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Abstract—Many recent studies shed light on the vulnerability
of networks against large-scale natural disasters. The correspond-
ing network failures, called regional failures, are manifested
at failing multiple network elements that are physically close
to each other. The recovery mechanisms of current backbone
networks protect failures listed as Shared Risk Link Groups
(SRLGs). We aim to design an algorithm for the routing engines,
which can generate a reasonable list of SRLGs based on the
limited geometric information available. As a first step towards
this direction, in this paper, we propose a limited geographic
information failure model for the network topology that enables
efficient algorithms to compute the set of links that are expected
to be close to each other. More precisely, we work with (1) relative
node positions without knowing the real distances, (2) an area
in the map defines the route of each physical cable, and (3) a
regional failure is a circular disk with k = 0,1, . . . nodes in its
interior. We describe an efficient algorithm for listing SRLGs
based on our limited geographic information failure model and
show that under realistic assumptions, the obtained list of SRLGs
is short, having approximately 1.2n and 2.2n elements for k = 0
and k = 1, respectively, where n is the number of nodes of the
network.

I. INTRODUCTION

N etworks can efficiently survive a single point of failure
(we refer the interested readers to [1], [2]); however, we

are still witnessing severe network outages [1]–[11] because
of a failure event that takes down almost every equipment in
a physical region as a result of a disaster, such as weapons of
mass destruction attacks, earthquakes, hurricanes, tsunamis,
tornadoes, etc. These type of failures are called regional
failures, which are simultaneous failures of nodes/links located
in at most a few hundred kilometer wide geographic area [1]–
[11]. Therefore, this paper aims to increase the service avail-
ability for the network connections where the distance between
the endpoints is thousands of kilometers; by allocating backup
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paths with more significant physical distance, say hundreds of
kilometers, from the primary path.

Note that handling the geometric information with the
network topology is not part of the network protocols. Fur-
thermore, in many cases, the Internet Service Providers hire
the links as a service from an independent company [12],
called the Physical Infrastructure Provider, and thus, operators
often have no information about the route of the links, or
the physical coordinates of the intermediate routing nodes. As
a solution, vendor specification of core network equipment
suggests ensuring that the primary and backup paths assigned
to a connection are simply edge or node disjoint (e.g., Huawei
[13, Sec. 4.5.4], Alcatel-Lucent [14, pp. 46-50], Cisco Systems
[15, Chpt. 19], Juniper [16, Chpt. 3], Infinera [17]). With node-
disjointness, operators ensure that the distance between the
nodes of the primary and backup paths (except at the terminal
nodes) are at least 1-hop-distance from each other (Fig. 1).
The intuitive reason behind this is that a link in a backbone
network is typically a few hundred kilometers long [18], while
natural disasters are never larger than a few hundred km.
Unfortunately, this is not enough, and networks may suffer
serious outages after natural disasters [1]–[11] because of

• close network nodes, e.g., in highly populated areas, and
• parallel links, e.g., links traversing the same bridge over

a river, or crossing a mountain range through a valley.
In the routing protocols of backbone networks (e.g., optical

mesh, MPLS, and IP) Shared Risk Link Group (SRLG) (also
referred to as shared risk resource group, or failure states) is
the concept for defining a set of links of which’s failure the
network should be prepared. Close network nodes and parallel
links should have been identified at network planning and
listed as SRLGs in the service level agreement (SLA) [23],
which is the contract between a service provider and a service
user on the quantity, quality, and price of a service. Then, the
routers’ routing engine would compute SRLG-disjoint primary
and backup paths to survive these failures1. In other words, the
network can survive a failure of an SRLG or a subset of links
in an SRLG; however, there is no performance guarantee when
a network is hit by a failure that involves links, not a subset
of an SRLG. Nevertheless, the list of SRLGs must be defined
very carefully, because not getting prepared for one likely
simultaneous failure event means a significant degradation in
the observed reliability of the network. At the same time, the

1The routing algorithms modify the SRLGs, whose failure isolates the
source and destination nodes: those SRLGs are replaced with a smaller non-
isolating SRLG according to the failure model.
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Fig. 1: Strategies for separating the primary and backup paths in increasing strength (the more right the better the separation is). By utilizing
only a limited geometric information on the network topology, this paper offers an SRLG list Mk that ensures single regional link k = 0,1, . . .-
node failure disjointness. SRLG list Mk fills the gap between h-hop disjointness and r -distance disjointness. Arcs are directed from weaker
separations towards the stronger ones (according to Apprendix A, protecting regional link 0-node failures ensures node disjointness).

number of SRLGs should be kept low. Since an SRLG is
defined as a set of links, we say a node is part of an SRLG
if every adjacent edge to the node is part of the SRLG.

Several studies investigated how to collect historical data
about the vulnerabilities (e.g., past natural disasters) and
combine it with the geometry of the network topology (e.g.,
the exact GPS coordinates of the nodes and the routes of
the cable conduits) to list SRLGs (or vulnerability regions).
They are either focusing on the geometric approaches [3],
[20], [21], [24]–[28] or on past natural disasters [5], [7]–[11],
[29]. Note that the RFCs [30], [31] on automatically collecting
SRLGs are for higher (MPLS) layer. Overall, we see the lack
of information on the topologies is the reason why networks
are still not properly prepared to survive natural disasters.

This paper aims to provide an alternative approach where
the SRLGs are guessed based on the available topology
information. Roughly speaking, the SRLGs are derived by
deeply analyzing the topology graph and investigating whether
a set of links could be physically close. We borrow the idea
of Delaunay graphs to classify “close nodes”: a node-pair i , j
is close if the circular disk through i and j that has no nodes
interior. For “parallel links”, inspired by the Voronoi diagrams
[32], a set of links S is classified as close if there is a point in
the plane from which the links of S are the nearest network
elements, and thus there could be a disaster that will destroy all
the links of S while the rest of the network remains operating.

Inspired by the above, in Subsec. II-A, we define a limited
geometric information failure model to estimate the links
that are potentially close to each other based on the logical
topology and a little information a router may know about
the network geometry. The model represents the outcome of
a possible topology discovery software module running in the
routing engines, which embedded the nodes and links into a
schematic map according to the measured propagation delays.
As also depicted in Fig. 1, protecting single regional link
k-node failures (i.e., failures caused by circular disk shaped
disasters that hit k network nodes) is a good compromise for
regional failure protection if the exact embedding of the net-
work is not known, as 1) these failures cover the “close-node”
and “parallel link” type failures, 2) using pure graph-theoretic
approaches, close-node and parallel-link failures could not be
protected, and 3) approaches based on abundant input data on
the network geometry or the disasters are not applicable due

to the lack of information.
The main contribution of the paper is providing a failure

model and a related SRLG enumerating algorithm that covers
the most important possible regional failure states of the
network based on the little geometric information on the
topology available.

More concretely, we show that all possible failures caused
by a circular disk with at most k nodes interior can be
represented by O ((k +1) |V |) SRLGs in a typical backbone
network topology (see Coroll. 25), and might be at most
O ((k +1) |E ||V |) in an artificial worst-case scenario (shown in
Appendix I), where |V | denotes the number of nodes in the
network and |E | the number of links. We propose a systematic
approach based on computational geometric tools that can gen-
erate this list of SRLGs in O

(|V |2 (
k5 +k log(|V |k +1)+1

))
steps on typical networks. Besides the excellent asymptotic
behavior, the obtained SRLG lists are short enough for network
operators to prepare their networks to be resilient to such
failure situations. We believe backbone networks operated to
survive SRLG failures according to our new failure model
should have significantly higher reliability.

In our previous studies [33] and [34] regional disasters
hitting exactly k = 0 and k = 1 nodes have been investigated.
The lists proposed for protecting these failures have a length
linear in the number of network nodes and can be calculated in
O

(|V | log |V |) and O
(|V 2|) for k = 0 and k = 1, respectively, on

typical networks. Our paper [35] provides a simpler algorithm
for arbitrary k with time complexity O

((
k2 +1

) |V 3|) in case
of stronger assumptions than present paper’s. Note that this is
the first study containing simulation results on the proposed
SRLG lists.

