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Abstract
This dissertation aims to model and list the joint device failures of telecommunication optical

backbone networks caused by large-scale regional disasters. The use-cases of these failure lists

include helping the operators of modern telecommunication networks to meet the predefined Quality-

of-Service (QoS) conditions.

I divided the problem into the following parts: 1) development of failure models that make the

best use of the data available, 2) giving fast algorithms for determining the resulting failure lists, 3)

providing a theoretical and practical analysis of the complexity of the algorithms and the properties of

the failure lists. My thesis relies, in particular, on the foundations of complexity theory, computational

geometry, probability theory, and seismology.

The first thesis assumes that while the geographical embedding of the network topology is

precisely known, only a maximum size of the disaster-affected area is available as part of the input.

Accordingly, I have provided an algorithm for collecting link sets that can be hit by a disk with a

radius of r and are maximal among such sets in a Shared Risk Link Group (SRLG) list, where an

SRLG is defined as a set of links that are considered to have a high probability of failing together.

The recommended list is provably short, the algorithm for its enumeration, under certain practical

assumptions, has an optimal complexity, that is almost linear in the number of network elements.

According to the assumption of my second thesis, we only know a schematic map of the network

(which can be, for example, a rented topology). In this case, I listed the maximum link sets that

can be hit by a disk containing a given k = 0,1, . . . number of network nodes. This list of SRLGs is

provably short and can be determined in low polynomial time of the number of network elements.

The third thesis assumes that, in addition to the geographical embedding of the network, the

geographical area affected by the next disaster is known as a random variable. This assumption

allows the probabilistic modeling of a set of simultaneously failing network elements. I recommended

standard terminology to unify the technical language related to Probabilistic SRLGs (PSRLGs), and

built a probabilistic failure model that explicitly takes into account the correlated nature of network

element failures. I gave theoretical bounds on the sizes of the recommended PSRLG lists, and tested

the model with real seismic input data. According to the test result, the threat to the backbone

networks arising from earthquakes can be described by a small, easy-to-query data structure.

For all three of my theses, I created simulation software to answer the arising practical questions.
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Kivonat
Disszertációm célja modellezni és felsorolni a távközlési optikai gerinchálózatok nagy kiterjedé-

sű regionális katasztrófák által okozott együttes eszköz-meghibásodásait. Azon linkhalmazokat

melyekről azt gondoljuk, hogy érdemi valószínűséggel egyszerre meghibásodhatnak, közös kocká-

zatú linkcsoportoknak (Shared Risk Link Group, SRLG) nevezzük. E hibalisták felhasználhatósága

szerteágazó, többek közt hozzásegítik a modern távközlő hálózatok operátorait az előre definiált

szolgáltatás-minőségi feltételek (QoS - Quality-of-Service) teljesítéséhez.

A problémakört a következő részekre bontottam: 1) az elérhető adatokat legjobban felhasználó

hibamodellek kidolgozása, 2) az eredő hibalisták meghatározására szolgáló gyors algoritmusok

adása, 3) az algoritmusok bonyolultságának és a hibalisták tulajdonságainak elméleti és gyakorlati

elemzése. Tézisem különösen támaszkodik a bonyolultságelmélet, a kombinatorikus geometria, a

valószínűségszámítás és a szeizmológia alapjaira.

Az első téziscsoport feltevése, hogy míg a hálózati topológia földrajzi beágyazását pontosan

ismerjük, a katasztrófa sújtotta területnek csak egy maximális mérete ismeretes. Ennek megfelelően

algoritmust adtam azon linkhalmazok meghatározására, melyek linkenként metszhetők egy r sugarú

koronggal, és az ilyen halmazok között maximálisak. Az ajánlott SRLG-lista bizonyíthatóan rövid, a

kiszámolására adott algoritmus bizonyos praktikus feltevések mellett optimális, a hálózati elemek

számában majdnem lineáris bonyolultságú.

A második téziscsoport feltevése szerint csak egy vázlatos térképét ismerjük a hálózatnak (mely

lehet pl. bérelt topológia). Ebben az esetben azon maximális linkhalmazokat listáztam, melyekbe bele-

metsz egy k darab hálózati csomópontot tartalmazó korong (k ∈ {0,1, . . . } adott). Ezen SRLG-k listája

bizonyíthatóan rövid, és a hálózati elemek számának alacsony polinomiális idejében meghatározható.

A harmadik téziscsoport felteszi, hogy a hálózat földrajzi beágyazása mellett a következő katasz-

trófa sújtotta földrajzi terület valószínűségi változóként ismert. E feltevés megengedi hibák probabi-

lisztikus modellezését. Standard terminológiát ajánlottam a probabilisztikus SRLG-kkel (Probabilistic

SRLG, PSRLG) kapcsolatos szaknyelv egyesítésére. A hálózati elemek korrelált meghibásodását

explicit figyelembe vevő hibamodellt ajánlottam, az ajánlott PSRLG-listák méreteire elméleti kor-

látokat adtam. A modellt valós szeizmikus bemenettel teszteltem, miszerint a gerinchálózatokra a

földrengésekből fakadó veszélyt kis méretű, könnyen lekérdezhető adatsruktúrával le lehet írni.

A felmerülő gyakorlati kérdéseket saját szimulációs szoftver segítségével válaszoltam meg.
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Chapter 1

Introduction
The Internet has become a topmost critical infrastructure. Due to the importance of telecommunication

services (as a base for stock market, telesurgery, etc.), improving the preparedness of networks to

regional failures is becoming a key issue [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. The majority

of severe network outages happen because of a disaster (such as an earthquake, hurricane, tsunami,

tornado, etc.) taking down a lot of (or all) equipment in a given geographical area. Such failures

are called regional failures. Many studies have touched the problem of how to prepare networks to

survive regional failures, where the first solutions have assumed that fibers in the same duct or within

50 km of every network node fail simultaneously (namely, in a single regional failure) [15, 16]. These

solutions were further improved by examining the historical data of the different type of disasters (e.g.,

seismic hazard maps for earthquakes) and identifying the hotspots of the disasters [2, 5, 6, 8, 9, 11].

The weak point of these approaches is that, during network equipment deployment, many of the

risks are considered and compensated (e.g., an earthquake-proof infrastructure in areas with larger

seismic intensity), implying that the historical data does not represent the current deployments, and

therefore, not the current risks. Thus, it may be more realistic to assume that any physically close-by

equipment has a higher chance to fail simultaneously. More recent studies are purely devoted to

this particular problem and adapt computational geometric based approaches to capture all of the

regional failures and represent them in a compact way [10, 17, 18, 19, C10, C9, C11], where the

major challenge is that regional failures can have arbitrary locations, shapes, sizes, effects, etc.

Unfortunately, regional failures are not self-discoverable in practice [20]; this, together with the high

number of severe network outages witnessed in the last decades [21, 22, 23, 24, 25, 26, 27]1 present

clear evidence that selecting the proper list of regional failures is still a challenging problem to solve

[2, 3, 5, 6, 7, 8, 9, 10, 11]. To fill this gap in reliable network design, my Ph.D. research is devoted to

enhancing the state of the art and suggests unified definitions, notions, and terminology.

The output of the approaches discussed in this Thesis can serve as the input of the network design

1A recent example is a few days long telecom outage during Cyclone Amphan in West Bengal in May of 2020 as a
result of around 100 fiber cuts due to the falling of trees by the wind speeding up to 190km/h.

1



2 1.1. EXAMPLE USE-CASES OF SRLG AND PSRLG LISTS

and management tools. Currently, network recovery mechanisms are implemented to protect a small

set of pre-defined failure scenarios. Each recovery plan corresponds to the failure of some equipment.

Informally speaking, when a link (or link set) fails, the network has a ready-to-use plan on how to

recover itself. Technically, a set of so-called Shared Risk Link Groups (SRLGs)2 are defined by the

network operators, where each SRLG is a set of links whose joint failure the recovery mechanism

should be prepared for. The first part of this Thesis purely focuses on how to define and enumerate

SRLGs that cover all types of disasters. In the second part of my Thesis, I address the question of

defining a realistic and applicable Probabilistic SRLG (PSRLG) failure model.

It turns out that, surprisingly, in practice, only a small number of SRLGs or PSRLGs are needed to

serve as inputs for the higher-layer network management tools. Informally speaking, methods offering

lists of SRLGs and PSRLGs translate the composed geometric problem of protecting telecommu-

nication networks against regional failures to small-sized purely combinatorial and probabilistic

problems, respectively. These findings open up the possibility of leveraging regional (P)SRLG lists

for enhancing network preparedness against disasters.

1.1 Example Use-Cases of SRLG and PSRLG Lists

Two basic use-cases of SRLG and PSRLG lists are the resilient routing [29, 30], and determining

service availabilities depicted in Fig. 1.1 and 1.2, respectively.

In Fig. 1.1a, we can see a pair of imagined primary and backup paths stretching between Central

Europe and California. By demanding a distance of several hundred km between the two paths

(except their endpoints), we ensure they have a negligible probability of failing together. Fig. 1.1b

depicts the state of the routers during Hurricane Sandy that was considered a severe disaster. In Fig.

1.1c, a maximal number (here, 7) of s-t paths are shown, such that there are no two paths that are

hit at the same time by any position (outside of the yellow regions) of the red disk depicted in the

bottom right corner. Here, in the input, instead of storing the possible disasters and the geometric

embedding of the network, one can simply use a list of SRLGs indicating the link sets that can be hit

by the same disaster: if path p1 goes through SRLG S, then path p2 is forbidden to do so.

The example depicted in Fig. 1.2 underlines difficulty of estimating service availabilities. There,

user U reaches her data either in cloud C1 or in cloud C2. At the next disaster, the connections to C1

and C2 may fail in regions V1 and V2, respectively, with an equal chance of P (V1) = P (V2) = 0.001. If

V1 and V2 are far from each other (as in Fig. 1.2a), we may suppose the connections fail independently,

meaning an unavailability of P (V1) ·P (V2) = 0.000001 of the cloud. If V1 and V2 are at the same place

(same bridge, valley, etc., Fig. 1.2b), the unavailability of the cloud will be P (V1) = P (V2) = 0.001. If

V1 and V2 are ‘close’ to each other, but not in the same place, the availability of the cloud under the

next disaster is difficult to estimate (that could be anything between three- to six-nines). Easing the

2An SRLG is a set of links that are considered to have a significant chance of failing together. First introduced in [28].



CHAPTER 1. INTRODUCTION 3

(a) (b)

(c)

Figure 1.1: (a) To avoid most disasters, ensuring several hundred km distance between the primary and the
backup paths is enough. (b) The status of the routers during Hurricane Sandy, 2012. Most of the routers in
NYC are not functioning, Boston also has problems. (c) For disaster-disjoint routing, storing the disasters and
the geometric embedding of the network can be replaced by a short list of SRLGs indicating the link sets that
can be hit by the same disaster. Picture credits to [31, 32, 33].

service availability queries demands the investigation of probabilistic extension of the SRLGs, and

designing a realistic probabilistic regional failure model.

User U

Disaster size

Vuln. area V2

Vuln. area V1

Cloud C2Cloud C1

(a) Availability: 99.9999%

User U

Vuln. area V1 =V2

Cloud C1 Cloud C2

(b) Availability: 99.9%

User U

Disaster size
Vuln. area V2

Vuln. area V1

Cloud C2Cloud C1

(c) Availability: hard to tell

Figure 1.2: User U reaches his data either in cloud C1 or in cloud C2. At the next disaster, the connections to
C1 and C2 may fail in regions V1 and V2, respectively, with an equal chance of P (V1) = P (V2) = 0.001. If V1

and V2 may be hit by the same disaster, but are not co-located, the cloud availability under the next disaster is
hard to estimate.
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1.2 Problem Statement

In this Thesis, I study both the deterministic and probabilistic versions of the problem of representing

the effect of regional disasters on telecommunication networks. In the first part, I purely focus on

how to define and enumerate the most lifelike (deterministic) SRLGs that cover all types of disasters.

Fig. 1.3 depicts the most natural strategies for guaranteeing a level of separation between the primary

and the backup path in the absence of the simultaneous presence of both a precise knowledge of the

physical positions of the network elements and expertise on possible disasters.

Without any requirements, there might be no separation at all between these paths. A common

practice is to ensure link-disjointness on the paths via enumerating all the single link failures as

SRLGs. Compared to this, node-disjointness (except for the source and destination nodes s and t)

ensures resiliency to any single element failure. An SRLG list providing node-disjointness consists

of link sets incident to each network node.

no separation

link-disjointness

(node-)disjointness

h = 1,2, . . .-hop-disjointness

Mk=0,1,...-disjointness

r distance on nodes r distance on links

Degree of separation

Figure 1.3: Strategies for separating the primary and backup paths in increasing strength (the more right the
better the separation is)

To enhance the preparedness granted by node-disjointness, one has to leverage some background

information on the geographical embedding of the network. Typically, communication networks

have few edge crossings, and links are a few hundred kilometers long. Thus it makes sense to grant

a given h hops distance between the primary and backup paths3. For this, one may list the links in

the vicinity of every network link or node as SRLGs4. Unfortunately, a distance of h hops does not

necessarily protect the failure of links crossing the same bridge or a bunch of close nodes.

Knowing the exact geographic embedding of the network topology solves this issue: supposing

that a disaster may damage the network equipment within a radius r around its epicenter (and the

rest of the network is left intact), one only has to list all the maximal link sets which can be hit by a

circular disk with radius r /2 in a list Mr /2. Here the challenge is giving fast polynomial algorithms for

3Vendor specification of core network equipment suggests to ensure that the primary and backup paths assigned to a
connection are edge or node disjoint (e.g., Huawei [34, Section 4.5.4], Alcatel-Lucent [35, pages 46-50], Cisco Systems[36,
Chapter 19], Juniper [37, Chapter 3], Infinera[38]). With node-disjointness, operators ensure that the distance between the
nodes of the primary and backup paths (except at the terminal nodes) are at least 1-hop-distance from each other.

4To ensure an odd number of hops, for every node v , Mh=2k−1 contains the edges of a tree of shortest paths to v from
the nodes not further from v than k hops. Similarly, for every link e = {u, v}, Mh=2k contains the edges of a tree of shortest
paths to e from the nodes not further from u or v than k hops.



CHAPTER 1. INTRODUCTION 5

determining Mr /2 and showing that Mr /2 has a manageable size so that we can provide r -disjointness

for large network topologies too. Chapter 5 (and Thesis 1) is devoted for this issue.

In many cases, one has only a rough idea of the physical embedding of the network, e.g., when the

topology is rented from a Physical Infrastructure Provider [39]. In other words, they have a schematic

map of the network, where the scale is not necessarily preserved over the area, and routes of links are

only known to be within certain areas. In such circumstances, one can provide a separation which is

weaker compared to Mr , but still better than relying only on hop-count: in a list Mk , one can gather

the maximal link sets which can be hit by a circular disk hitting k nodes. In Chapter 6 (and Thesis 2),

I provide a model to handle this case together with theoretical and experimental upper bounds on the

size and construction time of Mk .

Regarding the prior state of the art, there was no PSRLG model, which would take into count that

link failures are not independent when a disaster happens. Also, they did not represent the possible

disasters as accurately as possible. In the second part of my Thesis (Chapter 7, Thesis 3), I aimed

to define a realistic and applicable Probabilistic PSRLG failure model, which takes into count the

failures correlation. In the evaluation, we use a seismic hazard representation, which preserves more

information on possible future earthquakes than usual hazard maps.

1.3 Overview of this Thesis

At first, in Chapter 2, the (P)SRLG problems studied in this Thesis are formally introduced.

Chapter 3 presents an overview of the state-of-the-art for (P)SRLG modeling and enumeration.

In Chapter 4 the necessary algorithmic background for this Thesis is given.

As discussed in the former Subsection, Chapters 5 and 6 present my studies on SRLG modeling

an enumeration in case of precise and schematic maps of the network topology given as input,

respectively. Chapter 7 presents a stochastic model for PSRLG enumeration. The evaluation of the

model is based on real-world seismic data. Finally, Chapter 8 concludes the Thesis.

1.4 Contributions of this Thesis

The contributions of this Thesis are two-fold. Firstly, it offers provably short lists of SRLGs covering

all the failures caused by regional disasters. For this, both a model where the exact geographical

embedding of the network is known and another model where only a schematic map of the topology

is available is given. Fast polynomial algorithms calculating the above lists are offered.

On the other hand, this Thesis provides a model for PSRLG enumeration that produces realistic

failure probabilities, the computed data structure can be stored in provably small space in case of

circular disasters, and it handles the correlation of link failures better than the prior state-of-art.



Chapter 2

Formal Problem Statement

In the current chapter, I give a general definition of the models and terms covering the remainder

of the Thesis. However, since the motivations and models of a different part of this Thesis slightly

differ, I will restate or detail some of the notions for the sake of a more fluent first reading of the

Thesis. Throughout the dissertation, it will be assumed that basic arithmetic functions (+,−,×,/,p )

have constant computational complexity.

2.1 Definition of (Probabilistic) Shared Risk Link Groups

When several network elements may fail together as a result of a single event, they are often

characterized by Shared Risk Groups (SRGs). Each SRG has a corresponding failure event (or events);

when such an event occurs, all elements in the SRG fail together. Specifically, the communication

network is modeled as a graph G = (V ,E), whose vertices are routers, PoPs1, optical cross-connects

(OXC), and users, while the edges are communication links (mostly optical fibers). SRGs are then

defined as subgraphs (V ′,E ′), where V ′ ⊆V and E ′ ⊆ E ′.

In many cases, it is sufficient to consider only links in SRGs, and in this case, these groups are

called Shared Risk Link Groups (SRLGs). For example, an SRLG may contain one edge (to capture a

single-link failure) or all edges that touch one vertex (to capture a single-node failure). SRLGs may

be more complex and represent simultaneous failures of multiple network elements. In particular, in

this chapter, we focus on geographically-correlated failures in which links within a specific region

fail together.

A set M of SRLGs can be used as an input to network design and network recovery/protection

mechanisms to ensure these mechanisms withstand the failures corresponding to these SRLGs.

For example, to ensure connectivity between a specific pair of nodes, protection mechanisms may

construct two edge-disjoint paths when M = {{e}|e ∈ E }, two node-disjoint paths when M = {{(u, v) ∈
1A point of presence (PoP) is an artificial demarcation point or interface point between communicating entities.

6
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E }|v ∈V }, or two paths that do not traverse the same geographical region when M corresponds to all

sets of links that are physically close-by.

The following definition captures the notion of SRLG introduced by regional failures, such as

a natural disaster or an attack. For ease of presentation, we will call these failure events disasters,

regardless of their cause.

Definition 2.1.1 (SRLG). A set of links S ⊆ E is an SRLG if we may assume there will be a disaster

that can cause all edges in S to fail together. If the disaster can be characterized by a bounded

geographical area D, and S is the set of edges that intersect with D, then S is called the regional

SRLG that represents D , and is denoted by S = SRLG(D). If D is a circular disk, we call SRLG(D) a

circular SRLG.

Circular SRLGs, which are the most common in literature, can also be characterized by the

failure epicentre p ∈R2 and the failure radius r ∈R. In this case S = {e ∈ E |d(e, p) ≤ r }, where d(e, p)

is the Euclidean distance between edge e and point p.

The likelihood of a disaster to occur is not the same at all points of the plane. For example,

earthquakes are more likely to occur in rupture zones than in other places, and regions with lower

altitudes are more likely to suffer from floods. Thus, the probability of an event occurring is essential.

This probability is sometimes given in the form of an epicenter distribution map, which gives for

each location p ∈R2, the probability that a disaster happened with epicenter p. Moreover, the size

(or radius) of the disaster can also be a random variable (e.g., earthquakes with a larger magnitude

are less likely to happen than earthquakes with smaller magnitude, even if their epicenters are the

same). Thus, it is customary to consider a set D of disasters D (that can be of infinite size), and

attach a probabilistic measure to this set. For simplicity, let us assume that D is finite, and let

pD = Pr[D ∈D occurs]2. We note that an SRLG S can represent more than one disaster in D; thus,

we denote by the support(S) = {D ∈D|S = SRLG(D)}.

Definitions 2.1.2 and 2.1.3 capture the probabilistic nature of disasters and their effect on SRLGs.

An FP (Def. 2.1.2) tells the probability that the failed link set will be exactly S, while a CFP (Def.

2.1.3) tells the probability that at least S will fail:

Definition 2.1.2 (FP). Given a set D of disasters D, a probability pD for each disaster in D, and a

link set S ⊆ E , the Link Failure State Probability (FP) of S is FP(S)=∑
D∈support(S) pD . We note that

if a disaster in support(S) actually occurs, then all links in S fail. For a graph G , the collection of all

(S,FP(S)) pairs is denoted by FP[G].

Definition 2.1.3 (CFP). Given a set D of disasters D , a probability pD for each disaster in D, and a

link set S ⊆ E , the Cumulative Link Failure Probability (CFP) of S is CFP(S)=∑
T⊇S

∑
D∈support(T ) pD .

2For infinite sets, one can use the corresponding integrals or use discretization and consider only a finite number of sets,
albeit with a small error.
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We note that if a disaster in
⋃

T⊇S support(T) occurs, then all links in S fail. For a graph G, the col-

lection of all (S,CFP(S)) pairs is denoted by CFP[G].

For simplicity, wherever it does not cause any confusion, FP(S) and CFP(S) will also refer to

the set-probability couples (S,FP(S)) and (S,CFP(S)), respectively.

Clearly FPs and CFPs are closely interconnected. In a sense, FPs are like probability density

functions (PDFs), while CFPs are like their cumulative distribution functions (CDFs).

2.2 Physical Embedding of the Network Topology

As written before, the network is modeled as a geometric graph G(V ,E), whose vertices are routers,

PoPs, OXCs, and users, while the edges are communication links (mostly optical fibers).

For simplicity, in most cases, G is considered to be embedded in the plane R2, but in some cases,

for accuracy, I use its spherical representation. When not clear out of context, I indicate the type of

geometry with parameter g ∈ {p, s}, p and s standing for ‘planar’ and ‘spherical’, respectively. For

simplicity, in the remainder of this Thesis, the terms used in the Euclidean plane might refer to their

counterpart in spherical geometry too. That is, ‘line segment’, ‘polygonal chain’ (or ‘polyline’), and

‘containing polygon’, will refer to ‘geodesic’,‘chain of geodesics’, and ‘containing closed chain of

geodesics’ in case of spherical geometry.

Another issue is the geometric embedding of the network links. In this Thesis, I use three different

models: 1) links are line segments (sometimes called intervals) between their endpoints, 2) links are

polygonal chains between their endpoints, and 3) the exact route of each link e ∈ E is not known, but

contained in a polygonal region pe (and e is considered to fail if the disaster hits pe). Mathematically,

3) is more general than 2), which is more general than 1). I use parameter γ to indicate the maximum

number of line segments a link or its containing region stands of.

2.3 Disaster Families and Related Induced Failures

Throughout the SRLG enumeration part of my Thesis, I assume that no detailed information is

available on the disasters, and I overestimate the disaster areas by circular disks. In both cases of

geometries g ∈ {p, s} in which the topology can be embedded, let the set of all circular disks in g be

denoted by C .

2.3.1 SRLG Enumeration: Disasters with Limited Size

If the embedding of the network is known precisely (as in Chapter 5), I am interested in the maximal

link sets, which can be hit by a c ∈C with a given radius. For this, let Cr := {c ∈C |radius of c = r },

and Mr be the set of SRLGs that can be hit by a c ∈ Cr . I distinguish lists Mr of the planar and

spherical embedding as M p
r and M s

r , respectively.
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2.3.2 SRLG Enumeration: Disasters for Schematic Embeddings

If only a schematic map of the network is known (as in Chapter 6), I am interested in the maximal

link sets, which can be hit by a c ∈C which hits a previously fixed k number of nodes. For this, let

Ck := {c ∈C |c hits k nodes }, and Mk be the set of SRLGs that can be hit by a c ∈Ck .

2.3.3 PSRLG Failure Modeling

In Chapter 7, I aim to define a generic PSRLG model. Thus, in the model, any disaster shapes are

allowed, the disaster does not even need to be a connected subset of the plane/sphere. However, I

give theoretical upper bounds on the number of FPs and CFPs supposing that the disasters have a

shape of a circular disk (in any given Lp metric). In the simulations, earthquakes also are considered

to destroy the network in circular regions.

2.4 General Practices for SRLG Enumeration

As the size of SRLG list S determines the run-time and complexity of the mechanisms that use it,

an important goal is to keep S as small as possible. For example, when two sets S1,S2 are in S

and S1 ⊆ S2, it is sufficient to include only S2 in S ; omitting S1 from S usually does not affect the

outcome of the underlying mechanisms3. This is due to the monotonicity of network design/recovery

mechanisms, where we say, a mechanism is monotone if for any S1, S2 such that S1 ⊆ S2, the actions

the mechanism takes in response to S1 is a subset of the actions it takes in response to S2.

Moreover, some works use over-approximation to reduce the size of S : S ′ overapproximates

S is for every S ∈ S there exists S′ ∈ S ′ such that S ⊆ S′. As an over-approximation, instead

of including two sets S1,S2, one can include a single set S1 ∪ S2 (this is especially appealing if

S1 ∩ S2 is of non-negligible size); such over-approximation, however, can degrade the outcome

of the underlying mechanisms. For regional SRLGs, over-approximation is achieved by taking a

larger failure region. The most common practice is to take a simpler shape that completely contains

the original failure region, e.g., circular disks, or fixed shape bounded by segments and arcs. The

presented algorithms are conservative both with the number of listed SRLGs and with the degree of

over-approximation in the case of different classes of realistic inputs.

Another widespread practice is to assume that in the investigated time period, there will be at most

one disaster. If one can enumerate the set S of SRLGs of single disasters, it is straightforward to

compute SRLGs of multiple disaster events. For example, if two disaster can happen simultaneously,

one might look at S ′ = {S1 ∪S2|S1,S2 ∈S }.

3This is true for communication networks, but not for networks in which there is no monotonicity in failures.
When attaching probability to the SRLGs, this no longer holds.
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2.5 Problem Statement

The somewhat formal statements of the problems I am investigating in this Thesis are the following.

For SRLG enumeration, the problem is defining a model and related algorithms so that, based on

the resulting SRLG list, the operators should prepare the network for only a small number of possible

regional failure events that cover all the possible disasters. In some cases, the precise embedding of

the network is given as part of the input, while in others, only a schematic map is known. With the

definitions of this chapter, these problems translate to the following questions:

• Is there a fast polynomial algorithm for enumerating M p
r ? Can tight theoretical upper bounds

be given on |M p
r |? Is there an algorithm that, in practice (i.e., for real network topologies),

calculates M s
r efficiently? Is there a significant difference between M p

r and M s
r in practice, i.e.,

in case of real network topologies, and realistic disaster radii (≤∼ 500km)?

• Can a justifiable model be specified for regional failures if only a schematic map of the network

topology is given? Is there a polynomial algorithm for calculating Mk , and related theoretical

upper bound on |Mk |?

For PSRLG enumeration, the problem is defining a model that yields PSRLG lists that can serve,

e.g., service availability queries with great accuracy. This translates to the following questions:

• For PSRLG enumeration, can a failure model be defined such that 1) it produces realistic

failure probabilities, 2) correctly captures link failure correlation patterns, 3) the size of the

output structures is manageable in practice? Can low theoretical upper bounds be given on the

number of the PSRLGs needed to describe the random effect of the next disaster?

2.6 Model Extensions

2.6.1 Segment Link Representation to Polylines, Polylines to Containing Polygons

The network embedding model varies in our papers. In some of them, links are considered as line

segments, in others, they are polygonal chains, or even only known to lie in a polygonal region.

