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Abstract—The current best practice in survivable routing is
to compute link or node disjoint paths in the network topology
graph. It can protect single-point failures; however, several failure
events may cause the interruption of multiple network elements.
The set of network elements subject to potential failure events
is called Shared Risk Link Group (SRLG), identified during
network planning. Unfortunately, for any given list of SRLGs,
finding two paths that can survive a single SRLG failure is NP-
Complete. In this paper, we provide a polynomial-time SRLG-
disjoint routing algorithm for planar network topologies and a
large set of SRLGs. Namely, we focus on regional failures, where
the failed network elements must not be far from each other.
We use a flexible definition of regional failure, where the only
restriction is that the topology is a planar graph, and the SRLGs
form a set of connected edges in the dual of the planar graph.
The proposed algorithm is based on a max-min theorem. Through
extensive simulations, we show that the algorithm scales well with
the network size, and one of the paths returned by the algorithm
is only 4% longer than the shortest path on average.

I. INTRODUCTION

Disjoint path computation is the essence of any strategy for
networks to survive failures. The current best practice is to
utilize network flow algorithms, such as Suurballe’s algorithm
[1], to efficiently compute link or node disjoint paths in the
network topology graph. However, several papers studied [2]–
[10] that the networks have severe outages when almost every
equipment in a vast physical region gets down as a result of a
disaster, such as earthquakes, hurricanes, tsunamis, tornadoes,
etc. These types of failures are called regional failures, which
are simultaneous failures of nodes/links located in specific
geographic areas. The set of network elements subject to
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potential failure events is called Shared Risk Link Group
(SRLG), identified during network planning [11]–[15].

Unfortunately, for any given list of SRLGs and topology
graph, finding two paths that can survive a single SRLG failure
is NP-Complete [16], [17]. The proof is a reduction to 3SAT
where each SRLG corresponds to a clause in the formula.
Roughly speaking, a very artificial topology graph and SRLG
settings are needed to show the high computational complexity
of the problem, and many believe SRLG-disjoint routing is a
well-solvable problem in practice. For example, Kobayashi-
Otsuki provided [18] a routing algorithm for circular disk
failures of fixed radius in a planar graph topology where
the links are straight lines. Circular disk failures of the fixed
radius are the most well studied regional failure model, see
[2], [15]. Naturally, comes the question is there another
set of regional SRLGs for which the SRLG-disjoint routing
problem is solvable in polynomial time? Can we define a
simple and general property of the regional SRLGs to have
efficient routing algorithms? The paper provides a positive and
surprisingly simple answer as follows.

This study assumes the network topology is a planar graph.
In backbone optical networks, it is rare that cables cross
each other without having an optical cross-connect at the
intersection. Planarity is an essential assumption to have a
polynomial-time algorithm for an otherwise NP-hard problem
(see Sec.V how to extend our algorithm for “almost” planar
graphs). Apart from that, we adopt a very general model,
here we may consider the network is somehow embedded
on the Earth’s surface, the links are curved lines between the
endpoints, and an SRLG is resulting from a connected disaster
area that does not have any separating point. We assume
the list of SRLGs is defined in the service level agreement
(SLA) [19] at network planning. The list of SRLGs typically
involves physically close network nodes and parallel links,
might be computed by any regional failure model [15], [20]–
[22], or based on historical data of natural disasters, such as
earthquakes [23], tornadoes, tsunamis, Electromagnetic Pulse
(EMP) attacks, etc [5], [24], [25].

Furthermore, the proposed routing algorithms do not even
require knowing the geometry of the network, such as node
coordinates and route of the cables. It is necessary because the
router’s routing engine cannot have such geographic informa-
tion. The exact location of the network equipment is sensitive
information for military and economic reasons, which will
never be widely distributed on the internet. Note that, often, the
network operators do not have any information about the route
of the links or the physical coordinates of the intermediate
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(a) The US network topology graph (G) with its dual (G∗).
The dual nodes are drawn with small green, and the outer
region is the red dual node, split on the illustration into
multiple nodes. The dual-edges are drawn with dotted lines
and intersect the corresponding network links. The duals of
two SRLGs, S1 and S2, are highlighted.
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(b) The regional SRLGs (Sregion) are hand drawn with
brush, and colored with the same color of the path
traversed by, otherwise orange. The full list of SRLGs
also include every single link or node failures as well.
Two SRLG-disjoint paths between the source (s) and the
target (t) node are drawn with red and blue links.

Maximum Regional SRLG-
disjoint Paths Problem (MRSDP)
Input: a planar graph G = (V ,E),
one of its duals G∗ = (V ∗,E∗), a
bijection between the edges and
their duals, two distinct nodes s
and t , and a set S ⊆ 2|E | of dual-
connected SRLGs with SV ⊆S .
Find: maximum cardinality set
of pairwise S -disjoint s-t paths.

(c) MRSDP Problem definition.
MAX-FLOW denotes the value of an
optimal solution of this problem.

Fig. 1. Illustration of the problem. Dual-edges corresponding to a regional SRLG are connected in the dual graph, for example, SRLG S1 on (b) is mapped
to blue dual-edges on (a). Note that SRLGs S1 and S2 forms an s-t cut, thus, there can be at most two SRLG-disjoint s-t paths.

routing nodes because the links are hired as a service from an
independent company [26], called the Physical Infrastructure
Provider. After all, it is not part of any network protocol
so far. Instead, we will define pure combinatorial properties
that the SRLGs must meet. The key idea is that knowing the
dual of the planar topology graph is sufficient for the routing
computations. Fig. 1a shows such an example input: a planar
topology graph with its dual graph. The nodes of the dual
are the faces, and there are edges between the adjacent faces.
Thus, each link e of the topology has a corresponding dual-
edge, whose endpoints are the dual vertices corresponding to
the faces on either side of e. Therefore, an SRLG as a set of
links can be mapped to a set of dual-edges.