On the technical side, we note that however, our study
heavily relies on former computational geometric results on
structure k-Delaunay [36], or on its dual, the k-Voronoi dia-
gram [32], as we are interested in the maximal edge sets hit by
disks hitting k nodes, our results are not trivial consequences
of the previous knowledge on neither the k-Voronoi, nor the k-
edge-Voronoi diagram [37]. To the best of our knowledge, no
previous study addressed the problem presented in the paper
( [38] and [39] deal with somewhat loosely related topics).

The rest of the paper is organized as follows. In Sec. II our
model will be presented. In Sec. III a polynomial algorithm
for computing the SRLG list is introduced, and both non-
parametrized and parametrized upper bounds on the running



time of the algorithm are given. Next, simulation results are
presented in Sec. IV. We also discuss some open theoretical
problems in Sec. V, and finally, Sec. VI concludes our paper.

II. PROBLEM FORMULATION AND ASSUMPTIONS

A. The Limited Geometric Information Failure Model

We have the following design goals in defining the limited
geometric information failure model.
(a) Do not underestimate the set of links involved in a possible

regional failure. We believe the operator’s damage in case
of an unprotected regional failure is much higher than the
extra cost of protecting networks against larger SRLGs.

(b) Relative link distances are given, the exact route of the
cables are unknown, and the nodes are embedded in a
schematic map.

(c) Provide a fast and space efficient way of calculating the
set of SRLGs.

According to our first design goal, we deal with circular disk
failures and define the size of the regional failure through the
number of nodes it covers. Although the regional failures can
have any location, size, and shape, without any background
information on the regional failures, it is a common practice
to overestimate the size of the regional failure by ignoring its
shape and rather focus on its radius only [26], [40]2. According
to our second design goal, the scaling of the topology map is
not known, thus we cannot define a fixed maximum radius
for the regional failures, but instead, we define a limit on the
number of nodes interior to the circular disk.

Now we can define the limited geometric information failure
model, which is based on the following assumptions:
(1) The network is a graph G (V ,E ) embedded in a 2D plane.
(2) The exact route of the conduits of the network links are

not known, but contained by a known polygonal region.
(3) The shape of the regional failure is assumed to be a

circular disk with arbitrary radius and center position.
(4) We focus on regional link k-node failures, failures that hit

k nodes for k ∈ {0, |V |−2}.
Note that, in our experiments with practical network topolo-

gies protecting against single regional link 0-node failures
resulted in at least 2-hop-distance between the nodes of the
primary and backup paths, except the terminal nodes. We be-
lieve the proposed approach well captures the possible regional
network failures based on the little geographic information
available at network devices.

B. Formal Graph and Disaster Models

The network is modeled as an undirected connected geo-
metric graph G = (V ,E ) with n = |V | ≥ 3 nodes and m = |E |
edges3. The nodes of the graph are embedded as points in the
Euclidean plane, and their exact coordinates are considered to
be known. In contrast to this, precise positions of edges are
not known, instead we assume that for each edge e there is
a containing polygon (or simply polygon) ep in the plane in

2Clearly, extreme overestimation of the failed link set should be avoided.
3Graph G = (V ,E ) is not necessarily planar.

which the edge lies (see Fig. 2a). Parameter γ will be used to
indicate the maximum number of sides a containing polygon
ep can have. Note that this model covers special cases when
edges are considered as polygonal chains or line segments
(thus at first reading, for ease, the reader may consider the
edges as line segments and γ equals two).

It will be assumed that basic arithmetic functions
(+,−,×,/,p ) have constant computational complexity. For
simplicity, we assume that nodes of V and the corner points
of the containing polygons defining the possible route of the
edges are all situated in general positions of the plane, i.e.,
there are no three such points on the same line and no four
on the same circle.4

We will often refer to circular disks simply as disks. The
disk failure model will be adapted, which overestimates the
area of a disaster such that all network elements that intersect
the interior of a circle c are failed, and all other network
elements are untouched. It is important to note that this
modeling technique does not assume that the failed region
has a shape of a disk, but overestimates the size of the failed
region to have a tractable problem space.

Definition 1. A circular disk failure c hits an edge e if
the polygon of the edge ep intersects the interior of disk c.
Similarly, node v is hit by failure c if it is in the interior of
c. Let Ec (and Vc ) denote the set of edges (and nodes, resp.)
hit by a disk c.

We emphasize that in this model, when we say e is hit by
c, it does not necessarily mean that e is destroyed indeed by
c, instead, it means that there is a positive chance for e being
in the destroyed area.

In this study, our goal is to generate a set of SRLGs, where
each SRLG is a set of edges. Note that from the viewpoint of
connectivity, listing failed nodes beside listing failed edges has
no additional information. We consider SRLGs that represent
worst-case scenarios the network must be prepared for; thus,
there is no SRLG which is a subset of another SRLG.

Definition 2. Let C denote the set of all circular disks in the
plane, and let Ck ⊆ C denote the set of those hitting exactly
k nodes from V .

Now we can define the set of failure states the network may
face after a disk failure hitting exactly k nodes.

Definition 3. Let set F (Ck ) denote the set of edge sets which
can be hit by a disk c ∈Ck , and let Mk = M (Ck ) denote the
set of maximal edge sets in F (Ck ).

Note that for every l ∈ {0, . . . ,k −1} and f ∈ Ml there is an
f ′ ∈ Ml+1 such that f ⊆ f ′, because any disk hitting l ≤ k
nodes could be overestimated by a disk hitting k nodes.

As mentioned before, only the maximal edge sets will be
listed as SRLGs. This study aims to offer fast algorithms

4All of the results of the paper could be extended to geometric objects in
non-general position, however, this would complicate our arguments lowering
the paper’s readability, while by an insignificant perturbation of the data one
can make sure that the geometric objects are in general position.
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(a) Input graph G = (V ,E ) with con-
taining polygons, n = 17, γ= 4.
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(b) Graph D0(V ,E0), |E0| = 40
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(c) Graph D1(V ,E1), |E1| = 66
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(d) Graph D2(V ,E2), |E2| = 89

Fig. 2: Input topology G (V ,E ) and k-Delaunay graphs Dk (V ,Ek ) for k = 0,1,2 on the same node set V . Polygons filled with gray represent
the containing polygons of network edges. Line segments between nodes represent Delaunay edges. Edges of Ek \ Ek−1 are depicted in red
on Subfig. 2c and 2d, respectively, while the rest of the edges are in blue.

computing this list for various values of k, more precisely,
throughout the paper, we will assume k ∈ {0,n −2} since if a
failure hits n−1 nodes, there is no node pair to communicate.

III. ALGORITHM FOR ENUMERATING MAXIMAL FAILURES

In this section, a polynomial-time algorithm is presented
for computing Mk . The basic idea is that determining Mk

can be decomposed into several simpler tasks, as illustrated in
Fig. 3. Informally, after determining the so-called k-Delaunay
graph (Def. 9 in III-B), data structures apple (Subsec. III-C)
and seesaw (Appendix F) are computed, and finally Mk is
determined by merging lists M u,v

k and M w
k resulting from

querying the apples and seesaws.

A. Basic Observations

Our first observation is the following.

Claim 4. For every f ∈ Mk (k ≤ n − 2) there exists a disk
c ∈Ck such that f is hit by c, and c has at least one node of
V on its boundary.

Proof: Let f be hit by a disk c0 ∈Ck with center point p.
Since there are nodes of V not inside c0, c0 can be magnified
from p until its boundary reaches a node u from V . This disk
c1 is also from Ck and has at least one point on its boundary,
still hitting f .

Disk c1 described in the proof can be further magnified
while keeping its center point on ray [up. Here we consider
two cases: either there exists a node v ∈V , which gets on the
boundary while magnifying disk c1 ∈ Ck , or the open half-
plane h having p inside, u on the boundary, and having the
normal vector ~up hits k nodes.

Definition 5. Let M 2
k be the set of maximal failures that can

be hit by a disk from Ck nodes having 2 nodes on its boundary.
Let M 1

k be the set of maximal failures that can be caused by
a half-plane having a node on its boundary hitting exactly k
nodes.

Proposition 6. Mk is the set maximal sets in M 1
k ∪M 2

k . �

In the following, we will present a way of computing M 2
k in

detail using a data structure called apple defined in the present
paper. Determining M 1

k can be done using similar ideas, thus

Au1,v1
k M u1,v1

k

Ek
...

