
Programmable Packet Scheduling With SP-PIFO:
Theory, Algorithms and Evaluation

Balázs Vass∗†, Csaba Sarkadi∗, Gábor Rétvári∗
∗High Speed Networks Laboratory (HSNLab), Department of Telecommunications and Media Informatics,

Faculty of Electrical Engineering and Informatics (VIK), Budapest University of Technology and Economics
† EIT Digital Industrial Doctoral School, {balazs.vass,retvari}@tmit.bme.hu, sarkadicsa@gmail.com

Abstract—Push-In First-Out (PIFO) is a theoretical hardware
model for programmable packet scheduling, enabling scheduling
policies to be comprehensibly and dynamically reconfigured, and
SP-PIFO is a practical emulation for PIFO that can be readily
implemented with stock P4 switches. The efficiency of SP-PIFO
hinges on a simple heuristic, Push-Up/Push-Down (PUPD), which
is responsible for dynamically adapting the mapping of input
packets to a fixed set of strict priority queues so as to minimize
the rate of scheduling errors with respect to an ideal PIFO. In
this paper, we present the first formal analysis of the PUPD
algorithm. Our competitive analysis yields that the capacity of
PUPD to emulate an optimal PIFO model is getting linearly worse
as we keep on adding priority queues to the system. Motivated by
this finding, we present an optimal offline scheme, which, given
a stochastic model of the input, outputs the optimal SP-PIFO
configuration in polynomial time, and we introduce an online
heuristic that aims to approximate the offline optimum without
requiring a stochastic input model. Our simulations show that
the online algorithm can improve the performance of SP-PIFO
by a factor of 2x in certain configurations.

I. INTRODUCTION

Traditionally, fixed-function switches implement a specific
set of network protocols engraved into the hardware. More
recently, programmable switches have emerged, allowing net-
work operators to refine on-the-fly the packet processing func-
tionality, including header parsing and forwarding policies,
using a high-level programming language like P4 [1]. Packet
scheduling in P4 switches, however, has remained mostly
fixed until recently. Push-In First-Out (PIFO) was the first
hardware abstraction that, theoretically, enabled programming
new scheduling algorithms into a switch without changing the
hardware layout [2], [3]. In PIFO, each packet is assigned a
rank, and the switch maintains packets in the hardware queues
sorted by their rank (see Fig.1). Then, different scheduling
policies, like SRPT or STFQ [3], can be implemented on top
of PIFO by changing the way ranks are assigned to packets.

Lacking a viable hardware realization, PIFO had been
considered mostly a theoretical possibility until the appearance
of Strict Priority PIFO (SP-PIFO, [4]). SP-PIFO approximates
PIFO by maintaining a set of strict priority (SP) queues
and dynamically adapting the mapping between packet ranks
and SP queues. The objective is to minimize the number
inversions, where inversions connote the event that a high-rank
(i.e., ‘low-importance’) packet precedes a low-rank (i.e., ‘very
important’) packet during dequeuing. As such, the inversion
count effectively measures the rate of ‘scheduling mistakes’

FIFO

341452 suboptimal output

PIFO

1234452 123445

optimal output

SP-PIFO - suboptimal bounds

312

445

2 [1-3]

[4-5]
312445.

suboptimal output

SP-PIFO - optimal bounds

12

3445

2 [1-2]

[3-5]
123445.

optimal output

Fig. 1: Programmable scheduling: FIFO, PIFO, and SP-PIFO. The
packets arrived in the order they are enqueued in FIFO (right to
left). Trivially, FIFO does not do any sorting, while PIFO releases
smallest ranked packets first. To avoid unnecessary rank inversions,
queue bounds of SP-PIFO are needed to be optimized.

relative to an ideal PIFO implementation (see again Fig.1). SP-
PIFO maps packets to queues by maintaining a queue bound
for each queue, which determines the smallest packet rank that
can be assigned to the queue, and the mapping is adapted by
dynamically adjusting the queue bounds in concert with the
ingress traffic ranks using the Push-Up/Push-Down (PUPD)
heuristic (see later). PUPD can be implemented in P4, and
thus can run inside the data plane at line rate.