Suppose we have an algorithm As for the line segment link model. The polygonal chain case

can also be handled in polynomial time based on As via splitting the polygonal chains up into line

segments, running As for the resulting problem instance, merging the line segments of each polygonal

chain, and finally, filtering out the non-maximal sets.

Now suppose we have an algorithm Ac for the polygonal chain link model. Then, the containing

polygon can also be handled in polynomial time using a slight modification of Ac : if in case of a link
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e, a disaster d is not hitting the boundary of pe , one has to decide if d is in the interior of pe or in its

exterior. Fortunately, this can be done in polynomial time (see, e.g., proof of Claim 6.6.1).

2.6.2 Different Link Types

Most of the optical backbone networks consist of multiple types of links, e.g. aerial, buried and

submarine. In case of a disaster, these link types have different failure patterns, for example, in case

of an earthquake, aerial cables fail in a different region than buried cables, while submarine cables

tend to be cut at rupture zones. With this in mind, we can extend our model in the following way. Let

L be the set of different link types. For disaster D, let r (D, l ) denote the area where links with type l

fail in case of D.

Note that I have not paid particular attention to the algorithmic side of more sophisticated failure

models in this Thesis. One approach to constructing (P)SRLG lists in the case of these models is

taking a sufficiently fine discretization of the original problem [J2, J5].

2.6.3 Mixed Link Types

Different parts of a link e in the input network topology may have different types, e.g., there is a link

that is mainly buried, but crosses a river above the water. Such a link can be divided into sections with

homogeneous types and fails if one of its section fails. More formally, each link e ∈ E is partitioned

to sections e1, . . . ,eK with types l 1, . . . , l K , respectively. For disaster D, section e i fails if it has a

common point with r (D, l i ), and link e fails if at least one of its sections fails.

2.6.4 Nodes Also Considered Vulnerable

Network nodes have different failure patterns than links, and their probabilistic failures can be

represented by (P)SRLGs as follows. For a node v ∈ V that can fail, the edges incident to v have

mixed link types, and in a small vicinity of v are considered to have a type lv ∈ L specific to the node,

i.e., that tiny parts of the links fail exactly then when the node would have failed. This approach

translates to (P)SRLGs as following in the end. We consider that the set of links S incident to v fails

because the disaster hits every l ∈ S or node v .



Chapter 3

Related Work

3.1 Charting the Landscape of (P)SRLG Enumerating Problems

To have a better overview of the problem versions tackled by both other researchers and our group,

in the following, a charting of the (PSRLG) enumerating problems is given based on the input data

quality/precision.

Informally speaking, the most important input information parts are the 1) geometric embedding

of the network, and the 2) (probabilistic) disaster effects. Unfortunately, in practice, it is far not

obvious that this information is available with high precision. As depicted in Fig. 3.1, we might

distinguish three levels of information quality both on the geographic embedding and on the disaster

effects, and classify the offered (P)SRLG approaches according to these. I briefly depict and reference

all the related problems.

no Mh hops
Network geometric embed-
ding information little Mk nodes

good Mr radius
worst SLRG

no Mshape
Disaster (area)
information

little MD disasters

good (C)FP[G] MT threshold

Figure 3.1: A mind map of SRLG and PSRLG problems related to the quality of input data. For a
graph G, (C)FP[G] stores PSRLGs, while lists M∗ consists of SRLGs. Problems studied in this Thesis
(Mk nodes, Mr radius,(C)FP[G]) are highlighted with purple rectangles.

In case of the geographic embedding, we may encounter the following cases:

• no information on the embedding: this can happen, e.g., when dealing with a network

rented from a Physical Infrastructure Provider. In this case, one may list the links in the

12
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h-neighborhoods of every node or link as an SRLG for a given h. These lists Mh will ensure

some hops distance between primary and the backup paths, hopefully translating to a decent

physical distance (see [B1, Sec. 1.3.2A]).

• little information on the embedding: in many cases, one has a schematic map of the physical

topology. Using these, we can compute SRLG list Mk of links sets hit by disks hitting k

nodes. Compared to Mh , Mk also protects failures of close nodes and parallel (close) links

(see Chapter 6).

• good information on embedding: if a precise map of the network topology is part of the input,

one can leverage his knowledge on disaster effects too:

– no information on disasters: one can suppose a disaster will do harm only within a disk

of radius r around its epicenter, and compute the list Mr of maximal link sets hit by

disks with radius r (see Chapter 5). Alternatively, one may assume that the disaster has

a fixed shape, e.g., an equilateral triangle of any orientation, and calculate list Mshape

of maximal link failures caused by this shape [40]. Another possibility is that a set D of

disaster areas is given1, and computes the list MD of maximal SRLGs caused by these

disasters (see, e.g., a non-probabilistic version of [41]).

– good information on disasters: having detailed probabilistic disaster data allows us to

compute PSRLG lists. Here the challenge is to create a model that correctly captures the

joint failure probabilities of network elements while producing an output of affordable

size (see Chapter 7 or [17]).

Having a list of PSRLGs enables collecting those SRLGs that have a failure probability above a

threshold T . From among these, one can collect the maximals in a list MT [C5].

We note that in the natural condition when the vulnerability metric or a protection mechanism is

monotone2, the worst SRLG fulfilling a given criteria c (e.g., SRLGs that can be hit by circular disks

with a range r or hitting k nodes) will be part of the set of exclusion-wise maximal SRLGs fulfilling

c. Thus a worst SRLG can be found by simply searching for the worst SRLG in the list of maximal

SRLGs fulfilling c (e.g., in Mr , Mk )[B1]. This way, the results presented in this Thesis are firm base

ground for solving a whole family of related problems.

Computational complexity and precision are two additional criteria along which the studies of

the field can be separated. In case of complexity, clearly, polynomial algorithms outperform their

super-polynomial counterparts. Sometimes, to achieve a manageable problem space, studies take

1Where in the interior of the disaster area, everything is damaged, while in the exterior, no failure happens
2We say vulnerability metric or protection mechanism µ is monotone, if, according to µ, for any link set E1 ⊆ E2, the

failure of E2 is worse than the failure of E1.
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discretized input data, e.g., they take a sufficiently fine grid over the topology and assume the disasters

can have their epicenter in these grid points. The discretization yields some imprecision, but given

our knowledge, e.g., on seismic hazard, this imprecision is often affordable [J5]. In the following, I

will refer to algorithms using this kind of discretization as ‘approximate’ algorithms.

3.2 (P)SRLG Enumeration or Finding Worst (P)SRLG

Tables 3.1 and 3.2 give an overview on studys dedicated to different versions SRLG and PSRLG

enumeration, respectively. Note that [B1] gives an overview on these papers.

3.2.1 SRLG Enumeration

Table 3.1 lists SRLG enumerating papers. I marked papers used as a material for this Thesis with

3in the second column (in rows 2,3,5). Algorithmically, determining Mh is not challenging (row 1).

Once we have a disaster set D, enumerating MD is straightforward too (row 4, see e.g., [B1]).

Table 3.1: Papers enumerating regional SRLGs. While the rest of the papers consider deterministic
disaster scenarios, in [C8, C5] SRLGs are obtained from PSRLG lists.

In this
Thesis

Geometric info. Assumptions Algorithms
Paper Goal Physical Planar/ Disaster Single Precise/ Poly- Para-

network Spherical shape disaster approximate nomial metrized

Vass et al.
- SRLG list no plane - 3 precise 3 7

[B1]/1.3.2A

Vass et al.
3 SRLG list poor plane circular 3 precise 3 3

[C11, J1]

Tapolcai et
3 SRLG list good plane circular 3 precise 3 3

al. [J4, C10]

Vass et al.
- SRLG list good any

set of known
3 precise 3 7

[B1]/1.3.2E disasters

Vass et
3 SRLG list any

plane+ bounded by
3

precise+
3 3

al. [C7, J5] shpere segments+arcs approximate

Iqbal
7 SRLG list good plane - 3 precise 7 7

et al. [42]

Trajanovski
7

most vulne-
good plane any 3 precise 3 7

et al. [19, 40] rable point

Neumayer
7

most vulne-
good plane

circular or
3 precise 7 7

et al. [10, 43] rable point line segment

Pašić et al.
7 SRLG list good plane any 3 approximate 3 7

[C8, C5, J2]
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(a) There are 3 SRLGs each are a pair of links. (b) There is a single link set with three links

Figure 3.2: Example SRLGs according to (a) Def. 2.1.1, and (b) [42].

A problem closely related to (regional) SRLGs is investigated in [42] (row 6 of Table 3.1). The

paper proposed to call a pair of fibers spatially-close if their distance is at most r ′, i.e., they can be

covered with a circular disk of radius r ′
2 . They propose to define SRLGs as sets of fibers where any

pair of fiber are spatially-close, in other words, any pair of fibers can be covered with a circular disk

of radius r ′
2 . Unfortunately, [42] ends up at an NP-complete problem while grouping all fibers that are

spatially close to each other, such that the number of distinct link sets is minimized. Furthermore, the

resulting link sets may not be even possible to hit by the same disaster (i.e., they are not necessarily

SRLGs according to Def. 2.1.1)3. See Fig. 3.2 highlighting the difference between this model and

the one presented in [42].

In [19, 40], polynomial algorithms are given for finding the most vulnerable point (called the

critical region) of the network in case of disasters with a fixed polygonal or elliptic shape and size.

Although some arguments of the paper are inaccurate or even conflicting, its reasonings could be

healed.

With somewhat different motivations, similar computational geometric ideas were used in papers

focusing on the most vulnerable points (worst SRLGs) of physical infrastructure (communication

networks or power grids [44]) to regional failures or attacks. In this Thesis, our objective is more

general as we want to enumerate all (the maximal) candidate failures instead of searching for the

most vulnerable according to some metric. In these works, the network is embedded in the Euclidean

plane and the failures are modeled either as a disk around its epicenter (circular) [10, 17], line

segments [10], ellipse [19] or polygons (rectangle, square, or equilateral triangle) [19]. Technically

these papers also list the candidate failures (SRLGs) and evaluate the vulnerability metric of the

residual network in case of each candidate failure.

For (implicit) worst SRLG computation, the following vulnerability metrics were investigated.

(1) the point with the maximum number of affected links [10, 17], which is ρr . (2) the point with

the maximum average two terminal reliability between every node-pair [10, 17, 19]. Here the max-

flow algorithm runs O(nm) [45] which we need to run for O(n) in practice. (3) the point with the

maximum average all-terminal reliability [8], which allows the identification of network areas that

3Note that based on Mr=r ′/2, treating the corner points as degree 2 nodes, the grouping of the spatially-close fiber
segments can be directly computed.
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can disconnect any component in the network. (4) the point with the maximum average value of

the maximum flow between a given pair of nodes [10]. (5) the point with maximal average shortest

path length between every pair of nodes [8]. (6) the point with maximal average shortest path length

between every pair of nodes [8, 19], (7) survivability as a measure of the weighted spectrum based

on the eigenvalues of the normalized Laplacian of a graph [8], (8) network criticality, which is

determined from the trace of the inverse of the Laplacian matrix and can be related to the node and

link betweenness [8], (9) momentary chance of cable cut caused by a landslide in case of heavy rain

[46, 47].

It is a natural idea to list in a container MT the (maximal) link sets, which have a probability

of failing together higher than a given threshold T (like in [C5] or [48]). Obviously, for this, as an

intermediate step, one has to generate a set of probabilistic SRLGs. More precisely, CFP is the most

useful structure in this context, since, by definition, for a link set S, the Cumulative Failure Probability

CFP(S) is the probability that at least the links of S will fail. The advantage of this approach is that

SRLG lists can be generated based on sophisticated objectives.

3.2.2 PSRLG Enumeration

Table 3.2 depicts papers dedicated to PSRLG enumeration. [41] assumes there is a set D of disasters

given, each disaster D ∈D is associated with a probability of happening, and based on this, calculates

link failure state probabilities FP(S) straightforward, naming them simply as PSRLGs. Although

papers [17, 49] aim only to find the most vulnerable point of the network, their tools are suitable for

PSRLG enumeration. Our papers [C9, C4, J3] are, up to my knowledge, the first to explicitly take

into count the correlated nature of link failures in the presence of a disaster. Also, alongside our book

chapter [B1], these works are the first to offer a unified terminology on PSRLGs.

Table 3.2: Papers enumerating regional PSRLGs.

Paper
In this
Thesis

Goal
Correlated link failures Natural disaster /
inside the disaster attack

Oostenbrink
7 FP list (3) -

et al. [41]

Tapolcai,Valentini,
3

FP list +
3

natural disaster
Vass et al. [C9, C4, J3] CFP list (earthquake)

Agarwal
7

most vulnerable
point

7 attack
et al. [17, 49]

The tools presented in papers cited in the previous Subsection for determining a worst SRLG

can be used for PSRLG enumeration (like in the case of [49], and [17]). Additional related papers
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implicitly listing (P)SRLGs addressed specific sub-problems in network planning, like finding the

most vulnerable part(s) of the network [8, 50], studying the impact on the network of a randomly

placed disaster [51, 52], designing a network and its services with disaster resiliency in mind

[53], and (re)routing of connections to minimize service impact due to a disaster [54]. Some work

has considered probabilities, either in the context of a disaster having a certain probability of

disconnecting a link, e.g., [17], or in the context of only having partial (probabilistic) information on

the geographical layout of a network, e.g., [55].

While the above-mentioned papers considered geographically correlated failures, a common

property of the targeted sub-problems is to search for the location(s) where a disaster will cause the

maximum expected damage to the network. This is a crude averaging process that is unable to exhibit

correlations among many important failure events. The problem of precisely and quickly calculating

the correlations between link failures to conduct a more thorough network vulnerability assessment

had been insufficiently addressed in the past.

3.3 (P)SRLGs as Input

There are several papers refraining from making up their own failure models and, instead, taking

lists of (P)SRLGs as input. A good example of this is [56], providing diverse routing algorithms and

being the first paper to introduce PSRLGs. In the field of fault-tolerant virtual network mappings,

(k)-content connectivity is calculated based on SRGs in [57, 58, 59]. Papers [60, 61, 62] offer

SRLG-disjoint routing. Other examples are [2, 5, 11, 63].

There are a number of studies that could have taken (P)SRLGs as input, especially if their failure

modeling is less realistic than the state-of-the-art. Some of the problems tackled in these studies are

the following. SRLG disjoint routing [64], content connectivity against double-link failures [65],

logical survivable topologies against multiple failures [66], flow availability in two-layer networks

[67], tunable protection for single and dual link failures, respectively [68, 69], evaluating geographic

vulnerabilities of multilayer networks [18, 70], network virtualization design for regional disaster

resiliency [6], increasing availability between two nodes after disaster [52], improving connectivity

resilience through third-party networks[71], survivable network design [53, 72].

Some surveys, summaries or tutorials tackling (P)SRLGs are [9, 73, 74, 75, B1]. A recent

comprehensive guide book for the broader topic of disaster resilience of communication networks is

[76] (that also includes our chapter [B1]).
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3.4 Computational Geometry and Seismology

The work presented in the Thesis heavily relies on computational geometry. Books [77] and [78]

cover most of the used background of this field. In [77], the concept of sweep line algorithms is

discussed in detail. [78] is a survey on Voronoi diagrams and Delaunay triangulations, two related

classes of geometric proximity graphs that are in great service of regional failure modeling.

Some of our advanced questions in this field are answered in recent papers. These are like the

edge count of k-Voronoi diagrams for line segments [79], or construction time and edge number of

higher-order Delaunay graphs (for a point set) [80, 81]. Some of the computational geometric tools

used in our research were developed in our papers, like the sweep-disk algorithm for Thesis 2.

More related topics are Stereographic projection [82] combined with the the Apollonius problems

[83], or the smallest intersecting ball problem [84], [85], which has its origins in the classical 19th-

century problem of Sylvester [86] about the smallest enclosing circle for a given set of points in the

plane.

The other related field worth mentioning is seismology, however, I only use it in Subsec. 7.6.1,

to represent the seismic hazard less blurry than the usual hazard maps. The approach presented

in Subsec. 7.6.1 for transforming the raw earthquake catalogs to earthquake activity rate maps is

essentially the same as the one used to create the SHARE European Earthquake Catalogue [87].

Additional references will be provided in the mentioned subsection.



Chapter 4

Algorithmic Background

4.1 The Big O Notation

Let FN = [N→N] denote the space of all functions on natural numbers and let f :N→N ∈ FN be a

specific function. We employ the Landau symbol O to denote the following class of functions:

O
(

f
)={

g ∈ FN
∣∣∣ limsup

n→∞ g (n)/ f (n)
<∞

}
.

Writing ‘g = O
(

f
)
’ instead of ‘g ∈ O

(
f
)
’ is also widespread. To bypass this issue, in the

followings, mostly we will simply say ‘g is O
(

f
)
’. If g is O

(
f
)
, we say f is Ω

(
g
)
. Additionally, if

both f is O
(
g
)

and g is O
(

f
)
, we say f is Θ

(
g
)

and g is Θ
(

f
)

to denote that these are asymptotically

equal.

4.2 Time and Space Complexity

The worst-case time complexity (or simply, complexity, or running time) of an algorithm is estimated

by counting the maximum number of elementary operations performed by the algorithm, given an

input of an arbitrary size s. In this Thesis, I prove theoretical bounds on running time and output size

of algorithms that are polynomial, that is, there exists a constant c such that they perform at most

O(sc ) elementary operations. Sometimes I prove bounds that leverage some parameters depending

on the input. E.g., by Cor. 5.1.14, the number |Mr | of maximal link sets that can be hit by a disaster

with radius r is O((|V |+ x)ρr ), where x is the number of link crossings, and ρr is the maximum

number of links such a disaster can hit in the particular problem input.
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4.3 Computational Geometry: Sweep Line Algorithms
In our studies, we rely on multiple computational geometric tools. In the following, we briefly depict

the principle of sweep line algorithms, one of those tools which are used repeatedly in later chapters.

In computational geometry, a sweep line algorithm or plane sweep algorithm is an algorithmic

paradigm that uses a conceptual sweep line or sweep surface to solve various problems in Euclidean

space. It is one of the key techniques in computational geometry.

In sweep line algorithms, it is imagined that a line is moved across the plane, keeping its

orientation and stopping at some event points. Geometric operations are restricted to the immediate

vicinity of the sweep line whenever it ends, and the complete solution is available once the line has

passed over all objects. This principle is mostly manifested with the help of efficient data structures

based on binary search trees or similar.

As an example, given a set E of line segments embedded in the Euclidean plane, the line segment

intersection problem asks whether there exist two intersecting line segments in E . Clearly, the

question can be answered in polynomial time (in the function of |E |), the challenge is to answer it ‘as

fast as possible’. A bound is given as follows:

Proposition 4.3.1 (Theorem 5 of [88]). All k pairwise intersections among n segments in the plane

can be computed in O(n logn +k) time. The running time is optimal. The storage requirement is

O(n +k). If so desired, the algorithm will compute the vertical map of the set of segments within the

same time and space bounds.

We can conclude that the fastest algorithm deciding whether there exist any line segment

intersection runs in Θ(|E | log |E |). A former and simpler algorithm called Bentley-Ottmann [77] also

solves the problem. This algorithm, loosely speaking while swiping a vertical line from left to right

maintains an ordered balanced binary search tree storing the line segments e ∈ E according to their

ordinates ye at the current abscissa x. It has the following complexity:

Proposition 4.3.2 (Theorem 2.4 of [77]). All intersection points of E , together with the segments

giving the intersection, can be reported in O((m + I ) logm) time and O(m) space, where I is the

number of intersection points1.

We can see that both [88] and the Bentley-Ottmann algorithm solve a more difficult problem:

report the line segment intersections. This can be seen as a special case of the problem of reporting

the maximal link sets, which can be hit by a circular disk (shaped disaster) of radius r , which we

study in Sec. 5.1. In Chapter 6, we also rely on the concept of sweep surface algorithms. We note that

although the algorithm of [88] is asymptotically faster than the Bentley-Ottmann in some settings, it

looses its competitive edge if k is Ω(I logn).

Another field where sweep line algorithms are useful is the construction of Voronoi diagrams

[78] and Delaunay triangulations, two closely related classes of geometric proximity graphs that we

will leverage throughout this Thesis.
1Note that in Prop. 4.3.2, in each intersecting point, an arbitrary number of line segments can intersect each other.



Chapter 5

Maximal SRLGs Induced by Disks with
Radius r

5.1 Planar Regional Link Failures Caused by Disasters with Radius r

5.1.1 Problem Definition and Basic Results

The input is a real number r ≥ 0 and an undirected connected graph G = (V ,E) embedded in the 2D

plane, where V denotes the set of nodes and E the set of edges (which are also called links). Let

n := |V | and m := |E |. I assume n ≥ 3. The edges of G are embedded as line segments, which I call

intervals in the geometric proofs1. A disk with centre point p hits an edge e if its distance to p is at

most r .

Definition 5.1.1. A regional failure F is a non-empty subset of E , for which there exists a disk with

radius r hitting every edge in F .2

Note that the failure of node v is modeled as the failure of all edges incident to node v . Therefore

listing the failed nodes beside listing failed edges would not give us additional information from the

viewpoint of connectivity.

Definition 5.1.2. Let Fr be the set of regional failures of a network for a given radius r .

According to Def. 5.1.1, a subset of a regional failure is also a regional failure. Thus, Fr is a

downward closed set minus the empty set.

1The case, when edges are considered to be embedded as polygonal chains between their endpoints consisting of at most
a constant number of line segments, can also be handled in polynomial time based on the presented results via splitting the
polygonal chains up into line segments, running the presented proposed algorithm (sketched in Table 5.2) for the resulting
problem instance, merging the line segments of each polygonal chain, and finally, filtering out the non-maximal sets.

2Thus, what we call a regional failure is the worst-case outcome of a disaster damaging an area. F can be seen a
compact representation of all of its subsets.
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e1 e2 e3

Figure 5.1: In the figure above, the solid circular disks are disasters with radius r , d(e1,e2) =
d(e2,e3) = 2r , while d(e1,e3) = 4r . The set of regional failures is Fr = {{e1}, {e2}, {e3}, {e1,e2}, {e2,e3}}.
The set of maximal regional failures is Mr = {{e1,e2}, {e2,e3}}.

Recall the network can recover if an SRLG or a subset of links (and nodes) in the SRLG fail

simultaneously. In other words, if a regional failure F is listed as an SRLG, then there is no need to

list any subset of the links F ′ ( F as a new SRLG. The goal is to define a set of SRLGs which covers

every possible regional failure and which is of minimal size.

Definition 5.1.3. Let Mr ⊆ 2E denote the set of SRLGs, for which

Mr = {F is a regional failure and there is no regional failure F ′ such that F ′ ) F } . (5.1)

In other words, the set of SRLGs Mr is a set of failures caused by disks with radius at most r

in which none of the failures is contained in another. Figure 5.1 illustrates Definitions 5.1.1-5.1.3.

Note that Fr is the set of regional failures, which is the downward closed extension of Mr minus the

empty set. A family of sets from the power set of E in which none of the sets is contained in another

is called an antichain (in the inclusion lattice over 2E ). This antichain is also sometimes called a

Sperner system, independent system or a clutter. Note that, Mr is an antichain. Due to the minimality

of SRLGs, the following holds.

Proposition 5.1.1. For each SRLG F ∈ Mr , F ⊆ E , there is a circular disk c of radius r such that F is

exactly the set of edges hit by c.

Let r be a tiny positive number. In this case, the list of possible regional failures consists of every

single link or node failure and link crossings. In other words, this model is a generalization of the

‘best practice.’ The corresponding antichain can be the set of single node failures, i.e., |Mr | = n +x,

where x is the number of edge crossings. Informally speaking, protecting node failures is sufficient

to protect link failures as well.

In the following, the aim is to determine the set Mr . At first glance, it is not clear that the

cardinality of Mr is ‘small.’ I will prove polynomial upper bounds on |Mr |.
To estimate the size of the SRLG list, let ρr denote the maximum number of edges a disk with

radius r can hit in the plane, i.e., for every failure F caused by a disk with radius r , |F | ≤ ρr . An

observation is that if ρr =O(logn) then there is a polynomial blowup when switching from Mr to
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Table 5.1: Table of symbols for Sec. 5.1

Notation Meaning
General

G(V ,E) the network modeled as an undirected connected geometric graph
n, m number of nodes |V | ≥ 3 and edges |E |, respectively

r disaster range (r ≥ 0)

F
regional failure, i.e.is a non-empty subset of E , for which there exists a disk with radius r hitting every
edge in F

Fr set of regional failures of a network for a given radius r
Mr F is in Mr if it is is a regional failure and there is no regional failure F ′ such that F ′ ) F

cF
smallest hitting disk of F , where a disk c is smaller than disk c ′, if c has a smaller radius than c ′, or if
they have equal radius and the center point of c is lexicographically smaller than the center point of c ′

X set of points p which are not in V and there exist at least 2 non-parallel edges crossing each other in p

Ew
:= {e ∈ E | d(w,e) ≤ 3r }; the edges in Ew are in sorted order with respect to the lexicographic ordering of
their endpoints

Ve := {w ∈V ∪X | d(e, w) ≤ 3r }

Cr,w

The set of the following disks: for e, f ∈ Ew , disks c of radius r (if exist) according to Thm. 5.1.2: either
case a) applies if e and f are not parallel, and c intersects them in two different points, or case b) when c
intersects e and f in two different points, one being an endpoint of e, or case c) when c touches e at an
endpoint; moreover we require that formerly computed disks c have centers not farther than 2r from w .

Lr,w list of set of edges hit by an element of disk set Cr,w
Parameter

ρr
link density of the network, which is measured as the maximal number of links that could be hit by a
circular disk shaped disaster of radius r

x number of link crossings of the network G
µ square mean of numbers ve for all e ∈ E , where ve is the number of w ∈V ∪X such that d(w,e) ≤ 3r
φr maximum number of nodes in the 3r -neighborhood of a link of the input graph G

(a) (b) (c)

P1

P2

(d) N (e,r ) of an
edge e

Figure 5.2: Case (a),(b) and (c) of Thm. 5.1.2 and the neighbourhood N (e,r ) of an edge e.

Fr , as |Fr | ≤ |Mr |2ρr . Mr can be treated as a compact representation for Fr . It is also immediate that

from Fr one can obtain Mr by O(|Fr |2) comparisons of subsets of E .

I say a disk c hits a set of edges Ec if it hits all the edges in Ec . Note that several disks can hit the

same set of edges.

First, a slight variant of Lemma 9 from [10] is given. This study’s assumptions allow somewhat

more general topologies with more than 2 collinear points. The segments e ∈ H are assumed to be

nondegenerate.

Theorem 5.1.2. Let r be a positive real, and H be a nonempty set of intervals (i.e., edges) from R2

which is hit by a circular disk of radius r . Then there is a disk c of radius r which hits the intervals

of H such that at least one of the following holds (see Fig. 5.2 for illustrations).

(a) There are two non-parallel intervals in H such that c intersects both of them in a single point.
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f

e

(a) ∀e ∈ E and ∀ f ∈ E

v

e

(b) ∀e ∈ E and ∀v ∈V

e

(c) ∀e ∈ E

Figure 5.3: The circular disasters examined in Thm. 5.1.3

These two points are different.

(b) There are two intervals in H such that c intersects both of them in a single point. These two points

are different, and one of them is an endpoint of its interval.

(c) Disk c touches the line of an interval e ∈ H at an endpoint of e.

Proof. For a line segment e on the plane and a nonnegative real number r the r -neighborhood3

N (e,r ) of e is defined as the set of all points P on the plane which have distance at most r to (some

point of) e. It is immediate that N (e,r ) is a closed convex subset (see Fig. 5.2d) of the plane.

Consider the boundary B of the intersection

∩e∈H N (e,r ). (5.2)

The points of B are obviously in the union of the boundaries of the neighborhoods N (e,r ), where

e ∈ H . The union is composed of a finite number of line segments and half circles. The circular arcs

belong to circles of radius r centered at endpoints of line segments e ∈ H . We distinguish two cases.

