Chapter 4

How to Model and Enumerate Geographically
Correlated Failure Events in Communication
Networks

Balazs Vass, Janos Tapolcai, David Hay, Jorik Oostenbrink, and Fernando Kuipers

Abstract Several works shed light on the vulnerability of networks against regional
failures, which are failures of multiple pieces of equipment in a geographical region
as a result of a natural or human-made disaster. This chapter overviews how this in-
formation can be added to existing network protocols through defining Shared Risk
Link Groups (SRLGs) and Probabilistic SRLGs (PSRLGs). The output of this chap-
ter can be the input of later chapters to design and operate the networks to enhance
the preparedness against disasters and regional failures in general. In particular, we
are focusing on the state-of-the-art algorithmic approaches for generating lists of
(P)SRLGs of the communication networks protecting different sets of disasters.

4.1 Introduction

The Internet is a critical infrastructure. Due to the importance of telecommunication
services, improving the preparedness of networks to regional failures is becoming
akeyissue[5,6,9,10, 11,13, 14,21, 22,23, 28, 41]. The majority of severe network
outages happen because of a disaster (such as an earthquake, hurricane, tsunami,
tornado, etc.) taking down a lot of (or all) equipment in a given geographical area.
Such failures are called regional failures. Many studies have touched the problem of
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how to prepare networks to survive regional failures, where the first solutions have
assumed that fibres in the same duct or within 50 km of every network node fail
simultaneously (namely, in a single regional failure) [19, 43]. These solutions were
further improved by examining the historical data of different type of disasters (e.g.,
seismic hazard maps for earthquakes) and identifying the hotspots of the disasters
[6, 11, 13, 21, 22, 28]. The weak point of these approaches is that, during network
equipment deployment, many of the risks are considered and compensated (e.g., an
earthquake-proof infrastructure in areas with larger seismic intensity), implying that
the historical data does not represent the current deployments, and therefore, not the
current risks. Thus, it may be more realistic to assume that any physically close-
by equipment has a higher chance to fail simultaneously. More recent studies are
purely devoted to this particular problem and adapt combinatorial geometric based
approaches to capture all of the regional failures and represent them in a compact
way [3, 8, 23, 31, 32, 34, 37], where the major challenge is that regional failures
can have arbitrary locations, shapes, sizes, effects, etc. This chapter is devoted to
overview of the state of the art and suggests unified definitions, notions and termi-
nology.

The output of the approaches discussed in this chapter can serve as the input
of the network design and management tools. Currently, network recovery mecha-
nisms are implemented to protect a small set of pre-defined failure scenarios. Each
recovery plan corresponds to the failure of some equipment. Informally speaking,
when a link fails, the network has a ready-to-use plan on how to recover itself.
Technically, a set of so-called Shared Risk Link Groups (SRLGs) are defined by the
network operators, where each SRLG is a set of links whose joint failure the recov-
ery mechanism should be prepared for. In this chapter, we are purely focusing on
how to define SRLGs that cover all types of disasters, as recovery mechanisms for
a specific SRLG are discussed in later chapters. We will also address refinements of
the SRLG model defined in the next section.

1.2 Notions Related to Vulnerable Regions

When several network elements may fail together as a result of a single event, they
are often characterized by Shared Risk Groups (SRGs). Each SRG has a corre-
sponding failure event (or events); when such an event occurs, all elements in the
SRG fail together. Specifically, the communication network is modelled as a graph
G = (V,E), whose vertices are routers, PoPs!, optical cross-connects (OXC), and
users, while the edges are communication links (mostly optical fibres). SRGs are
then defined as subgraphs (V/,E’), where V/ CV and E' C E'.

In many cases, it is sufficient to consider only /inks in SRGs, and in this case,
these groups are called Shared Risk Link Groups (SRLGs). For example, an SRLG
may contain one edge (to capture a single-link failure) or all edges that touch one

I A point of presence (PoP) is an artificial demarcation point or interface point between communi-
cating entities.
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vertex (to capture a single-node failure). SRLGs may be more complex and repre-
sent simultaneous failures of multiple network elements. In particular, in this chap-
ter, we focus on geographically-correlated failures in which links within a specific
region fail together.

A set S of SRLGs can be used as an input to network design and network re-
covery/protection mechanisms to ensure these mechanisms withstand the failures
corresponding to these SRLGs. For example, to ensure connectivity between a spe-
cific pair of nodes, protection mechanisms may construct two edge-disjoint paths
when S = {{e}|e € E}, two node-disjoint paths when S = {{(u,v) € E}|v €V}, or
two paths that do not traverse the same geographical region when S corresponds to
all sets of links that are physically close-by.