To mitigate the above problem, we assume the routing
engine knows the dual graph of the planar network topology
with the mapping between the links and dual-edges. The only
assumption we have for SRLGs, that the corresponding dual-
edges are connected. Note that it is a very loose restriction
and covers almost all SRLGs that correspond to a connected
disaster area. Here the disaster area is the geographic region
in which the network elements are subject to fail simultane-
ously. The only exception when the SRLG corresponding to
a connected disaster area is not dual connected could be a
very unrealistic failure scenario where the disaster area has a
separating point on top of a network node. For example the
SRLGs S1 and S2 shown on Fig. 1b correspond to the dual-
edges colored red and blue on Fig. 1a that are connected in
the dual graph.

The main contributions of this paper are the following:
1) We provide a broad definition of ‘regional SRLG,’ where

the regional SRLG-disjoint routing can be efficiently
solved. For this, we define a pure combinatorial routing
problem input, which contains a planar network topology
and the corresponding dual graph. We show that this
input is sufficient for efficient routing computations, and
no other information on the geometry of the physical
topology is needed. We have a very flexible definition
of regional failure, where we assume the SRLGs mapped
to the dual-edges of the planar graph are connected. It is

important to note that SRLGs must contain single node
failures as well, otherwise the problem is NP-hard [27].

2) We provide an efficient polynomial-time SRLG-disjoint
routing algorithm for the regional SRLG model defined
above and planar network topology. Note that the SRLG-
disjoint routing is NP-Complete in general [16], [17]. Our
work heavily relies on the mathematical techniques used
in [18] and [28]. The algorithm in [18] can be extended to
solve the problem for circular disk failures, or in general
for SRLGs that meet a complicated so-called ‘Property’,
see the conclusions of [18]. Unfortunately, Property of
[18] strongly restricts the usability of their algorithm for
a more general SRLG model. Motivated by the above we
generalized their ideas into self-content graph-theoretical
arguments that cope with a generalized SRLG model
that contains all types of known failure models. We
adopted the max-min theorem for the regional SRLG-
disjoint paths problem. In the special case of the circular
disk failure model, the complexity of our algorithm is an
improvement on those presented in [18], [29]–[31].

3) Through extensive simulation, we have shown that the
corresponding routing problem scales well. We have ob-
served that, after post-processing to shorten the resulting
SRLG-disjoint paths, the shortest among them is just 4%
longer than the absolute shortest path. Selecting it as the
working path, the increase in the delay is negligible, while
the other SRLG-disjoint paths can be the backup paths.

The paper is organized as follows. Sec. II provides the
problem formulation and a simple upper bound on the num-
ber of SRLG-disjoint paths. Sec. III describes the proposed
algorithm. Sec. IV gives a max-min theorem for the regional
SRLG-disjoint paths problem. Sec. V heuristically shortens
the paths and deals with non-planar input graphs. Sec. VI
overviews the related works. Sec. VII presents our simulation
results. Finally Sec. VIII concludes the paper.

II. PROBLEM FORMULATION AND UPPER BOUNDS

Let G = (V ,E) be a planar network topology graph with
a node set V , a link set E , and two distinct nodes s, t ∈ V .
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(a) The network topology and the SRLGs (Sregion)
are drawn with brush of unique color.

Proof of the gap being 2: Let us identify the non-
node failure SRLGs by the first letter of (some
words related to) their color: Sregion = {g , y,r, w,c}
standing for ‘green’, ‘yellow’, ‘red’, ‘water’ (blue),
and ‘coffee’ (brown). First, we can check that
there is no separating SRLG pair (including node
failures), thus MIN-CUT > 2. A separating SRLG
triplet is {g , y,r }, which means MIN-CUT= 3.
To prove that MAX-FLOW = 1, by Lemma 1, it
is enough to show a closed dual walk C in G∗
such that l (C )/w(C ) < 2. Let C be the closed dual
walk made up from the dual-edges of the SRLGs in
Sregion, i.e., g , y,r, w, and c. With this, l (C )/w(C ) =
5/3 < 2, completing the proof. 2

(b) The dual graph with a closed dual walk C such that l (C ) = 5, w(C ) = 3, and hence l (C )/w(C ) < 2.

Fig. 2. A graph, where the MIN-CUT= 3, but there is no two SRLG-disjoint paths between s and t , meaning MAX-FLOW=MIN-CUT−2.

We do not know any geometric embedding of G , instead let
G∗ = (V ∗,E∗) be the dual of the planar graph G , see Fig. 1a.

When it does not confuse, we identify the faces of G
with their duals in G∗(V ∗,E∗). In other words G∗(V ∗,E∗) is
composed of a face set V ∗ and a dual-edge set E∗. In what
follows, a link is sometimes called an edge. Based on G and
G∗, a consistent clockwise order of the links incident to each
node v ∈V can be easily calculated. Let Sregion ⊆ 2|E | be a set
of link sets representing a set of regional SRLGs. Protecting
single network element failures (link or node failures) is the
current best practice (e.g., Huawei [32, Sec. 4.5.4], Alcatel-
Lucent [33, pp. 46-50], Cisco Systems [34, Chpt. 19], Juniper
[35, Chpt. 3], Infinera [36]). Thus for simplicity, we assume
the set of SRLGs contains all the single link and node failures.
It ensures the obtained SRLG-disjoint paths are node-disjoint
s-t paths. Let Ev denote the set of links in G incident to
a node v and let SV represent the set of SRLGs modeling
the node failures, i.e., SV = {Ev |v ∈ V \ {s, t }}. Let S denote
the set of all SRLGs: S = Sregion ∪SV . Let ρ denote the
maximum size of an SRLG: ρ := max{|S|∣∣S ∈ S }, and let µ
denote the maximum number of SRLGs that contain the same
edge: µ= max{|T | : T ⊂S , |∩S∈T S| > 0}.

We say that two paths are (S -)disjoint if there is no SRLG
S ∈ S intersecting both of them1. We may omit S from the
notation when the SRLG set is clear from the context. When
searching for k = 2 S -disjoint paths P1 and P2, for algorithmic
reasons, we will replace the constraint of disjointness with
demanding the paths being clockwise (S -)disjoint (exact def-
inition in Sec. III) from one another.

For a link set S ⊆ E , let S∗ be the set of du-
als of links of S. For an SRLG S ∈ S , let V ∗(S) :={

f ∈V ∗|there is a dual-edge { f , f ′} ∈ S∗ for some f ′}. Let d
denote the maximal diameter of the dual of an SRLG: d :=
max

{
diam(S∗)|S ∈S

}
. We call a set of links S ⊆ E dual

connected, if the edge-induced subgraph of S∗ is connected.
We demand S to fulfill the following property:

Property 1. Each set S ∈S is dual connected.

