considers
failure localization of SRLG with up to 𝑘 links, where the
monitor/monitors can be placed at a single or multiple loca-
tions. Some necessary and sufficient conditions on monitor
placement and network connectivity, as well as the minimum

number of required monitors, are derived for unique SRLG
failure localization. A heuristic and an ILP model based on
simple cycle enumeration are also formulated in [12]. But,
the work in [12] only considers simple m-cycles and paths..
It would be interesting to see how non-simple m-cycles and
m-trails can be applied in similar applications. Since fault
localization is a common concern in other networks such
as Internet and wireless networks, we also expect that the
concepts and methodologies studied in this article can be
extended to solve similar fault localization problems in those
networks.

REFERENCES

[1] M. Steinder and A. Sethi, “A survey of fault localization techniques in
computer networks,” Science of Computer Programming, vol. 53, no. 2,
pp. 165–194, 2004.

[2] I. Katzela and M. Schwartz, “Schemes for fault identification in com-
munication networks,” IEEE/ACM Transactions on Networking (TON),
vol. 3, no. 6, pp. 753–764, 1995.

[3] A. Bouloutas, S. Calo, and A. Finkel, “Alarm correlation and fault
identification in communicationnetworks,” IEEE Transactions on Com-
munications, vol. 42, no. 234 Part 1, pp. 523–533, 1994.

[4] M. Goyal and K. Feng, “Achieving faster failure detection in OSPF
networks,” in IEEE ICC ’03, vol. 1, 2003, pp. 296–300.

[5] M. Al-Kuwaiti, N. Kyriakopoulos, and S. Hussein, “A comparative
analysis of network dependability, fault-tolerance, reliability, security,
and survivability,” IEEE Communications Surveys & Tutorials, vol. 11,
no. 2, pp. 106–124, 2009.

[6] C. Mas, P. Thiran, and J. Le Boudec, “Fault localization at the WDM
layer,” Photonic Network Communications, vol. 1, no. 3, pp. 235–255,
1999.

[7] C. Assi, Y. Ye, A. Shami, S. Dixit, and M. Ali, “A hybrid distributed
fault-management protocol for combating single-fiber failures in mesh-
based DWDM optical networks,” in IEEE GLOBECOM ’02, vol. 3,
2002, pp. 2676–2680.

[8] Y. Wen, V. Chan, and L. Zheng, “Efficient fault-diagnosis algorithms
for all-optical WDM networks with probabilistic link failures,” Journal
of Lightwave Technology, vol. 23, pp. 3358–3371, 2005.

[9] N. Harvey, M. Patrascu, Y. Wen, S. Yekhanin, and V. Chan, “Non-
Adaptive Fault Diagnosis for All-Optical Networks via Combinatorial
Group Testing on Graphs,” in IEEE INFOCOM, 2007, pp. 697–705.

[10] S. Stanic, S. Subramaniam, H. Choi, G. Sahin, and H. Choi, “On mon-
itoring transparent optical networks,” in Proc. International Conference
on Parallel Processing Workshops (ICPPW ’02), 2002, pp. 217–223.

[11] M. Maeda, “Management and control of transparent optical networks,”
IEEE Journal on Selected Areas in Communications, vol. 16, no. 7, pp.
1008–1023, 1998.

[12] S. Ahuja, S. Ramasubramanian, and M. Krunz, “SRLG Failure Local-
ization in All-Optical Networks Using Monitoring Cycles and Paths,” in
IEEE INFOCOM, 2008, pp. 181–185.

[13] ——, “Single link failure detection in all-optical networks
using monitoring cycles and paths,” accepted for publi-
cation in IEEE/ACM Transactions on Networking, 2009,
http://www.ece.arizona.edu/ srini/Publications.php.

[14] H. Zeng, C. Huang, and A. Vukovic, “A Novel Fault Detection and Lo-
calization Scheme for Mesh All-optical Networks Based on Monitoring-
cycles,” Photonic Network Communications, vol. 11, no. 3, pp. 277–286,
2006.

[15] B. Wu and K. Yeung, “M2-CYCLE: an Optical Layer Algorithm for
Fast Link Failure Detection in All-Optical Mesh Networks,” in IEEE
GLOBECOM ’06, 2006, pp. 1–5.