The following definition captures the notion of SRLG introduced by regional
failures, such as a natural disaster or an attack. For ease of presentation, we will call
these failure events disasters, regardless of their cause.

Definition 1.1 (SRLG). A set of links S C E is an SRLG if we may assume there
will be a disaster that can cause all edges in S to fail together. If the disaster can be
characterized by a bounded geographical area in the two-dimensional plane D C R?,
and S is the set of edges that intersect with D, then § is called the regional SRLG
that represents D, and is denoted by S = SRLG(D). If D is a circular disk, we call
SRLG(D) a circular SRLG.

Circular SRLGs, which are the most common in literature, can also be charac-
terized by the failure epicentre p € R? and the failure radius r € R. In this case
S ={ecEl|d(e,p) <r}, where d(e, p) is the Euclidean distance between edge e
and point p.

The likelihood of a disaster to occur is not the same at all points of the plane.
For example, earthquakes are more likely to occur in rupture zones than in other
places, and regions with lower altitude are more likely to suffer from floods. Thus,
the probability of an event to occur is important. This probability is sometimes given
in the form of an epicentre distribution map, which gives for each location p € R?,
the probability that a disaster happened with epicentre p. Moreover, the size (or
radius) of the disaster can also be a random variable (e.g., earthquakes with a larger
magnitude are less likely to happen than earthquakes with smaller magnitude, even
if their epicentres are the same). Thus, it is customary to consider a set D of disasters
D C R? (that can be of infinite size), and attach a probabilistic measure to this set.
For simplicity, let’s assume that D is finite, and let pp = Pr[disaster D € D occurs)?.
We note that an SRLG § can represent more than one disaster in D; thus, we denote
by the support(S) = {D € D|S = SRLG(D)}.

Definitions 1.2-1.5 capture the probabilistic nature of disasters and their effect on
SRLGs. An FP (Def. 1.2) tells the probability that the failed link set will be exactly
S, while a CFP (Def. 1.3) tells the probability that at least S will fail:

2 For infinite sets, one can use discretization and consider only finite number of sets, albeit with
a small error.
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Definition 1.2 (FP). Given a set D of disasters D C R?, a probability pp for each
disaster in D, and a link set S C E, the Link Failure State Probability (FP) of S is
FP(S) = ¥pesupport(s) Pp- We note that if a disaster in support(S) actually occurs,
then all links in S fail (with probability 1).

Definition 1.3 (CFP). Given a set D of disasters D C RZ a probability pp for each
disaster in D, and a link set S C E, the Cumulative Link Failure Probability (CFP) of
§is CFP(S) = Lros Lpesupport(r) Pp- We note thatif a disaster in Uy g support(T)
occurs, then all links in S fail (with probability 1).

In a sense, FPs are like probability density functions (PDFs), while CFPs are like
their cumulative distribution functions (CDFs).

Sometimes it is imperative to investigate situations in which disasters does not
necessarily cause the failure of the links even if they traverse the disaster area. These
events are called disasters with probabilistic outcome (Def. 1.4). While these be-
haviours can be described with lists of FPs or CFPs, two-stage PSRLGs (Def.1.5)
offer an alternative way of encoding the effect of the disasters.

Definition 1.4 (Disaster with probabilistic outcome). Given a disaster D with
probabilistic outcome, each e € SRLG(D) is attached a failure probability p, p
which is the probability that link e fails had disaster D occurred (for each e ¢ D
has p(e,D) = 0).

Definition 1.5 (two-stage PSRLG). Given a set D of disasters D C R? with prob-
abilistic outcome, a probability pp for each disaster in D, and a link set § =
{e1,e2,...e‘s|} C E, the two-stage Probabilistic SRLG of § is (S,ps;p1,...,p|s‘),
where pg is the probability that S will be hit by the next disaster D, and p; is
the probability that link e; is hit by D if it hits S. They can be calculated as

Ps = Lpesupport(s) PDs and pi = 5= ¥ pesupport(s) PDPerD-

If in case of each two-stage PSRLG S, links being part of S fail with the same
probability, S is called a homogeneous two-stage PSRLG, or else it is a heteroge-
neous two-stage PSRLG.