1In the related literature, ‘disjointness’ is sometimes called ‘separatedness’.

Recall we have a second property:

Property 2. All node failures are listed apart from s and t
(SV ⊆S ).

Fig. 1c shows the problem definition the paper focuses on.
Let MAX-FLOW denote the optimal value of this problem,
see Fig. 1b as an illustration.

A. Upper Bounds on the Number of Maximum Regional
SRLG-disjoint Paths

First, we define a trivial upper bound on MAX-FLOW using
the analogy of max-flow min-cut theorems for network flows.
A set of SRLGs from S that disconnect s from t is called an
SRLG cut in this paper, see SRLG S1 and S2 on Fig. 1b as
an illustration. It is easy to see that the size of an SRLG cut
is an upper bound for MAX-FLOW. It is because two disjoint
paths cannot traverse any of these SRLGs simultaneously by
definition. Note that the above holds for all SRLG cuts. Let
MIN-CUT denote the minimum cardinality subset of S that
disconnect s from t . Fig. 2a shows an example graph where
the MAX-FLOW = 1, while MIN-CUT = 3. Later, we will
show that the gap between the MAX-FLOW and MIN-CUT
is at most 2 (see Section IV). In the rest of this section,
we will provide another upper bound for MAX-FLOW by
generalizing the approach of [18]. This upper bound will turn
out to be tight (cf. Thm. 6). A walk is a finite sequence
of edges which joins a sequence of vertices. Let C be a
closed walk in G∗. We define the winding number w(C )
of C as the number of times that C separates s and t . More
precisely, let us fix an s-t path P , and consider the edges of P
being oriented towards t . Let us consider a one-way orienta-
tion of the dual-edges of closed dual walk C . Let w1(C ) =
{#ed ∈ C |ed crosses an ep ∈ P from left to right}. Similarly,
w2(C ) := {#ed ∈ C |ed crosses an ep ∈ P from right to left}.
Lastly, we define w(C ) := |w1(C )−w2(C )|. E.g., the (colored)
dual walk on Fig. 2b separates s and t three times. Note that
w(C ) is indifferent to the choice of P and orientation of C .

Let C = {C1, ...,Ck } be a partition of the dual-edges of a
closed walk in the dual-graph such that each Ci consists of



consecutive edges of C , and there exists an SRLG Si ∈ S

such that S∗
i contains Ci . Let l (C ) be the minimal number for

which there exists such a partition. For example, to cover the
dual walk on Fig. 2b we need at least 5 SRLGs. We note that
l (C ) ≤ |V ∗| will hold for the closed dual walks constructed in
our proofs.

By using these notations, we can give an upper bound for
MAX-FLOW as follows.

Lemma 1. For any instance of the MRSDP problem, if
MAX-FLOW≥ 2, then

MAX-FLOW≤ min

{⌊
l (C )
w(C )

⌋∣∣C closed dual walk, w(C ) ≥ 1

}
. (1)

Proof: Suppose we have s-t paths P1, . . . ,Pk≥2 that are
pairwise disjoint and let C = {C1, ...,Cl (C )} be a closed dual-
walk such that each C j is contained by the dual of an SRLG
S j ∈S . By measuring w(C ) at Pi , we can observe that since
the paths are vertex disjoint (by Property 2), each C j adds at
most 1 to the value of w(C ), which can happen when it starts
and ends on different sides of Pi , respectively. This means that
each Pi has to intersect at least w(C ) sub-walks C j . Since
two disjoint paths cannot cross C at the same C j , we have
l (C ) ≥ k ·w(C ). The proof follows.

III. POLYNOMIAL TIME ALGORITHM TO FIND A MAXIMUM
NUMBER OF REGIONAL SRLG-DISJOINT PATHS

In this section we show that Lemma 1 can be extended into
exact min-max theorem for MAX-FLOW, and Eq. (1) holds
with equality. If MAX-FLOW= 1 we give a closed dual walk
C with l (C )/w(C ) < 2. Our proof generalizes ideas in [18], which
shows a geometric min-max theorem for the special case of
the MRSDP problem, where the disaster regions are circular
disks. We suppose any s-t path P is oriented from s to t .

1) Induction step: In what follows we show the equality in
(1) for MAX-FLOW≥ 2. First, we assume that for some k ≥ 2
we have k − 1 pairwise disjoint s-t paths P1, . . .Pk−1 (when
k = 2 we assume that P1 is clockwise disjoint from itself). We
will give an algorithm for finding either k pairwise disjoint
s-t paths or a closed dual walk C with bl (C )/w(C )c = k −1 (see
Algorithm 1). Then applying the algorithm repeatedly for k =
2, . . . ,MAX-FLOW, we get an inductive proof of the equality
in Lemma 1.

We may assume that the first edges of P1, . . . ,Pk−1 occur in
this order clockwise at s. We continue this series of paths by
generating new s-t paths Pk ,Pk+1, . . .. At each step, a new path
Pl is generated and if Pl−k+1, . . . ,Pl are pairwise disjoint, we
stop. Otherwise we generate a new path again. If we do not
find k pairwise disjoint paths after |V ∗|+1 path generations,
then the algorithm stops and we can determine a closed dual
walk C with bl (C )/w(C )c = k −1 (see Claim 3). Our algorithm
is described in Algorithm 1.

When generating a new path Pl we use previous paths Pl−1

and Pl−k . Intuitively, Pl is the path clockwise ’nearest’ to Pl−k

among those that are clockwise-disjoint from Pl−1. In order to

Algorithm 1: Search for one more SRLG-disjoint path
Input: MRSDP problem input, P1, . . . ,Pk−1 pairwise disjoint

s-t paths if k ≥ 3 or an s-t path P1 that is clockwise
disjoint from itself if k = 2.