The efficiency of SP-PIFO is ultimately contingent on the
capacity of PUPD to adapt the way packets are assigned to
queues quickly and efficiently. Unfortunately, as of now, no
thorough formal analysis of PUPD is available, nor it is known
whether more efficient algorithms could be defined to drive
SP-PIFO. Our main goal in this study is to fill this gap.

The main contributions are as follows. After a short recap on
programmable scheduling (§ II), we present the first competi-
tive analysis of PUPD (§ III). Our results are mostly negative:
we show that the number of inversions produced by PUPD
can be n times worse than that of a hypothetical ‘clairvoyant’

optimal bound-adaptation scheme, where n is the number of
SP queues. This result suggests that the capacity of PUPD
to adapt to yet unknown future ranks is limited, compared to
an ideal bound-adaptation algorithm that ‘knows the future’,
and the optimality gap increases linearly with the number of
queues in SP-PIFO.

Driven by this observation, our next goal is to define an
optimal algorithm. Our result in this context is a polynomial-
time offline algorithm, which, given the probability distribution
of ranks in incoming packets, computes a set of optimal queue
bounds to minimize the number inversions (§ IV).

Given that the rank distribution is hard to fix offline, our
third contribution is a fast online algorithm that dynamically
‘learns’ the rank distribution and adaptively adjusts the SP-
PIFO queue bounds in accordance with the learned distribution
(§ V). Our evaluations (§ VI) suggest that the new algorithm
can approximate the optimal queue bounds more efficiently
than PUPD. We conclude the paper in § VII.

II. BACKGROUND

Suppose input packet ranks are taken from the interval [1, k]
and assume we are given n SP queues Q[i] : i ∈ [1, n]. The
main idea in SP-PIFO is to maintain a queue bound qi with
respect to each queue, so that all packets with rank from qi
to qi+1− 1 are assigned to Q[i] (assuming an imaginary qn+1

equaling k + 1), and adapt the bounds qi as follows.
• At the beginning, all queue bounds are 0: ∀i ∈ [1, n] :
qi = 0.

• An incoming packet with rank r is enqueued into queue
Q[i] if r ≥ qi and i is maximal among the queues with
this property, and qi is immediately set to r (push-up).

• If no such i exists (i.e., p < q1), then r is enqueued
to Q[1] and all queue bounds are decreased by q1 − r
(push-down).

• SP queues are drained in strict priority order: packets
from Q[1] are dequeued first, if Q[1] is empty then Q[2]
is dequeued next, etc.

PUPD is appealing for a number of reasons. First, it
closely emulates the ideal PIFO behavior, in that it tends
to assign low-rank (i.e., ‘important’) packets to high-priority
queues and high-rank (i.e., ‘low importance’) packets to low-
priority queues, so that the packet sequence leaving the SP
queues is approximately sorted by rank. Second, PUPD can
be implemented in P4 entirely, maintaining the queue bounds
in P4 registers. Hence, bound adaptation in PUPD occurs
after processing each packet, at line rate. Third, PUPD can
dynamically adapt the bounds to even potentially rapidly
changing input rank patterns. Experimental evaluations show
that PUPD can produce consistently good performance under
a wide range of operational conditions [4].

The efficiency of SP-PIFO to emulate an optimal PIFO
model is contingent on its capacity to consistently map low-
rank packets to high-priority queues, and this is ultimately
dependent on the efficiency of PUPD to adapt queue bounds
to prevent ‘scheduling mistakes’. Here, any deviation of the

output sequence of SP-PIFO from an ideal PIFO sequence,
which is strictly sorted by packet rank, is considered an error.

III. A COMPETITIVE ANALYSIS OF PUPD
Due to the limited lookahead available in the P4 data plane

pipeline, SP-PIFO bound-adaptation is severely hampered by
the unpredictability of the ranks of future packets. Competitive
analysis is a methodology to analyze such online algorithms,
by comparing the performance to an optimal offline scheme
that can access the entire sequence of future requests in
advance. The competitive ratio is defined as the quotient of
the worst-case error produced by the online and the offline
algorithm over an adversarial input. The smaller the compet-
itive ratio, the less the online algorithm is hampered by the
unavailability of future requests and the closer the algorithm
is to ‘optimality’. Contrariwise, a relatively huge competitive
ratio suggests that the performance penalty of the online
setting can be prohibitive. The below results suggest that for
PUPD this is indeed the case in the case of deterministic and
stochastic input packet sequences alike.