... M 2
k

A
u|Ek |,v|Ek |
k M

u|Ek |,v|Ek |
k

G (V ,E ),k Mk
Sw1

k M w1
k

...
... M 1

k
Swn

k M wn
k

“apples”

“seesaws”

k-Delaunay edges

Fig. 3: Visual sketch of Algorithm 3 for determining Mk

we present it only briefly in Appendix F-G, where the same
data structure called seesaw is defined.

B. Graphs k-Delaunay

Definition 7. For a node pair u, v ∈ V let C u,v
k denote the

set of disks from Ck having nodes u, v on their boundary. Let
C u,v denote the set of disks from C having nodes u, v on
their boundary. Let M u,v

k = M
(
C u,v

k

)
be the the set of failures

which contain exactly the elements of Mk that can be hit by
a disk c ∈C u,v

k .

Discussion after Claim 4 suggests the following simple
method to compute M 2

k . First, for every node pair {u, v} ⊂V ,
we compute a set of failures M u,v

k .

Definition 8. Let Ek denote the set of node-pairs {u, v} ⊂ V
for which C u,v

k 6= ;.

Fig. 2 shows an example of the input topology G and the
corresponding set of node-pairs Ek for k = 0,1,2.

We can observe that by definition, M 2
k can be computed by

merging these sets M u,v
k , formally M 2

k is the set of maximal
elements from the union of sets M u,v

k .
Our second observation is that Ek is the edge set of the

so-called k-Delaunay graph [41].

Definition 9. Let Dk = (V ,Ek ) denote the k-Delaunay graph
induced by node set V and edge set Ek .5

The k-Delaunay graph Dk is a so-called geometric proximity
graph (other examples are the Voronoi diagram or the Gabriel

5We note that Ek is different from the set E of network links.



TABLE I: Table of symbols

Notation Meaning
General

G (V ,E ) the network modeled as an undirected connected geometric graph
n, m the number of nodes |V | ≥ 3 and edges |E |, respectively

ep the containing polygon of edge e (see Fig. 2a)
Vc , Ec set of nodes and edges, resp., hit by a disk c

C the set of all circular disks in the plane
Ck the set of circular disks in the plane hitting exactly k nodes

F (Ck ) the set of edge sets which can be hit by a disk c ∈Ck
Mk the set of maximal edge sets in F (Ck )

M2
k

the set of maximal failures which can be hit by a disk from Ck
having 2 nodes on its boundary

M1
k

the set of maximal failures which can be caused by a half-plane
having a node on its boundary hitting exactly k nodes

C
u,v
k

the set of disks from Ck having nodes u, v on their boundary
C u,v the set of disks from C having nodes u, v on their boundary

Mu,v
k

the the set of failures which contain exactly the elements of Mk
that can be hit by a disk c ∈C

u,v
k

Parameter
k we are interested in circular disk shaped disasters hitting k nodes
γ the maximum number of sides a containing polygon ep can have
ρk the maximum number of edges hit by a disk hitting k nodes.

Apple
Ek the set of node-pairs {u, v} ⊂V for which C

u,v
k

6= ;
Dk (V ,Ek ) the k-Delaunay graph induced by node set V and edge set Ek

c(x),
h+,
h−

For u, v ∈V , a Cartesian coordinate system is placed in the plane
such that line uv be identical to the vertical axis y , u and v have
ordinates (y coordinates) 1 and −1, respectively (see Fig. 4).
In this coordinate system, h+ and h+ are the right and left open
half plane determined by line uv , respectively, and c(x) = c(x,u, v)
denotes the unique disk c in C u,v , which has centre point
(x,0), and c(+∞) := h+ and c(−∞) := h−, respectively.

I u,v
k

the set of those numbers x, for which c(x) ∈C
u,v
k

xmax the maximum of I u,v
k

, if exists, else if I u,v
k

6= ;, xmax =+∞
xmi n the minimum of I u,v

k
, if exists, else if I u,v

k
6= ;, xmi n =−∞

Ec(xmax ),
Ec(xmi n )

the edge sets hit by c(xmax ) and c(xmi n ), respectively

J for u, v ∈V , the right side of c(xmax ) cut by the vertical line uv
I for u, v ∈V , the left side of c(xmi n ) cut by the vertical line uv

x+(e) for edge e, the leftmost disk which hits ep ∩J
x−(e) for edge e, the rightmost disk which hits ep ∩I

x+(v),
x−(v)

For nodes w+ ∈ h+ and w− ∈ h−, let x+(w+) and x−(w−)
denote the abcissa of the centre point of circle going through
u, v and w+ or w−, respectively.

E+ the list of edges hit by J ordered descending by the x+ values
E− the list of edges hit by I ordered descending by the x− values
V+ the list of nodes hit by J ordered descending by the x+ values
V− the list of nodes hit by I ordered descending by the x− values

V ′+
the list of nodes w in h+ ordered decreasingly by the abscissa
x+(z) of their leftmost hitting circles (going through u, v, z)

V ′−
the list of nodes z in h− ordered decreasingly by the abscissa
x−(z) of their rightmost hitting disk (going through u, v, z)

Au,v
k

For an edge {u, v} ∈ Ek , apple Au,v
k

is an ordered system
Au,v

k
= (V+,V−E+,E−). For each element of each list its

appropriate x+() or x−() value is also stored.
Ak the set of apples Au,v

k
Seesaw (only in Appendix F)

For data structure Seesaw for determining M1
k , please check Appendix F.

graph [42]). In that paper, the k-Delaunay graph is determined
as an intermediate step from the k-Voronoi diagram while
determining the k-Gabriel graph in polynomial time following
[42]. An upper bound on |Ek | is derived in [36]. These
statements are the following:

Theorem 1 (Thm. 2.4 of [42]). Graph k-Delaunay Dk =
(V ,Ek ) can be constructed in O

((
k2 +1

)
n logn

)
.

Theorem 2 (Thm. 2 of [36]). |Ek | ≤ 3(k+1)n−3(k+1)(k+2).

These theorems give that for small values of k graph Dk

is sparse (in other words, C u,v
k =; for most node pairs u, v),

and it can be computed fast.

C. Data Structure Apple

Let node pair {u, v} ∈ Ek be given. Let us place a Cartesian
coordinate system in the plane such that line uv be identical
to the vertical axis y , u and v have ordinates (y coordinates)
1 and −1, respectively (see Fig. 4). Obviously, this way the
center point of any disk c ∈C u,v

k has ordinate 0.

Definition 10. For a given node pair {u, v}, the previously
described coordinate system and real number x, let c (x)
denote the unique disk c in C u,v , which has center point (x,0).

Trivially, c () is a bijective function between R and C u,v .
Let I u,v

k denote the set of those numbers x, for which c(x) ∈
C u,v

k . If C u,v
k is empty, then trivially I u,v

k is empty too. In the
case when C u,v

k is not empty, we can observe that I u,v
k is the

union of closed intervals.
If the number of nodes in both half planes determined by

line uv is not equal to k, then there exists a rightmost and a
leftmost element of C u,v

k , i.e. there is a maximum xmax and
minimum xmi n real number in I u,v

k , that is xmax = max I u,v
k ,

and xmi n = min I u,v
k . Disks c (xmax ) and c (xmi n) have a third

node w+ and w− on their boundary, respectively. If there
are exactly k nodes on the right side of uv , then let h+
be the right open half-plane determined by line uv , and let
xmax be sufficiently large to Ec(xmax ) to contain all the edges
having polygon having a point with positive abscissa. For
simplicity, sometimes xmax =+∞ and c (xmax ) = h+ is used.
Same applies for the left side of uv .

Let Ec(xmax ) and Ec(xmi n ) denote the edge sets hit by c (xmax )
and c (xmi n), respectively. To compute M u,v

k we use the
following observation.

Claim 11. For all f ∈ F (C u,v
k ), f ⊆ Ec(xmax ) ∪Ec(xmi n ).

Proof: It is easy to see that for every disk c ∈C u,v
k , c ⊆

c (xmax )∪ c (xmi n).
According to Claim 11, a first step towards computing

M u,v
k is to determine the edge sets hit by c (xmax ) and

c (xmi n). Trivially, this can be done in O
(
mγ

)
. The remaining

question is how to calculate M u,v
k from Ec(xmax ) ∪ Ec(xmi n ).