Output: k pairwise disjoint s-t paths or a closed dual walk
C in G∗ with

⌊
l (C )
w(C )

⌋
= k −1

1 P0 := Pk−1
2 for l = k, . . . ,k +|V ∗| do
3 Pl := Pnearest(Pl−1,Pl−k ) (see Alg. 2)
4 if Pl ,Pl−k+1 are disjoint then
5 return Pl−k+1, . . . ,Pl−1,Pl

6 return a closed dual walk C in G∗ with
⌊

l (C )
w(C )

⌋
= k −1

get a precise algorithm, in the following we define nearness
and clockwise separation.

First, we give the definition of clockwise separation.
We say s-t paths P1 and P2 are crossing if, after contracting

their common edges, there is a node v ∈ V \ {s, t } contained
by both paths such that the links of the paths incident to v
are alternating according to their incidence to P1 and P2. We
note that with this definition, two non-crossing paths may have
common edges, intuitively, the only restriction for them is not
to change their clockwise order along the way from s to t .

For an s-t path P in G and a directed dual path Q∗ in G∗
we say that Q∗ is clockwise to P if for every link e ∈ P if the
dual edge e∗ is in Q∗, then it crosses P from left to right. For
an s-t path P and an intersecting SRLG S we define Sclw(P )
the clockwise part of S with respect to P as those links of S
which have duals reachable on a directed dual path Q∗ starting
at a neighboring face on the right of a link in P ∩S such that
Q∗ is clockwise to P within the subgraph induced by S∗ (see
Fig. 3).

For two s-t paths P1 and P2 without crossings, a pair
(P1,P2) is clockwise (S -)disjoint if for any SRLG S in S

intersecting P1, Sclw(P1) does not intersect P2. Obviously,
paths P1 and P2 are disjoint exactly if both pair (P1,P2) and
(P2,P1) are clockwise disjoint.

Now we give the precise definition of ‘nearness’ by describ-
ing an ordering of the paths. The clockwise order of the links
incident to a node v gives a cyclic ordering of those links.
For a fixed link e incident to v this cyclic ordering induces
a complete ordering <v,e of the links incident to v : for links
e1,e2 incident to v we say that e1 <v,e e2 if e1 is earlier than
e2 in the clockwise order, starting from e. These orderings
induce an ordering <P on the set of s-t paths the following
way. Let P1 and P2 be s-t paths and let v denote the first
node where they enter on the same link (say e) but continue
on different links, say e1 and e2 (if v = s, let e be the first
link of P). We say that P1 <P P2 if e1 <v,e e2.

Now we are ready to give a precise definition of Pl : it is an
s-t path that is clockwise disjoint from Pl−1, does not cross
Pl−k and within these constraints minimum with respect to
<Pl−k (see Algorithm 2).

2) Algorithm 2 : In Algorithm 2 we have two non crossing
paths Q1,Q2 as input such that Q1 is clockwise disjoint from
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Fig. 5. Illustration for Claim 3

Algorithm 2: Nearest clockwise SRLG-disjoint path
Input: Planar graph G(V ,E), SRLG set S , non crossing s-t

paths Q1, Q2, such that (Q1,Q1) is clockwise disjoint
Output: An s-t path P that is clockwise-disjoint to Q1, does

not cross Q2, and is minimum with respect to <Q2
1 G ′ :=GQ2
2 for (v1, v2) ∈ E(Q1) do
3 for S ∈S : (v1, v2) ∈ S do

E ′ := E ′ \ Sclw(Q1)

4 DFS-TREE:= DFS tree on E ′ rooted at s, exploring nodes in
clockwise order (see <v,e ).

5 return the s-t path in DFS-TREE

itself. We determine a path P that is clockwise-disjoint to Q1,
does not cross Q2 and within these constraints minimum for
<Q2 . Note that by calling the algorithm with Q1 = Pl−1 and
Q2 = Pl−k we get the required path Pl in Algorithm 1.

Algorithm 2 uses DFS on a proper auxiliary graph G ′ and
explores the nodes in clockwise order to find the optimal
path. In order to avoid path P to cross Q2, we modify G .
We duplicate path Q2 by ’cutting’ it into two along its route,
creating a left and a right copy of Q2: instead of each internal
node v on Q2 we add two nodes vleft and vright to G , and
for each internal link uv ∈Q2 we add two links uleftvleft and
urightvright. For a link uv incident to a node v ∈Q2 but not on
Q2 we create the link vleftu if uv is on the left side of Q2 and
we create vrightu if the link is on the right side. The first and
last links (say sv and ut) have two copies: svleft, svright and
uleftt , urightt , respectively. Let GQ2 denote the resulting graph.
Note that GQ2 is also planar, and there is bijection between
the s-t paths of G not crossing Q2 and the s-t paths of GQ2 .
Clockwise separation to Q1 can be guaranteed by deleting the
clockwise part of all SRLG-s intersecting Q1 (see line 3). If a
link e to be deleted is in Q2, we delete both the left and right
copies of the link (see Fig. 4). The resulting graph is G ′. Then
an optimal path with respect to <Q2 can be easily determined
by a DFS if we fix the order of node exploration according to
the clockwise order of the links. Since Q1 does not cross Q2

and is clockwise disjoint from itself, Q1 is in G ′. Hence t is
reachable from s in G ′ and the DFS finds an s-t path indeed.

Now we show by induction that the last k −1 paths in the
series behave similarly to the input paths.

Claim 2. a) Paths Pl−k+2, . . . ,Pl are pairwise disjoint and in
this clockwise order at s if k ≥ 3.

b) Path Pl is clockwise disjoint from itself if k = 2.

Proof: First, we prove part a). It is enough to show that

the paths are in this clockwise order at s and that Pl and
Pl−k+2 are disjoint. Since by induction Pl−1 and Pl−k+1 are
disjoint, they are also clockwise disjoint and Pl−k+1 does not
cross Pl−k . We know that Pl is minimum with respect to <Pl−k

among such paths, hence Pl ≤Pl−k Pl−k+1, which shows the
clockwise order of the paths. All we have to show is that Pl

is clockwise disjoint to Pl−k+2. Assume indirectly that there
is an SRLG S such that there is a dual path Q∗ ⊆ Sclw(Pl )
connecting dual edges e∗, f ∗ such that e ∈ Pl , f ∈ Pl−k+2. Since
path Pl−k+1 is between Pl and Pl−k+2 in the clockwise order,
this dual path would have a dual edge h∗ such that h ∈ Pl−k+1

contradicting that Pl−k+1 and Pl−k+2 are clockwise disjoint.
Now we similarly prove the second part of the claim.