A. Deterministic competitive ratio

Given a deterministic packet sequence S, we measure the
total error over S as the number of inversions via a simplified
metric that enumerates only the intra-queue inversions:

Udet(S) := #({a, b} ⊆ S : a < b and
a and b enqueued to the same Q[i] and

a is the next packet enqueued in Q[i] after b) .

(1)

Our next result shows that, for a certain sequence of packets
S, PUPD produces n times more inversions than the optimal
offline algorithm in terms of the error function Udet(S),
where n is the number of SP queues. Intuitively, PUPD is
getting further from the optimum as we add more queues.
Unfortunately, this is the case even if the number of distinct
ranks k is just one more than n (for k = n the problem can
be solved trivially by assigning each rank to a separate queue,
ordered priority-wise).

Theorem 1: Given n queues and k = n+ 1 input ranks, the
competitive ratio of PUPD is at least n in terms of the error
function (1).

Proof: First, let k := n+ 1. Let the input rank sequence
be as follows (first packet to arrive on the right):

S = l × [n, . . . , 2, 1, 2, . . . , n, n+ 1] .

We theorem the queues built by the PUPD are (first packet
enqueued to and dequeued from right):

QPUPD[i] = [i, i+ 1]× l, ∀i ∈ {1, . . . , n}.

This means a number of l inversions per queue, that sums up
to nl for the PUPD.

On the other hand, by setting constant offline queue bounds
to q = [q1 = 2, q2 = 3, . . . , qn = n+ 1], the queues built are:

Qoffline[1] = [2, 1, 2]× l,
Qoffline[i] = [i+ 1]× (2l), ∀i ∈ {2, . . . , n− 1},
Qoffline[n] = [n+ 1]× (l).

In this offline setting, we have l inversions in the first queue,
and none in the other queues.

The number of inversions made by the PUPD divided by
those made by the offline algorithm is n for any l ≥ 1. This
means that the competitive ratio of the PUPD is at least n on
the number of inversions, i.e., error function (1).

B. Randomized competitive ratio

The above competitive analysis is specified in terms of a
deterministic adversarial packet sequence S. Assuming that
an adversary can precisely control the succession of packet
ranks as received by a P4 switch, however, is somewhat
unrealistic. Below, we turn to a weaker adversary model, where
the adversary can choose the probability distribution of the
packet ranks P , but the exact succession of packet ranks S is
not under control. Assuming that packet rank probabilities P
across the input sequence are i.i.d., the objective is to minimize
the expected number of inversions in terms of P:

Ustoch (P) = EP (Udet (S)) . (2)

Theorem 2: Given n queues and k = n + 1 input ranks
and a stationary probability distribution P of packet ranks,
the competitive ratio of PUPD is at least n in terms of error
function (2).

Proof: Let us divide the input rank sequence into phases,
where phase i starts when the ith rank-1 packet arrives. We
will construct a packet rank distribution P , for which, in each
phase, PUPD makes n inversions with high probability (WHP),
while with q

offline
= [1, 3, 4, 5, . . . , n+ 1], only 1 inversion

per phase is incurring WHP. We note that S in the proof of
Thm. 1 can be divided similarly.

Observe that, since the arrival time Ti of the next rank-
i packet has a Geo(P(i)) distribution, E(Ti) = 1/P(i). Let
P(1) = ε1, P(n + 1) = εn+1, and P(i) = 1−ε1−εn+1

n−1 for
i ∈ {2, . . . , n}, and suppose n2 � 1/εn+1 � 1/ε1. With this, a
rank i∈{2, . . . , n} packet is much more likely to arrive than a
rank-(n+ 1) one, that is much more likely than a rank-1 one.