Some additional notations and definitions precede the solution.
Let J denote the right side of disk c (xmax ) cut by the

vertical line uv , and let I denote the left side of disk c (xmi n)
cut by the vertical line uv . For each edge e ∈ Ec(xmax )∪Ec(xmi n )

we will compute two disks: the leftmost disk which hits ep∩J
and the rightmost disk which hits ep ∩I, which have center
points x+(e) and x−(e) respectively.

Let E+ denote the list of edges hit by J, and similarly, let
E− be the list of edges hit by I. Thus, we have E+ ⊆ Ec(xmax )

and E− ⊆ Ec(xmi n ), and also E+∪E− = Ec(xmax ) ∪Ec(xmi n ).
Let E+ and E− be ordered descending by the x+ and x−

values of their elements, respectively.
Note that according to Claim 39 from the Appendix, both

x+ (e) and x− (e) can be computed in O
(
γ
)
.

For nodes w+ ∈ h+ and w− ∈ h−, let x+ (w+) and x− (w−)
denote the abscissa of the center point of circle going through
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Fig. 4: Illustration of an apple with k = 2. Apple Au,v
k consists of

ordered lists of nodes V+ and V− and ordered lists of edges E+ and
E−, where V+ = {n4,n3}, V− = {n2,n1}, E+ = {e4,e3,e2} and E− =
{e3,e2,e1}. Given G = (V ,E ) and {u, v} ⊆V , Au,v

k can be determined
in O

(
nρ0γ+k logk +ρk logρk

)
(proof of Lemma 30). By querying

Au,v
k , Mu,v

k can be computed in O
(
ρ3

k

)
(proof of Lemma 32).

u, v and w+ or w−, respectively. We introduce V+ and V−
similarly to E+ and E−, but instead of edges we store nodes
hit by J ordered descending by their x+ values, while in V−
nodes in I are stored ordered also descending, but by their
x− values. Trivially, for a node v ∈ V both x+ (v) and x− (v)
can be determined in O (1).

Note that while every node v ∈V is part of at most one of
lists V+ and V−, edges can be part of both E+ and E−.

Now we can define the data structure apple for each edge
of the k-Delaunay graph.

Definition 12. For an edge {u, v} ∈ Ek , apple Au,v
k is an

ordered system Au,v
k = (V+,V−E+,E−), where its composing

lists are as described in the subsection before. For each
element l of each list we also store its appropriate x+ (l ) or
x− (l ) value.

D. Concept of Sweep Disk Algorithms

1) Concept: In this subsection, we highlight the paradigm
of sweep disk algorithms, which is similar to the algorithmic
paradigm of sweep line (sweep surface) algorithms in compu-
tational geometry.

In the case of sweep line algorithms, it is imagined that
a line is moved across the plane, keeping its orientation
and stopping at some event points. Geometric operations are
restricted to the immediate vicinity of the sweep line whenever
it ends, and the complete solution is available once the line
has passed over all objects. For example, Fortune’s algorithm
for computing the Voronoi diagram of a point set is a sweep
line algorithm [32].

Our sweep disk algorithms will scan through disk sets C u,v .
In this sense, in contrast to the sweep surface paradigm,
our disks have different diameters, and instead of keeping
orientation, the invariant will be that all disks have u and
v on the boundary. Thus our disk to sweep is "elastic," in the
sense that it can change its diameter, but not its shape.

2) Example: Our first sweep disk algorithm is used for
determining xmax and xmi n for a given Au,v

k . The algorithm
works as follows. Starting from a disk c (x) ∈ C u,v having

Algorithm 1: Determining xmax and xmi n while
sweeping through C u,v

Input: V and u, v ∈V ; Output: xmax and xmi n begin
1 Compute ordered lists V ′+ and V ′−
2 Merge V ′+ and V ′− into descending ordered list V ′± using values

x+ for V+ and x− for V−
3 n+,n− ← 0
4 for l ∈ {1, . . . , |V ′±|} do
5 if V ′±[l ] ∈V ′+ then n++= 1

else n−+=1
6 #l := |V ′+|−n++n− // # currently hit nodes

7 if |V ′+| = k then z+ = v;; xmax =+∞
else w+ :=V ′±[min l : #l = k]; xmax := x+ (w+)

8 if |V ′−| = k then z− = v;; xmi n =−∞
else w− :=V ′±[max l : #l = k]; xmi n := x− (w−)

9 return xmax and xmi n

center point with abscissa x = +∞ (or sufficiently large), c
is swept throughout the elements of C u,v until x = −∞ (or
sufficiently small). Meanwhile, the number of nodes hit is
followed. Numbers xmax and xmi n can be determined at the
first and last state when c hits exactly k nodes, respectively.
(Non-existence of such moments would mean that {u, v} ∉ Ek .)

Technically this can be done as follows. Let V ′+ ⊆ V be
the list of nodes w from h+ ordered decreasingly by the
abscissa x+ (z) of their leftmost hitting circles (going through
u, v, z). Similarly, let V ′− be the list of nodes z in h− ordered
decreasingly by the abscissa x− (z) of their rightmost hitting
disk (going through u, v, z). Applying the fact that a node pair
z+ ∈V ′+ and z− ∈V ′− can be hit by the same disk c ∈C u,v iff
x+ (z+) ≥ x− (z−), sweeping can be imitated as in Algorithm
1. Note that for every node z in V ′+ or V ′−, x+ (z) or x− (z) is
stored as part of function x+ or x−.

From the following Proposition 13, one can check that the
number of hit nodes can be easily followed with the help of
an additional variable.

Proposition 13. Let c ∈C u,v . If V ′+[i −1] is not hit by c, then
all the preceding elements in V ′+ are not hit by c. If V ′+[i ] is
hit by c, then all the following elements in V ′+ are hit by c.

Similarly, if V ′−[i − 1] is hit by c, then all the preceding
elements are hit by c. If V ′−[i ] is not hit by c, then all the
following elements are not hit by c. �

Claim 14. For a given edge {u, v} ∈ Ek , both xmax and xmi n

can be determined in O
(
n logn

)
time.

Proof: According to those written in this subsection, both
V ′+ and V ′− can be determined in O

(
n logn

)
the dominant step

being a sorting algorithm. Sweeping can be trivially done in
O (n); meanwhile, both xmax and xmi n can be determined.

Proposition 15. Both V+ and V− can be determined in
O

(
n logn

)
. �

E. Determining Apples

Claim 16. For a given {u, v} ∈ Ek , apple Au,v
k can be deter-

mined in O
(
m

(
logm +γ))

.



Proof: If {u, v} ∈ Ek , then xmax , xmi n , V+ and V− can be
determined in O

(
n logn

)
according to Claim 14 and Prop. 15,

thus it remains to determine E+ and E−. With this aim it is
enough to compute the x+(e) and x− (e) values for every edge,
then collect in E+ those edges e for which x+ (e) ≤ xmax and
similarly in E− those edges e for which x− (e) ≥ xmi n . Finally,
edges in E+ and E− have to be sorted descending according
to their x+ and x− values, respectively. m polygons of edges
(each having at most γ sides) have to be checked and sorted
which gives a total complexity of O

(
m

(
γ+ logm

))
.

Definition 17. Let Ak be the set of apples Au,v
k .

Corollary 18. For a given k, knowing Ek , the set of apples
Ak can be determined in O

(
(k +1)nm

(
γ+ logm

))
.

Proof: Since by Thm. 2 |Ek | < 3(k +1)n, we deduct that
O ((k +1)n) apples have to be determined. According to Claim
14, an apple can be constructed in O

(
m

(
logm +γ))

, which
completes the proof.

F. Computing the Set of SRLGs by Sweeping Through Each
Apple

Claim 19. Let e ∈ E+, and f ∈ E−. They can be hit by the
same c ∈C u,v

k if x+(e) ≤ x−( f ) or x+( f ) ≤ x−(e).

Proof: An edge e can be hit by circle c(x) if x+(e) ≤ x
or x ≤ x−(e).

Determining M u,v
k from apple Au,v

k can be done with the
help of a sweep disk algorithm as a subroutine of Algorithm 2
similar to Algorithm 1, the only difference is that here we have
to check both the set of currently hit edges and the number of
currently hit nodes at the same time.