CFP(S) = L7os FP(T)

homog. two-stage PSRLG

pPi

lis heterog. two-stage PSRLG

Fig. 1.1 Relation of Probabilistic SRLGS (PSRLGs) (two-stage PSRLGs, FPs, and CFPs): an FP
is a homogeneous two-stage PSRLG with p = 1, which is a heterogeneous two-stage PSRLG with
pi = p- In addition, a heterogeneous two-stage PSRLG can be represented by a list of FPs, and lists
CFPs and FPs are also easily interchangeable by definition

Il
<
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Table 1.1 Papers enumerating regional SRLGs. While the rest of the papers consider deterministic
disaster scenarios, in [26, 27] SRLGs are obtained from PSRLG lists

Current Geometric info. Assumptions Algorithms
Paper Goal Physical Planar/  Disaster Single Precise/ Poly- Para-
chapter . . . . .
network Spherical shape disaster approximate nomial metrized
Sect. . .
- 1324 SRLG list no plane - v precise v X
Vass et al. Sect. . . .
[37.38] 13.28B SRLG list poor  plane circular v precise v v
Tapolcai et Sect. . . .
al. [30. 31] 1.3.2C SRLG list good  plane circular v precise v v
Sect. . set of known .
- | 39E SRLG list good  any disasters precise v X
Vass et 1.3.2D, . plane+ bounded by precise+
al. [39] 133 SRLG st~ any shpere  segments+arcs v approximate v
Igbal Sect. . .
etal. [17] 1.34A SRLG list good  plane - v precise X X
Neumayer Sect.  most vulne- plane circular or precise ) X

etal. [23] 1.3.4B rable point line segment

Pasi¢et  Sect.

al. [26.27] 1.5 SRLG list good  plane any v approximate v/ X

Collectively, we call FPs, CFPs and two-stage PSRLGs as Probabilistic SRLGs
(PSRLGs). Figure 1.1 depicts the connections between these notions.

We can convert a list of heterogeneous two-stage PSRLG into a list of FPs as fol-
lows. Take a heterogeneous PSRLG (S, ps; p1, .- -, pjs|); the probability pp of failing
exactly a non-empty set P C S'is ps[.cp Pi, thus one can store sets P with probabil-
ities pp in a list of FPs. A list of homogeneous PSRLG can be transformed similarly.

Table 1.2 Papers enumerating regional PSRLGs

Current Correlated link failures Natural disaster /
Paper Goal . .

chapter inside the disaster attack
Oostenbrink Sect. .
etal. [24] 141 FPlist “) -
Tapolcai Sect. . .
etal. 32] 1.4.1B CFP list v natural disaster
Valentini Sect. FP list + v natural disaster
etal. [36] 1.4.1C CFP list (earthquake)
Agarwal Sect. most vulnerable point X attack

etal. [2,3] 14.2
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Tables 1.1 and 1.2 give an overview of the works presented in this chapter. Papers
offering lists of SRLGs and PSRLGs translate the composed geometric problem of
protecting telecommunication networks against regional failures to purely combi-
natorial and probabilistic problems, respectively?.

In the following, we present works showing that the composed geometric prob-
lem of protecting telecommunication networks against regional failures translates
to combinatorial problems via generating (P)SRLGs. Then one can use a variety of
known tools to handle the translated combinatorial problems.

1.3 Calculating Lists of SRLGs

1.3.1 General Practices for SRLG Enumeration

Prior to presenting concrete algorithms for SRLG enumeration, we discuss the most
important issues of the field.

As the size of SRLG list S determines the run-time and complexity of the mech-
anisms that use it, an important goal is to keep S as small as possible. For example,
when two sets 1,5, are in S and S| C S5, it is sufficient to include only S, in S;
omitting S; from S usually does not affect the outcome of the underlying mecha-
nisms*. This is due to the monotonicity (of network design/recovery mechanisms):

Definition 1.6 (Monotonicity of mechanism). A mechanism is monotone if for any
S1, S, such that S; C S5, the actions the mechanism takes in response to S is a subset
of the actions it takes in response to Sy.

Moreover, some works use over-approximation to reduce the size of S:

Definition 1.7 (Over-approximation). S’ over-approximates S is for every S € S
there exists S’ € S’ such that § C §'. This relationship is denoted with &’ I S.