We claim that after an initial learning period (when a
monotone decreasing subsequence (n + 1), n . . . , 2 can be
chosen out of the packets arrived so far), the bounds of the
PUPD are set to q

PUPD
= [2, . . . , n + 1]. On average, this

happens after less than n2 + 1/εn+1 packets. The probability
of a rank-1 packet arriving during this time is very low.

Eventually, a rank-1 packet arrives, starting a phase, and
causing a push-down (setting q

PUPD
to [1, . . . , n]) and an

inversion in Q[1]. WHP, this is followed by an inversion
in each other queue Q[i] because of enqueuing some rank-
i packets in them. Once, a rank-(n+ 1) packet arrives, setting
qn to (n+1), and initiating a series of push-ups, WHP leading
back to q

PUPD
= [2, . . . , n + 1]. Then, the arrival of a rank-1

packet starts a new phase. It is easy to see that PUPD commits
n inversions per phase, WHP.

Clearly, a static setting with queue bounds q
offline

=
[1, 3, 4, 5, . . . , n+ 1] makes 1 inversion per phase WHP (that
incurs when the rank-1 packet arrives). The proof follows.

c(4, 5)c(3, 4)

c(3, 5)

c(2, 3)

c(2, 4)

c(2, 5)

c(1, 2)

c(1, 3)

c(1, 4)

c(1, 5)

v1 v2 v3 v4 v5

Fig. 2: Example of a DAG representing a possible configuration
for k = 4. The highlighted path encodes the bounds for a 2-queue
SP-PIFO setting (n = 2), with the bounds being q1 = 1 and q2 = 3.

IV. STOCHASTIC OFFLINE OPTIMUM

We have seen that, in the stochastic model, PUPD can
perform n times worse compared to a simple setting, where
the queue bounds are not changed at all. Below, we will show
that the expected inversion cost defined by (2) for constant
queue bounds can be minimized in polynomial time. The
first observation is that, given n queues and k ranks, with
constant bounds q = [q1 = 1, q2, q3 . . . , qn]) extended with an
imaginary queue bound qn+1 = k + 1, the expected error is:

Uconst
stoch (P) =

n∑
i=1

Pi ∑
qi≤a<b<qi+1

pbpa
P 2
i

 , (3)

where Pi =
∑qi+1−1
j=qi

p(j) denotes the probability that the next
packet will be enqueued to queue i. Here, the probability of the
rank of the latest enqueued packet being b is pb/Pi, that has to
be multiplied with the probability of the next rank being a (i.e.,
pa/Pi). The sum of these values for all the possibly inverted
rank pairs in queue i (for b and a s.t. qi ≤ a < b < qi+1),
when multiplied with the incoming packet intensity Pi and
summed over all i, yields (3).

Theorem 3: Let P the probability distribution of packet
ranks and suppose that P is stationary. Then, the total expected
inversion cost in terms of (3) can be minimized in O(k2n).

Proof: First we construct a directed acyclic graph
D(V,A, c), where the set of nodes V = {v1, . . . , vk+1}
corresponds to the set of possible rank values {1, . . . , k}
associated with a helper node vk+1, the arc set A stands of
arcs (vi, vj) : 1 ≤ i < j ≤ k + 1, and cost c(vi, vj) of an arc
is the expected error in queue i whenever packets with ranks
{i, . . . , j − 1} are queued in queue i (see Fig. 2).

We claim that, for all arcs (vi, vj) ∈ A, their costs c(vi, vj)
can be determined in O(k2) total time as follows. For a
fixed lower bound a, we can determine c(a, a+ 1), c(a, a+
2), . . . , c(a, k + 1), each after, using O(1) basic arithmetic
operations per upper bound, where, for i ≥ a + 2, c(a, i) is
calculated using the previously calculated c(a, i − 1). Since
there are O(k2) lower bound– upper bound pairs, the com-
plexity follows. Based on this, D(V,A, c) can be determined
in O(k2).