Assume indirectly that Pl is not clockwise disjoint and there
are (not necessarily different) dual edges e∗, f ∗ such that there
is a dual path connecting e∗ to f ∗ in S∗

clw(Pl ). Then this dual
path would have a dual edge h∗ where h ∈ Pl−1, contradicting
that Pl−1 and Pl are clockwise disjoint.

If we find pairwise disjoint paths Pl−k+1, . . . ,Pl−1,Pl in line
5 of Algorithm 1, then we are done. In what follows, we give
a procedure for finding a closed dual walk C with l (C )/w(C ) < k
(line 6) when such paths do not appear while l = k,k+1, . . . ,k+
|V ∗|. Let N := k +|V ∗|.
Claim 3. For i = N , . . . ,k, we can compute links ei ∈ E , faces
fi ∈V ∗, SRLGs Si ∈S , and paths Ci ⊆ S∗

i such that

• ei is part of Pi \ Pi−k ,
• fi is the face left to ei (as we walk on Pi from s to t)
• Ci is a dual path connecting fi−1 to fi starting with e∗i−1

and then going in S∗
i clw(Pi−1) .

Proof: By the assumption, (PN−k ,PN−k+1) is clockwise
disjoint, but (PN ,PN−k+1) is not clockwise disjoint, and hence
there exists a link eN ∈ PN \ PN−k (intuitively, PN−k is not
close to PN−k+1, but there is a link eN ∈ PN−k+1 close to
PN ). Let the face left to eN be fN . By replacing eN with
other the links of fN we get an s-t path that is smaller with
respect to <PN−k . Thus there is a link e ′N neighboring fN

which is not in E ′ when the DFS in Algorithm 2 is started.
So there is an SRLG SN ∈ S such that a dual path Q∗ in
S∗

Nclw
(PN−1) connects the dual of a link eN−1 ∈ PN−1 and e ′N ,

see also Fig. 5. Since PN−1,PN−k ,PN do not cross and follow
each other in this clockwise order, path PN−k intersects Q.
Thus eN−1 ∉ PN−k−1, otherwise pair (PN−k−1,PN−k ) would
not be clockwise disjoint. By repeating the same argument,
we can find ei , fi ,Si and Ci for i = N , . . . ,k as prescribed in
the statement of the claim.



For i = N , . . . ,k, let ei , fi , Si , and Ci be as described in
Claim 3. By pigeonhole principle, fi = f j for some k ≤ i ≤
j ≤ N . Let C be the closed dual walk yielding from the
concatenation of Ci+1, . . . ,C j . We will show that C satisfies
l (C )/w(C ) < k, which is equivalent to u := b( j−i )/kc < w(C ),
because l (C ) = j − i . If u = 0, then the inequality is trivial.
Otherwise, e j is strictly to the right of P j−k (by Claim 3).

By line 3 of Alg. 1, P j−(l+1)k is to the left of P j−lk for all
l = 1, . . . ,u. Based on this, we can see that C j−(l+1)k+1·. . .·C j−lk

makes at least one turn clockwise. Concentrating now on path
PN , we can see that we have an extra right-to-left crossing
of the path at the last edge of Ci+1, that hitherto was not
considered, which means w(Ci · . . . ·C j ) = w(C ) ≥ u +1.

By the above procedure, we can find a closed dual walk C
with l (C )/w(C ) < k in line 6 of Algorithm 1. Since the input of
the Algorithm was a number of k−1 SRLG-disjoint paths, we
also have k −1 ≤ l (C )/w(C ), thus bl (C )/w(C )c = k −1.

3) Base cases: What remains is to deal with the base cases
(k = 1,2) of the induction. It is trivial to decide whether there
is an s-t path in G , so we may assume that such a path exists.
Also, we may assume that there is no SRLG separating s and
t . We have seen that Algorithm 1 can be run for an s-t path
P if (P,P ) is clockwise disjoint, by choosing P1 = P2 = P as
input (k = 2). For such an input the algorithm either finds a
closed dual walk C in G∗ with bl (C )/w(C )c = 1 or finds two S -
disjoint s-t paths. So our aim is to find an s-t path P such
that (P,P ) is clockwise disjoint or if no such path exists to find
a closed dual walk C in G∗ with bl (C )/w(C )c < 2 proving that
MAX-FLOW is 1.

In order to find the path above, we will repeatedly use
Algorithm 1 for k = 2 with an expanding series of SRLG
sets. The key is to define SRLG sets S0,S1,S2, . . . ,Sd = S

such a way that if two s-t-paths P,R are Si -disjoint then
(P,P ) is clockwise Si+1-disjoint, generalizing the inductive
idea applied in [28].

For an SRLG S, a node p∗ ∈V (S∗) and a positive integer i
let S∗

i (p∗) be the set of dual edges that are at most i distance
away from p in the subgraph of G∗ induced by S∗. It is easy
to see that in the subgraph induced by S∗

i (p∗), there is a path
of length at most 2i between any two nodes. Let S ∗

0 := S ∗
V

and S ∗
i := S ∗

V ∪ {S∗
i (p∗)| S ∈ S , p ∈ V (S∗)} (i = 1..d). Note

that Sd =S .

Lemma 4. Suppose that P and R are s-t paths that are Si−1-
disjoint. Then the pair (P,P ) is clockwise Si -disjoint.

Proof: Assume indirectly that (P,P ) is not clockwise
disjoint. Then there is an SRLG Si ∈ Si and link e ∈ Si ∩P
such that a dual path in S∗

i clw(P ) connects clockwise the right
node of e∗ to the dual of a link f ∈ P ∩Si . Let Q∗ denote this
dual path extended with dual edge e∗. We assume Q∗ is of
minimum length.

Claim 5. Path Q∗ is a shortest path from e∗ to f ∗ in S∗
i .

Proof: If there were a shorter dual-path Q ′∗ from e∗ to
f ∗, it could only cross P from right to left. Together with the

reverse of Q∗, they would form a dual walk separating s and
t , which is a contradiction because we assumed that there is
no separating SRLG.