As an over-approximation, instead of including two sets S;,S> one can include
a single set S1 U S, (this is especially appealing if S NS is of non-negligible
size); such over-approximation, however, can degrade the outcome of the underlying
mechanisms. For example, if a big over-approximation is plugged into network pro-
tection mechanism (e.g., one that computes secondary paths that are SRLG-disjoint
from the primary paths), this will cause a performance degradation (namely, longer
secondary paths). Thus, one need to keep the degree of over-approximation low:

3 Some papers like [7, 21, 40, 42, 43] are loosely related to the regional (P)SRLG generating
problem, however, our goal is presenting the most relevant works in this field.

A list of (P)SRLGs can be used as a pre-computed input for various problems [4, 12, 15, 18].

4 This is true for communication networks, but not for networks in which there is no monotonicity
in failures.

‘When attaching probability to the SRLGs, this does not longer hold.
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Definition 1.8 (SRLG of a disaster D with respect to over-approximate set S’).
SRLGs/(D) is a minimal size set §' € S such that SRLG(D) C §'.>

Definition 1.9 (Degree of over-approximation). SRLG list S’ («, 3 )-over-approximates
a set of disasters D if |[SRLGs/(D)| < a|SRLG(D)|+ B forall D € D.

Keeping low the 1) degree of over-approximation and 2) the number of listed
SRLGs are conflicting objectives. As the best practices for SRLG enumeration vary
in function of the problem input, we will present a range of algorithms proposed for
calculating SRLGs. For every geometric over-approximation of the disasters, one
can give very badly behaving input networks (meaning arbitrarily high degrees of
over-approximation), but many of these inputs are not realistic (e.g., if two links are
very close, probably they share the same duct, etc.). The presented algorithms are
conservative both with the number of listed SRLGs and with the degree of over-
approximation in case of different classes of realistic inputs.

For regional SRLGs, over-approximation is achieved by taking a larger failure
region. The most common practice is to take a simpler shape that completely con-
tains the original failure region, e.g., circular disks (Sect. 1.3.2B-C, 1.3.4B), or fixed
shape bounded by segments and arcs (Sect. 1.3.2D, 1.3.3).

Dealing with circular SRLGs are in fact over-approximations of regional SRLGs.
Notice for example, that one can over-approximate disasters contained by a circu-
lar disk with a certain radius r, with disasters of radius ¥ > r (namely, assuming
all disasters cause larger damage). If such an over-approximation is plugged into
network protection mechanism (e.g., one that computes secondary paths that are
SRLG-disjoint from the primary paths), this will cause a performance degradation
(namely, longer secondary paths).

Another very common practice is to assume that in the investigated time period,
there will be at most one disaster. If one can enumerate the set S of SRLGs of
single disasters, it is straightforward to compute SRLGs of multiple disaster events.
For example, if two disaster can happen simultaneously, one might look at S’ =
{81US$>|S1,S2 € S§}. Thus, we will concentrate on enumerating the SRLGs of single
disaster events.

Lastly, we note that although many of the presented methods are designed to
handle links which are considered as line segments (or geodesics) between their
endpoints, these results can be extended to a more general setting, where the links
are polygonal chains (or series of geodesics) at the price of a polynomial increase in
runtime®.

3 If there are more than one equal-size sets that satisfy the condition, one is chosen arbitrarily.

6 Polygonal chains can be dismantled to a set of line segments, the method can be applied, then the
sets of line segments can be joined.
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1.3.2 Precise Polynomial Algorithms Enumerating SRLGs

A. SRLG Lists Induced by Hop Count

The current best practice to increase the resilience of the networks against disasters
is to ensure that the primary and backup paths assigned to a connection are node dis-
joint. Compared to edge-disjointness, in this way operators ensure that the distance
between the nodes of the primary and backup paths (except at the terminal nodes)
are in at least 1-hop-distance from each other. The intuitive reasoning is that a link
in a backbone network is typically a few hundred kilometres long, while natural
disasters are never larger than a few hundred kilometres.

Let M}, denote the set of link sets ensuring a distance of / hops. For each node
v, Mj—1 is containing the set of links incident to v. As an exception, let us list the
single link failures in Mj—q, as this SRLG list ensures link-disjoint routing. For
higher values of s, M}, can be defined as follows. To ensure an odd number of hops,
for every node v, Mj_»;_1 contains the edges of a tree of shortest paths to v from
the nodes not further from v than & hops. Similarly, for every link e = {u, v}, My
contains the edges of a tree of shortest paths to e from the nodes not further from u
or v than k hops. We can conclude that the number of SRLGs in Mj, is low |Mj,—o]|
being |E|, and |My—oi+1]| being |V].