Next, we show that queue bounds set to the node indexes
appearing in a shortest v1 − vk+1 path with (at most) n
arcs are optimal. Such a shortest path can be computed in
O(k2n), e.g., with the help of a slight variation of the Bellman-
Ford algorithm [5], see Algorithm 1. The proposition we take

Algorithm 1: Modified Bellman-Ford algorithm for the
stochastic offline optimum

Input: D(V,A, c)
for v ∈ V do

1 cost[v] :=∞; predec[v] := null
end

2 cost[v] := 0
for i = 1..n do

for (va, vb) ∈ A do
if cost[va] + c(va, vb) < cost[vb] then

3 cost[vb] := cost[va] + c(va, vb)
4 predec[vb] := va

end
end

end
return v1-vk+1 path built from list predec starting at vk+1

advantage of is that, in any input graph, if there is an s-t path
with at most i edges, then, after i repetitions of the outermost
for loop of the Bellman-Ford algorithm, the computed s-t path
is a shortest s-t path with at most i edges. Thus, a shortest
v1-vk+1 path in D(V,A, c) constructed by the Bellman-Ford
algorithm in n iterations of the outer for loop suits our needs.
Since each iteration takes O(k2) time, the complexity of the
algorithm follows.

We note that the above algorithm works for any conservative
cost function c. Thus, as long as an alternative non-negative
cost c′ is polynomially computable, the minimization of the
expected error can be done in polynomial time.

Also, some related cost formulations meet the convex or
concave Monge properties [6]. Both cases yield low opti-
mization complexities: [6] shows that finding a cheapest n-
link path in a complete DAG with the cost function fulfilling
the concave Monge property can be done in O(k

√
n log k).

Then, [7] offers an algorithm that solves the same problem in
k2O(

√
logn log log k), if n = Ω(k). Note that these complexities

does not include determining the necessary cost values.

V. APPROXIMATING THE OPTIMAL STATIC BOUNDS
ONLINE IN CONSTRAINED SPACE

Unfortunately, Algorithm 1 cannot be implemented in real
P4 switches. First, the offline algorithm needs the rank dis-
tribution P that is not available in a switch. We solve this
problem by learning the rank distribution online. Second,
P4 switches do not have enough stateful memory to learn
the empirical packet rank distribution; this would require
Θ(k) space. We solve this problem by showing an algorithm
that needs only Θ(n) memory, i.e., the space requirement is
proportional to the number of queues, not the number of ranks
(which is usually much larger). Of course, this will result in a
loss of optimality; in § VI we show that the price we pay for
reducing the algorithm’s memory footprint is not prohibitive.

Consider a simplified error function, where the objective is
to minimize the maximum per-queue error, instead of the sum
of errors:

Umax
stoch(P) = max

i=1,...,n

Pi ∑
qi≤a<b<qi+1

pbpa
P 2
i

 . (4)

It is easy to see that minimizing (4) is a special case of
the sequence partitioning problem, which can be solved in
O(n(k − n)) time [8]. The space needed for this is reduced
to O(k), thanks to the simplicity of the modified objective
function (min-max instead of min-sum).

Recall, we want an algorithm that fits into O(n) memory.
To this end, we need to take care of the space needed to
store the learned rank distribution. Our objective will be to
balance the load on the queues, without caring about the rank
distribution inside the rank interval assigned to the queue.
In other words, in addition to the queue bounds, we only
remember the probability Pi of the next packet being enqueued
to queue i. Intuitively, by minimizing the maximum of the Pi
values, we even out the load on the queues (Pi ' 1/n). As per
(4), this will translate to a reasonably low inversion rate.

A. Continuous relaxation

Our task is now to learn the per-queue loads Pi, and mean-
while optimize the integer queue bounds so as to minimize
(4). To simplify the development, first, we take a look at the
continuous relaxation of this problem.