(1) B has a point R which is on a halfcircle arc of the boundary on N (e,r ) for some e ∈ H . Let cR be

the disk of radius r centered at R. If R is an endpoint (P1 or P2 in Fig. 5.2d) of the halfcircle, then (c)

is satisfied for cR . We can thus assume that R is an inner point of the halfcircle connecting P1 and

P2, and Pi 6∈ B . From the fact that B is closed, we obtain that there exists a point R ′ on the circular

arc RP2 which is in B , but no point of the open R ′P2 arc is in B . Then there must be an f ∈ H such

that N ( f ,r ) passes through R ′ but does not contain a larger arc R ′R ′′ from R ′P2. Then R ′ is on the

boundary of N ( f ,r ). We argue that (b) holds for cR ′ and the intervals e, f . This is immediate if the

tangent lines to N (e,r ) and N ( f ,r ) at R ′ are different. If they are the same line ` then e and f must

be in different halfplanes defined by `, hence e ∩ f =; and hence (b) holds for cR ′ . This reasoning

settles the case (1). Note that we can also assume now that |H | > 1.

(2) No point of B is on a circular arc form the boundary of N (e,r ), with e ∈ H . Then B is a (possibly

degenerate) polygon composed of some line segments. Let R be a vertex of polygon B , and e ∈ H be

a segment such that R is an interior point of one of the line segments on the border of N (e,r ). Let `

3called hippodrome in [17].
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Figure 5.4: An example topology (k = 4) where the number of maximal SRLGs hit by circular disk
shaped disasters is Ω(m2) or Ω((n +x)ρr ).

be the line of this latter segment. The fact that R is a vertex of B implies that there must be another

segment f ∈ H such that one of the line segments on the boundary of N ( f ,r ) passes through R and

the line `′ of this segment is different from `. Indeed, otherwise, for every g ∈ H there would be an

open interval form ` containing R in N (g ,r ), which contradicts the extremality of R. As e is parallel

to ` and f is parallel to `′, we infer that (a) holds for cR .

5.1.2 Bounds on the Number of SRLGs

Lemma 5.1.3. Let H ′ be a set of intervals from R2, |H ′| ≤ 2, and r be a positive real number. Then

every circular disk described in Thm. 5.1.2 for H = H ′ can be determined in O(1) time.

Proof. Easy elementary geometric discussion of cases (a), (b) and (c) of Thm. 5.1.2. See Fig. 5.3 for

illustration. Note that there can be at most 4 circles that intersect two line segments, as shown in Fig.

5.3(a), and at most two circles intersecting a line segment and a single point, as shown in Fig. 5.3(b),

and four circles can touch a line at endpoints, as shown in Fig. 5.3(c).

From Thm. 5.1.2 and the argument of Lemma 5.1.3 we obtain the following upper bound on the

number of SRLGs.

Corollary 5.1.4. |Mr | ≤ 4
(m

2

)+4m +2mn.

Note that, the graphs of Claim 5.1.5 demonstrate that the above bound is asymptotically tight.

5.1.2.1 Worst Case Graph

Claim 5.1.5. The graph sketched in Fig. 5.4 has at least n2

64 maximal regional failures of a radius k.

Proof. Here we construct a set of n segments whose graph is planar (there are no edge intersections),

and for a suitable radius r it has at least n2

64 , in particular a quadratic number of, incomparable failure



26 5.1. PLANAR REGIONAL LINK FAILURES CAUSED BY DISASTERS WITH RADIUS R

(a) r = 0.3, |Mr | = 25 (b) r = 0.5, |Mr | = 56 (c) r =p
2/2, |Mr | = 16

Figure 5.5: The set of SRLGs of a 5×5 grid network.

events.4

Let k be a positive integer. We consider a collection of 4k axis parallel line segments in R2.

We start out with the four edges of the square of edge size k whose bottom left corner is at the

origin O = (0,0). We consider the bottom edge connecting O to (k,0), and put its copies translated

i units downwards, for i = 1, . . . ,k into our set of segments. For example for i = 2 we obtain the

segment from (0,−2) to (k,−2). This way we obtained k segments. Similarly we translate the upper

edge (from (0,k) to (k,k)) of the square by i units upwards for i = 1, . . . ,k. These are k additional

horizontal segments. We do the same in the vertical direction: we consider k translates to the left

of the left edge of our starting square, and k translates to the right of the right edge of the square.

We have 4k nonintersecting line segments of length k. The configuration for k = 4 is shown in Fig.

5.4. Consider now a disk c = c(i , j ) of radius k centered at the point (i , j ), where i , j are integers,

0 ≤ i , j ≤ k. We readily see that c intersects exactly i of the right vertical segments and k − i of the

left vertical segments. Similarly, c intersects exactly j of the upper horizontal edges and k − j of

the lower horizontal edges. We infer that no two disks of the form c(i , j ) can hit the same set of

edges. This implies that there are at least (k +1)2 maximal failure events with radius k. The number

of vertices is n = 8k. The number of such maximal failures is at least n2

64 .

5.1.2.2 Circular Disk Failures with Radius at Most r

In this subsection, we take a more general model and assume that the radius of the failure is not a

network-wide parameter but depends on the area. Our goal is to enumerate every circular disk failure

for any radius at most r .

4No attempt has been made to optimize the constant. In fact, a more elaborate variant of the preceding construction
gives n2

16 maximal failures.
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Definition 5.1.4. Let a disk c be smaller than disk c ′, if c has a smaller radius than c ′, or if they have

equal radius and the centre point of c is lexicographically smaller than the centre point of c ′.

Definition 5.1.5. Let F ⊆ E be a finite nonempty set of edges (not necessarily a failure). We denote

the smallest disk among the disks hitting F by cF , and we say cF is the smallest hitting disk of F .

It is not difficult to see that cF always exists. The key idea of our approach that we can limit

our focus only on the smallest hitting disks cF , for F ∈ Fr , and ignore the rest of the disasters. The

consequence of the next theorem is that the number of smallest hitting disks cF , F ∈ Fr is not too

large.

Theorem 5.1.6. Let H be a nonempty set of intervals from R2 with smallest covering disk cH . Then

there exists a subset H ′ ⊆ H with |H ′| ≤ 3 such that cH = cH ′ .

Thm. 5.1.6 would be trivial if the smallest hitting disks were defined on sets of nodes because a

triplet of non-collinear nodes defines a circle. In the proof in Subsection 5.1.4.1 we show that this

property holds for edges (considered as line segments) too. Compared to the algorithm of Thm. 5.1.2

here we not only shift the disks but also shrink them.

Corollary 5.1.7.
∣∣∣∣ ⋃
0<r<∞

Mr

∣∣∣∣≤
(

m

3

)
+

(
m

2

)
+m = m3

6
+ 5m

6
.

Theorem 5.1.8 (Thm. 28 of [T1]). Let H be a set of intervals from R2, |H | ≤ 3. Then cH can be

determined in O(1) time.

Remark. Thm. 5.1.8 outlines an efficient algorithm for cH in an exact symbolic computational setting.

A good numerical algorithm for approximating the radius r of cH and the center P of cH is also

possible: for a positive real number r ′ we can efficiently test if N (e1,r ′)∩N (e2,r ′)∩N (e3,r ′) 6= ;.

Indeed N (ei ,r ′) is a union of two half disks and a rectangle, and the intersection of such objects is

easily computable. Using such tests for emptiness, r can be approximated by binary search as the

smallest r ′ providing nonempty intersection.

Since the smallest hitting disk of a triplet of edges can be calculated in O(1) time, we could solve

the problem by processing O(m3) triplets of edges. However, we will achieve better upper bounds on

the running time and of |Mr | with the help of some further observations.

5.1.3 Improved Bounds and Algorithm to Enumerate the Set of SRLGs

Next, we define five practical parameters of the input to better estimate the number of SRLGs and

computing time.

ρr is the link density of the network, which is measured as the maximal number of links that could

be hit by a circular disk shaped disaster of radius r .
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x is the number of link crossings of the network G .

µ is the square mean of numbers ve for all e ∈ E , where ve is the number of w ∈ V ∪ X such that

d(w,e) ≤ 3r .

In backbone networks, x is a small number as typically a network node is also installed on each link

crossings [89], while the link density ρr practically should not depend on the network size. We also

know that ρr is at least the maximal nodal degree in the graph. For simplicity, we assume that edges

intersect in at most one point.

Definition 5.1.6. Let X be the set of points p which are not in V and there exist at least 2 non-parallel

edges crossing each other in p. Let x = |X |.

As mentioned before, in backbone network topologies, typically x ¿ n. This is because a switch

is usually installed if two cables are crossing each other5. It gives us the intuition that G is “almost”

planar, and thus it has few edges.

Claim 5.1.9. The number of edges in G is Ω(n) and O(n +x).

Proof. Since G is connected, m =Ω(n) is immediate. The upper bound was proved in [T1] as follows.

Let G ′(V ∪X ,E ′) be the planar graph obtained from dividing the edges of G at the crossings. Since

every crossing increases the number of edges by at least two, |E ′| ≥ m + 2x. On the other hand,

|E ′| ≤ 3(n +x)−6 since G ′ is planar. Thus m ≤ |E ′|−2x ≤ 3n +x −6.

Here we add a note on the Crossing Lemma giving a lower bound on x in function of n and m.

For a given graph G , let cr(G) the minimum number of edge crossings over the planar embeddings of

G . Thm. 6. of [91] states that cr(G) ≥ 1
29

m3

n2 − 35
29 n, and if m ≥ 6.95n, then cr(G) ≥ 1

29
m3

n2 .

5.1.3.1 Lower Bound on Computing the Maximal Failures

Now we present a straightforward lower bound on the time needed to determine Mr . As it will turn

out (in Cor. 5.1.19), in specific circumstances, this lower bound is asymptotically tight.

Corollary 5.1.10. The complexity of computing Mr is Ω(n logn).

Proof. By combining Prop. 4.3.1 (Lemma 4 of [88]) and Claim 5.1.9, we get that reporting that there

are no intersecting line segments takes Ω(n logn). In other words, this means that computing Mr in

the special case of r = 0 needs Ω(n logn) time.
5Recent experimental studies give empirical evidence that real-world road networks typically have Θ(

p
n) edge

crossings [90].
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K

Figure 5.6: Illustration to Thm. 5.1.12

5.1.3.2 Upper Bounds and Algorithm for Computing the Maximal Failures

The set of link intersections X can be computed in near-linear time, for example, with the help of

algorithm Bentley-Ottmann [77] briefly explained in Chp. 4.

Claim 5.1.11. X can be reported in O((n +x) logn) time and O(n +x) space.

Proof. To easily distinguish nodes and edge intersections geometrically, edges are shortened in both

directions with a tiny fraction of their length. The statement follows by using Proposition 4.3.2

(Theorem 2.4 of [77]) and Claim 5.1.9 by noting also that O(log(n +x)) is O(logn).

The next theorem states, it is enough to process the edge triplets in the neighborhood with radius

3r of every point in V ∪X .

Theorem 5.1.12 (Thm. 32 of [T1]). For every failure H ∈ Fr there exists a disk c of radius at most r

hitting H with centre point at distance at most 2r from V ∪X .

Theorem 5.1.13. Let r be a positive real number, F ∈ Mr be a set of line segments which can be hit

by a disk of radius r . Then there exists a segment e ∈ F and a disk c described in Thm. 5.1.2 (disk c

has radius r , hits F , intersects e in a single point Q, and (a), or (b), or (c) holds with H = F ), such

that the centre point of c is at distance at most 2r from either an endpoint of e or a point of crossing

(of e and another segment f ∈ F ).

Proof. We proceed along the lines of the proof of Thm. 5.1.2. If we are in case (1) of the proof

of Thm. 5.1.2, then (b) or (c) holds for the statement of the theorem, as Q can be an endpoint of a

segment e ∈ F .

We may turn our attention to case (2) from Thm. 5.1.2. Then K =∩e∈F N (e,r ) is a closed bounded

convex set on the plane whose boundary is a polygon composed of line segments. If K has no interior

points in the plane, then r is an optimal hitting radius for F . Then c = cF will be a suitable disk. The

proof of Thm. 5.1.12 can be extended to show that the requirements of Theorem 5.1.2 will be valid

for cF in the place of c. This follows from a simple but tedious analysis of the Cases 1-4 of Theorem

5.1.8, which we omit here.

We may, therefore, assume that K has an interior point (see also Fig. 5.6). Then K is a proper

convex k-gon for some k ≥ 3, hence there exists a vertex R of K with angle α ≥ π
3 . The circle of
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radius r centered at R will meet the requirements of the theorem. Indeed, there will be then two

segments e, f ∈ F such that their supporting lines are tangent to c, and c is seen at angle α from their

point of intersection. Q will be the point of tangency of e or f with c. See the last case in the proof

of Thm. 5.1.12 for further details.

Next, we will give better upper bounds on the number of SRLGs. As a consequence of Theorem

5.1.13, when considering circular disasters of radius r , then in a sense, we may ignore the points

on the edges e ∈ E which are more than 3r away from V ∪X . Consider the pairs (e, v) where e ∈ E ,

v ∈V ∪X , and v ∈ e. If we have an SRLG of radius r as in Theorem 5.1.13 with edge e such that the

distance of c is at most 2r from v , then the edges of this SRLG must intersect the disk of radius 3r

centered at v . This gives at most 15ρr possibilities for the other edge besides e in Theorem 5.1.13 (a)

or (b) (see Fig. 5.7, where 15 circular disks of radius r cover a disk of radius 3r ). The number of

pairs (e, v) can be counted by looking at the contribution of node v : it will be deg v , where deg is the

degree in the planarized graph. The sum of the degrees is twice the number of the edges of the latter

graph, which is O(n +x). Thus we have the following bound:

Corollary 5.1.14. |Mr | =O((n +x)ρr ) .
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Figure 5.7: A disk with radius 3r can be covered with 15 disks with radius r . Generally, covering a
disk with a radius ε with the fewest possible number of disks with radii 1 is called the disk covering
problem [92].

This bound is asymptotically tight6 on the graphs in Claim 5.1.5 because ρr = n
2 for r = k. Next,

we discuss the algorithm to generate the list of SRLGs.

Theorem 5.1.13 together with other formerly presented results inspire an improved algorithm

with a running time near linear in n described in Table 5.2. The main idea is to build up local data

structures, pre-compute the lists of candidate members of Mr , then merge these lists, all in nearly

linear time. With this aim, we make the following definitions.

Definition 5.1.7. For a given r and w ∈V ∪ X , let Ew := {e ∈ E | d(w,e) ≤ 3r }; and let the edges in

Ew be given in sorted order with respect to the lexicographic ordering of their endpoints. For a given

e ∈ E , let Ve := {w ∈V ∪X | d(e, w) ≤ 3r }.
6No attempt have been made to optimize the constant.
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Table 5.2: Algorithm for determining Mr and complexity of its tasks

# Task Complexity
1 Determine X O((n +x) logn)
2 For w ∈V ∪X determine Ew O((n +x)(logn +ρ2

r ))
3 For e ∈ E determine Ve O((n +x)(logn +ρ2

r ))
4 For w ∈V ∪X determine Lr,w O((n +x)ρ3

r )
5 For e ∈ E for w1, w2 ∈ Ve com-

pare Lw1 with Lw2

O((n +x)µρ5
r )

6 Merge resulting lists in Mr O(n +x)

Theorem 5.1.15. All the sets Ew for w ∈V ∪X can be determined in O((n+x)(logn+ρ2
r )). Similarly,

all the sets Ve for e ∈ E can be computed in the same time complexity.

The proof of Thm. 5.1.15 is relegated to Subsection 5.1.4.2.

Lemma 5.1.16. The set of SRLGs for circular disk shaped disasters of radius r can be computed in

O((n +x)(logn +ρ3
r )).

Proof. Based on Claim 5.1.11 and Thm. 5.1.15, Ew can be determined in the proposed complexity

for all w ∈V ∪X .

Then for every node w , we compute list Lr,w containing the set of edges hit by an element of

disk set Cr,w defined as follows: for e, f ∈ Ew we compute disks c of radius r (if exist) according to

Thm. 5.1.2: either case a) applies if e and f are not parallel, and c intersects them in two different

points, or case b) when c intersects e and f in two different points, one being an endpoint of e, or

case c) when c touches e at an endpoint; moreover we require that formerly computed disks c have

centres not farther than 2r from w . These disks are collected in Cr,w . This takes O((n +x)ρ3
r ) time,

since there are O(ρ2
r ) disks c to determine and store in Cr,w , and for each c ∈Cr,w the set of edges

hit by c can be determined in O(ρr ) time based on Ew . It follows readily from Thm. 5.1.13 that for

every F ∈ Mr there exists a w ∈V ∪X such that F is a subset of an element of list Lr,w .

Please note that lists Lr,w together may contain duplicates and non-maximal sets as well, those

will be eliminated later at a subsequent phase.

Finally, based on Cor. 5.1.7 we give an upper bound on the total number of circular disk failures

with radius at most r .

Proposition 5.1.17.

∣∣∣∣∣ ⋃
0<r ′<r

Mr ′

∣∣∣∣∣ is O((n +x)ρ2
r ) .

Proof. We can use Theorems 5.1.6 and 5.1.12 and the fact that a disk of radius 3r hits O(ρr )

segments. From Theorem 5.1.6, we see that it suffices to construct disks of the form cH , for sets of

segments H of size at most 3. Then by Theorem 5.1.12 it is enough to calculate for every v ∈V ∪X
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the smallest hitting disk of every set H containing an edge going through v and containing 1 or 2

edges from the 3r neighborhood of v . For a fixed v we have O(deg v ·ρ2
r ) SRLGs, and the claim

follows.

As mentioned after Lemma 5.1.16, the final task for determining Mr is to merge lists Lr,w by

eliminating duplicates and non-maximal elements. To do this in subquadratic time in n, one must

avoid comparing all pairs of lists Lr,w1 , Lr,w2 .

Definition 5.1.8. Let µ be the mean square of numbers |Ve | for all e ∈ E , i.e. µ :=
∑

e∈E |Ve |2
m .

Theorem 5.1.18. The maximal circular disk failures with radius exactly r can be computed in time

O((n +x)(logn +µρ5
r )) and this is tight in n.

Proof. According to Lemma 5.1.16, all sets of failures Lr,w can be determined in time O((n +
x)(logn +ρ3

r )).

We observe that it is enough to compare lists Lr,w1 and Lr,w2 for possible containment or

duplicates only if Ew1 ∩Ew2 6= ;, or in other words there exists an e ∈ E for which {w1, w2} ⊆Ve . We

deduce that it is enough to compare for all e ∈ E and w1, w2 ∈Ve list pairs Lr,w1 , Lr,w2 . This means

comparing at most

∑
e∈E

|Ve |(|Ve |−1)

2
< m

∑
e∈E |Ve |2

m
= mµ

Claim 5.1.9= O((n +x)µ)

pairs of lists, with each list having O(ρ2
r ) elements. Taking into consideration that a comparison

of two elements (SRLG candidates) can be done in O(ρr ), we obtain a complexity of O((n +x)µρ5
r ),

confirming the claim for the total complexity. The lower bound is provided by Corollary 5.1.10.

Table 5.2 summarizes the steps of our proposed algorithm. Note that parameters ρr , x, and µ are

theoretically upper bounded by m, m(m−1)
2 , and (n +x)2, respectively, meaning that our algorithm

for determining Mr is clearly polynomial in n or m. Furthermore, based on Thm. 5.1.18 using that

x is O(n) in practice, and that ρr is more or less proportional to 2r
diam m ([C10])) in the interval

(0,diam/2], where diam is the geometric diameter of the network, we get a complexity bound of

O
(
n(logn +µ( r

diam )5)
)

for determining Mr . Also, as in practice x = O(n), and for r much smaller

than network diameter, ρr =O(1), and µ= log(n) we can state that:

Corollary 5.1.19. If ρr = O(1), µ = O(logn), and x is O(n), Mr can be calculated in O(n logn)

optimal time. These assumptions hold in practice when r is much smaller than the geographical

network diameter.

Proof. Combining Thm. 5.1.18 and Cor. 5.1.10 yields the proof.
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In the phrasing of Thesis 1.1, instead of µ, I use a more intuitive parameter, namely, φr :

Definition 5.1.9. Parameter φr denotes the maximum number of nodes in the 3r -neighborhood of a

link of the input graph G .

Corollary 5.1.20. M p
r can be determined in O

(
(|V |+x)

(
log |V |+φ2

rρ
5
r

))
.

Proof. Combining Thm. 5.1.18 and the definition of parameters µ and φr completes the proof.

5.1.4 Auxiliary Proofs of Section 5.1

5.1.4.1 Proof of Thm. 5.1.6

We need the following simple lemma.

Lemma 5.1.21. Let C1,C2,C3 be convex subsets of the plane R2 such that t =C1 ∩C2 ∩C3 is a line

segment with more than 1 point. Then there exist two indices i , j such that Ci ∩C j is collinear.

Proof. Let R,S be two different points of t . If the statement is false, then the pairwise intersections

Ci ∩C j all contain points not on the line of t . Without loss of generality we may assume that C1 ∩C2

and C1 ∩C3 contain points P2 and P3 from the same open halfplane defined by the line of t . If

P3 = P2 then we obtain P2 ∈ t which is a contradiction. We infer that P3,P2,R,S are four different

points. Radon’s lemma (Theorem 1.3.1 in [93]) can be applied to them. The Radon point X will be

on one hand on the open halfplane defined by the line of t and containing the Pi . On the other hand

X ∈C1 ∩C2 ∩C3. This gives a contradiction.

Proof of Thm. 5.1.6. Let r be the radius of cH . We have then

∩e∈H N (e,r ) 6= ;, (5.3)

but ∩e∈H N (e,r ′) =; for any r ′ < r .

The statement of the theorem is immediate if H has at most 2 sets. Suppose now that |H | ≥ 3. If

for every 3-element subset H ′ of H there exists a radius rH ′ < r such that ∩e∈H ′N (e,rH ′) 6= ;, then

with r∗ = maxrH ′ we have ∩e∈H N (e,r∗) 6= ; by the planar Helly’s theorem (Theorem 1.3.2 in [93])

applied to the convex sets N (e,r∗), hence H can be hit by a disk of radius r∗, which is impossible.

We obtain that there exists a 3 element subset H ′ of H such that the radius of cH ′ is r .

Note also, that the intersection on the left of (5.3) is necessarily a (possibly degenerate) nonempty

closed bounded line segment s. This follows from the fact that the intersection is a nonempty closed

bounded convex subset without an interior point. Indeed an interior point would allow a hitting

radius for H , which is less than r . Note also that the lexicographically smallest (end)point P of s is

the center of cH .
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Figure 5.8: Illustration for proof of Lemma 5.1.22

We observe next that for H ′ above the hitting radius r is also minimal, hence the intersection

∩e∈H ′N (e,r ) = s′ is also a line segment which contains s. If the smallest point of s′ is P then we are

done, as P will be the center of cH ′ . We may therefore suppose that s′ contains a point Q smaller

than P .

Suppose that H ′ = {e1,e2,e3}. We verify that there exist i , j , 1 ≤ i < j ≤ 3, such that the intersec-

tion N (ei ,r )∩N (e j ,r ) is a subset of the line of s′. Indeed, this follows from Lemma 5.1.21 applied

to the neighborhoods N (ei ,r ) and t = s′.

We conclude by noting that there exists an edge f ∈ H such that N ( f ,r ) does not have a point

on the line of s′ which is smaller than P (otherwise s itself had such a point). These imply that the

lexicographically smallest point of N (ei ,r )∩N (e j ,r )∩N ( f ,r ) is P and the proof is complete.

5.1.4.2 Proof of Thm. 5.1.15

We need the following three simple lemmas.

Lemma 5.1.22. Let A = (x, y) be a point in the plane of distance at most 3 from the origin. Then, any

line going through A intersects either the x- or the y-axis not farther than 3
p

2 from the origin.

Proof. Without loss of generality, we can assume A is in the first quadrant of the plane. Let B =
(0,3

p
2) and C = (3

p
2,0), respectively. Then line of BC is tangent to the circle centered at the origin

O and having radius 3 (at the point
(

3p
2

, 3p
2

)
, see Fig. 5.8). Now any line ` passing through A must

intersect a side of the triangle OBC , hence it intersects at least two sides (Pasch’s axiom), therefore `

intersects either OB or OC .

Definition 5.1.10. Let ρ′ be the maximum number of edges of E ′ intersecting a disk with radius 3r .

Lemma 5.1.23. ρ′ is O(ρr ).

Proof. For any point p, the number of edges of G ′ hit by the disk with radius r and center point p is

less or equal to the number of edges of G hit by the disk with radius (1+3
p

2)r and center point p,
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which is O(ρr ) since a disk with radius (1+3
p

2)r clearly can be covered by a constant number of

disks with radius r .

Lemma 5.1.24. There are O((n+x)ρ2
r ) intersecting link pairs in link set E ′ resulting from elongating

each edge of E by 3
p

2r in both directions.

Proof. Let {e, f } ∈ E be two links such that only their elongated versions {e ′, f ′} ∈ E ′ are crossing in

a point z. We claim that this z is on the elongated part of at least one of e ′ or f ′, i.e., considering

the edges as geometric intervals, z ∈ e ′ \ e or z ∈ f ′ \ f . Also, for each e ′ ∈ E ′, there are O(ρr ) edges

of E ′ that cross e ′ \ e, since, for an edge f ′ ∈ E ′ to cross e ′ \ e, d(e ′ \ e, f ) has to be ≤ 3
p

2r , and the

3
p

2r neighborhood of e ′ \ e (where e ′ \ e stands of two 3
p

2r long intervals) can be covered with a

constant number of disks with radius r . Based on these, and using that |E ′| is O(n +x) (Claim 5.1.9),

we can deduce that there are O((n + x)ρr ) newly appearing crossing link pairs in E ′ in addition to

those that are crossing in E in a point of V ∪X . Regarding to the number of these ‘old crossings’, in

each point of V ∪X , there are at most ρr links of E crossing (and those links of E ′ that cross in V ∪X ,

were already counted), meaning O((n +x)ρ2
r ) crossing link pairs. This means a total of O((n +x)ρ2

r )

crossing link pairs in E ′.

Proof of Thm. 5.1.15. First, let us concentrate on determining sets Ew for w ∈V ∪X . Let G ′(V ,E ′)

be the graph resulting from elongating the edges of E by 3
p

2r in both directions. For reporting link

intersections in some slightly modified versions of G ′, we shall use the Chazelle algorithm [88] that,

out of m links, reports all the k intersecting pairs in O(m logm +k) (Prop. 4.3.1).

The most important observation is that, based on Lemma 5.1.22, if an edge e ∈ E is also

part of Ew for a w = (x, y) ∈ V ∪ X , then the corresponding edge e3r in E ′ (that was extended in

length by 3
p

2r in both directions) intersects either I |w := [(x − 3
p

2r, y), (x + 3
p

2r, y)] or I−w :=
[(x, y −3

p
2r ), (x, y +3

p
2r )]. Here we use also the simple fact that the diameter of a square (the

length of the longest segment within the square) of side length 3r is 3
p

2r .

Let G ′| be the graph resulting by adding intervals I |w to G ′ for every w ∈V ∪X as edges of the

graph. Let E ′|
w denote the set of edges (of E ′) intersecting I |w . G ′−

w and E ′−
w can be defined similarly.

It is easy to see that E ′|
w ∪E ′−

w contains all the edges, which in the original graph G are not farther

from w than 3r , however, it may contain some outliers. Thus in order to get Ew , one can check the

distance of the original (i.e., not extended) edges from w , which correspond to edges in E ′|
w ∪E ′−

w

from w .