On the one hand, while sweeping through C u,v with c(x)
(while x decreasing), nodes are also getting hit or not hit by
the actual c(x), thus it is not necessarily permanently part of
C u,v

k during the sweep disk algorithm. On the other hand,
any edge e having ep intersecting segment [u, v] or for which
x+(e) ≤ x−(e) should be stored exactly once in any element of
M u,v

k .

Claim 20. Querying Au,v
k , Alg. 2 calculates M u,v

k in O(m3).

Proof: The correctness of the algorithm can be easily
checked. Since while sweeping an edge can get hit or unhit
at most once on one side of line uv , there are at most
O(m) failures with locally maximal cardinalities, each of them
having O(m) edges, thus (M u,v

k )′ has O(m) elements of O(m)
size. Trivially, the number of currently hitting nodes can be
monitored in O(n) total time as in Alg. 1. Since we have an
ordering of the edges, every pair of sets from (M u,v

k )′ can be
compared in O(m). This implies that from (M u,v

k )′, M u,v
k can

be determined in O(m3). It can be shown that all the other
operations have complexity at most O(m3).

Corollary 21. Known Ek , lists M u,v
k for all {u, v} ∈ Ek , can

be determined in O
(
(k +1)nm3

)
. �

Here we use the assumption that the corner points of the
polygons of the edges are in general position.

Algorithm 2: Querying an apple
Input: Apple Au,v

k
; Output: Set Mu,v

k
of locally maximal

failures. begin
1 Merge V+, V−, E+ and E+ into descending ordered list G using

values x+ for V+ and E+ and x− for V− and E−;
2 n+,n−,e+,e− ← 0;
3 for l ∈ {1, . . . , |G|} do
4 if l ∈V+ then n++=1;
5 if l ∈V− then n−+=1;
6 if l ∈ E+ then e++=1;
7 if l ∈ E− then e−+=1;
8 #n,l := |V+|−n++n− // # curr. hit nodes
9 #e,l := |E+|−e++e− // # curr. hit edges

10 e+,l := e+ // E+[i ] is hit iff i ≥ e+,l
11 e−,l := e− // E−[i ] is hit iff i ≤ e−,l

12 Det. L, the set of indexes l , for which #n,l = k;
13 Det. Ie , the sequence of numbers #e,l : l ∈ L;
14 Det. Me , the set of indexes l of local maximums of Ie ;
15 (Mu,v

k
)′ := hit edge sets in l ∈ Me disk positions;

// Can be det. using E+,E−,e+,l ,e−,l
16 Mu,v

k
← maximal elements of (Mu,v

k
)′;

17 return Mu,v
k

G. Algorithm for Computing Maximal Failures

As presented before M 2
k can be calculated by determining

and querying the apples, and finally merging the obtained lists
M u,v

k in M 2
k . Note that there is a valid need of comparing lists

of locally maximal failures (see Fig. 5). M 1
k can be computed

very similarly to M 2
k (as shown in Appendix F-G). Finally, in

order to get Mk , M 2
k and M 1

k have to be merged. This way,
the scheme of our algorithm could be written as in Alg. 3.

Complexity bounds on the non-parametrized computing
time and length of Mk are summarized as part of the table
in Alg. 3. Although in Appendix I it is shown that there are
some artificial networks where these asymptotic bounds are
relatively good estimations, we would like to focus on the
running time and output size on the real networks, which are
nearly planar. Thus, after introducing a new parameter, we
present parametrized bounds proven in Appendix B-G.

Intuitively, a c ∈ Ck cannot hit too many edges. We intro-
duce graph density parameter ρk , to describe this phenomenon.

Definition 22. For all i ∈ {0,n − 2}, let ρi be the maximum
number of edges hit by a disk from Ci .

The parametrized bounds are the following:

Lemma 23. M 2
k can be computed in

O
(
n2

((
k2 +1

)
ρ3

k + (k +1)(ρ0γ)
))

. M 2
k has O

(
n (k +1)ρk

)

A

B

C D

f

Fig. 5: In the setting above, circle cABC hits the whole link set E ,
while no c ∈C

B ,D
0 hits link f . Thus, however MB ,D

0 is not empty, it
does not contain any elements of M0.



Algorithm 3: Algorithm for computing Mk with a table on time complexities. (Refer to Table I for notations.)

Input: G (V ,E ), k Output: Mk begin
Determining M2

k
1 Determine Ek
2 Determine set Ak of nonempty apples
3 Query apples from Ak
4 Merge lists Mu,v

k
into M2

k
Determining M1

k // See App. F-G for details
5 Determine set Sk of nonempty seesaws
6 Query seesaws from Sk
7 Merge lists M w

k into M1
k

8 Merge lists M2
k and M1

k into Mk
9 return Mk

Complexity Non-parametrized Parametrized

STEP 1 O((k2 +1)n logn) O((k2 +1)n logn)
STEP 2 O(n(k +1)m(logm +γ)) O

(
(k +1)n

(
nρ0γ+k logk +ρk logρk

))
STEP 3 O(n(k +1)m3) O(n(k +1)ρ3

k )

STEP 4 O(n2(k2 +1)m3) O(n2(k2 +1)ρ3
k )

STEP 5 O(nmγ logm) O(n2ρ0γ log(nρ0))
STEP 6 O(nm3) O(nρ0 +ρ3

k )

STEP 7 O(n2m3) O(n2ρ3
k )

STEP 8 O(n2(k +1)m3) O(n2(k +1)ρ3
k )

Total for γ=O(1) O(n2(k2 +1)m3) O(n2((k2 +1)ρ3
k +ρ0 log(nρ0)))

elements with at most ρk edges.

Proof of Lemma 23 can be found in Appendix E.
Besides computing M 2

k , one have to deal with computing
M 1

k . When computing M 1
k , the vague idea is to give a geo-

metric algorithm in a way similar to the sweep disk algorithm
for querying the apples. Now instead of imaginary sweeping
a disk, we rotate a half-plane around every node v ∈V until it
makes a total turn, and meanwhile, check for hit edge sets with
locally maximal cardinalities hit by half-planes hitting exactly
k nodes. After this, the maximal elements of the obtained lists
are collected in M 1

k . Now follows Lemma 24 for computing
M 1

k . We refer the reader to see Appendix F-G for its detailed
proof.

Lemma 24. M 1
k can be constructed in O(n2(ρ0γ lognρ0+ρ3

k ))
and has O(nρk ) elements, each containing at most ρk edges.

Theorem 3. Mk can be computed in
O

(
n2

((
k2 +1

)
ρ3

k +ρkγ+
(
k +1+ log(nρ0)

)
ρ0γ

))
. Mk has

O
(
n (k +1)ρk

)
elements with at most ρk edges.

Proof: Based on Lemmas 23 and 24, both M 2
k and M 1

k can
be computed in the proposed time, have at most the proposed
amount of elements containing at most ρk edges. The proof
will be completed by showing that the merger of M 2

k and M 1
k

can be done in O(n2(k +1)ρ3
k ), which is true because of the

followings.
We only have to compare all the pairs {p2, p1} made up of

a p2 ∈ M 2
k and p1 ∈ M 1

k , which means O((n(k +1)ρk )(nρk ))
pairs. Each comparison can be made in O(ρk ),6 which gives
the proposed complexity.

Corollary 25. If ρk is O(k + 1), then Mk has O (n (k +1))
elements. If in addition γ is upper bounded by a constant, Mk

can be computed in O(n2(k5 + log(nk +1)+1)).7

IV. SIMULATION RESULTS

In this section, we present numerical results that validate our
model and demonstrate the use of the proposed algorithms
on some realistic physical networks. The algorithms were
implemented in Python version 3.5 using various libraries. No

6Since link sets are ordered lexicographically.
7To be exact, γ=O

(
max

{
1, k5+1

k+logn

})
yields the proposed complexity.

special efforts were made to make the algorithm space or time
optimal. The output of the algorithm is a list of SRLGs so that
no SRLG contains the other. The network topologies with the
obtained list of SRLGs for various k are available online8.

First, we interpret the input topologies in two ways:
polygon where links are polygonal chains, and
line where the corner points of the polygonal links are

substituted with nodes (of degree 2). Here links are
line segments.