[16] B. Wu, K. Yeung, and P. Ho, “Monitoring Cycle Design for Fast Link
Failure Localization in All-Optical Networks,” IEEE/OSA Journal of
Lightwave Technology, vol. 27, no. 10, pp. 1392–1401, 2009.

[17] B. Wu, P. Ho, and K. Yeung, “Monitoring Trail: On Fast Link Failure
Localization in WDM Mesh Networks,” IEEE/OSA Journal of Lightwave
Technology, vol. 27, no. 23, Dec. 2009.

[18] J. Tapolcai, B. Wu, and P.-H. Ho, “On Monitoring and Failure Local-
ization in Mesh All-Optical Networks,” in IEEE INFOCOM, 2008, pp.
1008–1016.

[19] M. Kiaei, C. Assi, and B. Jaumard, “A Survey on the p-Cycle Protection
Method,” IEEE Communications Surveys & Tutorials, vol. 11, no. 3, pp.
53–70, 2009.

12

[20] A. Haider and R. Harris, “Recovery Techniques in Next Generation
Networks,” IEEE Communications Surveys & Tutorials, vol. 9, no. 3,
pp. 2–17, 2007.

[21] S. Verbrugge, D. Colle, P. Demeester, R. Huelsermann, and M. Jaeger,
“General availability model for multilayer transport networks,” in Proc.
DRCN 2005, Lacco Ameno, Italy, Oct. 16-19, 2005.

[22] B. Mukherjee, Optical WDM networks. Springer-Verlag New York Inc,
2006.

[23] P. Ho and H. Mouftah, “Shared protection in mesh WDM networks,”
IEEE Communications Magazine, vol. 42, no. 1, pp. 70–76, 2004.

[24] S. Nelakuditi, S. Lee, Y. Yu, Z. Zhang, and C. Chuah, “Fast local
rerouting for handling transient link failures,” IEEE/ACM Transactions
on Networking (TON), vol. 15, no. 2, p. 372, 2007.

[25] T. Wu, “Emerging technologies for fiber network survivability,” IEEE
Communications Magazine, vol. 33, no. 2, pp. 58–59, 1995.

[26] J. Li and K. Yeung, “A novel two-step approach to restorable dynamic
QoS routing,” Journal of Lightwave Technology, vol. 23, no. 11, p. 3663,
2005.

[27] B. Wu, K. L. Yeung, and P.-H. Ho, “Ilp formulations for non-simple p-
cycle and p-trail design in wdm mesh networks,” Computer Networks,
October 2009.

[28] R. Diestel, “Graph theory , Graduate Texts in Mathematics 173,” 2000.
[29] B. Wu, K. Yeung, and P. Ho, “ILP Formulations for p-Cycle Design

without Candidate Cycle Enumeration,” to appear in IEEE/ACM Trans-
actions on Networking, available at http://www.eee.hku.hk/research/
doc/tr/TR2008001 IFDCC.pdf.

Bin Wu received the B.Eng. degree from Zhe Jiang University, Hangzhou,
China, in 1993, M.Eng. degree from University of Electronic Science and
Technology of China, Chengdu, China, in 1996, and PhD degree from the
University of Hong Kong, Hong Kong, in 2007. During 1997-2001, he served
as the department manager of TI-Huawei DSP co-lab in Huawei Tech. Co.
Ltd, Shenzhen, China. Currently he is a postdoctoral research fellow at the
University of Waterloo, Waterloo, Canada.

Pin-Han Ho received his B.Sc. and M.Sc. degrees from the Electrical and
Computer Engineering, Department of National Taiwan University in 1993
and 1995, respectively. He started his Ph.D. studies in 2000 at Queen’s
University, Kingston, Ontario, Canada, focusing on optical communications
systems, survivable networking, and QoS routing problems. He finished
his Ph.D. in 2002, and joined the Electrical and Computer Engineering
Department at the University of Waterloo as an assistant professor in the same
year. He is the author/co-author of more than 100 refereed technical papers
and book chapters, and the co-author of a book on optical networking and
survivability. He is the recipient of the Distinguished Research Excellence
Award in the ECE Department at the University of Waterloo, the Early
Researcher Award in 2005, the Best Paper Award at SPECTS ’02 and the
ICC ’05 Optical Networking Symposium, and the Outstanding Paper Award
in HPSR ’02.