It is easy to see that G ′| has still O(n +x) edges. We count the number of pairwise intersections

in G ′| as follows. By Lemma 5.1.24, in G ′, there are O(n + x)ρ2
r link pairs crossing. In addition to

these, each of the (n + x) new edges (intervals) in G ′| intersect O(ρr ) other edges (since the 3
p

2r

neighborhood of each of these 6
p

2r long edges can be covered with a constant number of disks of

radius r , and in case of an e ∈ E elongated as e ′ ∈ E ′, e ′ crossing a | ∈ E ′| means d(e, |) ≤ 3
p

2r ). This
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sums up to O((n +x)ρ2 + (n +x)ρr ), that is O((n +x)ρ2
r ). Thus, by Prop. 4.3.1, the intersections of

G ′| can be determined in O((n + x) logn + (n + x)ρ2
r ), that is O((n + x)(logn +ρ2

r )) time, alongside

with the sets E ′|
w for w ∈V ∪X . The same reasoning applies to the sets E ′−

w .

For any given w ∈ V ∪ X , E ′|
w ∪E ′−

w contains ≤ 2ρ′ edges, this way based on Lemma 5.1.23,

Ew can be determined in O(ρr logρr ) time in such a way that the edges are given in Ew in sorted

order with respect to the lexicographic ordering of their endpoints. This means a total complexity of

O((n +x)ρr logρr ) for this second phase.

The inverse mapping, i.e., sets of nodes Ve for e ∈ E , can be done in the course (or after) the

preceding algorithm. Let Ve be initialized as empty set for all edges e, then, when an Ew is confirmed,

w is added to sets Ve for all e ∈ Ew . Clearly, this also can be done in the proposed complexity.

5.2 Spherical Regional Link Failures of Disasters with Radius r

5.2.1 Model and Assumptions

However, in the Section, we are more interested in the spherical representations, throughout the

Section, we will consider two types of embeddings of the network: embedding in Euclidean planar

and spherical geometry. Thus, the Section will provide, in fact, a heuristic algorithm for determining

both the planar and spherical maximal link failures caused by disaster zones having a radius of r .

The network is modeled as an undirected connected geometric graph G = (V ,E) with n = |V | ≥ 3

nodes and m = |E | edges stored in a lexicographically sorted list. The nodes of the graph are

embedded as points in the Euclidean plane or sphere, and their precise coordinates are considered to

be given in 2D and 3D Cartesian coordinate system in the planar and spherical case, respectively.

Note that if coordinates are given in polar system (in the case of spherical geometry), one can easily

transform them to Cartesian at the very beginning.

When speaking of planar geometry, for each edge e there is a polygonal chain (or simply polyline)

ep in the plane in which the edge lies (see Fig 5.9). Parameter γ will be used to indicate the maximum

number of line segments a polyline ep can have. Naturally, in spherical case, the polyline of an edge

refers to a series of geodesics. Note that this model covers special cases when edges are considered

as line segments (geodesics).

For simplicity, I assume that nodes of V and the corner points of the containing polygons defining

the possible route of the edges are all situated in general positions of the plane, i.e., there are no three

such points on the same line and no four points on the same circle, and in the spherical case there are

no antipodal nodes or breakpoints and no great circles of geodesics of polylines cross the North pole.

In this study, my goal is to generate a set of SRLGs, where each SRLG is a set of edges. Note that

from the viewpoint of connectivity, listing failed nodes besides listing failed edges has no additional

information.
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Figure 5.9: Input graph G(V ,E) with polylines, n = 17, γ= 4

5.2.1.1 Model for Circular Disk Shaped Disasters

In most of this study, it will be assumed that disasters are either having a shape of a circular disk or

they are overestimated by a circular disk.

I will often refer to circular disks simply as disks, and I assume that all network elements that

intersect the interior of a circle c are failed, and all other network elements are untouched.

Definition 5.2.1. A circular disk disaster c hits an edge e if the polyline of the edge ep intersects disk

c. Similarly node v is hit by disk c if it is in the interior of c. Let Ec (and Vc ) denote the set of edges

(and nodes, resp.) hit by a disk c.

I emphasize that in this model, when I say e is hit by c, it does not necessarily mean that e is

destroyed indeed by c, instead, it means that there is a positive chance for e being in the destroyed

area. In other words, this modeling technique does not assume that the failed region has a shape of a

disk but overestimates the size of the failed region in order to have a tractable problem space.

Definition 5.2.2. Let C p and C s denote the set of all disks in the plane and the set of all disks on

the sphere, respectively. For both geometry types g ∈ {p, s}, let C
g
r denote the set of disks part of C g

having radius at most r .

Based on the above definition, I define the set of failure states that a network may face after a

disaster with a maximal radius.

Definition 5.2.3. For all geometry types g ∈ {p, s}, let set F (C g
r ) denote the set of edges which can

be hit by a disk c ∈C
g
r , and let M g

t = M(C g
r ) denote the set of maximal edge sets in F (C g

r ).

5.2.2 Heuristic Algorithm for Enumerating Maximal Circular Disk Failures

In this Section, we present a heuristic approach suitable for computing both M p
r and M s

r .

Definition 5.2.4. For a point P (in the plane or on the sphere) and node v ∈V , let the node-distance

couple be [v,d(v,P )], where d(v,P ) is the distance of v and P . Let e(P ) be the list consisting of the
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Table 5.3: Table of symbols for Sec. 5.2

Notation Meaning
General

G(V ,E) the network modeled as an undirected connected geometric graph, E stored as an ordered list
n, m number of nodes |V | ≥ 3 and edges |E |, respectively

ep
for edge e, in case of planar geometry, there is a polygonal chain (or simply polyline) ep in the plane in
which the edge lies (see Fig 5.9); on the sphere ep is a similar region enclosed by a closed sequence of
geodesics

Ec and Vc
set of edges and nodes, resp. hit by a disk c, where a circular disk disaster c hits an edge e if the polyline
of the edge ep intersects disk c. Similarly node v is hit by disk c if it is in the interior of c.

C p and C s set of all disks in the plane and the set of all disks on the sphere, respectively; for both geometry types
g ∈ {p, s}, let C

g
r denote the set of disks part of C g having radius at most r

C
g
r for both geometry types, denotes the set of disks part of C g having radius at most r

F (C
g
r ) set of edges which can be hit by a disk c ∈C

g
r

M
g
t set of maximal edge sets in F (C

g
r )

[v,d(v,P )]
node-distance couple for a point P (in the plane or on the sphere) and node v ∈V , where d(v,P ) is the
distance of v and P

e(P )
list consisting of the link-distance pairs of all links e ∈ E , sorted according to the lexicographical order of
the links

e(P )hit sorted list of links not further from P than r
P set of points P for which we want to construct the link-distance lists e(P ).

dP
maximal distance of any geometric location from the (closed) convex hull of the geometric embedding of
graph G to the closest point of set P

w taken two set of sets E1 and E2, we denote the relationship of the sets with E1 w E2 if and only if for all
e2 ∈ E2 there exists an e1 ∈ E1, such that e1 ⊇ e2

H
g
r output of Algorithm 1 (a failure list approximating M

g
r )

Parameter
γ maximum number of line segments (geodesics) a polyline ep can have
λ maximum cardinality of the list of candidate maximal failures detected so far in Alg. 1

link-distance pairs of all links e ∈ E , sorted according to the lexicographical order of the links. Let

e(P )hit be the sorted list of links not further from P than r .

Proposition 5.2.1. For a given point P , both e(P ) and e(P )hit can be computed in O((n +x)γ). ä

Clearly, both node-distance lists and edge-distance lists can be determined quickly. Informally

speaking, the plan is to determine these lists for a point set that is ‘dense enough’ to be able to

determine the maximal SRLG lists based on these node-distance and edge-distance lists.

Definition 5.2.5. Let P denote the set of points P for which we want to construct the link-distance

lists e(P ).

Let us stick to planar geometry for a moment. Intuitively, we can calculate M p
r by including the

grid points of a sufficiently fine grid (let’s say containing 1 km × 1 km squares) in P . On the sphere,

we should choose a similar nice covering7.

7In other words, P is an ε-net [94] of the network area, for some ε> 0, and the range space of the network area paired
with the set of closed circular disks. Here, to design an approximation algorithm, we exploit that the network area has a
finite Vapnik–Chervonenkis (VC) dimension [95] both in the plane and on the sphere.
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Definition 5.2.6. Let dP be the maximal distance of any geometric location from the (closed)

convex hull of the geometric embedding of graph G to the closest point of set P , i.e. dP :=
maxt∈conv(G) minp∈P dist(p, t ).

Definition 5.2.7. Taken two set of sets E1 and E2, we denote the relationship of the sets with E1 w E2

if and only if for all e2 ∈ E2 there exists an e1 ∈ E1, such that e1 ⊇ e2.

Algorithm 1 is an example heuristic algorithm for determining M g
r . We will refer to the output of

the algorithm as H g
r . Starting from Thm. 5.2.2, we use an additional parameter λ:

Definition 5.2.8. Let λ be the maximum cardinality of the list of candidate maximal failures detected

so far in Alg. 1.

The intuition behind defining λ is, that in practice, |M g
r | is O(n) (as presented in planar case in

[T1]), thus in Alg. 2 typically there has to be done only O(n) comparisons.

Algorithm 1: Heuristic algorithm for deter-
mining the maximal r -range SRLG lists

Input: G(V ,E), r , P , geometry type g ,
coordinates of nodes and polylines of edges

Output: H g
r

begin
1 for P ∈P do
2 determine e(P )hit
3 if e(P )hit 6= ; then
4 refresh M g

r with e(P )hit
// according to Alg. 2

5 return H g
r

Algorithm 2: Refreshing
SRLG list M with failure f

Input: SRLG list M , failure f
Output: M refreshed with f
begin

1 maximal:=True
2 for fM ∈ M do
3 if f ⊆ fM then
4 maximal:=False
5 if maximal then
6 M := M ∪ { f }
7 for fM ∈ M do
8 if f ⊃ fM then
9 M := M \ { fM }

10 return M

Theorem 5.2.2. Alg. 1 determines H g
r in O(|P |[(n +x)γ+λρr ]). Furthermore, M g

r w H g
r w M g

r−dP
.

Proof. Regarding to the complexity, for an element P of P we have to construct e(P )hit, which can

be done in O((n + x)γ), then refresh the list of suspected maximal failures with e(P )hit in O(λρr ),

since the list contains at most λ ordered lists consisting of at most ρr edges.

On the other hand, M g
r w H g

r is immediate, since the algorithm investigates only a subset of disks

with radius r , while for every point t in the r -neighborhood of conv(G), there exists a p ∈P such

that disk c(t ,r −dP ) ⊆ c(p,r ), yielding H g
r w M g

r−dP
, from where the proof follows.

Using the fact that the shape of the disasters is a closed disk we get the following corollary:

Corollary 5.2.3. lim
dP →0

H g
r = M g

r , for any fixed network.



40 5.3. SRLG LISTS FOR SPHERICAL AND PLANAR NETWORK REPRESENTATION

Corollary 5.2.4 (of Thm. 5.2.2). M g
r w H g

r w M g
r−dP

. Furthermore, if both of x and λ is O(n), the

resulting list H g
r of running Alg. 1 is determined by the algorithm in O(|P |n(γ+ρr )). If in addition,

γ is O(1), and ρr is O(r /diam), H g
r is determined by Alg. 1 in O(|P |n r

diam ).

Based on Thm. 5.2.2, if one wants to protect disasters caused by disks with radius r (i.e., over-

approximate the failures caused by them), it is only needed to run Alg. 1 initializing the radius as

r +dP . This way, adding the fact that λ≤ |P |, we have:

Corollary 5.2.5 (of Thm. 5.2.2). M g
r+dP

w M g
r w H g

r . Trivially, if P is such that H g
r+dP

= H g
r , then

Alg. 1 calculates M g
r in O(|P |[(n +x)γ+λρr ]), that is O(|P |[(n +x)γ+|P |ρr ]).

This gives us a heuristic way to calculate M s
r : if, for P , H g

r+dP
= H g

r , Alg. 1 calculates M g
r in

polynomial time; else, we provide a denser P , and try again.

5.3 Are SRLG lists for Spherical and Planar Network Representation
the Same?

In many works, regional failures are computed by transforming the geographical coordinates of

an existing network into a plane, which introduces distortion. Depending both on the geographical

area of the network and on the transforming procedure, this distortion can vary from negligible to

significant. For example, the backbone network of a small-to-medium size country is not suffering

a significant distortion when compared with the uncertainty of the available geographical data, but

when turning to networks covering a large country, a continent, or even multiple continents, there

is no projection which can hide the spherical-like geometry of the Earth’s surface (see Fig. 5.10

taken from [96]). E.g., while the territory of continental US can be mapped onto a plane with 4%

distortion [96], if we want to investigate bigger networks, clearly there is no projection that can hide

the spherical-like geometry of the Earth.

There are reasons why one should analyze the global communication network as a whole:

Electromagnetic storms induced by the Sun’s Coronal Mass Ejections (CMEs) could cause severe

simultaneous failures of electric and communication networks all over the Earth.

An important question is that, in practice, under which geographic extension of the network can

one say that, in the viewpoint of SRLG enumeration, it is practically indifferent whether we consider

a spherical or a planar representation of the network8. In other words, focusing now on lists Mr ,

the question is that under which size of the physical network will M p
r and M s

r (maximal link sets

which can be hit by a single circular disk with radius r , in the plane and on the sphere, resp.) be

precisely the same. The answer depends not only on the physical size but also on the characteristics

8Note that in case of disasters hitting a big fraction of the Earth’s surface (similarly to the Carrington-event [97]), planar
and spherical SRLG lists of fixed disaster shapes differ greatly [J5].
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(a) Transverse Mercator Projection (b) Lambert Conformal Conic Projection

(c) Oblique Stereographic Projection

Figure 5.10: Distortion patterns on common conformal map projections. Projections are shown with a
reduction in scale along the central meridian or at the center of projection, respectively. Each of the projections
has > 3% scale error over the US. Picture taken from [96].

of the network itself: it can represent a dense metropolitan backbone network with multiple nodes

close to each other, but it can also be geographically very sparse. Let τ be the distance of the closest

non-adjacent and non-intersecting link of the network, and let D be the diameter of the smallest

hitting disk of the network G . We can see that there can be any difference between M s
r and M p

r only

if 2r ∈ [τ,D] for either the spherical or the planar representation. Practical radii of circular disasters

range from a couple of kilometers to a couple of hundreds of kilometers, which means they might be

so small that there cannot be any difference between the SRLG sets (i.e., 2r < τ means M s
r = M p

r ). If

τ is smaller than the disaster diameter, then it is easy to find settings, where M s
r 6= M p

r .

To study the phenomenon more in details, I used two similarity metrics of the SRLG lists: 1) the

ratio of SRLGs, which are present in only one of M p
r and M s

r , i.e., M (r ) := |M p
r 4M s

r |/(|M p
r |+|M s

r |) ∈
[0,1], and 2) the average and maximal Hamming distance of an SRLG from M s

r to its closest

counterpart in M p
r . I depicted the values of these metrics in Figures 5.11a-5.11c, respectively. As

a base of evaluation, I took an Italian topology (Fig. 5.11d, with a diameter D = 1180km), and its

magnified versions such that the resulting networks have diameters D = 100,200, . . . ,1500 km on the

sphere. It can be seen that, in most cases, all of these metric values are 0 (i.e., M p
r = M s

r ), but one
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Figure 5.11: Simulation results for comparing SRLG lists resulting from the planar and spherical
representation of networks

can witness high spikes of big ratios of different SRLGs (Fig, 5.11a), or spherical SRLGs which

have a symmetric difference of 3 links with their closest planar counterpart. This latter phenomenon

happens when there are some nodes u, v ∈V such that d(u, v) ≤ 2r exactly in one of the spherical

and planar representations.

The small and inconsistent ratio of different SRLGs in the two studied SRLG lists is due to the

fact that though the Earth’s surface is curved, this curvature is not practically significant in case of a

backbone topology of a small to medium-size country. For example, the maximum distance distortion

of the Orthographic projection over Hungary and Italy (having diameters < 530km and < 1250km) is

< 0.1% and < 0.5%, respectively (Fig. 5.11e). Even the contiguous US can be mapped with < 4% of

distance distortion (Fig. 5.10c [96]).

Since the calculation time of M s
r was approximately twice of the M p

r in my experience, I

concluded as follows. M s
r and M p

r can differ, thus it makes sense to compute the SRLG lists with

the more precise spherical representation. However, in many of the cases, the distortion yielding

from representing the network in the plane causes less inaccuracy than the lack of knowledge on

the disaster characteristics, e.g., there can be as much as 10% inaccuracy in determining the disaster

radius. In those cases, the planar representation can serve the purpose of SRLG listing well enough.
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5.4 Thesis Summary

Thesis 1. [C7, C10, J4, J5] I proposed polynomial algorithms for enumerating lists M p
r and M s

r of

maximal link sets (SRLGs) which can be hit by a disaster overestimated by a shape of a circular disk

with an arbitrary given radius r , in case of embedding the network in the Euclidean plane and on

the sphere, respectively. I gave theoretical upper bounds on the cardinality of both M p
r and M s

r . I

proved that the proposed algorithm for planar embeddings has a computational complexity which is

tight in the number of network nodes. Finally, I compared the similarity of M p
r and M s

r in practice.

Thesis 1.1. [C10, J4] I proposed an algorithm, which, in case of representing a connected network

topology G(V ,E) in the Euclidean plane with links considered as line segments, computes the list M p
r

of maximal link sets hit by a circular disk with radius r in O
(
(|V |+x)

(
log |V |+φ2

rρ
5
r

))
, where x is

the number of link crossings, ρr is the maximum number of links which are hit by a circular disk with

radius r , ρr is the maximum number of links which are hit by a circular disk with radius r , and finally,

φr is the maximum number of nodes in the 3r -neighborhood of a link. I proved that the complexity

of the proposed algorithm is tight in |V |. I proved that the cardinality of M p
r is O

(
(|V |+x)ρr

)
, and

that this bound is tight. I proved that
∣∣⋃

0<r ′<r M p
r ′

∣∣ is O((|V |+x)ρ2
r ).

Thesis 1.2. [C7, J5] I proposed a heuristic algorithm, which, considering a connected network

topology G(V ,E) on a sphere with links considered as chains of geodesics, and considering a related

sufficiently dense set P of disaster center points, computes list M s
r of maximal link sets hit by a

circular disk with radius r in O(|P |[(|V |+x)γ+|P |ρr ]), where x is the number of link crossings, γ

is the maximal number of geodesics a link stands of, and ρr is the maximum number of links which

are hit by a circular disk with radius r . Through simulations, I showed that M s
r and M p

r can differ in

practice, thus it is more precise to compute the SRLG lists with the spherical representation. However,

in many of the cases, the distortion yielding from representing the network in the plane causes less

inaccuracy than the lack of knowledge on the disaster characteristics. I concluded that, in those

cases, the planar representation can serve the purpose of vulnerable region detection well enough.



Chapter 6

Maximal SRLGs Caused by Circular
Disks Hitting k Nodes

6.1 The Limited Geometric Information Failure Model - Informally

In resilient routing, the current best practice is to ensure that the primary and backup paths assigned

to a connection are node disjoint. Compared to edge-disjointness, in this way operators ensure that

the distance between the nodes of the primary and backup paths (except at the terminal nodes) are at

least 1-hop-distance from each other. The intuitive reasoning is that a link in a backbone network is

typically a few hundred kilometers long, while natural disasters are never larger than a few hundred

kilometers. The root of the outages is usually because:

I) close nodes when two nodes are placed close to each other; for example, in highly populated

areas. II) parallel links when two links are placed close to each other because of some geographic

reasons; for example, they traverse the same bridge over a large river or cross a mountain range

through the same valley.

We have the following design goals in defining the limited geometric information failure model.

• Do not underestimate the set of links involved in a possible regional failure. We believe the

operator’s damage in case of an unprotected regional failure is much greater than the extra cost

of protecting networks against larger SRLGs.

• Relative link distances are given, the exact route of the cables are unknown, and the nodes are

embedded in a schematic map.

• Provide a fast and space efficient way of calculating the set of SRLGs.

According to the first design goal, we deal with circular disk failures and define the size of the

regional failure through the number of nodes it covers. Although the regional failures can have any

44
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location, size, and shape, without any background information on the regional failures, it is a common

practice to overestimate the size of the regional failure by ignoring its shape and rather focus on

its radius only (see [98] and Chapter 5)1. According to our second design goal, the scaling of the

topology map is not known, thus we cannot define a fixed maximum radius for the regional failures,

but instead, we define a limit on the number of nodes interior to the circular disk.

Now we can define the limited geometric information failure model, which is based on the

following assumptions:

• The network is a geometric graph G(V ,E) embedded in a 2D plane.

• The exact route of the conduits of the network links are not known, but contained by a

polygonal region.

• The shape of the disaster is a circular disk with arbitrary radius and center position.

• We focus on regional link k-node failures, failures that hit k nodes for k ∈ {0, |V |−2}.

The detailed model description can be found in Sec. 6.2. We argue this failure model can

reasonably represent the possible regional failures, without actually requiring to know the scaling of

the topology map.

Based on our output, operators can generate SRLG-disjoint primary and backup paths to protect

the connection against natural disasters2. The distance between the primary and backup paths is a

straightforward metric to compare the failure models. Based on the logical topology, the conventional

approach to defining the distance is the hop-distance between the nodes traversed by the primary

path and the nodes traversed by the backup path, except the terminal nodes. Based on this definition,

we can list the failure models in increasing order of their strength (see Subsec. 6.6.3 for the proof):

• Single link failures (≥ 0-hop-distance),

• Single node failures (≥ 1-hop-distance),

• Single regional link 0-node failures,

• Single regional link 1-node failures,

• Single regional link 2-node failures, etc.

Note that, in our experiments with practical network topologies protecting against single regional

link 0-node failures resulted in at least 2-hop-distance between the nodes of the primary and backup

paths, except the terminal nodes. We believe the proposed approach well captures the possible

regional network failures based on the little geographic information available at network devices.

1Of course, extreme overestimation of the failed link set should be avoided.
2The routing algorithms modify the SRLGs, whose failure isolates the source and destination nodes: those SRLGs are

replaced with a smaller non-isolating SRLG according to the failure model.
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6.2 Model and Assumptions

The network is modeled as an undirected connected geometric graph G = (V ,E) with n = |V | ≥ 3

nodes and m = |E | edges3. The nodes of the graph are embedded as points in the Euclidean plane,

and their exact coordinates are considered to be known. In contrast to this, precise positions of edges

are not known, instead we assume that for each edge e there is a containing polygon (or simply

polygon) ep in the plane in which the edge lies (see Fig. 6.2a). Parameter γ will be used to indicate

the maximum number of sides a containing polygon ep can have. Note that this model covers special

cases when edges are considered as polygonal chains or line segments (thus at first reading, for ease,

the reader may consider the edges as line segments and γ equals two).

For simplicity we assume that nodes of V and the corner points of the containing polygons

defining the possible route of the edges are all situated in general positions of the plane, i.e., there are

no three such points on the same line and no four on the same circle.4

We will often refer to circular disks simply as disks. The disk failure model will be adapted,

which overestimates the area of a disaster such that all network elements that intersect the interior of

a circle c may fail, and all other network elements are untouched. It is important to note that this

modeling technique does not assume that the failed region has a shape of a disk, but overestimates

the size of the failed region to have a tractable problem space.

Definition 6.2.1. A circular disk failure c hits an edge e if the polygon of the edge ep intersects the

interior of disk c. Similarly node v is hit by failure c if it is in the interior of c. Let Ec (and Vc ) denote

the set of edges (and nodes, resp.) hit by a disk c.

We emphasize that in this model when we say e is hit by c, it does not necessarily mean that e is

destroyed indeed by c, instead, it means that there is a positive chance for e being destroyed.

Definition 6.2.2. Let C denote the set of all circular disks in the plane, and let Ck ⊆C denote the

set of those hitting exactly k nodes from V .

Based on the above we can define the set of failure states the network may face after a disk failure

hitting exactly k nodes.

Definition 6.2.3. Let set F (Ck ) denote the set of edge sets which can be hit by a disk c ∈Ck , and let

Mk = M (Ck ) denote the set of maximal edge sets in F (Ck ).

Note that for every l ∈ {0, . . . ,k −1} and f ∈ Ml there is an f ′ ∈ Ml+1 such that f ⊆ f ′, because

any disk hitting l ≤ k nodes could be overestimated by a disk hitting k nodes.

3Graph G = (V ,E) is not necessarily planar.
4All of the results of this chapter could be extended to geometric objects in non-general position, however this would

complicate our arguments lowering the readability of the Thesis, while by an insignificant perturbation of the data one can
make sure that the geometric objects are in general position.
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Table 6.1: Table of symbols for Chp. 6

Notation Meaning
General

G(V ,E) the network modeled as an undirected connected geometric graph
n, m the number of nodes |V | ≥ 3 and edges |E |, respectively

ep the containing polygon of edge e (see Fig. 6.2a)
Vc , Ec set of nodes and edges, resp., hit by a disk c

C the set of all circular disks in the plane
Ck the set of circular disks in the plane hitting exactly k nodes

F (Ck ) the set of edge sets which can be hit by a disk c ∈Ck
Mk the set of maximal edge sets in F (Ck )
M2

k
the set of maximal failures which can be hit by a disk from Ck having 2 nodes on its boundary

M1
k the set of maximal failures which can be caused by a half-plane having a node on its boundary hitting exactly k nodes

C
u,v
k

the set of disks from Ck having nodes u, v on their boundary
C u,v the set of disks from C having nodes u, v on their boundary
Mu,v

k
the the set of failures which contain exactly the elements of Mk that can be hit by a disk c ∈C

u,v
k

Parameter
k we are interested in circular disk shaped disasters hitting k nodes
γ the maximum number of sides a containing polygon ep can have
ρk the maximum number of edges hit by a disk hitting k nodes.

Apple
Ek the set of node-pairs {u, v} ⊂V for which C

u,v
k

6= ;
Dk (V ,Ek ) the k-Delaunay graph induced by node set V and edge set Ek

c(x),
h+,
h−

For u, v ∈V , a Cartesian coordinate system is placed in the plane such that line uv be identical to the vertical
axis y , u and v have ordinates (y coordinates) 1 and −1, respectively (see Fig. 6.3). In this coordinate system,
h+ and h+ are the right and left open half plane determined by line uv , respectively, and c(x) = c(x,u, v)
denotes the unique disk c in C u,v , which has centre point (x,0), and c(+∞) := h+ and c(−∞) := h−, respectively.

I u,v
k

the set of those numbers x, for which c(x) ∈C
u,v
k

xmax the maximum of I u,v
k

, if exists, else if I u,v
k

6= ;, xmax =+∞
xmi n the minimum of I u,v

k
, if exists, else if I u,v

k
6= ;, xmi n =−∞

Ec(xmax ),
Ec(xmi n )

the edge sets hit by c(xmax ) and c(xmi n ), respectively

J for u, v ∈V , the right side of c(xmax ) cut by the vertical line uv
I for u, v ∈V , the left side of c(xmi n ) cut by the vertical line uv

x+(e) for edge e, the leftmost disk which hits ep ∩J
x−(e) for edge e, the rightmost disk which hits ep ∩I
x+(v),
x−(v)

For nodes w+ ∈ h+ and w− ∈ h−, let x+(w+) and x−(w−) denote the abcissa of the centre point of circle going
through u, v and w+ or w−, respectively.

E+ the list of edges hit by J ordered descending by the x+ values
E− the list of edges hit by I ordered descending by the x− values
V+ the list of nodes hit by J ordered descending by the x+ values
V− the list of nodes hit by I ordered descending by the x− values

V ′+
the list of nodes w in h+ ordered decreasingly by the abscissa x+(z) of their leftmost hitting circles
(going through u, v, z)

V ′−
the list of nodes z in h− ordered decreasingly by the abscissa x−(z) of their rightmost hitting disk
(going through u, v, z)

Au,v
k

For an edge {u, v} ∈ Ek , apple Au,v
k

is an ordered system Au,v
k

= (V+,V−E+,E−). For each element of each list its
appropriate x+() or x−() value is also stored.