The second interpretation is artificial, and we mainly use it
for verification. Intuitively, the two interpretations result in
very different results, as the latter has much more nodes
in the network, and thus the regional failures with k nodes
interior must be smaller. Fig. 6 shows example results for
both interpretations of the US ATT-L1 network. The US
fiber network has 126 nodes and 208 links as polygonal
chains, where the links have 36 corner nodes in total. After
transforming it into a network of line segments, we will have a
larger network with 162 nodes and 244 links. The transformed
network has 30% more nodes; however, the number of SRLGs
required for k = 0 is just 14% more, which is a sub-linear
increase. Surprisingly, after the transformation, the SRLGs
became a bit smaller (average number of links 2.98 → 2.79),
and the variance in the size of SRLGs is increased from 0.7
to 0.83. It is because in the transformed, a great number of
very small SRLGs appeared, having the two adjacent links for
most of the degree 2 nodes.

TABLE II: Results of physical backbone topologies of [18].

Name |V | |E | # SRLG k = 0 # SRLG k = 1
Polygon Line Polygon Line Polygon Line Polygon Line

Pan-EU 10 16 16 22 14 19 27 35
EU (Optic) 17 22 40 45 44 59 57 71
EU (Nobel) 19 28 32 41 36 46 53 81
US [7] 21 24 39 42 48 49 57 64
N.-American 28 39 50 61 65 76 83 97
US (NFSNet) 44 79 73 108 88 124 128 172
US (Fibre) 81 170 141 230 137 189 177 249
US (Deltacom) 103 103 302 302 158 158 218 218
US (Sprint-Phys) 111 264 160 313 156 232 208 307
US (ATT-L1) 126 162 208 244 190 216 255 285
US (Att-Phys) 209 383 314 488 256 352 322 457

8https://github.com/jtapolcai/regional-srlg



(a) Polygon: there are 190 SRLGs with average of 2.98 links and ρ0 = 5. (b) Line: there are 216 SRLGs with average of 2.79 links and ρ0 = 5.

Fig. 6: The SRLGs of k = 0 are visualized for the two cases (a) links are polygonal line segments, and (b) the corner points of the polygonal
line segments are treated as degree two nodes and all links are straight lines. In order to have a perspicuous illustration, each SRLG is drawn
with the smallest possible circular disk that covers all of its links, even if the disk has nodes interior.

A. The list of SRLGs in practice

Table II shows a comparison for k = 0 and k = 1 among
eleven physical backbone topologies taken from [18]. The
columns are: network name, the number of nodes, the number
of links, the number of SRLGs, all for both cases where
links are polygonal line segments or each corner point of the
polygonal links are substituted with a degree 2 node.

The 126-node US (ATT-L1) network was covered with 190
SRLGs, which is less than listing every single node and link
as an SRLG. Fig. 6 shows these SRLGs, intuitively each
corresponds to a mid-size regional failure. The SRLGs meet
our intuition that there are more network nodes in the crowded
areas, and thus it generates more SRLGs for them, while in
the less crowded areas are covered with SRLGs corresponding
to bigger areas. In practice, it is important to have small
SRLGs because it strongly influences the performance of
the survivable routing algorithms. On Fig. 6 the SRLGs are
relatively small, each SRLG contains a bit less than 3 links
on average. Fig. 7c shows how the average size of SRLGs
with respect to k for all networks. It has a slightly sub-linear
increase with k. Note that the length of the list of SRLGs never
exceeded 6000 items in any networks and parameter settings
examined.

Next, we have evaluated what would be the radius of the
circular disk with k = 0,1,2,3 nodes when we know the
GPS positions of the nodes (in case of network US ATT-
L1). We have performed a Monte Carlo simulation where
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Fig. 8: The cumulative distribution function of the radius of the disk
having a given k number of nodes interior.

we pick random locations and compute the maximum radius
with k = 0,1,2,3 nodes, which is the distance of the closest,
the second, third, and fourth closest nodes. Fig. 8 shows the
cumulative distribution function of the actual radius of the
circular disk failures. For example, if we cut the smallest and
largest 20% the SRLGs generated for k = 0 nodes corresponds
to diameter 80-200km.

B. Tightness of Corollary 25

In this subsection we compare the presented parameterized
worst case analysis with the obtained simulation results. Corol-
lary 25 assumes that ρk increases linearly with (k + 1) for
all networks. Fig. 7a shows that the edge density increases
linearly with (k +1) as we expected. In Corollary 25 a near
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Fig. 7: The edge density, number and size of SRLGs for each network and k = {0, . . . ,5} in case of polygonal chain links.
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Fig. 9: Comparison of the two interpretation of the input topologies: links are polygonal line segments, or the corner points
of the polygonal chains are treated as degree two nodes and all links are line segments.

quadratic worst case increase of computation time was showed
with respect to the network size n for fixed k (more precisely
it is O(n2 logn)). It is well reflected in Fig. 9b. Note that we
measured the algorithms’ runtime on a commodity computer
with a CPU at 2.4 GHz and 32 GB of RAM without optimizing
the implementation for speed. Corollary 25 provides a linear
upper bound on the number of SRLGs with respect to the
network size n for fixed k. It is also reflected in Fig. 9a which
is a graphical illustration for k = 0, where we may even have
the intuition of a sub-linear growth. Based on Table II the
slope of the curve can be estimated as the number of SRLGs
is roughly ≈ 1.2n for k = 0, and ≈ 2.2n for k = 1. Corollary
25 provides a linear upper bound on the number of SRLGs
with respect to k if the network (n) is fixed. This is illustrated
in Fig. 9c where the average number of SRLG is shown for
all networks for small k. Here we can experience a slightly
sub-linear increase. Fig. 7b shows the increase in the number
of SRLGs for each network independently for the same range
of k. We experienced sub-linearity for all networks, which we
further discuss later. Overall, numerical evaluation supports
the parameter selection used in the parametrized complexity
analysis. We conjecture that the Corollary 25 is close to the
experienced performance, and there is little hope for further
improving it analytically.

To reveal the reasons why the number of SRLGs increases
sub-linearly with respect to k, Fig. 9d shows the function
graphs of both |Mk | and |Ek |

3 for all k values on Network US
Deltacom, respectively. As we can see, for k ≤ 15, |Mk | ≈ |Ek |

3 ,
while for bigger k values |Mk | < |Ek |

3 . We can deduct that
|Mk | ≤ |Ek |

3 for every k ∈ {0, . . . ,n − 2}. In other words, the
average number of SRLG-s per apple is ≤ 1

3 . By Thm. 2,
this also means that |Mk | is O((k +1)(n −k)), wich induces a
sub-linear growth of |Mk | with respect to k.

V. OPEN PROBLEMS

The presented algorithm computes Mk in
O

(
n2

(
k5 +k log(nk +1)+1

))
(if γ is constant and ρk is

O(k + 1)). A natural question is whether it is possible
to compute Mk quicker. For k = 0 the answer is yes in
case of usual networks: as presented in [33], M0 can be
determined in O(n(logn +ρ3

0τ0)), where τ0 is an additional

parameter depending on local properties of the embedding
of the network in the plane (and edges are considered as
line segments). In other words, there exists an algorithm to
compute M0 in f (ρ0,τ0)O(n logn).

We believe that there exist similar algorithms for determin-
ing Mk in f

(
k,ρk ,γ, . . .

)
O

(
n logn

)
, where f depends only on

k and on ’local’ properties of the embedding. This near-linear
complexity in n would allow Mk to be computed even quicker
in case of huge networks too. Unfortunately, presenting this
kind of algorithms would exceed the limits of this paper; thus
it will be part of future work.

VI. CONCLUSIONS

In this paper, we propose a fast and systematic approach
to enumerate the list of possible regional failures the network
should be prepared for. We define regions as circular disks
with maximum size such that the number of nodes inside
is at most k. The proposed failure model gives a reasonable
conservative description of the possible regional failures with a
minor drawback of overestimating the size of the failed region,
but with the following three benefits that

• It can be computed efficiently, even for very large net-
works.

• The list of SRLGs is short enough to fit in the current
router configurations.

• A schematic topology map discovered by automatic tools
is sufficient to compute the list of SRLGs and does
not require precise knowledge on the geometry of the
network, i.e. the exact physical location of the nodes and
links, the physical distances in the network topology, etc.