Figure 1.2 depicts the average number of links contained by SRLGs in M,,.
Clearly, this average is 1 for 4 = 0, and is equal for the average nodal degree for
h = 1. According to simulation results, for bigger values of #, the average seems to
grow slightly superlinearly before the growth slows down to plateau at [V| — 1.

40

D o Pan-EU
—7— EU opiic)
—+=-US

—A— EU (Noben
% ——6— N.-American
—— US (NEsNer)
D —©—US @rrwy
-6~ US (Fibre)
-~ UsS (Att-Phys)
-EF US (Sprint-Phys)

30

20

Avg size in M},

Fig. 1.2 The average number of links contained in the SRLGs of M, in case of physical backbone
topologies of [25]

Clearly, M}, can be computed in low polynomial time of n. To generate Fig. 1.2,
we generated M, for h € {0,...,12} for all the networks on the figure in less than
17 seconds on a commodity laptop, using a code written in Python3, not optimized
for speed.
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B. SRLG Lists of Disasters Represented by Circular Disks Containing k Nodes

As mentioned before, the current best practice is to ensure that the primary and
backup paths assigned to a connection are node disjoint. This way operators ensure
that the distance between the nodes of the primary and backup paths (except at
the terminal nodes) are in at least 1-hop-distance from each other. The root of the
outages is usually because: (1) close nodes when two nodes are placed close to each
other; for example, in highly populated areas. (2) parallel links when two links are
placed close to each other because of some geographic reasons.

Unfortunately, handling the geometric information with the network topology is
not part of the current best practice. Furthermore, the Internet Service Providers
usually hire the links as a service from an independent company, called the Physical
Infrastructure Provider, and thus, operators have no information about the route of
the links, or the physical coordinates of the intermediate routing nodes.

In [38], a limited geometric information failure model is defined, which is based
on the following assumptions:

1. The network is a geometric graph G = (V,E) embedded in a 2D plane.

2. The exact route of the conduits of the network links are not known but contained
by a polygonal region.

3. The shape of the regional failure is assumed to be a circular disk with an arbi-
trary radius and centre position.

4. Tt focuses on regional link k-node failures, which are caused by disasters that
hit k nodes for k € {0,|V|—2}.

€2
e e

ey

u,v

Fig. 1.3 Tllustration of an apple with k = 2. Apple A" consists of specific ordered lists of links
and nodes which can be hit by a disk from CZ‘V. For more details, please check [38]
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Fig. 1.4 Sketch of algorithm from [38] for enumerating set M; of maximal link sets which can be
hit by a circular disk hitting k& nodes
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(a) The max. size py of SRLGs in M;,

Avg. size of SRLGs

600

The radius [km]

(c) The average size of SRLGs in M;, (d) The cumulative distribution function of the radius
of the disk having a given k number of nodes interior.

Fig. 1.5 The edge density, number and size of SRLGs for each network and k = {0,...,5} in case
of polygonal chain links

[38] presents a low-polynomial algorithm for determining the set M}, of maximal
regional link k-node failures. The proposed method is based on a set of (compu-
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tational) geometric considerations. The key observation is that for any element of
M, there exists a circular disk-shaped disaster having k nodes in the interior which
has (1) two nodes on its boundary, or else (2) only one node « on its boundary and
having an infinite radius. This allows us to enumerate all possible maximal failures
using a sweep surface method as follows.

Let {u,v} C V be two nodes for which the set C;"" of circles which have k nodes
in its interior and u and v on its boundary is not empty. These {u, v} pairs are part of
the set Ey of k-Delaunay edges, and their set can be determined in low-polynomial
time [29, Thm. 2.4]. In [38], data structure apple A, is defined, which contains
ordered lists of links and nodes which can be hit by a circle from C;"". Suppose u
and v are positioned as in Fig. 1.3. With the help of A;"", one can sweep through
circles of C;”" ordered by the abscissas of their centre points allowing to collect the
set M;"" of maximal hit link sets by disks from C;”". Then the globally maximal
elements of all lists M,"” are collected in M.

In the second case, the set of maximal failures M| from M, for which exist a half-
plane going through a node and hitting them can be calculated similarly via turning
a half-plane around every node while checking the set of hit links and the number
of hit nodes. Finally, M; can be obtained by collecting the maximal elements of M,l
and M,%.