By Claim 5 path Q∗ can be chosen shortest, that is, we
may assume it has at most 2i edges. Since paths P and R are
Si−1-disjoint, they are link-disjoint. Hence path R intersects
Q ⊆ Si at a link h 6= e, f . If i = 1, |Q| ≤ 2 hence there is no such
link and the claim follows. If i ≥ 2, assume that there is such
a link h. Dual edge h∗ subdivides path Q∗ into two shorter
paths, which are also shortest paths. Observe that at least one
of them has length at most i ≤ 2(i −1) and thus covered by
an SRLG in Si−1, contradicting the assumption that (P,R) are
Si−1-disjoint.

Menger’s Theorem [37] characterizes the maximum number
of node-disjoint (that is, S0 = SV -disjoint) s-t paths, which
we can find in polynomial time. Since we assumed that there is
no SRLG separating s and t thus, there is no separating node
either. Hence there are two node-disjoint s-t paths P ′

0 and P ′′
0 .

Our algorithm for finding an s-t path P such that (P,P ) is
clockwise S -disjoint is the repetition of the following steps,
starting with i = 1. First we call Algorithm 1 with k = 2 for
P1 = P2 = P ′

i−1 and SRLG set Si . If the algorithm finds two
Si -disjoint s-t paths P ′

i and P ′′
i , then we go to the first step

with path P ′
i and SRLG set Si+1. Else the algorithm finds a

closed dual walk C as in Theorem 6 with Si , then we stop
the process. Since for every S ∈Si (1 ≤ i ≤ ρ−1) there is an
SRLG S′ ∈S with S ⊆ S′, for this closed dual walk C we have
bl (C )/w(C )c ≤ 1 for S , too. Note that if bl (C )/w(C )c = 0 we can
subdivide some Ci to get a partition with bl (Ci )/w(Ci )c = 1.

4) Complexity Analysis: We have just built an algorithm
solving the MRSDP problem. Now we turn to its complexity:

Theorem 6. For any instance of the MRSDP problem, we can
find a maximum number of k = MAX-FLOW SRLG disjoint
paths with an associated closed dual walk C in G∗, for which⌊

l (C )
w(C )

⌋
= k in O

(
n2

(
k +dρ

)
ρµ+|S |dρ2

)
. Furthermore, if

MAX-FLOW≥ 2, we also have

MAX-FLOW= min

{⌊
l (C )

w(C )

⌋∣∣C closed dual walk, w(C ) ≥ 1

}
.

Proof: First we analyze Algorithm 2. The algorithm has
two sections. The second is a DFS, which runs in O(n). The
first section runs in O(nρµ), since we go over each edge
of Q1 (O(n)), and then every SRLG which contains each
edge (O(µ)), and then compute Sclw(Q1) in O(ρ). The overall
complexity of Algorithm 2 is O(nρµ).

In Algorithm 1, we call Algorithm 2 at most |V ∗|+1 =O(n)
times, so the complexity of Algorithm 1 is O(n2ρµ).

In the base case, when we calculate the first s-t path, which
is clockwise-disjoint from itself, first we determine SRLG sets
Si and then call Algorithm 1 d times.

There are O(ρ) nodes in an SRLG, so |Si | is O(|S |ρ),
which means

∑
i∈{1,...,d} |Si | is O(|S |dρ). This means that we

can construct the truncated SRLG sets Si in O(|S |dρ2) time.
For an SRLG set Si the maximum number of SRLGs that
have a common edge can be larger than µ. Since for each
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Fig. 6. Closed dual walk C crosses itself along the dual-edges of
SRLGs S1 and S2 at a face f . The dual-edges of C can be reordered
such that it results in two closed dual walks C1 and C2, both using
the edges of both S1 and S2, switching between S1 and S2 at f ,
meaning l (C1)+ l (C2) ≤ l (C )+2.

SRLG S ∈S we create O(ρ) new SRLGs when we create Si ,
this number is O(µρ). So calling Algorithm 1 d times takes
O(dn2ρ2µ) time.

When two disjoint s-t paths are given, we execute algo-
rithm k = MAX-FLOW times, which gives a running time of
O(kn2ρµ) for this part.

So the total complexity of finding the maximum number of
pairwise disjoint paths is O(|S |dρ2 +dn2ρ2µ+kn2ρµ).

Computing the dual-walk at the end of the algorithm can
be done in O(n2) if while executing Algorithm 2 we store for
each link visited in the DFS a link of Pl−1 and an SRLG, that
contains them both (if there is any). This way we can find ei ,
fi and Ci (described in Claim 3) in O(n) time.

IV. LOWER BOUND ON THE MAXIMUM NUMBER OF
REGIONAL SRLG-DISJOINT PATHS

By using Theorem 6, we prove the following.

Theorem 7. For any instance of the MRSDP problem,

MAX-FLOW≤MIN-CUT≤MAX-FLOW+2.

Proof: Since MAX-FLOW ≤ MIN-CUT is obvious, we
prove MIN-CUT ≤ MAX-FLOW+2. By Theorem 6, we can
take a closed dual walk C such that bl (C )/w(C )c =MAX-FLOW.
Hence it suffices to find an SRLG cut of size bl (c)/w(C )c+2 (i.e.,
a set of bl (c)/w(C )c+2 SRLGs in S that disconnect s and t).

If w(C ) ≥ 2, similarly to the technique in [18] we can
decompose C into two closed dual walks C1 and C2 by
the uncrossing procedure described in Fig. 6. We claim that
w(C1) + w(C2) = w(C ), since the orientation of the dual-
edges in C1 and C2 can be chosen to be the same as
it is in C , inducing both w1(C1) + w1(C2) = w1(C ) and
w2(C1)+w2(C2) = w2(C ). Furthermore, l (C1)+l (C2) ≤ l (C )+2.
By repeating the uncrossing procedure, we have closed dual
walks C1,C2, . . . ,Cw(C ) such that wCi = 1 for each i , and∑

i l (Ci ) ≤ l (C )+2 · (w(C )−1). Since we have

min
i

l (Ci ) ≤
⌊

1

w(C )

∑
i

l (Ci )

⌋
≤

⌊
l (C )−2

w(C )

⌋
+2 ≤

⌊
l (C )

w(C )

⌋
+2,

there exists a closed dual walk Ci such that w(Ci ) = 1 and
l (Ci ) ≤ bl (C )/w(C )c+2. This shows the existence of an SRLG
cut of size at most bl (C )/w(C )c+2.