Using the proposed algorithm, operators can protect their
networks against regional failures by running the current self-
healing mechanisms with the obtained list of SRLGs.
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APPENDIX

A. Protecting regional link 0-node failures ensures node dis-
jointness

Claim 26. Let P and B be an SRLG-disjoint primary and
backup paths according to regional link 0-node failures. Then
P and B are node disjoint, apart from the terminal nodes.

Proof: Assume indirectly that P and B have a common
node v in their interior. Let us pick two edges ep ∈ P and
eb ∈ B of G that are adjacent of v . Let p denote the closest
corner point of ep with node v if there is any, otherwise its
endpoint on P . Similarly we define b for eb . Note that points v ,
b and p are not on the same line according to our assumptions
in Sec. II; thus, the is a circular disk of any size that covers
both ep and eb but not node v . We can select a small enough
radius for this circular disk which covers both ep and eb and
does not have any other nodes interior. The proof follows.



PARAMETRIZED ALGORITHM FOR ENUMERATING
MAXIMAL FAILURES IN M 2

k

B. Parametrized Complexity Bounds for Determining Apples

Up to this point the fact that G (V ,E ) is, in fact, a graph of
a communication network, and thus it is ’almost planar’ was
not used. Intuitively, an almost planar graph has O(n) edges.
Parameters ρi (i ∈ {0, . . . ,n−2}) denote the maximum number
of edges hit by a disk from Ci (Def. 22), thus they help in
formalizing this intuition.

Since parameters ρi measure local properties of the net-
works, often it will be assumed that these parameters are not
exceeding a constant. For example, ρ0 is not going to be large
since where there are many edges, a node likely appears.

Observation 27. For any 0 ≤ i < j ≤ n −2, ρi ≤ ρ j . �

Claim 28. In any apple Au,v
k ∈ Ak , |E+| ≤ ρk and |E−| ≤ ρk .

Proof: All edges in E+ are hit by c (xmax ) which by
definition hits at most ρk edges. Similar for E−.

Lemma 29. The number of edges is O(nρ0), more precisely
m ≤ (2n −5)ρ0.

Proof: Consider the Delaunay triangulation D0, which is
a planar graph, and thus |E0| ≤ 3n −6. Since every Delaunay
triangle has 3 Delaunay edges and a Delaunay edge is the
edge of at most 2 Delaunay triangles, and there are at least
3 Delaunay edges on the convex hull of V , the number of
Delaunay triangles is at most

2|E0|−3

3
≤ 2

3
(3n −6)−1 = 2n −5.

Since the polygon of every edge in E intersects at least one
triangle, and every triangle can be covered by a disk c ∈ C0,
which intersects at most ρ0 polygon of edges of the network,
we get that the number m of edges cannot be larger than
ρ0 times the number of the Delaunay triangles. We get m ≤
(2n −5)ρ0.

Lemma 30. If Ek is given, set Ak of apples can be calculated
in O

(
(k +1)n

(
nρ0γ+k logk +ρk logρk

))
.

Proof: There are |Ek | ≤ 3(k + 1)n apples to determine
(Thm. 2). For each, V+ and V− can be determined in O(n +
k logk), then (based on Lemma 29) O(nρ0) edges have to be
checked if they are in the apple, each in O(γ) time. After this,
based on Claim 28, there are O(ρk ) edges to order, which
gives the proposed complexity.

Corollary 31. If ρk and γ is O(1) and Ek is given, then Ak

can be determined in O
(
n2

(
k + logn

))
. �

C. Parametrized Bound for Determining M u,v
k for Apple Au,v

k

Lemma 32. For all the apples Au,v
k in Ak , sets M u,v

k can be
determined in O

(
n (k +1)ρ3

k

)
.

Proof: Based on Thm. 2, there are |Ek | ≤ 3n(k+1) apples
to query. We claim that each of them can be queried in
O(ρ3

k ). Knowing apple Au,v
k , (M u,v

k )′ can be determined in

O(ρ2
k ), following the steps of Alg. 2. After this, M u,v

k can be
determined by comparing each pair of elements of (M u,v

k )′ and
eliminating its non-maximal and redundant members. With
this purpose, O(ρ2

k ) comparisons have to be made, each of
them has O(ρk ) complexity.

D. Parametrized Complexity Bound on Merging Lists M u,v
k

Lemma 33. M 2
k can be computed in O

(
n2

(
k2 +1

)
ρ3

k

)
from

lists M u,v
k .

Proof: By Thm. 2, there are |Ek | ≤ 3n(k + 1) lists con-
taining O(ρk ) sets containing O(ρk ) edges. First determine
an ordering on the set of edges E , and sort all the candidate
sets of edges according to this ordering, each in O(ρk logρk )
time. M 2

k can be computed by comparing all the set pairs
(and eliminating the redundant or non-maximal elements),
which means O(n2(k2 + 1)ρ2

k ) comparisons. Since (due to
the ordering) comparing two sets takes O(ρk ) time, the total
complexity is O(n2(k2 +1)ρ3

k ).

E. Parametrized Complexity for Computing M 2
k

Now follows the proof of Lemma 23, which
states the followings. Mk can be computed in
O

(
n2

((
k2 +1

)
ρ3

k + (k +1)ρ0γ
))

. Mk has O
(
n (k +1)ρk

)
elements with at most ρk edges.

Proof: As presented previously (Thm. 1 and Lemmas 30,
32 and 33), each of the corresponding four phases of Alg. 3
can be examined in the proposed complexity. There are |Ek | ≤
3n(k +1) lists M u,v

k to merge, each of them has at most ρk

edges, completing the proof.

PARAMETRIZED ALGORITHM FOR ENUMERATING
MAXIMAL FAILURES IN M 1

k

In this section a sketch of an algorithm will be presented for
proving Lemma 24, which states that M 1

k can be constructed
in O

(
n2

(
ρ0γ log

(
nρ0

)+ρ3
k

))
and has O

(
nρk

)
elements, each

containing O
(
ρk

)
edges.

F. Data Structure Seesaw

For every node w ∈ V , a data structure is built containing
both the direction of every node z ∈V \{w} related to v and the
interval of directions where the polygon of each edge can be
seen from w . Nodes and edges also have to be sorted according
to this information (similarly to data structure apple). Let us
call this data structure seesaw, and let Sw

k denote the previously
described seesaw. For a given k, let the set of seesaws be
denoted by Sk . Let the list of locally maximal failures resulting
from querying seesaw Sw

k be denoted by M w
k .

Claim 34. Any seesaw Sw
k can be calculated in

O
(
nρ0γ log

(
nρ0

))
and has a total length of O

(
nρ0

)
.

Proof: Trivially, the direction of nodes from z ∈ V \ {w}
can be determined and sorted in O(n logn). Also, as by Lemma
29, the number of edges is O(nρ0), intervals of directions
corresponding to polygons of edges can be calculated and
sorted both by their minimum and maximum values on
O(nρ0γ log(nρ0)). The proof follows.



G. Querying Seesaws

Claim 35. M w
k can be computed from Sw

k in O
(
nρ0 +ρ3

k

)
,

and has at most 2ρk elements, each containing at most ρk

edges.

Proof: Since each set in M w
k can be hit by a disk in Ck

having w on the boundary, the fact that the elements of M w
k

contain at most ρk edges is trivial by definition.
Now we prove |M w

k | ≤ 2ρk . If there is no half-plane having
w on the boundary hitting exactly k nodes, then the claim
is trivial, otherwise, let hw

0 be such a half-plane. Let hw+ be
the unique half-plane which satisfies the followings: it is the
rotation of hw

0 with ∠≤ π, it covers exactly k nodes, and no
other half-plane covers exactly k nodes, which is the rotation
of hw+ with an angle ∈ [∠,π]. Let hw− be similar, but with
rotating towards the negative direction. This way, every half-
plane going through w covering exactly k nodes is part of
hw− ∪hw+ , which altogether hit at most 2ρk edges. Since while
turning a half-plane around w , edges are getting hit or not hit
one by one, and an edge at most 2 times, there can exist at
most 2ρk hit edge sets with locally maximal cardinalities.