Ak the set of apples Au,v
k

Seesaw (only in Subsec. 6.5.1)
For data structure Seesaw for determining M1

k , please check Subsec. 6.5.1.

As mentioned before, only the maximal edge sets will be listed as SRLGs. This study aims

to offer fast algorithms computing this list for various values of k, more precisely, throughout the

chapter we will assume k ∈ {0,n − 2} since if a failure hits n − 1 nodes, there is no node pair to

communicate.
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6.3 Algorithm for Enumerating Maximal Failures

In this section, a polynomial time algorithm is presented for computing Mk . The basic idea is that

determining Mk can be decomposed into several simpler tasks, as illustrated in Fig. 6.1. Informally,

after determining the so-called k-Delaunay graph (Def. 6.3.4 in Subsec. 6.3.2), data structures apple

(Subsec. 6.3.3) and seesaw (Subsec. 6.5.1) are computed, and finally Mk is determined by merging

lists M u,v
k and M w

k resulting from querying the apples and seesaws.

6.3.1 Basic Observations

Our first observation is the following.

Claim 6.3.1. For every f ∈ Mk (k ≤ n−2) there exists a disk c ∈Ck such that f is hit by c, and c has

at least one node of V on its boundary.

Proof. Let f be hit by a disk c0 ∈Ck with centre point p. Since there are nodes of V not inside c0,

c0 can be magnified from p until its boundary reaches a node u from V . This disk c1 is also from Ck

and has at least one point on its boundary, still hitting f .

Disk c1 described in the proof can be further magnified while keeping its center point on ray

[up. Here we consider two cases: either there exists a node v ∈V , which gets on the boundary while

magnifying disk c1 ∈Ck , or the open half plane h having p inside, u on the boundary, and having

the normal vector ~up hits k nodes.

Definition 6.3.1. Let M 2
k be the set of maximal failures which can be hit by a disk from Ck nodes

having 2 nodes on its boundary. Let M 1
k be the set of maximal failures which can be caused by a

half-plane having a node on its boundary hitting exactly k nodes.

Proposition 6.3.2. Mk is the set maximal sets in M 1
k ∪M 2

k . ä

Au1,v1

k M u1,v1

k

Ek
...

... M 2
k

A
u|Ek |,v|Ek |
k M

u|Ek |,v|Ek |
k

G(V ,E),k Mk
Sw1

k M w1

k
...

... M 1
k

Swn

k M wn

k

“apples”

“seesaws”

k-Delaunay edges

Figure 6.1: Visual sketch of Algorithm 5 for determining Mk
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In the followings, we will present a way of computing M 2
k in details using a data structure called

apple defined in the studies this Thesis is based on. Determining M 1
k can be done using similar ideas,

thus we present it only briefly in Subsec. 6.5.1-6.5.2, where the same data structure called seesaw is

defined.

6.3.2 Connection with the k-Delaunay Graphs

Definition 6.3.2. For a node pair u, v ∈V let C u,v
k denote the set of disks from Ck having nodes u, v

on their boundary. Let C u,v denote the set of disks from C having nodes u, v on their boundary. Let

M u,v
k = M

(
C u,v

k

)
be the the set of failures which contain exactly the elements of Mk that can be hit

by a disk c ∈C u,v
k .

Discussion after Claim 6.3.1 suggests the following simple method to compute M 2
k . First, for

every node pair {u, v} ⊂V , we compute a set of failures M u,v
k .

Definition 6.3.3. Let Ek denote the set of node-pairs {u, v} ⊂V for which C u,v
k 6= ;.

Fig. 6.2 shows an example of the input topology G and the corresponding set of node-pairs Ek

for k = 0,1,2.

We can observe that by definition, M 2
k can be computed by merging these sets M u,v

k , formally

M 2
k is the set of maximal elements from the union of sets M u,v

k .

Our second observation is that Ek is the edge set of the so-called k-Delaunay graph [99].

Definition 6.3.4. Let Dk = (V ,Ek ) denote the k-Delaunay graph induced by node set V and edge set

Ek .

In other words, a node pair {u, v} ⊆ V is a k-Delaunay edge (i.e., {u, v} ∈ Ek) if there exists a

circle through u and v that has at most k points of the node set V inside. The k-Delaunay graph

Dk is a so-called geometric proximity graph. There is continuous research on a wide variety of

geometric proximity graphs, where two vertices are connected by an edge if and only if the vertices
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q

po

n

m
l

k

j

i
h

g

f

e
d

c
b

a

(b) Graph D0(V ,E0),
|E0| = 40

q

po

n

m
l

k

j

i
h

g

f

e
d

c
b

a

(c) Graph D1(V ,E1),
|E1| = 66

q

po

n

m
l

k

j

i
h

g

f

e
d

c
b

a
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Figure 6.2: Input topology and k-Delaunay graphs Dk for k = 0,1,2.
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satisfy particular geometric requirements. For example, in [80] the construction time of the k-Gabriel

graph is studied, which is known to be a subgraph of Dk . In that paper, the k-Delaunay graph is

determined as an intermediate step from the k-Voronoi diagram while determining the k-Gabriel

graph in polynomial time. From a theorem in [81] an upper bound on |Ek | can be derived. These

statements are the following:

Theorem 6.3.3 (Thm. 2.4 of [80]). Graph k-Delaunay Dk = (V ,Ek ) can be constructed in time

complexity O
((

k2 +1
)

n logn
)
.

Theorem 6.3.4 (Thm. 2 of [81]). |Ek | ≤ 3(k +1)n −3(k +1)(k +2).

These theorems give that for small values of k graph Dk is sparse (in other words, C u,v
k =; for

most node pairs u, v), and it can be computed fast.

6.3.3 Data Structure Apple

Let node pair {u, v} ∈ Ek be given. Let us place a Cartesian coordinate system in the plane such

that line uv be identical to the vertical axis y , u and v have ordinates (y coordinates) 1 and −1,

respectively (see Fig. 6.3). Obviously, this way the centre point of any disk c ∈C u,v
k has ordinate 0.

Definition 6.3.5. For a given node pair {u, v}, the previously described coordinate system and real

number x, let c (x) denote the unique disk c in C u,v , which has centre point (x,0).

Trivially, c () is a bijective function between R and C u,v .

Let I u,v
k denote the set of those numbers x, for which c(x) ∈C u,v

k . If C u,v
k is empty, then trivially

I u,v
k is empty too. In the case when C u,v

k is not empty, we can observe that I u,v
k is the union of closed

intervals.

u

v

w−

c(x−)
w+

c(x+)

n1

n2

n3 n4

e1
e2

e3
e4

xmax
xmi n

Figure 6.3: Illustration of an apple with k = 2. Apple Au,v
k consists of ordered lists of nodes V+ and V− and

ordered lists of edges E+ and E−, where V+ = {n4,n3}, V− = {n2,n1}, E+ = {e4,e3,e2} and E− = {e3,e2,e1}.
Given G = (V ,E) and {u, v} ⊆ V , Au,v

k can be determined in O
(
nρ0γ+k logk +ρk logρk

)
(proof of Lemma

6.4.4). By querying Au,v
k , M u,v

k can be computed in O
(
ρ3

k

)
(proof of Lemma 6.4.6).
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If the number of nodes in both half planes determined by line uv is not equal to k, then there

exists a rightmost and a leftmost element of C u,v
k , i.e. there is a maximum xmax and minimum xmi n

real number in I u,v
k , that is xmax = max I u,v

k , and xmi n = min I u,v
k . Disks c (xmax ) and c (xmi n) have

a third node w+ and w− on their boundary, respectively. If there are exactly k nodes on the right side

of uv , then let h+ be the right open half-plane determined by line uv , and let xmax be sufficiently

large to Ec(xmax ) to contain all the edges having polygon having a point with positive abscissa. For

simplicity, sometimes xmax =+∞ and c (xmax ) = h+ is used. The same applies to the left side of uv .

Let Ec(xmax ) and Ec(xmi n ) denote the edge sets hit by c (xmax ) and c (xmi n), respectively. To

compute M u,v
k we use the following observation.

Claim 6.3.5. For all f ∈ F (C u,v
k ), f ⊆ Ec(xmax ) ∪Ec(xmi n ).

Proof. It is easy to see that for every disk c ∈C u,v
k , c ⊆ c (xmax )∪ c (xmi n).

According to Claim 6.3.5, a first step towards computing M u,v
k is to determine the edge sets

hit by c (xmax ) and c (xmi n). Trivially, this can be done in O
(
mγ

)
. The remaining question is how

to calculate M u,v
k from Ec(xmax ) ∪Ec(xmi n ). Some additional notations and definitions precede the

presentation of the solution.

Let J denote the right side of disk c (xmax ) cut by the vertical line uv , and let I denote the left

side of disk c (xmi n) cut by the vertical line uv . For each edge e ∈ Ec(xmax )∪Ec(xmi n ) we will compute

two disks: the leftmost disk which hits ep ∩J and the rightmost disk which hits ep ∩I, which have

centre points x+(e) and x−(e) respectively.

Let E+ denote the list of edges hit by J, and similarly, let E− be the list of edges hit by I. Thus,

we have E+ ⊆ Ec(xmax ) and E− ⊆ Ec(xmi n ), and also E+∪E− = Ec(xmax ) ∪Ec(xmi n ).

Let E+ and E− be ordered descending by the x+ and x− values of their elements, respectively.

Note that according to Claim 6.6.1 from Subsec. 6.6.1, both x+ (e) and x− (e) can be computed in

O
(
γ
)
.

For nodes w+ ∈ h+ and w− ∈ h−, let x+ (w+) and x− (w−) denote the abscissa of the centre point

of circle going through u, v and w+ or w−, respectively. We introduce V+ and V− similarly to E+
and E−, but instead of edges we store nodes hit by J ordered descending by their x+ values, while in

V− nodes in I are stored ordered also descending, but by their x− values. Trivially, for a node v ∈V

both x+ (v) and x− (v) can be determined in O (1).

Note that while every node v ∈V is part of at most one of lists V+ and V−, edges can be part of

both E+ and E−.

Now we can define the data structure apple for each edge of the k-Delaunay graph.

Definition 6.3.6. For an edge {u, v} ∈ Ek , apple Au,v
k is an ordered system Au,v

k = (V+,V−E+,E−),

where its composing lists are as described in the subsection before. For each element l of each list

we also store its appropriate x+ (l ) or x− (l ) value.
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6.3.4 Sweep Disk Algorithms

6.3.4.1 Concept

In this subsection, we introduce the paradigm of sweep disk algorithms, which is similar to the

algorithmic paradigm of sweep line (sweep surface) algorithms in computational geometry, briefly

presented in Chapter 4.

Our sweep disk algorithms will scan through disk sets C u,v . In this sense, in contrast to the

sweep surface paradigm, our disks have different diameters, and instead of keeping orientation, the

invariant will be that all disks have u and v on the boundary. Thus our disk to sweep is "elastic," in

the sense that it can change its diameter, but not its shape.

6.3.4.2 Example

Our first sweep disk algorithm is used for determining xmax and xmi n for a given Au,v
k . The algorithm

works as follows. Starting from a disk c (x) ∈ C u,v having centre point with abscissa x = +∞ (or

sufficiently large), c is swept throughout the elements of C u,v until x =−∞ (or sufficiently small).

Meanwhile the number of nodes hit is followed. Numbers xmax and xmi n can be determined at the

first and last state when c hits exactly k nodes, respectively. (Non-existence of such moments would

mean that {u, v} ∉ Ek .)

Technically this can be done as follows. Let V ′+ ⊆ V be the list of nodes w from h+ ordered

decreasingly by the abscissa x+ (z) of their leftmost hitting circles (going through u, v, z). Similarly,

let V ′− be the list of nodes z in h− ordered decreasingly by the abscissa x− (z) of their rightmost

hitting disk (going through u, v, z). Applying the fact that a node pair z+ ∈V ′+ and z− ∈V ′− can be hit

by the same disk c ∈C u,v iff x+ (z+) ≥ x− (z−), sweeping can be imitated as in Algorithm 3. Note

that for every node z in V ′+ or V ′−, x+ (z) or x− (z) is stored as part of function x+ or x−.

From the following Proposition 6.3.6, one can check that the number of hit nodes can be easily

followed with the help of an additional variable.

Proposition 6.3.6. Let c ∈C u,v . If V ′+[i −1] is not hit by c, then all the preceding elements in V ′+ are

not hit by c. If V ′+[i ] is hit by c, then all the following elements in V ′+ are hit by c.

Similarly, if V ′−[i −1] is hit by c, then all the preceding elements are hit by c. If V ′−[i ] is not hit by

c, then all the following elements are not hit by c. ä

Claim 6.3.7. For a given edge {u, v} ∈ Ek , both xmax and xmi n can be determined in O
(
n logn

)
.

Proof. According to those written in this subsection, both V ′+ and V ′− can be determined in O
(
n logn

)
the dominant step being a sorting algorithm. Sweeping can be trivially done in O (n); meanwhile,

both xmax and xmi n can be determined.
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Algorithm 3: Determining xmax and xmi n while sweeping through C u,v

Input: V and u, v ∈V
Output: xmax and xmi n
begin

1 Compute ordered lists V ′+ and V ′−
2 Merge V ′+ and V ′− into descending ordered list V ′± using values x+ for V+ and x− for V−
3 n+,n− ← 0
4 for l ∈ {1, . . . , |V ′±|} do
5 if V ′±[l ] ∈V ′+ then n++= 1

else n−+=1
6 #l := |V ′+|−n++n− // # currently hit nodes

7 if |V ′+| = k then z+ = v;; xmax =+∞
else w+ :=V ′±[min l : #l = k]; xmax := x+ (w+)

8 if |V ′−| = k then z− = v;; xmi n =−∞
else w− :=V ′±[max l : #l = k]; xmi n := x− (w−)

9 return xmax and xmi n

Proposition 6.3.8. Both V+ and V− can be determined in O
(
n logn

)
. ä

6.3.5 Determining Apples

Claim 6.3.9. For a given {u, v} ∈ Ek , apple Au,v
k can be determined in O

(
m

(
logm +γ))

.

Proof. If {u, v} ∈ Ek , then xmax , xmi n , V+ and V− can be determined in O
(
n logn

)
according to

Claim 6.3.7 and Prop. 6.3.8, thus it remains to determine E+ and E−. With this aim it is enough

to compute the x+(e) and x− (e) values for every edge, then collect in E+ those edges e for which

x+ (e) ≤ xmax and similarly in E− those edges e for which x− (e) ≥ xmi n . Finally, edges in E+ and

E− have to be sorted descending according to their x+ and x− values, respectively. m polygons of

edges (each having at most γ sides) have to be checked and sorted which gives a total complexity of

O
(
m

(
γ+ logm

))
.

Definition 6.3.7. Let Ak be the set of apples Au,v
k .

Corollary 6.3.10. For a given k, knowing Ek , the set of apples Ak can be determined in time

complexity O
(
(k +1)nm

(
γ+ logm

))
.

Proof. Since by Thm. 6.3.4 |Ek | < 3(k +1)n, we deduct that O ((k +1)n) apples have to be deter-

mined. According to Claim 6.3.7, an apple can be constructed in O
(
m

(
logm +γ))

, which completes

the proof.

6.3.6 Computing the Set of SRLGs by Sweeping Through Each Apple

Claim 6.3.11. Let e ∈ E+, and f ∈ E−. They can be hit by the same c ∈ C u,v
k if x+(e) ≤ x−( f ) or

x+( f ) ≤ x−(e).
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Algorithm 4: Querying an apple
Input: Apple Au,v

k Output: Set Mu,v
k of locally maximal failures. begin

1 Merge V+, V−, E+ and E+ into descending ordered list G using values x+ for V+ and E+ and x− for V− and
E−;

2 n+,n−,e+,e− ← 0;
3 for l ∈ {1, . . . , |G|} do
4 if l ∈V+ then n++=1;
5 if l ∈V− then n−+=1;
6 if l ∈ E+ then e++=1;
7 if l ∈ E− then e−+=1;
8 #n,l := |V+|−n++n− // # curr. hit nodes
9 #e,l := |E+|−e++e− // # curr. hit edges

10 e+,l := e+ // E+[i ] is hit iff i ≥ e+,l
11 e−,l := e− // E−[i ] is hit iff i ≤ e−,l

12 Det. L, the set of indexes l , for which #n,l = k;
13 Det. Ie , the sequence of numbers #e,l : l ∈ L;
14 Det. Me , the set of indexes l of local maximums of Ie ;
15 (Mu,v

k )′ := hit edge sets in l ∈ Me disk positions;
// Can be det. using E+,E−,e+,l ,e−,l

16 Mu,v
k ← maximal elements of (Mu,v

k )′;
17 return Mu,v

k

Proof. An edge e can be hit by circle c(x) if x+(e) ≤ x or x ≤ x−(e).

Determining M u,v
k from apple Au,v

k can be done with the help of a sweep disk algorithm as a

subroutine of Algorithm 4 similar to Algorithm 3, the only difference is that here we have to check

both the set of currently hit edges and the number of currently hit nodes at the same time.

On the one hand, while sweeping through C u,v with c(x) (while x decreasing), nodes are also

getting hit or not hit by the actual c(x), thus it is not necessarily permanently part of C u,v
k during the

sweep disk algorithm. On the other hand, any edge e having ep intersecting segment [u, v] or for

which x+(e) ≤ x−(e) should be stored exactly once in any element of M u,v
k .

Claim 6.3.12. Querying Au,v
k , Algorithm 4 calculates M u,v

k in O(m3).

Proof. The correctness of the algorithm can be easily checked. Since while sweeping an edge can

get hit or unhit at most once on one side of line uv , there are at most O(m) failures with locally

maximal cardinalities, each of them having O(m) edges, thus (M u,v
k )′ has O(m) elements of O(m)

size. Trivially, the number of currently hitting nodes can be monitored in O(n) total time as in Alg. 3.

Since we have an ordering of the edges, every pair of sets from (M u,v
k )′ can be compared in O(m).

This means that from (M u,v
k )′, M u,v

k can be determined in O(m3). It can be checked that all the other

operations have complexity at most O(m3).

Corollary 6.3.13. Known Ek , lists M u,v
k for all {u, v} ∈ Ek , can be determined in O

(
(k +1)nm3

)
. ä
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Algorithm 5: Algorithm for computing Mk with a table on time complexities. (Refer to Table

6.1 for notations.)
Input: G(V ,E), k Output: Mk begin

Determining M2
k ;

1 Determine Ek ;
2 Determine set Ak of nonempty apples;
3 Query apples from Ak ;
4 Merge lists Mu,v

k into M2
k ;

Determining M1
k // See Sec. 6.5

for details
5 Determine set Sk of nonempty seesaws;

6 Query seesaws from Sk ;
7 Merge lists M w

k into M1
k ;

8 Merge lists M2
k and M1

k into Mk ;
9 return Mk

Complexity Non-parametrized Parametrized

STEP 1 O((k2 +1)n logn) O((k2 +1)n logn)

STEP 2 O(n(k +1)m(logm +γ)) O
(
(k +1)n

(
nρ0γ+k logk +ρk logρk

))
STEP 3 O(n(k +1)m3) O(n(k +1)ρ3

k )

STEP 4 O(n2(k2 +1)m3) O(n2(k2 +1)ρ3
k )

STEP 5 O(nmγ logm) O(n2ρ0γ log(nρ0))

STEP 6 O(nm3) O(nρ0 +ρ3
k )

STEP 7 O(n2m3) O(n2ρ3
k )

STEP 8 O(n2(k +1)m3) O(n2(k +1)ρ3
k )

Total for γ=O(1) O(n2(k2 +1)m3) O(n2((k2 +1)ρ3
k +ρ0 log(nρ0)))

A

B

C D

f

Figure 6.4: In the setting above, circle cABC hits the whole link set E , while no c ∈C B ,D
0 hits link f . Thus,

however M B ,D
0 is not empty, it does not contain any elements of M0.

Here we use the assumption that the corner points of the polygons of the edges are in general

position.

6.3.7 Algorithm for Computing Maximal Failures

As presented before M 2
k can be calculated by determining and querying the apples, and finally

merging the obtained lists M u,v
k in M 2

k . Note that there is a valid need of comparing lists of locally

maximal failures (see Fig. 6.4). M 1
k can be computed very similarly to M 2

k (as shown in Subsec.

6.5.1-6.5.2). Finally, in order to get Mk , M 2
k and M 1

k have to be merged. This way the scheme of our

algorithm could be written as in Alg. 5.

Complexity bounds on the non-parametrized computing time and length of Mk are summarized

as part of the table in Alg. 5. Although in Subsec. 6.6.2 it is shown that there are some artificial

networks where these asymptotic bounds are relatively good estimations, we would like to focus on

the running time and output size on the real networks, which are nearly planar. Thus, after introducing

a new parameter, we present parametrized bounds proven in Subsec. 6.4.1-6.5.2.

Intuitively, a c ∈Ck cannot hit too many edges. Thus we introduce graph density parameter ρk ,

which describes this phenomenon.
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Definition 6.3.8. For all i ∈ {0,n −2}, let ρi be the maximum number of edges hit by a disk from Ci .

The parametrized bounds are the following:

Lemma 6.3.14. M 2
k can be computed in O

(
n2

((
k2 +1

)
ρ3

k + (k +1)(ρ0γ)
))

. M 2
k has O

(
n (k +1)ρk

)
elements with at most ρk edges.

Proof of Lemma 6.3.14 can be found in Subsec. 6.4.4.

Besides computing M 2
k , one have to deal with computing M 1

k . When computing M 1
k , the vague

idea is to give a geometric algorithm in a way similar to the sweep disk algorithm for querying the

apples. Now instead of imaginary sweeping a disk, we rotate a half-plane around every node v ∈V

until it makes a total turn, and meanwhile, check for hit edge sets with locally maximal cardinalities

hit by half-planes hitting exactly k nodes. After this, the maximal elements of the obtained lists

are collected in M 1
k . Now follows Lemma 6.3.15 for computing M 1

k . We kindly refer the reader to

Subsec. 6.5.1-6.5.2 for its detailed proof.

Lemma 6.3.15. M 1
k can be constructed in O(n2(ρ0γ lognρ0 +ρ3

k )) and has O(nρk ) elements, each

containing at most ρk edges.

Theorem 6.3.16. Mk can be computed in O
(
n2

((
k2 +1

)
ρ3

k +ρkγ+
(
k +1+ log(nρ0)

)
ρ0γ

))
. Mk has

O
(
n (k +1)ρk

)
elements with at most ρk edges.

Proof. Based on Lemmas 6.3.14 and 6.3.15, both M 2
k and M 1

k can be computed in the proposed

time, have at most the proposed amount of elements containing at most ρk edges. The proof will be

completed by showing that the merger of M 2
k and M 1

k can be done in O(n2(k +1)ρ3
k ), which is true

because of the following. We only have to compare all the pairs {p2, p1} made up of a p2 ∈ M 2
k and

p1 ∈ M 1
k , which means O((n(k +1)ρk )(nρk )) pairs. Each comparision can be made in O(ρk ),5 which

gives the proposed complexity.

Corollary 6.3.17. If ρk is O(k +1), then Mk has O (n (k +1)) elements. If in addition γ is upper

bounded by a constant, Mk can be computed in O(n2(k5 + log(nk +1)+1)).6

6.4 Parametrized Complexity Bounds for Enumerating SRLGs of M 2
k

6.4.1 Parametrized Complexity Bounds for Determining Apples

Up to this point, the fact that G(V ,E) is, in fact, a graph of a communication network, and thus it

is ’almost planar’ was not used. Intuitively, an almost planar graph has O(n) edges. Parameters ρi

5Since link sets are ordered lexicographically.
6To be exact, γ=O(max{1, k5+1

k+logn }) still yields the proposed complexity.
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(i ∈ {0, . . . ,n −2}) denote the maximum number of edges hit by a disk from Ci (Def. 6.3.8), thus they

help in formalizing this intuition.

Since parameters ρi measure local properties of the networks, often it will be assumed that these

parameters are not exceeding a constant. For example, ρ0 is not going to be large since physically

close edges are likely to be connected through a node.

Observation 6.4.1. For any 0 ≤ i < j ≤ n −2, ρi ≤ ρ j . ä

Claim 6.4.2. In any apple Au,v
k ∈ Ak , |E+| ≤ ρk and |E−| ≤ ρk .

Proof. All edges in E+ are hit by c (xmax ) which by definition hits at most ρk edges. Similar for

E−.

Lemma 6.4.3. The number of edges is O(nρ0), more precisely m ≤ (2n −5)ρ0.

Proof. Consider the Delaunay triangulation D0, which is a planar graph, and thus |E0| ≤ 3n−6. Since

every Delunay triangle has 3 Delaunay edges and a Delaunay edge is the edge of at most 2 Delaunay

triangles, and there are at least 3 Delaunay edges on the convex hull of V , the number of Delaunay

triangles is at most
2|E0|−3

3
≤ 2

3
(3n −6)−1 = 2n −5.

Since the polygon of every edge in E intersects at least one triangle, and every triangle can be

covered by a disk c ∈C0, which intersects at most ρ0 polygon of edges of the network, we get that

the number m of edges cannot be larger than ρ0 times the number of the Delaunay triangles. We get

m ≤ (2n −5)ρ0.

Lemma 6.4.4. If Ek is given, set Ak of apples can be built in O
(
(k +1)n

(
nρ0γ+k logk +ρk logρk

))
.

Proof. There are |Ek | ≤ 3(k +1)n apples to determine (Thm. 6.3.4). For each, V+ and V− can be

determined in O(n +k logk), then (based on Lemma 6.4.3) O(nρ0) edges have to be checked if they

are in the apple, each in O(γ) time. After this, based on Claim 6.4.2, there are O(ρk ) edges to order,

which gives the proposed complexity.

Corollary 6.4.5. If ρk and γ is upper bounded by a constant and Ek is given, then Ak can be

determined in O
(
n2

(
k + logn

))
. ä

6.4.2 Parametrized Bound for Determining M u,v
k for Apple Au,v

k

Lemma 6.4.6. For all the apples Au,v
k in Ak , sets M u,v

k can be determined in O
(
n (k +1)ρ3

k

)
.

Proof. Based on Thm. 6.3.4, there are |Ek | ≤ 3n(k +1) apples to query. We claim that each of them

can be queried in O(ρ3
k ). Knowing apple Au,v

k , (M u,v
k )′ can be determined in O(ρ2

k ), following the
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steps of Alg. 4. After this, M u,v
k can be determined by comparing each pair of elements of (M u,v

k )′

and eliminating its non-maximal and redundant members. With this purpose, O(ρ2
k ) comparisons

have to be made, each of them has O(ρk ) complexity.

6.4.3 Parametrized Complexity Bound on Merging Lists M u,v
k

Lemma 6.4.7. M 2
k can be computed in O

(
n2

(
k2 +1

)
ρ3

k

)
from lists M u,v

k .

Proof. By Thm. 6.3.4, there are |Ek | ≤ 3n(k +1) lists containing O(ρk ) sets containing O(ρk ) edges.

First determine an ordering on the set of edges E , and sort all the candidate sets of edges according

to this ordering, each in O(ρk logρk ) time. M 2
k can be computed by comparing all the set pairs (and

eliminating the redundant or non-maximal elements), which means O(n2(k2 +1)ρ2
k ) comparisons.

Since (due to the ordering) comparing two sets takes O(ρk ) time, the total complexity is O(n2(k2 +
1)ρ3

k ).