V. DISCUSSION

A. A heuristic approach to reduce path lengths

After the completion of Alg. 1, similarly to [29], a heuristic
shortening of the k = MAX-FLOW disjoint paths can be
applied as follows. In each iteration, we fix k−1 paths, and we
compute a shortest s-t path that is SRLG-disjoint from these.
The algorithm stops when there are no k −1 paths for which
a shorter disjoint s-t path exists as the current k th path. As
the total length of the paths decreases after each successful
shortening, the heuristic terminates after a finite number of
iteration.

B. Dealing with non-planar graphs

This paper assumed the network topology to be planar,
which enabled the design of a polynomial algorithm for cal-
culating a maximal number of regional SRLG-disjoint paths.
Naturally rises the question if the problem can be solved
efficiently if there are a strictly positive number of x link
crossings in any embedding of the network in the plane. We
believe the answer is affirmative. To argue, in the following,
we present a very heuristic approach as follows. We assume
that for any crossing link pairs e, f there is an SRLG S
containing e and f . This means that there are no s-t paths P1

and P2 containing e and f , respectively. We also ban every
single path to use both crossing edges. Then, the MAX-FLOW
in G \ {e} or in G \ { f } will be a maximal solution in the
original graph too. It is easy to see that in the presence of x
non-overlapping link crossings, we can find the MAX-FLOW
via solving 2x planar problem instances, where we delete one
edge of each crossing. If x is O(logn), this means a runtime
polynomial in n. A more elaborated study on calculating a
maximal number of regional SRLG-disjoint s-t paths in a
network with some link crossings will be part of a future work.

VI. RELATED WORKS

A. Theoretical preludes

Papers [38] and [28] provided polynomial algorithms and
min-max theorems to find a maximal number of interiorly d-
hop disjoint paths (i.e., no walk of length d is connecting
any pair of these paths) in planar graphs, for d = 1, and d ≥ 1,
respectively. The condition of interiorly d-hop disjointness can
be rephrased as interiorly SRLG-disjointness for a special class
primal-connected SRLGs.

Based on the former, and motivated by [31], [18] and
[29] designed a tight min-max theorem and faster polynomial
algorithms for finding a maximal number of circular disk-
disjoint paths in geometric graphs without link crossings.
The circular disk-disjointness can be rephrased as SRLG-
disjointness for a special class of dual-connected SRLGs.

B. Prior works related to SRLG-disjoint routing

To the best of our knowledge, [16] was the first to prove
that the problem of finding two SRLG-disjoint paths is NP-
complete via showing the NP-hardness of one of its special
cases, the so-called fiber-span-disjoint paths problem.



[39] corrects [40], and shows that the SRLG-disjoint
routing is NP-complete even if the links of each SRLG
S are incident to a single node vS . It also presents some
polynomially solvable subcases of this special problem.

[41] offers an ILP solution for the SRLG-disjoint routing
problem. Some papers, like [42], [43] rely at least partly
on ILP/MILP formulations, i.e., on (mixed) integer linear
programs to solve or approximate the weighted version of
the SRLG-disjoint paths problem. Under a probabilistic SRLG
model, [44] aims finding diverse routes with minimum joint
failure probability via an integer non-linear program (INLP).

Due to the complexity of the problem family, heuristics are
also investigated [45], [46], unfortunately, with issues ranging
from possibly non-polynomial runtime to possibly resulting in
forwarding loops in the presence of disasters.

VII. SIMULATION RESULTS

In this section, we present numerical results to demonstrate
the performance of the proposed algorithms on some real-
istic physical networks. The algorithms were implemented in
Python version 3.8 using various libraries. Our implementation
of the algorithm and the input data used for evaluation is
uploaded to a public repository2. Runtimes were measured
on a commodity laptop with a CPU at 2.8 GHz and 8 GB of
RAM. We investigate various aspects of system performance,

2The authors have provided public access to their code or data at github.
com/hajduzs/regsrlg.

TABLE I
BACKBONE NETWORK TOPOLOGIES USED IN THE SIMULATIONS [47]. THE diam IS

THE PHYSICAL LENGTH OF THE LONGEST SHORTEST PATH, cable IS THE TOTAL

PHYSICAL LENGTH OF THE CABLES, k∗ IS THE AVERAGE NUMBER OF NODE DISJOINT

PATHS BETWEEN THE NODE-PAIRS.

Network |V | |E | diam. cable k∗ dav g d ρav g ρ |Sregion|
name [km] [km] avg. over all SRLGs of Table II

Pan-EU 16 22 1713 6321 2.72 2.70 3.00 4.27 5.39 9.56
EU (Nobel) 28 41 3314 16864 2.69 2.78 3.50 4.05 5.61 23.22

N.-American 39 61 5121 32796 2.89 3.07 3.89 4.03 5.39 31.00
US (NFSNet) 79 108 5502 37071 2.85 2.89 3.67 3.99 6.22 63.00

US (Fibre) 170 230 5695 41530 2.42 3.20 4.83 7.18 14.61 107.00
US (Sprint-Phys) 264 313 5539 40595 2.00 2.88 4.11 6.65 13.39 156.94

US (Att-Phys) 383 488 5617 58866 2.46 3.29 5.00 9.06 18.78 234.11

TABLE II
THE LIST OF SRLGS USED IN THE SIMULATION. THE MINIMAL, AVERAGE, AND

MAXIMAL DIAMETER OF THE DUAL OF AN SRLG IS DENOTED BY dmi n , dav g AND

d , RESPECTIVELY. THE MINIMAL, AVERAGE AND MAXIMAL SIZE OF AN SRLG IS

DENOTED BY ρmi n , ρav g AND ρ. THE NUMBER OF SRLGS IS |Sregion|. ALL THE

VALUES IN THE TABLE ARE AVERAGES OVER THE NETWORKS SHOWN IN TABLE I.