Determining M w
k can be done by simply turning the half-

plane around w . Checking currently hit edge sets, node sets
and cardinalities can be done in a total O(nρ0) time, list M w

k
can be created in O(ρ3

k ).
Proof of Lemma 24: Trivially, every element of M 1

k contains
at most ρk elements. Based on Claims 34 and 35, lists M w

k
can be determined in O(n2ρ0γ log(nρ0)+nρ3

k ) for all w ∈V .
M 1

k can be calculated by merging the previous lists. O(n2ρ2
k )

comparisons have to be done, each has a complexity of O(ρk ).
This means a total complexity of O(n2(ρ0γ log(nρ0)+ρ3

k )),
completing the proof.

H. Connection Between Seesaws and Apples

It is known that the inverse of the stereographic projection
from the North Pole, which maps geometric objects from
the plane to the surface of the sphere, has the property that
the image of lines and line segments on the plane are great
circles and geodesics on the sphere, respectively (corollary of
Theorem in [43]). Known this, if we projected our network
topology (back) to a spherical surface, and if we defined the
spherical apple and spherical seesaw data structure, we could
see that a spherical seesaw M w

k is just a spherical apple M w,z
k ,

z being the North Pole, thus sweeping through a spherical
apple is the same thing as tilting a spherical seesaw, meaning
that on the sphere there would not emerge the need to treat
separately these two connected data structures.

EXTREME CASES

I. Maximum Number of Maximal Failures

In the following, we show that there are some networks for
which the running times are asymptotically not significantly
better than our non-parametrized bounds. This motivates the
introduction of parameter ρk , which captures the properties of
real-life networks.

Area magnified:
Top points of K−

j , j and K+
j , j

Bottom points of K−
j , j and K+

j , j

K+
j , j

Edges of K−
j , j

v1

va

vk+2

Fig. 10: Sketch of a graph family where |Mk | =Θ
(
n3)

if k =O (1).

Theorem 4. max
N

|Mk | =Θ
(
n3) if k = O (1), where N is the

set of all networks on n points.

Proof: The proof will be immediate from Cor. 38.
It turns out that |Mk | is O((k +1)nm) (Claim 36), and in

case of some artificial network families |Mk | is Ω((n −k)n2)
(Cor. 38). This means that for k =O(1) the maximum number
of maximal failures is Θ(n3). The details are the following.

Claim 36. The number of disk failures is O((k +1)nm).

Proof: Since |Ek | = O((k + 1)n) (Thm. 2), there are
O((k+1)n) apples. For each apple Au,v

k , |M u,v
k | ≤O(m) (proof

of Claim 20). Since |M 2
k | ≤

∑ |M u,v
k |, this means that |M 2

k | is
O((k +1)nm).

On the other hand, the number of seesaws |Sk | ≤ n, and
each |M w

k | ≤O(m), which gives |M 1
k | =O(nm). Since |Mk | ≤

|M 2
k |+ |M 1

k |, the proof is complete.

Claim 37. There is a graph family for which |Mk | =Ω
(
n3

)
if

k =O (1).

Sketch of proof: On Fig. 10 we can see a sketch of a graph
G = (V ,E ) for which |M0| = Θ(n3). It has a so long-drawn
shape it cannot be drawn precisely in a paper.

Let l be a vertical line. Both on the right and left side of
l let us take a complete bipartite graph called K +

b,b and K −
b,b ,

respectively (see Fig 10). We locate the points of K +
b,b and

K −
b,b as follows. For both K +

b,b and K −
b,b one class of nodes

is located at the top and the other at the bottom such that
their vertices are equidistant on a horizontal line (i.e for nodes
wi in top class of K +

b,b , distance d(wi , wi+1) is constant c
for all i ∈ {1, . . . ,b − 1}, same for the other classes). Let the
y coordinates of the top and bottom classes differ in a much
larger scale than the former constant c. Let ei , j be the edge
incident to wi and the j th node in the bottom class. There is a
horizontal line lh such that common points pi , j of edges ei , j

for a given i and j ∈ {1, . . .b} and line lh are located nearly
equidistant on lh , let this distance be denoted by c2. Clearly, lh

can be chosen such that the abscissa of pi+1,1 is the abscissa
of pi ,b plus c2 (for all i ∈ {1, . . . ,b −1}).

Let a ≥ k+2. Let us consider v1, . . . , va ∈V , different nodes
lying equidistant on l , such that about half of them are above
line lh while the rest is below it. Let the distance between
these nodes be cv , where cv is chosen such that the distance
between the leftmost edge of K +

b,b and K −
b,b to be (k+1)cv +ε,



where ε' c
2 . Finally, we perturb the location of every node to

avoid degeneracies.
Due to this setting, considering apples Avi ,vi+k+1

k , while
sweeping from left to right, edges are getting hit and unhit
in turn, thus |M vi ,vi+k+1

k | =Θ(b2) for every 1 ≤ i ≤ a − (k +1).
Let Va := {v1, . . . , va}, and Ea be the set of edges induced

by Va .
Since for all element mi ∈ M vi ,vi+k+1

k , mi ∩ Ea =
{{vi , vi+1}, . . . , {vi+k , vi+k+1}}, we can deduct that there are no
duplicates in these lists, i.e. |Mk | ≥

∑
1≤i≤a−(k+1 |M vi ,vi+k+1

k |,
since there are other apples which we have not considered.

This means |Mk | ≥ (a − (k + 1))Θ(b2). The proof can be
completed by choosing both a and b to be Θ(n), for example
a ' b ' n

5 . �

Corollary 38. The graph illustrated on Fig. 10. has Θ
(
n3

)
maximal link k-node failures if k is O (1). �

Although |Mk | can be Ω(n3), according to this paper in case
of many real-life networks it is O((k +1)n).

COMPUTATIONAL GEOMETRIC CONSIDERATIONS

J. Determining x+ (e) and x− (e) in O
(
γ
)

Claim 39. For any edge e = {a,b} and node pair {u, v} ⊂ V ,
both x+ (e) and x− (e) can be calculated in O

(
γ
)
.

Proof: Let us concentrate on calculation of x+(e), because
x−(e) can be determined similarly.

Extreme hitting disk of line: First, let us compute the
leftmost hitting circle in C u,v of a point W part of a given
line ab. Let {A} = uv ∩ab and let x+(W ) be the abscissa of
the center point of the leftmost hitting disk of W . Clearly, the
function x+(W ) is unimodal in both rays (R+ and R−) defined
by line ab and point A (i.e., both R+ and R− are consisting of
an interval where it is strictly monotone increasing and another
interval where strictly monotone decreasing).

Let the two points on the line where the local minimum is
reached be W+ on the right side and W− on the left side of
uv . Let the center point of disks c(uvW+) and c(uvW−) be
X+ and X−, respectively.

X+ is located on the Ox axis of the coordinate system of
apple Au,v

k . On the other hand, X+ is located equidistant from
u and line ab, thus it is on parabola pu defined by point u
and line ab. Similarly, let pv be the parabola defined by v
and line ab.

Since pu and pv can be characterized with quadratic ex-
pressions, which can be solved in O(1), abscissa of X+ can be
found in constant time by determining their common root.

X− can be determined similarly. Finally, the center point of
the desired leftmost hitting disk is the one from X+ and X−
with smaller abscissa.

Extreme hitting disk of line segment: When restricting
the domain of a unimodal function, extremes can appear
on the new boundary, thus for segment [a,b], x+([a,b]) =
min(x(X+), x(X−), x(A), x(B)).

Extreme hitting disk of the polygon of edge: For an arbitrary
e ∈ E we consider two cases regarding the respective position
of [uv] and ep .

In the first case segment [uv] is entirely in the interior of
ep . Trivially, in this case x+(e) =−∞.

In the second case, segment [uv] is not entirely in the
interior of ep . Since in this model a polygon of edge ep

consists of at most γ line segments, for determining x+(e)
one can determine x+ for all the line segments that take the
minimum value of them in O(γ) total time.

Finally, it remains to prove that one can distinguish between
the former two cases in O(γ). Recall that u and v have
ordinates 1 and −1, respectively, both lying on the y axis.
Let C be the set of ordinates of the intersection points of
axis y and the line segments generating the polygonal chain.
If C ∩ [0,1] 6= ;, than segment [u, v] is neither entirely inside
nor entirely outside of the polygon. Otherwise if |C ∩(1,+∞)|
is an even or odd number, than [uv] is outside or inside the
polygon, respectively. Note that all the required operations can
be done in O(γ).
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