6.4.4 Parametrized Complexity for Computing M 2
k

Below is the proof of Lemma 6.3.14 stating that Mk can be computed in O
(
n2

((
k2 +1

)
ρ3

k + (k +1)ρ0γ
))

and Mk has O
(
n (k +1)ρk

)
elements with at most ρk edges.

Proof. As presented previously (Thm. 6.3.3 and Lemmas 6.4.4, 6.4.6 and 6.4.7), each of the corre-

sponding four phases of Alg. 5 can be examined in the proposed complexity. There are |Ek | ≤ 3n(k+1)

lists M u,v
k to merge, each of them has at most ρk edges, completing the proof.

6.5 Parametrized Algorithm for Enumerating SRLGs in M 1
k

In this section a sketch of an algorithm will be presented for proving Lemma 6.3.15, which states

that M 1
k can be constructed in O

(
n2

(
ρ0γ log

(
nρ0

)+ρ3
k

))
and has O

(
nρk

)
elements, each containing

O
(
ρk

)
edges.

6.5.1 Data Structure Seesaw

For every node w ∈V , a data structure is built containing both the direction of every node z ∈V \ {w}

related to v and the interval of directions where the polygon of each edge can be seen from w . Nodes

and edges also have to be sorted according to this information (similarly to data structure apple). Let

us call this data structure seesaw, and let Sw
k denote the previously described seesaw. For a given

k, let the set of seesaws be denoted by Sk . Let the list of locally maximal failures resulting from

querying seesaw Sw
k be denoted by M w

k .
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Claim 6.5.1. Any seesaw Sw
k can be calculated in O

(
nρ0γ log

(
nρ0

))
and has a total length of

O
(
nρ0

)
.

Proof. Trivially, the direction of nodes from z ∈V \ {w} can be determined and sorted in O(n logn).

Also, as by Lemma 6.4.3, the number of edges is O(nρ0), intervals of directions corresponding to

polygons of edges can be calculated and sorted both by their minimum and maximum values on

O(nρ0γ log(nρ0)). The proof follows.

6.5.2 Querying Seesaws

Claim 6.5.2. M w
k can be determined from Sw

k in O
(
nρ0 +ρ3

k

)
, and has at most 2ρk elements, each

of them containing at most ρk edges.

Proof. Since each set in M w
k can be hit by a disk in Ck having w on the boundary, the fact that the

elements of M w
k contain at most ρk edges is trivial by definition.

Now we prove |M w
k | ≤ 2ρk . If there is no half-plane having w on the boundary hitting exactly

k nodes, then the claim is trivial, otherwise, let hw
0 be such a half-plane. Let hw+ be the unique

half-plane which satisfies the followings: it is the rotation of hw
0 with ∠≤π, it covers exactly k nodes,

and no other half-plane covers exactly k nodes which is the rotation of hw+ with an angle ∈ [∠,π].

Let hw− be similar, but with rotating towards the negative direction. This way, every half-plane going

through w covering exactly k nodes is part of hw− ∪hw+ , which altogether hit at most 2ρk edges. Since

while turning a half-plane around w , edges are getting hit or not hit one by one, and an edge at most

2 times, there can exist at most 2ρk hit edge sets with locally maximal cardinalities.

Determining M w
k can be done by simply turning the half-plane around w . Checking currently hit

edge sets, node sets and cardinalities can be done in a total O(nρ0) time, list M w
k can be created in

O(ρ3
k ).

Proof of Lemma 6.3.15: Trivially, every element of M 1
k contains at most ρk elements. Based on

Claims 6.5.1 and 6.5.2, lists M w
k can be determined in O(n2ρ0γ log(nρ0)+nρ3

k ) for all w ∈V . M 1
k

can be calculated by merging the previous lists. O(n2ρ2
k ) comparisons have to be done, each has a

complexity of O(ρk ). This means a total complexity of O(n2(ρ0γ log(nρ0)+ρ3
k )), completing the

proof. ä

6.5.3 Connection Between Seesaws and Apples

It is known that the inverse of the stereographic projection from the North Pole, which maps geometric

objects from the plane to the surface of the sphere, has the property that the image of lines and

line segments on the plane are great circles and geodesics on the sphere, respectively (corollary of

Theorem in [100]). Known this, if we projected our network topology (back) to a spherical surface,
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Figure 6.5: Illustration for Subsec. 6.6.1

and if we defined the spherical apple and spherical seesaw data structure, we could see that a spherical

seesaw M w
k is just a spherical apple M w,z

k , z being the North Pole, thus sweeping through a spherical

apple is the same thing as tilting a spherical seesaw, meaning that on the sphere there would not

emerge the need to treat separately these two connected data structures.

6.6 Miscelleneous

6.6.1 Computational Geometry: Determining x+ (e) and x− (e) in O
(
γ
)

Claim 6.6.1. For any edge e = {a,b} and node pair {u, v} ⊂V , both x+ (e) and x− (e) can be calculated

in O
(
γ
)
.

Proof. Let us concentrate on calculation of x+(e), because x−(e) can be determined similarly.

Extreme hitting disk of line: First, let us compute the leftmost hitting circle in C u,v of a point

W part of a given line ab. Let {A} = uv ∩ab and let x+(W ) be the abscissa of the center point of

the leftmost hitting disk of W . Clearly, the function x+(W ) is unimodal in both rays (R+ and R−)

defined by line ab and point A (i.e., both R+ and R− are consisting of an interval where it is strictly

monotone increasing and another interval where strictly monotone decreasing).

Let the two points on the line where the local minimum is reached be W+ on the right side

and W− on the left side of uv . Let the centre point of disks c(uvW+) and c(uvW−) be X+ and X−,

respectively. X+ is located on the x axis of the coordinate system of apple Au,v
k . On the other hand,

X+ is located equidistant from u and line ab, thus it is on parabola pu defined by point u and line

ab. Similarly, let pv be the parabola defined by v and line ab.

Since pu and pv can be characterized with quadratic expressions, which can be solved in O(1),

abscissa of X+ can be found in constant time by determining their common root.

X− can be determined similarly. Finally, the center point of the desired leftmost hitting disk is

the one from X+ and X− with smaller abscissa.
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Extreme hitting disk of line segment: When restricting the domain of a unimodal function,

extremes can appear on the new boundary, thus for segment [a,b], x+([a,b]) = min
(
x(X+), x(X−),

x(A), x(B)
)
.

Extreme hitting disk of the polygon of edge: For an arbitrary e ∈ E we consider two cases regarding

the respective position of [uv] and ep .

In the first case segment [uv] is entirely in the interior of ep . Trivially, in this case x+(e) =−∞.

In the second case, segment [uv] is not entirely in the interior of ep . Since in this model a polygon

of edge ep consists of at most γ line segments, for determining x+(e) one can determine x+ for all

the line segments that take the minimum value of them in O(γ) total time.

Finally, it remains to prove that one can distinguish between the former two cases in O(γ). Recall

that u and v have ordinates 1 and −1, respectively, both lying on the y axis. Let C be the set of

ordinates of the intersection points of axis y and the line segments generating the polygonal chain.

If C ∩ [0,1] 6= ;, than segment [u, v] is neither entirely inside nor entirely outside of the polygon.

Otherwise if |C ∩ (1,+∞)| is an even or odd number, than [uv] is outside or inside the polygon,

respectively. Note that all the required operations can be done in O(γ).

6.6.2 Extreme cases: Maximum Number of Maximal Failures

In the followings, I restate [J1, Thm 4.] without proof7 showing that there are some networks for

which the running times are asymptotically not significantly better than our non-parametrized bounds.

This motivates the introduction of parameter ρk , which captures the properties of real-life networks.

Proposition 6.6.2 ([J1], Thm. 4 ). max
N

|Mk | =Θ
(
n3) if k =O (1), where N is the set of all networks

on n points.

Although |Mk | can be Ω(n3), according to this study, in case of many real-life networks it is

O((k +1)n).

By combining of Prop. 6.6.2 and Lemma 6.3.14, we have:

Proposition 6.6.3. |Mk | is O(n(k +1)ρk ), this bound being tight in these parameters for k =O(1).ä

6.6.3 Protecting regional link 0-node failures ensures node disjointness

Claim 6.6.4. Let P and B be an SRLG-disjoint primary and backup paths according to regional link

0-node failures. The paths P and B are node disjoint, apart from the terminal nodes.

Proof. Assume indirectly that P and B have a common node v in their interior. Let us pick two edges

ep ∈ P and eb ∈ B of G that are adjacent of v . Let p denote the closest corner point of ep with node v

7The reason I omit the proof here is that the proof of [J1, Thm 4.] is only a tiny generalization of the lengthy arguments
behind [T1, Claim 5].
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if there is any, otherwise its endpoint on P . Similarly we define b for eb . Note that points v , b and p

are not on the same line according to our assumptions in Sec. 6.2; thus, the is a circular disk of any

size that covers both ep and eb but not node v . We can select a small enough radius for this circular

disk, which covers both ep and eb and does not have any other nodes interior. The proof follows.

6.7 Simulation results

In this section, we present numerical results that validate our model and demonstrate the use of

the proposed algorithms on some realistic physical networks. The algorithms were implemented in

Python version 3.5 using various libraries. No special efforts were made to make the algorithm space

or time optimal. The output of the algorithm is a list of SRLGs so that no SRLG contains the other.

The network topologies with the obtained list of SRLGs for various k are available online8.

First, we interpret the input topologies in two ways:

polygon where links are polygonal chains, and

line where the corner points of the polygonal links are substituted with nodes (of degree 2). Here

links are line segments.

The second interpretation is artificial, and we mainly use it for verification. Intuitively, the two

interpretations result in very different results, as the latter has much more nodes in the network, and

thus the regional failures with k nodes interior must be smaller. Fig. 6.6 shows example results for

both interpretations of the US ATT-L1 network. The US fiber network has 126 nodes and 208 links as

polygonal chains, where the links have 36 corner nodes in total. After transforming it into a network

of line segments, we will have a larger network with 162 nodes and 244 links. The transformed

network has 30% more nodes; however, the number of SRLGs required for k = 0 is just 14% more,

which is a sub-linear increase. Surprisingly, after the transformation, the SRLGs became a bit smaller

(average number of links 2.98 → 2.79), and the variance in the size of SRLGs is increased from 0.7

to 0.83. It is because, in the transformed, a great number of very small SRLGs appeared, having the

two adjacent links for most of the degree 2 nodes.

6.7.1 The list of SRLGs in practice

Table 6.2 shows a comparison for k = 0 and k = 1 among eleven physical backbone topologies taken

from [101]. The columns are: network name, the number of nodes, the number of links, the number

of SRLGs, all for both cases where links are polygonal line segments or each corner point of the

polygonal links are substituted with a degree 2 node.

8https://github.com/jtapolcai/regional-srlg

https://github.com/jtapolcai/regional-srlg
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(a) Polygon: there are 190 SRLGs with average of 2.98
links and ρ0 = 5.

(b) Line: there are 216 SRLGs with average of 2.79 links
and ρ0 = 5.

Figure 6.6: The SRLGs of k = 0 are visualized for the two cases (a) links are polygonal line segments, and (b)
the corner points of the polygonal line segments are treated as degree two nodes and all links are straight lines.
In order to have a perspicuous illustration, each SRLG is drawn with the smallest possible circular disk that
covers all of its links, even if the disk has nodes interior.

The 126-node US (ATT-L1) network was covered with 190 SRLGs, which is less than listing

every single node and link as an SRLG. Fig. 6.6 shows these SRLGs, intuitively each corresponds

to a mid-size regional failure. The SRLGs meet our intuition that there are more network nodes in

the crowded areas, and thus it generates more SRLGs for them, while in the less crowded areas are

covered with SRLGs corresponding to bigger areas. In practice, it is important to have small SRLGs

because it strongly influences the performance of the survivable routing algorithms. On Fig. 6.6 the

SRLGs are relatively small, each SRLG contains a bit less than 3 links on average. Fig. 6.8c shows

how the average size of SRLGs with respect to k for all networks. It has a slightly sub-linear increase

with k. Note that the length of the list of SRLGs never exceeded 6000 items in any networks and

parameter settings examined.

Next, we have evaluated what would be the radius of the circular disk with k = 0,1,2,3 nodes

when we know the GPS positions of the nodes (in case of network US ATT-L1). We have performed

a Monte Carlo simulation where we pick random locations and compute the maximum radius with

k = 0,1,2,3 nodes, which is the distance of the closest, the second, third, and fourth closest nodes. Fig.

6.9 shows the cumulative distribution function of the actual radius of the circular disk failures. For

example, if we cut the smallest and largest 20% the SRLGs generated for k = 0 nodes corresponds to

diameter 80-200km.

6.7.2 Tightness of Corollary 6.3.17

In this subsection we compare the presented parameterized worst case analysis with the obtained

simulation results. Corollary 6.3.17 assumes that ρk increases linearly with (k +1) for all networks.

Fig. 6.8a shows that the edge density increases linearly with (k +1) as we expected. The corollary
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Table 6.2: Results of physical backbone topologies of [101].

Name |V | |E | # SRLG k = 0 # SRLG k = 1
Polygon Line Polygon Line Polygon Line Polygon Line

Pan-EU 10 16 16 22 14 19 27 35
EU (Optic) 17 22 40 45 44 59 57 71
EU (Nobel) 19 28 32 41 36 46 53 81
US [2] 21 24 39 42 48 49 57 64
N.-American 28 39 50 61 65 76 83 97
US (NFSNet) 44 79 73 108 88 124 128 172
US (Fibre) 81 170 141 230 137 189 177 249
US (Deltacom) 103 103 302 302 158 158 218 218
US (Sprint-Phys) 111 264 160 313 156 232 208 307
US (ATT-L1) 126 162 208 244 190 216 255 285
US (Att-Phys) 209 383 314 488 256 352 322 457

provides a linear upper bound on the number of SRLGs with respect to the network size n for fixed

k. It is also reflected in Fig. 6.7a which is a graphical illustration for k = 0, where we may even have

the intuition of a sub-linear growth. Based on Table 6.2 the slope of the curve can be estimated as

the number of SRLGs is roughly ≈ 1.2n for k = 0, and ≈ 2.2n for k = 1. Corollary 6.3.17 provides a

linear upper bound on the number of SRLGs with respect to k if the network (n) is fixed. This is

illustrated in Fig. 6.7b where the average number of SRLG is shown for all networks for small k.

Here we can experience a slightly sub-linear increase. Fig. 6.8b shows the increase in the number of

SRLGs for each network independently for the same range of k. We experienced sub-linearity for

all networks, which we further discuss later. Overall, numerical evaluation supports the parameter

selection used in the parametrized complexity analysis. We conjecture that Corollary 6.3.17 is close

to the experienced performance, and there is little hope for further improving it analytically.

To reveal the reasons why the number of SRLGs increases sub-linearly with respect to k, Fig.

6.7c shows the function graphs of both |Mk | and |Ek |
3 for all k values on Network US Deltacom,

respectively. As we can see, for k ≤ 15, |Mk | ≈ |Ek |
3 , while for bigger k values |Mk | < |Ek |

3 . We can
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Figure 6.7: Comparison of the two interpretation of the input topologies: links are polygonal line segments, or
the corner points of the polygonal line segments are treated as degree two nodes and all links are straight lines.
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Figure 6.8: The edge density, number and size of SRLGs for each network and k = {0, . . . ,5} in case
of polygonal chain links.

deduct that |Mk | ≤ |Ek |
3 for every k ∈ {0, . . . ,n −2}. In other words, the average number of SRLG-s per

apple is ≤ 1
3 . By Thm. 6.3.4, this also means that |Mk | is O((k+1)(n−k)), which induces a sub-linear

growth of |Mk | with respect to k.
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6.8 Thesis Summary

Thesis 2. [C13, C12, C11, J1] To ensure geographic distance between primary and backup paths

when the geographical embedding the network topology is approximate, I proposed a model for

enumerating regional SRLGs relying only a schematic map of the network topology. For networks

described in this model, I proposed a polynomial algorithm for enumerating list Mk of maximal link

sets (SRLGs) which can be hit by a disaster overestimated by a shape of a circular disk hitting an

arbitrary number k of nodes. I gave theoretical upper bounds on the cardinality of Mk . Evaluating

the model and data structure, I showed that in case of real network topologies as input combined

with practical (small) k values, Mk is a reasonably short list of link sets.

Thesis 2.1 (The Limited Geometric Information Failure Model). [J1] To ensure geographic distance

between primary and backup paths when the geographical embedding the network topology is

approximate, I proposed the following model. The (not necessarily planar) network is modelled as

an undirected connected geometric graph G = (V ,E) with |V | ≥ 3 nodes. The nodes of the graph

are embedded as points in the Euclidean plane, and their exact coordinates are considered to be

known. In contrast to this, precise positions of edges are not known, instead, it is assumed that for

each edge e there is a containing polygon (or simply polygon) ep in the plane in which the edge

lies.The disasters are assumed to have a shape of a circular disk with an arbitrary radius and centre

position, but hitting at most k nodes for k ∈ {0, |V |−2}. The failures caused by these disasters are

called regional link k-node failures.

Thesis 2.2. [J1] I proposed an algorithm, which, in case of representing a network topology G(V ,E)

in the Euclidean plane with each link e ∈ E being part of a related polygonal region ep having at

most γ sides, computes the list Mk of maximal link sets which can be hit by a circular disk hitting at

most k nodes in O
(|V |2 ((

k2 +1
)
ρ3

k +ρkγ+
(
k +1+ log(nρ0)

)
ρ0γ

))
, where ρk denotes the maximal

number of links hit by a circular disk hitting at most k nodes. I proved that list Mk has O
(
n (k +1)ρk

)
elements, this bound being tight in these parameters for k =O(1).

Thesis 2.3. [J1] In case of real network topologies, with their edges considered polyginal chains

and line segments between their endpoints, respectively, list Mk of maximal link sets which can be hit

by a circular disk hitting at most k nodes has ≈ 1.2 · |V | and ≈ 2.2 · |V | elements for k = 0 and k = 1,

respectively. Additionally, |Mk | increases sublinearly in function of k. Parameter ρk representing the

maximal number of hit links by a disaster hitting k nodes was ≤ 10 for all the investigated networks

for k = 0,1, and grew to only to < 25 for k = 5. I concluded that list Mk has a reasonably small size

for practical k values.



Chapter 7

PSRLGs Modeling Correlated Link
Failures Caused by Disasters

7.1 Network Model and Framework to Compute Service Availability

At the very beginning, I would like to include Fig. 7.1 summarising the three layers of the contribu-

tions of this Chapter. On the top, there are two data structures analog of the CDF and PDF of the

functions, which we believe should be the standard for describing the joint failure probability of

network resource sets. The second layer is a stochastic model that explicitly takes into count the

correlation between the failures of geographically close network elements in case of disasters. In

the third layer, as a concrete example of dealing with a disaster type, we use earthquake catalogs

to provide proper input for our model. This way, we describe a method of computing PSRLGs of a

network from end to end.

Standard data
structures for

computing service
availability (Sec. 7.1)

(C)FPs should be the stan-
dard Probabilistic SRLGs

Tractable stochastic
model for cor-

related resource
failures (Sec. 7.2)

Captures the failure correlation of
geographically close network elements

Providing
seismic hazard
data (Sec. 7.6)

Turning historical earthqauke cata-
logs to earthquake activity rate maps

filling up

the data set

input to transform

into (C)FPs

Figure 7.1: Main contributions: We offer 1) standard data structures (for graph G, CFP[G] and FP[G]) for
storing joint failure probabilities of link sets, 2) a tractable stochastic model of network element failures
caused by disasters, and finally 3) providing the seismic hazard data represented it in a more precise way
than the usual hazard maps. Note that our stochastic model can handle the combined inputs of an arbitrary
number of disaster families (e.g., tornadoes, earthquakes, tsunamis, etc.). Structures CFP[G] and FP[G] could
be established using other models too.
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Data set
Precomputing

(numerical
integrals)

Service
availability

query

(a) Framework to compute service availability

Data set name Space complexity Query time for an arbitrary link set

Ω(2ρ) and
O(2ρ(n +x)ρ3γ4)

hashing: constant with high prob.
CFP[G] balanced binary tree:

O(ρ log((n +x)ργ)) worst-case
FP[G] O((n +x)ρ3γ4) O((n +x)ρ3γ4)

(b) Trade-off between space complexity and query time in case of circular
dish shaped disasters

Figure 7.2: Computing service availability via a pre-computed data set: while the disaster hazard can be
represented more succinctly using FP[G] for a graph G , with CFP[G] one can achieve lower query times.

7.1.1 Network Model

The network is modeled as an undirected connected geometric graph G = (V ,E), with n = |V | nodes

and m = |E | links embedded in the Euclidean plane denoted by R2. The links can be either line

segments or polygonal chains (also called ‘polylines’) built up from at most γ adjacent line segments

(where γ is a parameter of our model). The number of link crossings is denoted by x. The geometric

density of the network topology is the maximum number of links that can be hit by a single disaster

and is denoted by ρ. The set of links E is lexicographically sorted, any S ⊆ E is stored as a sorted list.

7.1.2 Framework to Compute Service Availability

We aim to develop a service availability computation engine, where the task is basically to translate

the compound problem of simultaneous network failures into a scalar. When setting up an SLA

between the user and network provider, the availability of a massive number of network services must

be evaluated. Therefore, we need to avoid committing resource-intensive computations at every query.

Intuitively, there is much redundancy in these queries. The main idea behind our general framework

(depicted in Fig. 7.2a) is to exploit this redundancy by pre-computing some numerical integrals

representing failure probabilities of sets of network elements. This, out of the compound geometric

and stochastic problem, extracts all the relevant information to a static data set. This data set can

address many service availability queries, each of which requiring only lookups and summation.
We propose two standard PSRLG definitions, with different meanings on the probabilities

associated with the link sets, to store the failure probabilities of sets of network elements: (1) the

Cumulative Failure Probability (CFP), and (2) the Link Failure State Probability (FP). While in this

Chapter we focus on failure probabilities of link sets, if necessary, these structures can store failure

probabilities of both links and node failures (following Sec. 2.6). These data structures were already

defined (Def. 2.1.2 and 2.1.3, resp.) in Chapter 2, although the definitions implicitly included the

disaster and failure models. In the following, we re-define these models from scratch.
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Table 7.1: Table of symbols for Chp. 7

Notation Meaning
General

G(V ,E) the network modeled as an undirected connected geometric graph, E stored as an ordered list
n, m number of nodes |V | ≥ 3 and edges |E |, respectively
R2 Euclidean plane

CFP(S)
given S ⊆ E , the cumulative failure probability (CFP) of S, denoted by CFP(S), is the probability that all links S
fail simultaneously (and possibly other links too)

FP(S)
given S ⊆ E , the link failure state probability (FP) of S, denoted by FP(S), is the probability that exactly the links
of S fail simultaneously (and no other links)

FP[G], CFP[G] the collection of all (S,FP(S)) and (S,CFP(S)) pairs with FP(S)> 0 and CFP(S)> 0, respectively
Parameter

γ maximum number of line segments a (polygonal chain shaped) link can have
x number of link crossings
ρ maximum number of links that can be hit by a disaster

Stochastic model
p epicenter of a disaster, that is a point in the plane R2

s shape (and relative size) parameter of a disaster, a real value in [0,1]
h(p) hazard of a point p ∈R2, representing the probability that p becomes the epicenter of the next disaster

r (p, s)
represents a closed region on the plane (the actual shape of the destroyed area) as a function of epicenter p and
the shape/size parameter s; every link having a nonempty intersection with r (p, s) fails

R(p, s) the set of links having a nonempty intersection with r (p, s); set of failed links
s(p,e) smallest size s for which a failure at point p can cover link e
f (e, p) probability that link e fails if a disaster with epicenter p happens

IR(p,s)(e) indicates whether e ∈ R(p, s)

P (e) probability of the failure of link e in the next disaster
f (S, p) probability that a set of links S ⊆ E fail simultaneously, given that the disaster epicenter is p ∈R2

Precomputation of CPFs and FPs
P set of points p of the plane such that dist(p,e) 6= dist(p,e′) whenever e 6= e′ are different segments from E .

S (p) sequence of link failures for epicenter p ∈ P , that is an ordered set of links (e1,e2, . . . ,el ), such that s(p,e1) ≤
s(p,e2) ≤ ·· · ≤ s(p,el ), where l = |R(p,1)|

S j (p) first j links of S (p)

j (S,S (p)) ordinal number of set S within S (p): i , if S 6⊂S i−1(p) and S ⊆S i (p), 0 otherwise
f (S, p) the conditional probability of a set of links S ⊆S (p) failing together, that is f (e j (S,S (p)), p)

R1, . . . , Rk regions, where each point p ∈Ri has the same sequence Si of link failures (see Fig. 7.7)
Si for any point p ∈Ri , S (p) ≡Si , i = 1, . . . ,k.
ei , j j th link of Si

P i , j := ∫
p∈Ri

h(p) f (ei , j , p)dp i = 1, . . . ,k, j = 1, . . . , |Si |
with these, CFP(S)=∑k

i=1 P i , j (S,Si ), and FP(S)=∑
i , j (P i , j −P i , j+1)

Seismic hazard representation
ci , j epicenter, which represents a latitude-longitude cell on the Earth’s surface, taken from a grid of cells over the

network area
Mw moment magnitude ∈ {4.6,4.7, . . . ,8.6} =: M

Ei , j ,Mw set of earthquakes with centre point in ci , j and magnitude in (Mw −0.1, Mw ]

pi , j ,Mw probability that the next earthquake is in Ei , j ,Mw

ri , j ,Mw activity rates, i.e., arrival rate of earthquakes in Ei , j ,Mw

t
intensity threshold: in case of a shaking intensity above the threshold, network elements fail; t ∈
{VI,VII,VIII,IX,X,XI,XII} := T

disk(ci , j ,R(Mw , t )) the area of destroyed physical infrastructure after each earthquake Ei , j ,Mw

Definition 7.1.1 (Cumulative Failure Probability (CFP)). Given a set of links S ⊆ E , the cumu-

lative failure probability (CFP) of S, denoted by CFP(S), is the probability that all links S fail

simultaneously (and possibly other links too).

Definition 7.1.2 (Link Failure State Probability (FP)). Given a set of links S ⊆ E , the link failure

state probability (FP) of S, denoted by FP(S), is the probability that exactly the links of S fail

simultaneously (and no other links).
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Sometimes we will refer as ‘CFP’ to 1) the tuple (S,CFP(S)) for a link set S, or simply, 2) to

CFP(S). For a graph G, we will denote the collection of CFPs with strictly positive probability by

CFP[G]. The same applies to the Failure Probabilities (‘FP’s). We note that the reason behind not

referring the tuple of a link set S and CFP(S) or FP(S) simply as PSRLGs is that, throughout this

Chapter, we need to make a distinction between these two data structures.

Although for some practical tasks, FP[G] may be a practical input, in the standpoint of availability

queries, we mainly look at FP[G] as a compact representation of structure CFP[G] (the space

complexity of the proposed structures will be investigated in detail in Sec. 7.4).

The space complexity of our availability computation engine based on either CFPs or FPs is

proportional to the number of link sets S with CFP(S) > 0 (resp., FP(S) > 0). The engine’s time

complexity (namely, its query time) is the time needed to determine the cumulative failure probability

of a given link set.

As it turns out, data structures CFP[G] and FP[G] present a space-time trade-off: There are

more link sets with non-zero CFP than FP, since FP(S) > 0 implies that CFP(S′) > 0 for all 2|S|−1

nonempty sets such that S′ ⊆ S. On the other hand, availability queries need to address fewer PSRLGs

if they are all expressed as CFPs, and computing these from FPs requires iterating over all FPs in

the data set. In Sec. 7.4, we study this trade-off in more detail and give formal bounds on the space

complexity and query time for both data structures (see Fig. 7.2b) when applied to our regional

failure model.