SRLG name dmi n dav g d ρmi n ρav g ρ |Sregion| illustration
disk 50km 1.43 2.27 3.57 2.00 3.41 7.86 103.71
disk 100km 1.71 2.71 4.00 2.71 5.25 11.14 96.71
disk 200km 1.43 3.08 4.29 2.57 8.88 18.00 117.00
ellipse 50km 1.43 2.30 3.71 2.00 3.64 8.14 102.71
ellipse 100km 1.71 2.79 4.00 2.86 5.90 11.71 99.14
ellipse 200km 1.57 3.18 4.57 2.57 10.55 21.29 115.57
0-node 1.43 2.34 3.86 1.14 2.18 4.57 122.43
1-node 1.71 2.68 4.14 2.29 4.05 7.00 145.86
dual-walk 2.59 3.17 3.84 3.50 3.50 3.50 57.25

e.g., how the list of SRLGs or the network parameters impacts
the number of SRLG-disjoint paths, their length, and runtime.

For the performance evaluation of the algorithms, we se-
lected seven topologies (see Table I for the details) and
analyzed the results for various known lists of SRLGs (Table
II). We have adopted four approaches to generate SRLGs:

1) circular disk failures of a given radius like in [18],
2) ellipse disk failures of a given radius,
3) circular disks with k = 0,1 nodes in their interior, and
4) random walks in the dual graph.

For 1) we have set radius to r = 50,100,200,300km and used
the algorithm in [21] to generate the SRLGs that over every
possible epicenter for the circular disk. For 2), first, we have
transformed the node coordinates by multiplying the vertical
coordinates (the latitude values) by 0.5 and run the algorithm
in [21] to generate the SRLGs. After transforming back the
coordinates, we have SRLGs covered by an ellipse where the
minor axis is 2 times longer than the major axis. We perform a
second round of generating SRLGs but multiply the horizontal
coordinates (the longitude values) by 0.5. For 3) we select
SRLGs that can be covered with a circular disk having k = 0,1
nodes in its interior. This will result in a circular disk with
different radii, and the generation is based on the Delaunay
graphs, see [20]. For 4), we generated SRLGs as random walks
in the dual graph with ρ = 2,3,4,5 dual edges and the number
of SRLGs is b|E |/ρc. Finally, for a given s and t , the SRLGs
that form an s-t cut are omitted.

A. Larger SRLGs lead to less number of SRLG-disjoint paths

In this section, we investigate the correlation of the number
of SRLG-disjoint paths with respect to the size of the SRLGs.
We expect that having larger SRLGs results in less number
of SRLG-disjoint paths. Fig. 7 shows two charts where the
vertical axis is the number of SRLG-disjoint paths; and the
horizontal axis is the size of SRLG in terms of the number
of edges (Fig. 7a) and the diameter (Fig. 7b) of the SRLGs.
On Fig. 7a we draw different curve for each type of SRLG
of Table II and on Fig. 7a we draw different curve for each
network of Table I. We can observe that 0-node, 1-node, and
dual-walk SRLGs are smaller than the methods where SRLGs
have fixed physical sizes (disk and ellipse). The backbone
network is denser in heavily populated areas (e.g., east and
west coast in the USA). On Fig. 7b we can observe that larger
networks have larger SRLGs as well (it can be also seen on
Table I). We can also observe that for larger networks, the
impact of the size of the SRLG decreases.

B. Increase in the path lengths

We have also investigated the length of the paths. Fig. 8
shows the stretch, i.e., the length of the path divided by the
shortest path, where the lengths are the physical length of the
paths. The figure shows the length of the shortest paths among
the k SRLG-disjoint paths. We can observe that it is just 1%-
10% longer than the shortest path. It is essential in network
resiliency because only one of the paths is set up, called the
working path, while the others are the backup paths set up only
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in case of failure. It also shows that the longest paths among
the k SRLG-disjoint paths have stretch 2-3. As expected, for
networks with more nodes and links, the difference is smaller.
The chart also shows the average stretch over all the k SRLG-
disjoint paths. Note that, on average, there were 2.05 SRLG-
disjoint paths in our evaluation.

C. Running time

We have also measured the running time of the proposed
algorithm. Fig. 9 shows the running times for networks of
different sizes. The horizontal axis shows the number of nodes
in the network on a logarithmic scale. We have sorted the
running times depending on the maximal diameter of the
SRLGs that was d = 3,4,5,6 to illustrate that the algorithm
runs in a moderately longer time for larger SRLGs. In general,
we observe a scalable performance with a quadratic increase
in the runtime with respect to the number of nodes.

VIII. CONCLUSIONS

Finding SRLG-disjoint paths in a network between a given
pair of nodes is an essential task in network resiliency.
The problem, in general, was known to be computationally
complex; thus, heuristic algorithms (mostly Integer Linear
Programming) were used. It was observed that heuristic al-
gorithms perform well in most cases; however, they cannot
provide the performance guarantee required in operational
networks. Therefore, the best practice remained to degrade
the requirements in the Service Level Agreements to protect
the network against a single (or dual) link/node failures. It
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Fig. 9. The runtime for each network.

eventually leads to networks being very reliable except dur-
ing natural disasters (e.g., earthquakes, flooding, hurricanes),
where multiple pieces of equipment in a small area fail within
a short time, called regional failures.

On the other hand, even though several NP-hard problems
can be efficiently solved for planar graphs, the (almost)
planarity of backbone network topologies has not yet been
exploited in previous approaches. In the last decades, most
of the related algorithmic tools were already available in
geometric topology to close this gap [28] and precisely identify
the properties SRLGs must meet to have fast algorithms for
finding SRLG-disjoint paths. An important step was on this
road in 2014 by Kobayashi-Otsuki [18], giving a polynomial-
time algorithm for one particular type of SRLGs (circular disk
failures of a given radius). This paper aims to close this gap,
and generalize the algorithm for a broader range of SRLGs
that covers all cases in practice (the edges in the dual graph
must be connected), show that the algorithm is very efficient
by proving that the runtime of the algorithm is O(n2) roughly
(with additional, in most cases small parameters). Furthermore,
we give a pure combinatorial algorithm description that does
not utilize the exact geographical embedding of the network.
We provide a Python implementation and show that one of
the resulting SRLG-disjoint paths is almost as short as the
absolute shortest path through simulations.
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