Kwan L. Yeung was born in 1969. He received his B.Eng. and Ph.D.
degrees in Information Engineering from The Chinese University of Hong
Kong in 1992 and 1995, respectively. He joined the Department of Elec-
trical and Electronic Engineering, The University of Hong Kong in July
2000, where he is currently an Associate Professor, and the Information
Engineering Program Co-Director. Before that, he has spent five years in
the Department of Electronic Engineering, City University of Hong Kong
as an Assistant Professor. During the summer of 1993, Dr. Yeung served
with the Performance Analysis Department, AT&T Bell Laboratories (now
Bell Labs, Lucent Technologies), Holmdel, USA, as a Member of Technical
Staff. Dr. Yeung’s research interests include next-generation Internet, packet
switch/router design, all-optical networks and wireless data networks. He has
obtained two patents and published over 120 papers in international journals
and conferences since 1993.

János Tapolcai received his M.Sc. (’00 in Technical Informatics), and Ph.D.
(’05 in Computer Science) degrees in Technical Informatics from Budapest
University of Technology and Economics (BME), Budapest, Hungary. Cur-
rently he is an Associate Professor at the High-Speed Networks Laboratory at
the Department of Telecommunications and Media Informatics at BME. His
research interests include applied mathematics, combinatorial optimization,
linear programming, linear algebra, routing in circuit switched survivable
networks, availability analysis, grid networks, and distributed computing. He
has been involved in a few related European and Canadian projects (IP
NOBEL; NoE e-Photon/ONe; BUL). He is an author of over 30 scientific
publications, and is the recipient of the Best Paper Award in ICC’06. He is a
member of the IEEE.

Hussein T. Mouftah joined the School of Information Technology and
Engineering (SITE) of the University of Ottawa in September 2002 as a
Canada Research Chair Professor (Tier 1). He has been with the Department
of Electrical and Computer Engineering at Queen’s University since 1979,
where prior to his departure in August 2002 he was a full professor and
department associate head, after three years of industrial experience mainly
at Bell Northern Research of Ottawa (now Nortel Networks). He has spent
three sabbatical years at Nortel (1986–1987, 1993–1994, and 2000–2001)
conducting research in the areas of broadband packet switching networks,
mobile wireless networks, and quality of service over the optical Internet. He
served as Editor-in-Chief of IEEE Communications Magazine (1995–1997),
IEEE Communications Society Director of Magazines (1998–1999), Chair
of the Awards Committee (2002-2003), Director of Education (2006-2007),
and Member of the Board of Governors (1997-1999 and 2006-2007). He is
also the founding Chair of two of IEEE Communications Society Technical
Committees (TCs): Optical Networking TC (2002-2004) and Ad Hoc and
Sensor Networks TC (2005-2007). He has been a Distinguished Speaker of
the IEEE Communications Society (2000-2007). He is author or co-author
of 6 books and more than 850 technical papers and 10 patents. He was the
recipient of the 1989 Engineering Medal for Research and Development of
the Association of Professional Engineers of Ontario (PEO). He has also
received 8 Outstanding/Best Paper Awards, the IEEE Canada Outstanding
Service Award (1995), and the CSIM Distinguished Service Award of the
IEEE Communications Society (2006). In 2004 Dr. Mouftah received the IEEE
Communications Society Edwin Howard Armstrong Achievement Award and
the George S. Glinski Award for Excellence in Research from the Faculty
of Engineering, University of Ottawa. In 2006 he was honoured with the
IEEE McNaughton Gold Medal and the Engineering Institute of Canada
Julian Smith Medal. In 2007 he was the recipient of the Royal Society of
Canada (RSC) Thomas W. Eadie Medal. Most recently, Dr. Mouftah received
the University of Ottawa 2007-2008 Award for Excellence in Research and
the ORION Leadership Award of Merit (2008). Dr. Mouftah is a Fellow of
the IEEE (1990), Fellow of the Canadian Academy of Engineering (2003),
Fellow of the Engineering Institute of Canada (2005) and Fellow RSC: The
Academies of Canada (2008).