7.1.3 On Availability Queries when Risk Failures are Correlated

Any availability query can be evaluated by iteratively calling CFP(S) , i.e., the probability of

simultaneous failure of all elements in any arbitrary set S. Consider the example network and

corresponding CFPs in Fig. 7.3 (non-listed link sets have CFPs of 0). Suppose we need to establish a

high-availability connection from the top right node through a working path c and protection path

f −d −e. The unavailability of the working path is CFP({c})= 0.0113, and the unavailability of the

protection path is CFP({ f })+CFP({d})+CFP({e})−CFP({ f ,d})−CFP({ f ,e})−CFP({d ,e})+
CFP({ f ,d ,e}) ' 0.0275, by the inclusion-exclusion principle. The total connection availability

is 1−CFP({c,d})−CFP({c, f })−CFP({c,e})+CFP({c, f ,d})+CFP({c, f ,e})+CFP({c,d ,e})−
CFP({c, f ,d ,e})' 0.99872. We can observe that, based on CFP[G], the connection availability can

be computed with the help of CFPs of subsets of {c,d ,e, f }, that is, the union of the links of the

working and protection paths.

In contrast, for computing the total connection availability, the FP[G] data set requires considering

a larger number of data set entries. For example, the availability of working path c can be computed

as is 1−∑
{c}⊆S⊆{a,...,e} FP(S), i.e., we have to subtract the FP of every link set containing c from 1.
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Furthermore, to compute the total availability of the connection, we need to address all nonempty

subsets of {a,b,c,d ,e}. The number of links is not part of neither the working nor the protection

path; this means up to exponentially more FP[G] queries than CFP[G] queries. Structure FP[G] has

an advantage though: it has provably less elements than CFP[G].

By considering joint failure probabilities, we have found that the total connection availability is

< 0.9987, i.e., below three nines. For comparison, traditional approaches that assume link failures to

be independent, would have estimated the total connection availability to be 1−CFP({c})
(
CFP({d})+

CFP({e})+CFP({ f })−CFP({d})·CFP({e})−CFP({d})·CFP({ f })−CFP({e})·CFP({ f })+CFP({d})·
CFP({e}) ·CFP({ f })

) > 0.99951, i.e., well above three nines. Even if they correctly compute the

availability of each path but assume independent path failures, they estimate the availability by

1−0.0113 ·0.0275 > 0.99968, i.e., even more above three nines. Here, by not considering joint failure

probabilities, the traditional approaches significantly overestimate the total connection availability,

which can lead to more frequent SLA violations and a financial burden on the CSP.

Unfortunately, (correlated) network failures are hard to compute and predict. Nonetheless, to

evaluate the expected availability of a service, a network administrator should consider all possible

failure scenarios under the specific service availability model stipulated in the corresponding SLA.

7.1.4 Denomination Issues of Probabilistic SRLGs

Probabilistic extensions of SRLGs are called Probabilistic SRLGs, PSRLGs. The probabilistic

refinement can be defined in multiple ways, thus, in the literature, there are multiple definitions of

PSRLGs. E.g., in the first paper considering probabilistic extensions SRLGs (which was [56]), each

PSRLG event r ∈ R occurs with probability πr , and once a PSRLG event r occurs, link (i , j ) will fail

independently of the other links with probability pr
i , j ∈ [0,1]. Thus, we could call the [56]-PSRLGs

as ’two-stage PSRLGs’. In contrast with this paper, [56] does not tackle the issue of computing the

PSRLGs.

Since both FPs and CFPs are probabilistic extensions of SRLGs, we say that, collectively, these

structures are PSRLGs. Moreover, since any version of probabilistic SRLGs can be described with

the help of either CFPs or FPs, and due to their natural simplicity, we believe (C)FPs are the right

standard way of defining PSRLGs. In the following, we present a model for calculating CFP[G] and

FP[G] describing the correlated failure patterns of networks.

7.2 The Regional Failure Model

To compute service availabilities, we need to answer the following question: what is the probability
that a set of links S fails simultaneously? In other words, we need to find the cumulative failure

probability of S, i.e., CFP(S), which has a complicated relationship with the correlation structure of
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Input: Network G:
Failure model:
Model parameters:
pi , j ,Mw : the probability of Ei , j ,Mw , the
earthquake having a magnitude Mw ∈
{4.6,4.7, . . . ,8.1} and centre point in ci , j , where
ci , j represents a latitude-longitude cell on the
Earth surface, taken from a grid over the net-
work area
R(Mw ): the radius of the area where network
elements fail at magnitude Mw (see Fig. 7.8b).

In this example, we set the intensity threshold to a
relatively high IX to grant space for the outputs (it
is mainly VI in the simulations section).
Regional failure model:
After each earthquake Ei , j ,Mw , the physical infras-
tructure in an area of a circular disk is destroyed.
Its center point is the centre of ci , j , while R(Mw )

is its radius. Each link fails having a point in the
disaster area, the rest remain intact.

Output: Structure CFP[G]

CFP(S) : the probability that at least S will

fail during the next disaster

CFP(a)=4.07·10−2 CFP(b)=3.53·10−2

CFP(c)=1.13·10−2 CFP(d)=2.91·10−3

CFP(e)=1.46·10−2 CFP( f )=2.60·10−2

CFP(a,b)=5.68·10−3 CFP(b,e)=6.91·10−6

CFP(a,e)=4.59·10−4 CFP(c,e)=7.48·10−4

CFP(d ,e)=3.27·10−4 CFP(d , f )=2.78·10−4

CFP(c, f )=5.25·10−4 CFP(b,c)=7.27·10−6

CFP(a,d)=3.35·10−4

CFP(a,d ,e)=3.27·10−4 CFP(a,b,e)=0

CFP(b,c,e)=6.91·10−6

Output: Structure FP[G]

FP(S) : the probability that exactly S will

fail during the next disaster

FP(a)=3.45·10−2 FP(b)=2.96·10−2

FP(c)=1.00·10−2 FP(d)=2.30·10−3

FP(e)=1.33·10−2 FP( f )=2.52·10−2

FP(a,b)=5.68·10−3 FP(a,d)=7.14·10−6

FP(a,e)=1.32·10−4 FP(c,e)=7.41·10−4

FP(c, f )=5.25·10−4 FP(b,c)=3.61·10−7

FP(d , f )=2.78·10−4

FP(a,d ,e)=3.27·10−4

FP(b,c,e)=6.91·10−6

Figure 7.3: An illustration of the problem inputs and outputs. We note that the earthquake failure model
depicted here, detailed in Sec. 7.6.1, and used in our simulations, is a special case of our general model
presented in Sec. 7.2, that can handle a wide variety of disaster types (including tornadoes, tsunamis, etc.),
possibly describing their combined effect.

link failures. Links that lie close together more often fail simultaneously, while further apart links

rarely do. To find CFP(S), we first propose a general stochastic model of possible network failure

events. After some pre-computation, this will allow us to build a succinct representation of the joint

probability distribution of link failures described in the previous section.

In our model, failures are considered to come solely from disasters affecting a bounded geograph-

ical area. This chapter focuses only on link failures (node failures can be translated to the joint failure

of the set of all links adjacent to the node). The model could be extended to incorporate node failures

as well based on the techniques described in Sec. 2.6.

While traditional approaches focus on single-point failures, which represent hardware/node

failures, cable/link cuts, etc., we adopt a model for regional failures and focus on computing the

conditional probability CFPd (S) that, in a given time period, a set of links S fail together under a

disaster of type d (e.g., a tornado, earthquake, Electromagnetic Pulse (EMP), etc.).

Assumption 7.2.1. We assume that, in the investigated time period, there will be at most one disaster

of any type1.

In such a case, to obtain the availability values, we need to build a model for each disaster type,

and the resulting availability of S can be expressed as 1−∑
d∈D pd ·CFPd (S), where D denotes the set

of modeled failure types and pd is the probability of disaster d . From now on, for ease of notation,

1The case, when more disasters are expected to happen simultaneously, can be handled by defining a new mixed
disaster type, see also [102].
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(a) Probabilistic hazard map h(p) for
earthquakes as function of epicenter p.
[103]

s=0

×p

s=1

s=.3 s=.3

s=.6

(b) Shape of regional disaster r (p, s)
for epicenter p and different sizes s =
0,0.3,0.6,1.

Figure 7.4: Example of real-world inputs.

we will consider a fixed failure type d , and, therefore, the subscript d is omitted hereafter.

7.2.1 Stochastic Modeling of Regional Failures

In the remainder of the Chapter, we will call events that bring down the network in a geographic area

simply as disasters, indifferent to their cause. We model regional failures caused by a disaster with

the following parameters with randomly chosen values:

epicenter p , which is a point in the plane R2,

shape (and size) s , which is a real value in [0,1].

Each point p ∈R2 is assigned a hazard h(p) representing the probability that p becomes the epicenter

of the next disaster (see Fig. 7.4a). Specifically, h(p) is a probability density function on the area R2,

and therefore, ∫
p∈R2

h(p)dp = 1 . (7.1)

After a disaster of the examined type, the physical infrastructure (such as optical fibers, amplifiers,

routers, and switches) in some areas is destroyed. The possible shapes for this area are defined by

a set r (p, s) that represents a closed region on the plane (the actual shape of the destroyed area) as

a function of epicenter p and the shape/size parameter s. This is a general disaster model, where

several possible damage areas can be defined by r (p, s).

Definition 7.2.1 (Regional disaster). We assume a regional disaster of epicenter p and shape/size s

will result in the failure of exactly those links of network G that have a point in r (p, s).

Our next assumption is that r (p, s) is monotone increasing in the relative size s, that is, a more

severe version of a disaster hits at least the same region of the network, as a weaker disaster (see Fig.



74 7.2. THE REGIONAL FAILURE MODEL

7.4b for an example)2. While this assumption holds in general for a variety of disasters, we only use

it to achieve ‘nicer’ equations.

Assumption 7.2.2.
r (p, s) ⊆ r (p, s′) if s < s′ ∀p ∈R2,0 ≤ s, s′ ≤ 1 . (7.2)

For simplicity, we assume r (p, s) for a given p is a result of uniform sampling of damage areas.

Namely, for a given p, s has a uniform distribution over interval [0,1], i.e., the probability of the

failure to be of size at most s is exactly s. Thus, s is called relative size in the remainder of the paper.

Note that, given the disaster epicenter and relative size, the outcome of the attack is deterministic.

In other words, any link e within r (p, s) fails with probability 1, if a failure event with parameters

p and s occurs. Let us denote the set of failed links by R(p, s). Definition 7.2.1 together with

Assumption 7.2.2 imply that, given a point p, R(p, s) ⊆ R(p, s′) if s ≤ s′. Let s(p,e) denote the

corresponding smallest size s for which a failure at point p can cover link e. Furthermore, we denote

by ρ the maximum number of links that can be affected by a single failure (of maximum size s = 1):

ρ = max
p∈R2

|R(p,1)| . (7.3)

7.2.2 The Failure Probability of a Link Set

We first explain how to compute the probability CFP(S) that a set of links S ⊆ E will fail simultane-

ously in the next disaster.

Let f (e, p) be the probability that link e fails if a disaster with epicenter p happens. Note that by

Assumption 7.2.2, f (e, p) > 0 can occur iff e ∈ R(p,1). f (e, p) can be computed from R(p, s), where

s is in the range [0,1]. Hence,

f (e, p) =
∫ 1

s=0
IR(p,s)(e)ds , (7.4)

where the indicator function IR(p,s)(e) indicates whether e ∈ R(p, s). Thus,

IR(p,s)(e) =

1 if e ∈ R(p, s) ,

0 otherwise.
(7.5)

By Assumption 7.2.2, if IR(p,s)(e) = 1, then IR(p,s′)(e) = 1, for s ≤ s′.

We now extend our notation to capture the probability of the failure of link e in the next disaster:

P (e) :=
∫

p∈R2
h(p) f (e, p)dp. (7.6)

2Various failure shapes were studied so far [2, 5, 6, 7, 8, 9, 10, 11, 17, 18, 40, 51, 52, 53, 54, 55], mainly in the form of
circular regional disasters or line-segment failures, but in some cases also more general geometric shapes [17, 40]. All of
these models meet Assumption 7.2.2.
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We denote the probability that a set of links S ⊆ E fail simultaneously, given that the disaster

epicenter is p ∈R2:

f (S, p) :=
∫ 1

s=0

∏
e∈S

IR(p,s)(e)ds . (7.7)

In other words, if the sequence of links is S = (e1,e2, . . . ,e|S|) ⊆ R(p,1) and s(p,e1) ≤ s(p,e2) ≤ ·· · ≤
s(p,e|S|), then

∏
e∈S IR(p,s)(e) = 1 iff s ≥ s(p,e|S|), otherwise the product is 0. This implies that

f (S, p) = f (e|S|, p) = min
e∈S

f (e, p) . (7.8)

Finally, using the above results3:

CFP(S)=
∫

p∈R2
h(p) f (S, p)dp =

∫
p∈R2

h(p)min
e∈S

f (e, p)dp . (7.9)

For example, on the right of Fig. 7.3, the results of applying the formula to the 5-node network

are shown for all the non-zero joint link failure probabilities. In this example, r (p, s) is always a

circular disk with a radius computed according to the historical seismic information. Potentially there

are exponentially many joint failure events in terms of the network size; however, links far from each

other have zero probability of failing jointly because of a single disaster. For example, this holds for

links f and b, whose smallest distance is more than the radius of the largest destroyed area.

Former works (e.g., [17, in the proof of Lemma 8]) expressed the joint failure probability of a set

S by multiplying the failure probabilities of the links in S, thus implicitly assuming these failures are

independent. Unlike [17], our model assumes a deterministic failure outcome (once its epicenter and

shape are set). This implies that, in our model, failures are dependent. For example, two lines in the

same location (e.g., within the same conduit) always fail together (e.g., when the conduit is cut).

7.2.3 Example of the Geographical Correlation of Failures

In this Subsection, we first consider a simple linear and discrete model for some of the ideas presented

so far. We assume that the ground set of our simplified world is the set of 1000 integer points of a

line with coordinates between zmi n = −499, zmax = 500 and we have two links e0 and ez , which

themselves are integer points from the interval [−499,500], e0 is at position 0, and ez is at position

z. Let the probability that i is the location of a disaster be hi = 10−3 for i = −499, . . .500 so that∑500
i=−499 hi = 1. According to Eq. (7.9), the probability of the failure of link e0 is

P (e0) :=
500∑

i=−499
hi f (e0, i ) , (7.10)

3Without Assumption 7.2.2, we would have CFP(S)= ∫
p∈R2 h(p)

∫ 1
s=0

∏
e∈S IR(p,s)(e)dsdp.



76 7.3. PRE-COMPUTATION TO SPEED UP QUERIES

−400 −200 0 200 400
0

0.2

0.4

0.6

0.8

1

p

f(
e 0

,i
)

(a)

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

position z

P
(e

z
|e 0

)

Our model
Former models

(b)

Figure 7.5: An example of fi (0) at different i positions and the corresponding P (ez |e0) depending on
z. Former models assumed the link failures are independent given an epicenter of the disaster.

where f (e0, i ) is the conditional probability that link e0 fails if the failure is at position i . According

to Eq. (7.9), the joint probability of the failure of both links e0 and ez is

P ({e0,ez }) :=
500∑

i=−499
hi min( f (e0, i ), f (ez , i )) . (7.11)

Let P (ez |e0) denote the conditional probability that ez fails, on the condition that e0 fails. By

definition we have

P (ez |e0) := P ({e0,ez })

P (e0)
. (7.12)

This is a function of z in our setting. Intuitively, P (ez |e0) is close to 1 if the two links are exactly in

the same location (i.e. z = 0).

Additionally, P (ez |e0) should be a decreasing function of z in the range of [0,500]. See Fig. 7.5

for an example of f (e0, i ) values and the corresponding P (ez |e0).

7.3 Pre-Computation to Speed up Queries

In the previous section, we have described a model that generates a regional disaster according to a

hazard density h(p) and a failure shape function r (p, s). Recall that our task is to return CFP(S) for a

set of links S ⊆ E , which is the probability that links S fail together in case of disaster d .

Unfortunately, the calculation of integrals (7.9) can be a computationally-intensive process. One

solution is to calculate some FPs in advance so that when a query comes on the CFP of an arbitrary

set of links S, then the task would be summing up some of the pre-computed FP values.

As Lemma 7.4.1 will show, a full list of FPs with non-zero probabilities has O((n+x)ρ2γ4) items.

Every CFP can be derived by summing up

CFP(S)= ∑
T⊇S

FP(T ), ∀S ⊆ E . (7.13)
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7.3.1 Precomputation of CFPs and FPs

In this subsection, we still rely on Assumption 7.2.2 and make the following additional assumptions

to apply some computational geometry results. We emphasize that the second and third additional

specifications are technical assumptions to avoid lengthy discussions (see Sec. 7.7).

• Shapes r (p, s) are limited to circular disks centered at p. This corresponds to the case where

the failure of a link e depends on the Euclidean distance dist(p,e) of e to the epicenter of the

disaster p. In this case, instead of r (p, s), the input is given by radius d as a function of s.

• In our geometric reasoning, we will transform the links of the graph into line segments by

slightly shortening them to ensure that no two segments share a common endpoint (see the

details of the transformation in Sec. 7.7). We also assume that no more than two links intersect

in the same point, and no more than two endpoints lie on the same line.

• The relative size s is a uniformly Lipschitz continuous function of radius d . That is, there exists

a positive number K such that for every point p in the plane, if we have neighborhoods r (p, s′)

and r (p, s) with respective radii d ′ and d , then |s′− s| ≤ K |d ′−d | holds.

For ease of presentation, we slightly reduce the domain we are integrating over. Let P denote the

set of points p of the plane such that dist(p,e) 6= dist(p,e ′) whenever e and e ′ are different segments

from E . We have that R2 \P is of measure zero, hence in our considerations, integrating over the

plane R2 can be replaced by integrating over P .

Inspired by (7.8), we can now define the sequence of possible link failures (see Fig. 7.6), when

the epicenter of the attack is at p:

Definition 7.3.1. The sequence of link failures for epicenter p ∈P is an ordered set of links S (p) =
(e1,e2, . . . ,el ), such that s(p,e1) ≤ s(p,e2) ≤ ·· · ≤ s(p,el ), where l = |R(p,1)|. Let S j (p) denote the

first j links of S (p), i.e. S j (p) = (e1,e2, . . . ,e j ).

Furthermore, the ordinal number of a set S within S (p) is defined as follows:

Definition 7.3.2.

j (S,S (p)) =

i , if S 6⊂S i−1(p) and S ⊆S i (p)

0, otherwise.

Due to Assumption 7.2.2 and using also (7.9), if there is a disaster at point p, the conditional

probability of a set of links S ⊆S (p) failing together is

f (S, p) = f (S j (S,S (p))(p), p) = f (e j (S,S (p)), p) . (7.14)

Finally, we use two practical input parameters, x, and ρ, in estimating the space complexity of

our approaches. Let x be the number of link crossings in the network G. For backbone networks,
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x is a small number, as typically, a switch is also installed on each link crossing [89]. The second

parameter is ρ, the link density of the network, which is defined as the maximal number of links that

could fail together (i.e., could be covered by a circle of radius r ). The link density ρ, practically, does

not depend on the network size. Moreover, ρ is at least the maximal nodal degree in the graph.

Let us divide the plane into disjoint regions R1, . . . , Rk , where each point p ∈Ri has the same

sequence Si of link failures (see Fig. 7.7, and [104] for efficient algorithms calculating these regions).

Here, k is the number of possible failure sequences. For any point p ∈Ri , we introduce notation

S (p) ≡Si , i = 1, . . . ,k.

Based on Equation (7.14), it is sufficient to pre-compute and store the following integrals:

P i , j =
∫

p∈Ri

h(p) f (ei , j , p)dp i = 1, . . . ,k, j = 1, . . . , |Si |, (7.15)

where ei , j denotes the j -th link in Si .

Finally, since the regions are mutually disjoint as subsets of P and cover it entirely, equation

(7.9) can be written as a sum and, according to (7.14), the failure probability of any link set S ⊆ E

can be evaluated as

CFP(S)=
k∑

i=1

∫
p∈Ri

h(p) f (S, p)dp =
k∑

i=1
P i , j (S,Si ) , (7.16)
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where we define P i ,0 := 0 for every i = 1, . . . ,k. Based on Eq. (7.13) and (7.16), one can derive that:

FP(S)=∑
i , j

(
P i , j −P i , j+1

)
, (7.17)

where the summation is for those pairs (i , j ) for which 1 ≤ i ≤ k and j (S,Si ) = |S| > 0. As a default,

we set P i ,|Si |+1 = 0.

7.4 Space and Time complexity of Structures CFP[G] and FP[G]

7.4.1 Cardinality of Structures FP[G] and CFP[G]

In our basic model, considering the case of the disaster shapes being circular disks in a given Lp

metric, (where, for p = 2, we get back the usual Euclidean circles, for p = 1 or p =∞, we have a

family of parallel-sided squares, and, for p = 2/3, astroids, that are specific 4-cornered stars), the

number of FPs can be upper bounded as follows4.

Lemma 7.4.1. In case of a set of circular disk shaped disasters (i.e., r (p, s) is circular) in a given Lp

metric, and the edges of the network being in general position, there are O((n + x)ρ2γ4) FPs with

non-zero probability.

Proof. Let us concentrate on line segment links for a moment. According to Claim 5.1.9, the number

of links, m, is O(n + x) for line segment links. We know from [79, Thm. 6] that the number of

k-Voronoi cells in Lp norm for line segments is O(k(m−k)+x), or alternatively, O(k(n+x −k)+x)

thus disasters hitting k links can hit at most this many link sets. Since a circular disk can hit at most

ρ links, this sums up to O(ρ2(n +x +x), which is O(ρ2(n +x)).

If links can be polygonal chains consisting of at most γ line segments, there are O(γ(n + x))

segments with O(γ2x) crossings, meaning O(kγ2(n + x)) k-Voronoi regions. By counting the k-

Voronoi regions for k ∈ {1, . . . ,γρ}, this yields an upper bound of O((n +x)ρ2γ4) for the number of

FPs.

In the same setting, the number of CFPs can be very large:

Lemma 7.4.2. The number of CFPs with non-zero probabilities is lower-bounded by Ω(2ρ). In

case of a set of circular disk shaped disasters in a given Lp metric, and the edges of the network

being in general position, the number of CFPs with non-zero probabilities is upper-bounded by

O(2ρ(n +x)ρ2γ4).
4We note that a similar upper bound can be shown for a more general family of disaster sets for the joint failure

probability of the nodes. Specifically, taking a set V of points of the plane (i.e., the nodes instead of the links), it is known
that, for any convex compact S subset of the plane, the number of subsets V ′ of V with cardinality k fulfilling V ′ =V ∩S′
for some homothetic copy of S (i.e., S′ is a copy of S shrinked/enlarged and shifted) is less than (2k −1)|V |−k2 [105].
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Proof. By the definition of ρ, there is a link set S with CFP(S) > 0 and |S| = ρ. As, for any S′ ⊆ S,

CFP(S) > 0 implies CFP(S′) > 0, implying the lower bound. By Lemma 7.4.1, there are at most

O((n +x)ρ2γ4) non-zero FPs, each having at most 2ρ subsets, yielding the upper bound.

Every FP and CFP can be stored in O(ρ) space, since it contains a link set of at most ρ links,

alongside with a related probability. This way, the space requirement of FP[G] and CFP[G] is upper

bounded by O((n +x)ρ3γ4) and O(2ρ(n +x)ρ3γ4), respectively.

7.4.2 Query Time of Structures FP[G] and CFP[G]

When storing the non-zero FPs in a list, by Eq. (7.13), querying the FP[G] structure for CFP(S)

requires iterating over all non-zero FPs and summing up all FP(T ) such that T ⊇ S. Thus, S has to be

compared with O((n +x)ρ2γ4) (Lemma 7.4.1) other sets, and each comparison can be made in O(ρ).

The number of possible additions is also O((n+x)ρ2γ4), thus the query time of the FP[G] structure is

upper-bounded by O((n +x)ρ3γ4). Alternatively, if we stored the FPs in an ordered balanced binary

tree, we would need to lookup all the exponential number of T ⊇ S.

The query time of CFP[G] also depends on the data structure used for storing CFPs. For example,

if we store all non-zero CFPs in a list, the query time would be Ω(2ρ) (Lemma 7.4.2). In contrast,

by hashing all CFP(S) on S, we reduce the query time a constant with very high probability. Last,

when storing all non-zero CFPs in a self-balancing binary tree, the worst-case query time would

be O(ρ+ log((n +x)ργ)) (Lemma 7.4.2). Although the CFP structure can achieve impressive query

times, this comes at the cost of its space complexity (Ω(2ρ)), which makes it inefficient for larger

network densities.

7.5 Implementation Issues

The approaches and performance guarantees we gave in Sections 7.3 and 7.4 are valid under the

assumption that the shape of a regional failure is always a circular disk. In this section, we propose

a heuristic that (1) can accommodate any disaster shape; (2) does not require advanced geometric

algorithms; and (3) is more suitable for digital inputs, as it uses discrete functions instead of

continuous ones.

We discretize the problem by defining a sufficiently fine grid over the plane such that for each

grid cell c, the disaster regions r (p, s) and hit link sets R(p, s) are “almost identical”5 for all p ∈ c.

This reduces the integration problem from Sec. 7.2 to a summation6.

5In particular, we may assume that f (e, p) is independent of p as long as it is in c and denote this common value by
f (e,c).

6[51] uses a similar grid approach.
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We consider R2 as a Cartesian coordinate system. Let r denote the absolute maximum range of a

disaster in km. Let (xmi n , ymi n) be the bottom left corner and (xmax , ymax ) the top right corner of a

rectangular area in which the network lies. It is sufficient to process each c in the rectangle of bottom

left corner (xmi n − r, ymi n − r ) and top right corner (xmax + r, ymax + r ), and we denote by ci , j the

grid cell in the i -th column and j -th row of this rectangle. We assume we are given the probability

hi , j of the next disaster epicenter p lying in cell c: hi , j =
∫

p∈ci , j
h(p)dp.

Now, for each c, we can compute the sequence of link failures and store the link sets as follows.

7.5.1 Structure CFP[G]

For our CFP[G] structure, we use an associative array CFP[G], which can be addressed by a set of

links S = {`1,`2, . . . ,`k } and returns its cumulative failure probability. In the pre-computation process,

we have to extract the contribution of ci , j to the failure probability of every subset S of links. To

do so, we process the sequence of link failures Si , j = (e1,e2, . . . ,el ) attached to disaster epicenters

which are in ci , j
7, and increment the CFP[G] values accordingly: CFP({e1})+ = hi , j · f (e1,ci , j ),

CFP({e2})+= hi , j · f (e2,ci , j ), CFP({e1,e2})+= hi , j · f (e2,ci , j ), etc. By default, for every link set S,

we set initially CFP(S)= 0.

To obtain CFP(S), we look it up in the associative array. If S is not found, then CFP(S)= 0.

7.5.2 Structure FP[G]

For our FP[G] structure, we take a similar approach as for the CFP[G] structure and use a list of ‘S,

FP(S)’ set-failure probability pairs.

In the pre-computation process, we have to extract the contribution of ci , j to the link fail-

ure state probability of every subset S of links. As in the case of the CFPs, we do so by it-

erating over the sequence of link failures Si , j = (e1,e2, . . . ,el ) and incrementing the FP values

accordingly: FP({e1})+= hi , j ·
(

f (e1,ci , j )− f (e2,ci , j )
)
, FP({e1,e2})+= hi , j ·

(
f (e2,ci , j − f (e3,ci , j )

)
,

FP({e1,e2,e3})+= hi , j ·
(

f (e3,ci , j − f (e4,ci , j )
)
, etc.

To obtain CFP(S), we sum up
∑

T⊇S
FP(T ).