In our continuous model, ranks and queue bounds are real-
valued. Packets arrive in infinitesimally small quanta, and so
per-queue packet rates Pi can be determined for any queue
bound setting. Let f(x) denote the probability density function
for the ranks and let the two extreme queue bounds be fixed
at q1 = 0 and qn+1 = +∞. Let Pi :=

∫ qi+1

qi
f(x)dx for each

i ∈ {1, . . . , n}. When the optimization reaches a set of stable
queue bounds, the following should hold:

Pi−1 =

∫ qi

qi−1

f(x)dx =

∫ qi+1

qi

f(x)dx = Pi ∀i ∈ [2, n]

For some suitably small time quantum ∆t, let ∆Pi(t) denote
the number of packets assigned to queue i during time interval
(t − ∆t, t]. We define the displacement of queue bound qi
(i ∈ [2, n]) after ∆t time as:

qi(t) = qi(t−∆t) + ∆Pi(t)−∆Pi−1(t). (5)

The optimization step as defined above just happens to be
essentially the same as the Euler method for solving differ-
ential equations. Fig. 3 shows our evaluation results of the
continuous model over some famous rank distributions. Since
we intend to always have q1 = 0, it is enough to evaluate the
rest of the bounds of a system. Fig. 3a shows the trajectory

0 200 400 600 800 1,000
0

20

40

60

packets

qu
eu

e
bo

un
d

va
lu

e

(a) Ranks from U(0, 50), queue bounds
q

init
= [0, 5, 57, 58, 59]

0 10 20 30 40 50
0

1

2

3

packets

q2
q3
q4
q5

(b) Ranks from Exp(2), queue
bounds q

init
= [0, 0, 1, 2, 3]

Fig. 3: Queue bounds of the continuous relaxation of the Spring over
time in case of continuous rank distributions

of the relevant queue bounds for the maximal packet rank 50
and a uniform rank distribution on [0, 50]. Here, despite the
unfortunate initial parameters (3 out of the 4 bounds initially
exceed the maximum rank), the system quickly converges to
the theoretical optimum. Fig. 3b shows the evolution of queue
bounds for an exponential rank distribution.

B. Online learning of the rank distribution

As shown above, the algorithm as described so far should
eventually converge around a set of stable queue bounds,
assuming the packet ranks are i. i. d., but the counters may
take on high values as packets are processed. Another problem
is that the number of packets arriving over a short time period
∆t is very small, yielding an imprecise empirical data on the
packet rank distribution.

Counting packets with Exponentially Weighted Moving Av-
erages (EWMA) solves both problems at once. Let us re-
discretize time and the packet arrivals: packets arrive at each
positive integer t (i.e., ∆t = 1), one by one. Let Ii(t) be
an indicator (taking on a value of either zero or one) of
whether the received packet at time t is assigned to the i-
th queue. In addition, let us define a parameter α ∈ (0, 1) to
control how significant a new packet should be relative to the
packets recorded in the past (as well as how quickly we forget
said packets), and update the EWMA based per-queue packet
counters µi(t) on each incoming packet as follows:

µi(t)← (1− α) · µi(t− 1) + α · Ii(t) ,

where µi(0) ∈ [0, 1] can be set arbitrarily, in Bayesian manner.
It is easy to see that µi ∈ [0, 1] holds at any time for each

queue. Furthermore, using the moving averages instead of the
∆Pi values makes the random process of the changing of the
queue bounds more stable.

Thus, in this setting, we refine (5) as follows: for all i ∈
[2, n],

qi(t) = qi(t−∆t) + µi(t)− µi−1(t). (6)

Alg. 2 summarizes our heuristic. Since the mechanics of our
algorithm resemble the physical model of serially connected
springs, we call our algorithm the Spring heuristic.

We still have to re-discretize the queue bounds. Thus, in the
algorithm, we keep track of a real-valued version ri of each
queue bound qi. More precisely, the often minor adjustments
of the optimization are done on the continuous ri bounds (line
8), while the actual queue bounds qi are the corresponding
integer roundings (line 10). This way, the actual queue bounds
are just a coarse-grained approximation of an underlying fine-
resolution representation.

Another subtlety is that a careless bound adjustment may
result in the bound of a queue falling below that of the lower-
ranked neighbor during a transient (recall Fig. 3). To avoid
this problem, we have implemented an additional collision
detection mechanism (in lines 6-10), which ensures that qi is
never pushed above qi+1−1, or below qi−1+1. These additions
guarantee that queue bounds remain integral and sorted in an
ascending order during the progression of the algorithm.

Algorithm 2: Spring heuristic
// Initialization:

1 [q1, . . . , qn] := [1, . . . , n] // queue bounds
2 [r1, . . . , rn] := [1, . . . , n] // q. bounds lin. relaxed
3 [µ1, . . . , µn] := [0, . . . , 0] // error costs

while Packet arrives with rank j do
4 Packet enqueued into queue Q[i] s.t. j ≥ qi, where i is

the greatest queue index satisfying this condition
5 [µ1, . . . , µn] := [µ1, . . . , µn] ∗ (1− α) ; µi := µi + α

for i = n, . . . , 2 do
6 lowerBound := ri−1 + 1 ; upperBound := +∞
7 if i < n then

upperBound := ri+1 − 1
end

8 ri := ri + µi − µi−1

9 ri := min {max {lowerBound, ri} , upperBound}
10 qi := round(ri)

end
end

C. P4 compatibility and resource usage

Due to the lack of space, we omit a thorough P4 com-
patibility analysis of the Spring heuristic. Regarding the se-
mantics, we note that there are already examples of fixed
point arithmetics implemented in P4 [9], and there are also
existing P4 implementations of EWMA itself [10]. In terms of
memory, the Spring algorithm as described should not require
considerably more registers than the SP-PIFO itself or the
related AIFO [11] which should already be well within the
capacity of most P4 compatible devices.

VI. EVALUATION

To perform our measurements reproducible and comparable
to earlier work, we reused an already existing version of
NetBench [12] that contained a reference implementation of
SP-PIFO. The simulations used the upstream traffic generators
from NetBench, labeled ‘Uniform’, ‘Poisson’, ‘Exponential’,
‘Inv. exp.’, ‘Convex’, and ‘Minmax’, respectively, all of them
generating i.i.d. integer packet ranks on the [0, 100) interval.
The Exponential and Poisson generate random numbers from
distributions Exp(1/25) and Pois(50), respectively, and map
them to integer values in [0, 100). The Inv. exp. is based
on the Exponential distribution, but it subtracts the generated
integer from 99. The Convex distribution is based on a random
variable X ∼ Pois(50), where the value of Convex is (X−1)
mod 100. Finally, Minmax is based on a Y ∼ Convex, with
a value of (Y − 10) mod 50.

The configuration of the PUPD matches those used in the
inversion-related measurements of [4]: n = 8. The Spring
heuristic uses the same parameter as PUPD, with the addition
of a parameter α = 0.01 to tune the EWMA component. As a
benchmark, we also made measurements with heuristic Greedy
of [4] with basic parameters. On the long turn, with i.i.d.
ranks, the bounds of Greedy are considered to converge to
the optimum, but its space requirement is infeasibly high [4].
The measurements were configured with a one-second limit on
the simulated runtime, resulting in around one million packets.

Uniform Exponential Inv. exp. ConvexPoisson Minmax
0

100

200

100 100 100 100100 10097.1 96.2
118.3 118118.1 116.4117.9 121.4

184.6

142.7
177.3

247.4
%

of
th

e
Sp

ri
ng

’s
re

su
lt Spring Greedy PUPD

Fig. 4: Number of rank inversions of the different heuristics as percent of the Spring’s results

Fig. 4 summarizes the relative performance of the heuristics
in terms of the inversion count inbuilt to the NetBench imple-
mentation of SP-PIFO. We note that this inversion counter
may differ from what our simplified metrics would predict.
Despite this difference, Spring produced a consistently and
significantly smaller number of inversions compared to the
PUPD, beating it on all the distributions studied, with com-
mitting only around 40% to 85% of the inversions made by
the PUPD. Compared to Spring, PUPD performed the worst at
the Minmax, Inv. exp., and Poisson distributions, with roughly
1.7 to 2.5 times more inversions incurred. In the case of the
Uniform and Exponential, this ratio was a more moderate 1.2.

Compared to the Greedy, Spring produced a similar number
of inversions, beating it on 4 out of the 6 distributions studied.
Here, Spring performed the best at the Inv. exp. and Convex
distributions committing around 85% of the inversions made
by the Greedy, while, at worst, in the case of the Uniform and
Exponential distributions, this ratio was no more than 1.04.