7.6 Model Evaluation Based on Seismic Hazard Data

In this section, we present numerical results that validate our model and demonstrate the use of

the proposed algorithms on real backbone networks (taken from [106]) accompanied with real

seismic hazard inputs. The algorithms were implemented in Python 3.6., using its various libraries8,

7Here, we represent ci , j by its center p. According to Def. 7.3.1, for i < j , link ei is closer to p than e j , i.e.,
s(p,ei ) < s(p,ei ).

8The simulation data can be downloaded from [106].



82 7.6. MODEL EVALUATION BASED ON SEISMIC HAZARD DATA

respecting the regional failure model presented in Section 7.2, and following the implementation

principles of Section 7.5. Run-times were measured on a commodity laptop with a Core i5 CPU at

2.3 GHz with 8 GiB of RAM.

As a practical scenario, the simulations presented in this paper focus on transforming the seismic

hazard on network topologies to PSRLGs. As a first step, we need to convert the historical seismic

hazard data into a regional failure model for our framework. Subsec. 7.6.1 discusses our earthquake

representation based on epicenter and moment magnitude. In a nutshell, the model translates the

seismic hazard data to a set of circular disk shaped disaster areas with radii depending on the actual

moment magnitude (Fig. 7.8). Note that the epicenter distribution is non-uniform here.

We are taking this probabilistic earthquake set as input, Subsec. 7.6.2 presents our simulation

results validating our PSRLG model.

7.6.1 Seismic Hazard Representation

We are investigating the failures caused by the next earthquake within a given geographic area; thus,

we assume there is exactly one earthquake in the investigated period. Each earthquake is uniquely

identified by its epicenter and moment magnitude [107]:

epicenter ci , j , which represents a latitude-longitude cell on the Earth’s surface, taken from a grid

of cells over the network area.

moment magnitude Mw ∈ {4.6,4.7, . . . ,8.6} =: M .

We index the grid cells such that i ∈ {1, . . . , imax } =: Ii , j ∈ {1, . . . , jmax } =: Ij .

Let Ei , j ,Mw denote the set of earthquakes with centre point in ci , j and magnitude in (Mw −
0.1, Mw ]. As cells and magnitude intervals are small enough that the failures caused by each earth-

quake in Ei , j ,Mw will often be identical9, we will represent all Ei , j ,Mw with a single earthquake having

a center point in the center of ci , j and a magnitude of Mw . Let the probability that the next earthquake

is in Ei , j ,Mw be pi , j ,Mw . Note that these probabilities add up to 1, i.e.
∑

i , j∈Ii×Ij

∑
Mw∈M pi , j ,Mw = 1.

Our initial input are the activity rates ri , j ,Mw of earthquake types (see Fig. 7.8a) instead of the

pi , j ,Mw values, so we first have to translate these rates to probabilities. We claim that under the

assumption that each kind of earthquake Ei , j ,Mw arrives according to independent Poisson arrival

processes with parameters ri , j ,Mw , the rates of earthquakes Ei , j ,Mw can be transformed to probabilities

pi , j ,Mw as follows:

pi , j ,Mw = ri , j ,Mw

/ ∑
i , j∈Ii×Ij

∑
Mw∈M

ri , j ,Mw . (7.18)

9The sides of grid cells used in our simulations were 0.05◦ long in the Italian rate map, and 0.1◦ in case of the EU and
the USA, meaning 4km to 10km of cell side length.
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Figure 7.8: Seismic input data

We assign each network element e an intensity threshold t (e). If the intensity I of the ground

shaking reaches this threshold (I ≥ t (e)) at any point of the physical embedding of e, the el-

ement fails. In our simulation, every network element has the same threshold t (e) := t , where

t ∈ {VI,VII,VIII,IX,X,XI,XII} := T according to the Mercalli-Cancani-Sieberg (MCS) scale [109]10.

After each earthquake, Ei , j ,Mw , the physical infrastructure (such as optical fibers, amplifiers,

routers, and switches) in an area disk(ci , j ,R(Mw , t )) of a circular disk is destroyed. The center point

of disk(ci , j ,R(Mw , t )) is the center of ci , j , while its radius R(Mw , t ) is monotone increasing in the

magnitude Mw , and decreasing in the intensity threshold t (see Fig. 7.8b and 7.8c). As earthquakes

can occur anywhere in the cell, we increase the radius by the distance between the center of the cell

and its outer corners. This way, the disk is always an overestimate of an earthquake’s damaged area

in cell ci , j with magnitude Mw .

7.6.1.1 Earthquake Activity Rates

These are the occurrence rates of earthquake events as a function of space, time, and magnitude.

To obtain them, we need to define an earthquake source model, defined as an area or an active

fault that could host earthquakes as testified by instrumental seismic activity, historical seismicity,

geomorphological evidence, and regional tectonics. The choice of the earthquake source model is

strongly driven by the available knowledge of the area and by the scale of the problem. It may range

from well-defined active faults, especially when working at a local scale, to less understood and

wider scale seismotectonic provinces. When the catalog of earthquakes covers a long period, it can

be used to compute earthquake activity rates without any information of seismotectonic provinces

and/or active faults, via, for example, a smoothed seismicity approach. In this work, we evaluated

the earthquake source model for Italy and the USA from the most recent published earthquakes

10Intensity I ≤V does not cause structural damage, while I =XII means total damage.
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catalogs ([108], and [110], for Italy and the USA, respectively) that cover a long period and can be

used to obtain earthquake source model without other information. Although earthquakes can be

clustered in time and space with their distribution that is over-dispersed if compared to the Poisson

law[111], a common way to treat this problem (i.e., cluster in time and space) is to de-cluster the

earthquake catalog, i.e., removing all events not considered mainshocks, via a declustering filter

[112]. Here, both catalogs are considered de-clustered. The standard methodology to estimate the

density of seismicity in a grid, and used in this work, is the one developed by [113]. The smoothed

rate of events in each cell is determined as follows:

Sri =
∑

j r j exp
(−d 2(ci ,c j )

d 2
c

)
∑

j exp
(−d 2(ci ,c j )

d 2
c

) , (7.19)

where r j is the cumulative rate of events with magnitudes greater than the completeness magnitude

Mc in each cell ci of the grid and computed from the historical catalogue of earthquakes, d(ci ,c j ) is

the distance between the centers of grid cells ci and c j . The parameter dc is the correlation distance

(for Italy, 30km [114] and for the USA, 75km [115]). Then, the earthquake activity rates for each

node of the grid are computed following the Truncated Gutenberg-Richter model [116]:

λ(M) =λ0
exp(−βM)−exp(−βMu)

exp(−βM0)−exp(−βMu)
(7.20)

for all magnitudes M between M0 (lower or minimum magnitude) and Mu (upper or maximum

magnitude); otherwise λ(M) is 0. The upper and lower magnitude bounds represent, respectively,

the maximum magnitude, or the largest earthquake considered for a particular source model, which

depends on the regional tectonic context (in our case, Mw is at most 8.1, 8.6 and 8.3 for Italy, Europe,

and the US, respectively), and the minimum magnitude, or threshold value, below which there is no

engineering interest or lack of data (in this study, Mw > 4.5)11. Additionally, λ0 is the smoothed rate

Sri of earthquakes at Mw = 4.5 and β= bln(10), where b is the b-value of the magnitude-frequency

distribution. For Italy, we calculated the b-value of the distribution on a regional basis using the

maximum-likelihood method from [117], while for the USA, it comes from [110]. While for Italy

and the USA, we computed the earthquake rates (Fig. 7.8a) following this approach and with the

referenced data, for Europe, we used the already published SEIFA model ([118], and [87]), a kernel-

smoothed, zonation-free stochastic earthquake rate model that considers seismicity and accumulated

fault moment. In this model, activity rates are based on the SHARE European Earthquake Catalogue

frequency-magnitude distribution model. The spatial distribution of model rates depends on the

density distributions of earthquakes and fault slip rates. A magnitude-frequency distribution indicates

11Fig. 7.8a shows that, in the investigated range of magnitudes, the global rate of earthquakes dips exponentially in the
function of the magnitude.
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the probability that an earthquake of a size within the upper and lower bound of the distribution may

occur anywhere inside the source during a specified period.

While this does give us the rates for all combinations of epicenters and magnitudes for Italy, the

USA, and Europe (Fig. 7.8a), we still need the relation between magnitude and disaster area to be

able to apply these rates to the network resiliency models.

7.6.1.2 The Radius of the Damaged Zone

The only earthquake effect that can be quantified at the scale of the whole country is ground shaking

because quantifying any other earthquake effects requires a site investigation. Shaking intensity is

localized and is generally diminishing with distance from the earthquake’s epicenter. At the scale of

a whole country, we can assume that soil and topographic conditions are relatively homogeneous.

The seismic intensity only depends on the distance from the earthquake epicenter.

Here, we assume all links (and nodes) inside the area with a given MCS intensity I ≥ t (where

t ≥VI) are damaged, while all components outside of this area remain functioning. Thus, to obtain all

disaster areas, we now only need the disaster area radius for each magnitude Mw ∈ {4.6,4.7, . . . ,8.6}.

For this purpose, we used the intensity prediction equation of [119] and [120], for Italy/Europe, and

the USA, respectively, where the expected intensity I at a site located at epicentral distance R is:

IIt,EU = 1.621 ·Mw −1.343−0.0086(D −h)−1.037(lnD − lnh), (7.21)

IUS = 0.44+1.70 ·Mw −0.0048 ·D −2.73 · log10 D, (7.22)

where D =
p

R2 +h2 is a sort of hypocentral distance, and h represents the hypocentral depth, which

may be viewed as the average depth of the apparent radiating source [119], h equaling 3.91km and

10km for Italy/Europe and the USA, respectively. In this way, it is possible to compute for each

Mw and intensity threshold t the site-distance R(Mw , t ) from the epicenter of the desired intensity

threshold level. It is worth noting that Eq. (7.21) has been obtained using only the Italian earthquake

historical catalog, and so it is not entirely correct to use it for the entirety of Europe. However, the

Italian catalog is one of the more complete catalogs in Europe. There is no similar equation in the

literature for the entire continent (to the best of our knowledge), and its development is beyond

the paper’s scope. We assume that the application of Eq. (7.21), as a first approximation, can be

considered correct for entire Europe.

7.6.2 Simulation results

We consider seven topologies: one Italian topology, three other European topologies, and another

three US topologies. Unless otherwise stated, we set the intensity tolerance threshold, t , to VI

according to the MCS scale. The node and link counts, as well as the number of CFPs and FPs with
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non-zero probability, of all topologies are given in Table 7.2 both for t =VI and t =VII.

Interestingly, although the US network has slightly more nodes and links than the Italian network,

it has much less CFPs (946 compared to 12106). This difference is easily explainable when we

consider our theoretical results from Sec. 7.4: the number of non-zero CFPs is lower-bounded by

Ω(2ρ) (Lemma 7.4.2), which means an exponential growth with the maximal number of hit links, ρ.

Since the Italian network has much shorter links than the American network, its hit link sets tend to

be larger. We can observe this same exponential increase with the maximal number of hit links when

we decrease the threshold from t =VII to t =VI. For example, the number of CFPs of NFSNET is

1762 at t =VII, but explodes to 14199 if we decrease this threshold to t =VI. In contrast, the number

of FPs makes a much smaller jump, from 523 to 969.

By only storing the x largest CFPs, we can trade in some precision in exchange for a significant

reduction in memory usage. Fig. 7.9a shows the precision of this approach versus x. For the Italian

topology, the highest probability among the omitted edge sets is 5.4× 10−4 or 1.7× 10−5 if we

store only the top 100 or 1000 CFPs respectively. Furthermore, increasing the precision by order of

magnitude requires only a bit more than an order of magnitude more CFPs. Similarly, in the case of

the other networks, storing the first 100 or 1000 CFPs means that the highest probability among the

omitted edge sets is below 5×10−4 or 1×10−5, respectively; and increasing the number of CFPs by

order of magnitude is more than enough for increasing the precision by a factor of 10.

Speaking of the precision-memory trade, omitting some of the FPs is also possible. In this case,

the imprecision in the value of CFP(S) for some S can be upper bounded by the sum of probabilities

stored in the omitted FPs. On Fig. 7.9b, we can see the probability assigned to the x th most probable

FP. Fortunately, the highest number of non-zero FPs was low, 969 in our experience, meaning that,

most probably, no omission is needed.

As mentioned before, the difference in the number of non-zero CFPs can partly be explained

by a difference in hit link set sizes. Fig. 7.9c shows the maximal number of hit links, ρ, versus the

intensity threshold, t . We can confirm that, at t =VI, the Italian network has a much higher density

than the US network (13 compared to 7).

We have also investigated the average CFP of a set of links with given cardinality. Fig. 7.9d shows

the average failure probability concerning the number of links failing together. Single links have

Table 7.2: The investigated network topologies

Network name n m # CFPs at t =VI # FPs at t =VI # CFPs at t =VII # FPs at t =VII

Optic EU 22 45 6377 202 1369 135
Italian 25 34 12106 308 676 200

US 26 43 946 246 260 164
Nobel EU 28 41 3867 149 680 94

EU 37 57 5634 212 745 133
N.-American 39 61 2024 394 556 257

NFSNET 79 108 14199 969 1762 523
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Figure 7.9: The space and complexity of the data structures for the examined network topologies.

an average failure probability between [4.2×10−4,2.1×10−3], depending on the network topology.

The average failure probability for double and triple link failures lies in [1.2× 10−5,3.9× 10−4]

and [1.9×10−6,9.3×10−5], respectively. These averages meet our expectations that the correlation

between link failures is significant. By our observations, the combination of link failures with the

highest CFPs is predominantly the combined failure of links incident to a single node.

Fig. 7.10 further investigates the relationship between the space requirements of CFP[G] and

FP[G]. In Fig. 7.10a, we show the space requirement of structures CFP[G] and FP[G] as a function of

the intensity threshold t . As expected, the number of CFPs drops quickly with the intensity threshold.

Our results show that, especially at lower thresholds, choosing the FP structure can significantly

reduce space requirements. This phenomenon is even stronger in case of Italy_995, a network with 32

nodes and 70 links over Italy, that we decided to exclude from most of the simulation presentations.

The reason for this is its unusually high density: at intensity tolerances of t =VI and ρ =VII, it has

densities ρVI = 31 and ρVII = 19, yielding > 109 and 1153294 CFPs, while the number of its FPs is

only 2011 and 1090, respectively.

Fig. 7.10b depicts the number of CFPs and FPs with given cardinality for the Italian. Since there

is a link set of cardinality 13 with positive FP, there must be over 1700 subsets of cardinality 6 with

non-zero CFP. In comparison, the number of FPs peaks at 71 for cardinality 4.



88 7.7. AN END NOTE ON THE GEOMETRIC TRANSFORMATION OF THE NETWORK

VI VIIVIII IX X XI XII
100

101

102

103

104

Intensity threshold t

N
um

be
ro

fe
le

m
en

ts CFP[G]

FP[G]

(a) Average CFP/FP number
vs. intensity threshold

0 2 4 6 8 10 12 14
100

101

102

103

104

Number of links

N
um

be
ro

fe
le

m
en

ts

(b) CFP/FP number vs.
# links contained for Italian,
t =VI

Figure 7.10: Comparison of space efficiency
of structures CFP[G] and FP[G]

100 101 102 103

10−8

10−7

10−6

10−5

10−4

10−3

10−2

CFP(S) for |S| = 1,2,3

x
th

la
rg

es
tC

FP
of

gi
ve

n
si

ze

|S| = 1

|S| = 2

|S| = 3

(a) CFPs of Italian for t =VI (b) Italian topology

Figure 7.11: CFP comparison of single, double
and triple link failures for Italian

Continuing our study of the cardinality of failed link sets, Fig. 7.11a investigates the dependency

between CFP(S) and |S| in detail, for |S| = 1, 2 and 3. There are 34 single link failures in the Italian

network whose CFPs range between [0.0003,0.019]; it has 205 dual link failures with non-zero

probabilities between [7×10−8,0.0037], and there is a number of 648 triple link failures with strictly

positive probabilities, ranging between [7×10−8,0.0019]. Here we can see that some CFPs with size

l are less probable than some other CFPs containing l +1 links. Thus, only storing CFPs with at most

l links rarely yields the same result as only storing the most probable CFPs. Also, we can observe

that the CFPs of the most probable triple link sets are not much smaller than the CFPs of the most

probable link pairs. This is another sign that the most probable double and triple link failures are

failures of the links incident to the same network node.

7.7 An End Note on the Geometric Transformation of the Network

In the geometric reasonings of the current Chapter, we transform the links of the graph into line

segments. We also need to ensure that no two segments share a common endpoint. In the network,

the adjacent links terminate in a single node; thus, we need to perform a minor transformation as

follows.

Let S ⊆ E be a set of segments and ε> 0 a small number. Suppose that we shorten some segments

e of S, in a way that we delete ε long subsegment from both ends, in such a way that the deleted

intervals do not overlap. Let S′ denote the set of segments S after shortening.

Lemma 7.7.1. We have f (S, p) ≥ f (S′, p) and f (S, p)− f (S′, p) ≤ εK hold for every point p.
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Proof. For the first inequality note that

f (S, p) =
∫ 1

s=0

∏
e∈S

IR(p,s)(e)ds ≥
∫ 1

s=0

∏
e ′∈S′

IR(p,s)(e ′)ds = f (S′, p) (7.23)

because IR(p,s)(e) ≥ IR(p,s)(e ′) holds for every s, whenever e ∈ S.

We turn now to the second inequality. Let s be the smallest value such that
∏

e∈S IR(p,s)(e) = 1

(if there is any), and set s′ = s + εK . Let d and d ′ be the radii of r (p, s) and r (p, s′), resp. By the

Lipschitz property we have εK = s′− s ≤ K (d ′−d) giving that d ′ > d +ε. We know by the definition

of s that r (p, s) intersects every segment e ∈ S in some point Qe . But then r (p, s′) intersects e ′. This

holds, because the larger disk r (p, s′) clearly contains the disk of radius ε centered at Qe , and the

latter disk must intersect e ′ because we deleted disjoint subintervals of length at most ε from e to

obtain e ′. We have therefore
∏

e ′∈S′ IR(p,s′)(e ′) = 1, hence

f (p,S)− f (p,S′) =
1∫

y=0

(∏
e∈S

IR(p,y)(e)− ∏
e ′∈S′

IR(p,y)(e ′)

)
dy ≤

s′∫
y=s

1dy = εK . (7.24)

We transform our set of segments into one, where no segment e has an endpoint A on any other

segment. If we have such a segment, then we carry out the transformation by deleting an ε long

subsegment of e starting at A. Lemma 7.7.1 gives that if we set ε sufficiently small, then all the

values f (p,S) and f (p,S′) will be very close to each other, hence CFP(S) and CFP(S′) will be very

close to each other. Moreover, for any two segments e1,e2 ∈ E , we have that either e1 ∩ e2 =;, or

e1 ∩e2 is an interior point of both segments.

As a simple example illustrating the Lipschitz condition 2) from 7.3.1, suppose that r (p, s) is a

disk centered at p having radius sRp , where Rp is the radius of r (p,1). Then for radii d = sRp and

d ′ = s′Rp we have |s′− s| = 1
Rp

|d ′−d |. The Lipschitz condition then holds if there exists a k > 0 such

that Rp ≥ k for every p.
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7.8 Thesis Summary

Thesis 3. [C4, C9, J3] I defined a stochastic model of link failures caused by disasters, which

considers the correlation between failures of links which are geographically close to each other. To

unify the notions and terminology on Probabilistic SRLGs, I proposed standard data structures for

containing the disaster probabilities. In case of circular disk shaped disasters, for the size and query

time of these data structures, I proposed theoretical upper bounds. Evaluating the model and data

structures, I showed that in case of taking real seismic data as input, these data structures have a

manageable size.

Thesis 3.1. [C4, C9, J3] Inspired by earthquake behaviours, I defined a stochastic model of link

failures caused by disasters. This model is the first to explicitly consider the correlation between

failures of links which can be subject to the same disaster.

To unify the notions and terminology linked to probabilistic extensions of Shared Risk Link

Groups, I proposed two standard data structures for describing the disaster probabilities. Namely,

for a graph G, these structures are called FP[G] and CFP[G], respectively. In FP[G], for each link

set S, the probability that exactly S will fail is stored as FP(S) , while in CFP[G], the probability that

at least S will fail is stored as CFP(S) .

Thesis 3.2. [C4, C9, J3] In case of disasters having shapes of circular disks in a given Lp metric,

representing the network topology G(V ,E) in the Euclidean plane with links considered as polygonal

chains consisting of at most γ line segments, denoting the number of link crossings by x, and the

maximum number of links which are hit by one of the disasters by ρ, I proved the followings. There

are O((|V |+x)ρ2γ4) FPs with nonzero probability. The number of CFPs with positive probability is

lower bounded byΩ(2ρ) and upper bounded by O(2ρ(|V |+x)ρ2γ4). Storing all the positive CFPs in a

balanced binary tree, the worst-case query time of the CFP of a given link set is O(ρ log((|V |+x)ργ)).

Storing all the positive FPs in a list, the query time of the CFP of a given link set is O((|V |+x)ρ2γ4).

Thesis 3.3. [C4, C9, J3] Using real-world seismic hazard data combined with Italian, European

and contiguous US network topologies, I found the followings. Assuming network equipment fails

only at a shaking of intensity VIII of the MCS scale, there is no significant difference in the cardinality

of CFPs and FPs with positive probability. The number of CFPs becomes unacceptably large and

slow to compute only at the combined presence of strong earthquakes (with Mw ≥ 8), short network

links (≤∼ 50 km), and network resources poorly resistant to ground shaking (failing at intensity VI).

Structure FP has a low cardinality and can be computed in some minutes in these circumstances too,

even on a commodity laptop. Finally, listing CFPs with at most l links rarely yields a list equivalent

to keeping some of the most probable CFPs.



Chapter 8

Conclusion

8.1 Summary

This Thesis is dedicated to prove that the effect of regional disasters (natural on man-made) can be

modeled with a low number of SRLGs or PSRLGs. These carefully constructed lists of (P)SRLGs

can be used as input for e.g., network recovery/planning mechanisms.

In Chapter 5 (Thesis 1), I showed that, known the geometric embedding of the network topology,

and overestimating the disaster area by a circular disk with radius r , the list M p
r of worst-case SRLGs

can be calculated in low-polynomial time, and has O(|V |ρr ) elements. In case of spherical embedding

I also proved low-polynomial bounds on the size and computing time of Mr . I showed that in case of

real-world network topologies and disasters with a radius ≤∼ 500km, the difference between lists

M s
r and M p

r is often less than the difference due to the disaster size estimation.

Chapter 6 (Thesis 2) offered a regional failure model for the case when only a schematic map

of the network is given as input. The resulting list Mk of maximal failures caused by circular disks

hitting at most k nodes has at most O(|V |kρk ) elements, and can be calculated in low-polynomial

time.

Lastly, Chapter 7 (Thesis 3) presented 1) a unified terminology on PSRLGs, 2) a tractable

stochastic model of disaster failures explicitly taking in count the correlation on the link failures,

and 3) an evaluation of the model based on seismic data. I concluded that the risk induced by the

seismicity on backbone topologies can be encoded in and quickly looked up from a small-sized CFP

or FP list.

These lists of vulnerable regions can be used as input of various problems arising in the field of

network resiliency. Some of these problems are resilient (geodiverse) routing, (k-)content connectivity,

network failure detection, service availability queries, resilient backbone network planning, disaster

avoidance control, resilient SDN, etc.
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8.2 Open Problems

I believe for M p
r , there is little room for making the created algorithms faster for its enumeration.

Also, theoretical upper bounds on |M p
r | are tight. Contrary to this, inspired by the lessons learned

on M p
r , there are some low-hanging fruits for a faster algorithm enumerating M s

r , and better upper

bounds on |M s
r |.

In case of Mk , the presented algorithm computes it in O
(
n2

(
k5 +k log(nk +1)+1

))
(if γ is

constant and ρk is O(k +1)). A natural question is whether it is possible to compute Mk quicker.

For k = 0 the answer is yes in case of usual networks: as presented in [C13] and [T1], M0 can be

determined in O(n(logn +ρ3
0τ0)), where τ0 is an additional parameter depending on local properties

of the embedding of the network in the plane (and edges are considered as line segments). In other

words, there exists an algorithm to compute M0 in f (ρ0,τ0)O(n logn). I believe that there exist

similar algorithms for determining Mk in f
(
k,ρk ,γ, . . .

)
O

(
n logn

)
, where f depends only on k and

on ’local’ properties of the embedding. This near-linear complexity in n would allow Mk to be

computed even quicker in case of huge networks too. Due to the limits of my research, this remained

an open problem.

It is also an open question if one can enhance the preciseness of our probabilistic disaster failure

model presented in Chapter 7 while maintaining its relative simplicity.

8.3 Possible Future Work

Possible future directions of this research include but not restrict to:

• better integration of failure modeling into disaster resilience approaches (FRADIR[C8, C5, J2]-

like studys),

• proving our conjecture that the regional SRLG-disjoint routing problem is in P ,

• evaluating our probabilistic failure model with more complex real-world inputs,

• as a side-track of a future SRLG list comparing study, creating the ‘SRLG-Zoo’, a webpage

similar to Topologyzoo [121], from where one could download network topologies and related

(P)SRLG lists.

The reason I did not mention designing more elaborated SRLG models is twofold. In many cases,

the data on the network and its environment is very limited, thus, in my opinion, designing more

complex SRLG failure models than the state-of-the-art would be an overkill (e.g., embedding the

network to a hyperbolic space). On the other hand, if we do have abundant data, then we should aim

for increasingly accurate probabilistic models.



Afterword
PTTR - Post, Telephone, Telegraph, Radio: this good old Romanian telecom brand is still written

in front of a post office in Seklerland in 2021 when half of the western civilization is in home

office or learns online and 5G networks are being installed worldwide. The speed of technological

transformation is never anticipated, indeed. My parents are telling mind-boggling stories of the

telecommunication possibilities of the communist Romania of the ’80s. They had to wait for hours

in a crowded room to get access to a telephone line to home, and when they finally got it, they had

to listen to and answer the frequent question of the operator: ‘Still speaking?’. The way of sending

birthday wishes would also be peculiar today: the post transferred dispatches charged per characters

counted by hand.

After the revolution of ’89, my father applied for an international telephone line for his freshly

founded company. Surprisingly at that time, he got it, and a number of people could manage their

foreign affairs at him – with a little bit of luck since successful dials were rare. In the ’90s, Romania

made a huge leap forward in the technology applied and closed up to the state of the art. The Internet

arrived in cities, towns, and lucky villages of the country, and in the absence of regulations enforced,

in the 2000s, the country was told to host a major pool of hackers.

By now, the Internet has become a topmost critical infrastructure all over the world that allows

not only companies to rely on it and send money instantaneously but also scientists to collaborate in

a way unseen before. On 31st July 2019, for example, we were finalizing an INFOCOM submission,

working at the same time on the same file from Madrid, Zurich, Vienna, Berlin, and Székelyudvarhely,

respectively. I have to admit that despite our work was smooth and effective, I had to use my mobile

net because the regular (wired) Internet connection was down in the town. They rumor that the power

supply of a nearby router is getting wet at local storms (if that is a common feature of our local

infrastructure, then even a mild storm can cause here a regional failure). Maybe it was just a simple

cable cut. That is not unanticipated in local level either: when they built the sewer pipe to the local

spa in 2018, according to the rule, they planned its route to avoid all kind of infrastructure, apparently

but for the optical cable of the Internet: they cut it in the first hour of digging.

Conform to the arising requirements, it is likely that the telecommunication networks will

continue to evolve to such an extent that in some decades, our global status in 2021 would seem as

obsolete the telecom possibilities of the ’80s Romania. As discussed in this Dissertation, my findings

are part of the work for this vision.
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