We have also evaluated the sum of the rank differences of
the inverted packet pairs. As Table I demonstrates, for most
distributions, the Spring performs slightly better compared to
Greedy. The extremes are the Exponential and Inv. exp., where
the total inversion size of Greedy is 0.6 and 2.85 times of the
Spring’s, respectively. PUPD is consistently worse, on average
making 4.45 times more total inversion size than the Spring.

VII. CONCLUSION

Motivated by the industry trends towards rendering the
network data plane comprehensibly reconfigurable [2], in
this study, we revisited the theory and algorithms for pro-
grammable packet scheduling.

We presented the first competitive analysis of heuristic
PUPD presented in the SP-PIFO framework for approximating
theoretical PIFO queues. We encountered a strong negative
result: the PUPD may commit up to n times more packet rank
inversions than inevitably needed, with both deterministic and
stochastic input, where n is the number of SP queues in the
system. In other words, the ability of PUPD to take advantage
of an additional SP queue largely decreases, and the algorithm

Uniform Poisson Exponential Inv. Exp. Convex Minmax
Spring 100 100 100 100 100 100

Greedy 122 158 60 285 101 107

PUPD 290 462 145 904 167 703

TABLE I: Sum of the rank difference of the inverted packets in
percent of the Spring’s results.

gets further from the optimum as the number of SP queues on
disposal grows.

Motivated by this finding, we propose an algorithm to
compute the optimal static queue bounds minimizing the
expected rate of inversions in case of a given rank distribution.
The algorithm runs in polynomial time: its complexity is
O(k2n), where k is the maximum rank.

Considering the online setting, a new online bounds adap-
tation heuristic called Spring was also proposed. Crucially,
Spring is easy to reason about formally, which is not the case
for PUPD, and it provides favorable results during evaluations:
in our measurements, it committed up to 2 times fewer
inversions than the PUPD.

ACKNOWLEDGEMENTS

This research was partially supported by the National Research,
Development and Innovation Fund of Hungary (grant No. 135606).
Supported by the ÚNKP-21-4 New National Excellence Program of
the Ministry of Innovation and Technology from the source of the
National Research, Development and Innovation Fund.

REFERENCES

[1] P. Bosshart et al., “P4: Programming protocol-independent packet pro-
cessors,” ACM SIGCOMM Computer Comm. Review, vol. 44, 2014.

[2] O. Michel et al., “The programmable data plane: Abstractions, architec-
tures, algorithms, and applications,” ACM Comput. Surv., vol. 54, 2021.

[3] A. Sivaraman et al., “Programmable packet scheduling at line rate,” ser.
SIGCOMM ’16. New York, NY, USA: Association for Computing
Machinery, 2016.

[4] A. G. Alcoz et al., “SP-PIFO: Approximating Push-In First-Out Be-
haviors using Strict-Priority Queues,” in 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20), 2020.

[5] R. Bellman, “On a routing problem,” Quarterly of applied mathematics,
vol. 16, pp. 87–90, 1958.

[6] A. Agarwal et al., “Finding a minimum weight k-link path in graphs
with Monge property and applications,” in Proc. ACM Symposium on
Computational Geometry, 1993, pp. 189–197.

[7] B. Schieber, “Computing a minimum weight k-link path in graphs with
the concave Monge property,” Journal of Algorithms, vol. 29, 1998.

[8] B. Olstad et al., “Efficient partitioning of sequences,” IEEE Transactions
on Computers, vol. 44, pp. 1322–1326, 1995.

[9] S. Narayana et al., “Language-directed hardware design for network
performance monitoring,” ser. SIGCOMM ’17. New York, NY, USA:
Association for Computing Machinery, 2017.

[10] A. Fingerhut, “Floating point operations in
P4,” https://github.com/jafingerhut/p4-guide/blob/
d03b4d726a75192f8c7cb7e2ee0d4fceda3bacca/docs/
floating-point-operations.md, 2020.

[11] Z. Yu et al., “Programmable packet scheduling with a single queue,”
ser. SIGCOMM ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 179–193.

[12] G. Memik et al., “NetBench: a benchmarking suite for network pro-
cessors,” in IEEE/ACM International Conference on Computer Aided
Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers, 2001.