The process is sketched in Fig. 1.4. The complexity of the algorithm is low-
polynomial and squared in the number of nodes n [38, Thm. 3, Cor. 25]. Besides
theoretical upper bounds, simulation results show that the number of maximal fail-
ures is approximately 1.2n and 2.2n for k = 0 and k = 1, respectively (Fig. 1.5).

C. Circular SRLG Lists of Disasters with Radius r

If the physical positions of the network elements are known, a fast systematic ap-
proach to generate the list M, of maximal SRLGs that represent circular disks of a
given radius r is clearly desired’.

Paper [31] presents a low-polynomial algorithm for computing M, when links are
considered as line segments (and the network is embedded in the plane). It shows
that the number of elements of M, is linear in the number of nodes in the network
n, and its calculation can be done in a squared complexity of n (Theorem 6 of [31]).
Simulations indicate that this list has a size of ~ 1.2n in practice (see Fig. 1.7).

To be more precise with the theoretical results, Corollary 4 of [31] tells that the
number of SRLGs in M, is at most proportional to the product of 1) the number of
nodes n plus the number of link intersections x, and 2) in the cardinality p, of the
biggest link set contained. The computing time needed is O ((n +x)2p,5) [31, Thm.
6]. We note that x is 0 or a small number, and according to simulation results, p,
increases linearly with r, suggesting an O(n*#>) runtime for r > 0.

7 [19] offers a mistaken heuristic for computing M, . It claims the disc failures having nodes of the
network as their centre point represent the worst-case of failures of radius r, which is clearly not
the case. Consider, e.g., a network being an equilateral triangle with side length 3, and » = 1; here
M, consists of a single SRLG containing all the 3 links instead of the 3 link-pairs claimed by [19].
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Algorithm 1 Sketch of algorithm proposed in [31]

Require: Graph G = (V,E) embedded in plane, radius r

Ensure: List M, of maximal SRLGs of disasters being circular disks with radius r
I: M. =0
2: Calculate X := {points of edge crossings}
3: forweVUX do

4: Determine E,, := {edges not further from w than 3r}
5: for e;,e; € E,, do
6: Calculate circles ¢; described in Fig. 1.6a
7: end for
8: for e € E,, do
9: Calculate circles c; described in Fig. 1.6b with w as point
10: Calculate circles c; described in Fig. 1.6¢c
11: end for
12: RefreshSM; with link sets hit by circles ¢;, cj, ¢ (1 circle at a time)
13: end for

14: return M. as M,

. o0
~ @, o

(A)Vec EandVfeE (b)VecEandVveV (c)Vec E

Fig. 1.6 The disk failures examined

In the followings, we give an overview of the proposed algorithm (Alg. 1), which
relies on a series of geometric considerations. The most important one is Theo-
rem 1 of [31], which leverages that the link sets possibly hit by any of the infinite
number of possible disaster locations can be determined via checking the effect of
a quadratic number of disks on the network edges. In particular, for a positive real
r, and a non-empty set of edges H which is hit by a circular disk of radius r, there
exists a disk ¢ of radius r which hits the edges of H such that at least one of the
following holds (see Fig. 1.6 for illustrations): (a) There are two non-parallel links
in H such that c intersects both of them in a single point. These two points are dif-
ferent. (b) There are two links in H such that ¢ intersects both of them in a single
point. These two points are different, and one of them is an endpoint of its interval.
(c) Disk c¢ touches the line of a link ¢ € H at an endpoint of e.

Intuitively, there is no reason for checking for the circles described in Fig. 1.6
in case of two network elements which are much further apart than the disaster
radius r. Indeed, one can build up the solution of the global problem based on some
local calculations, as follows. Let X be the set of link intersection points. After

8 This means that M’ is the set of maximal failures among which are already checked, and if f is
maximal amongst them, it is added to M’ and all f’s subsets are eliminated from M’; or if f is not
maximal in M’, nothing happens.
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determining X, one has to collect edges not further from w than 37 into a set E,,, for
all w € VUX, then determine the maximal failures of sets E,,, and finally, get the
result by collecting the maximal elements of the resulting lists.
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(a) 22-node EU network (Nobel)
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(b) 79-node US network (NSFNet)

Fig. 1.7 Simulation results for determining list M, of maximal SRLGs of disasters being circular
disks with radius r

With the help of some additional computational geometric ideas, for determining
M, one could achieve a near-linear computing complexity in the number of nodes
n [300°.

D. Circular SRLG Lists of Disasters with Radius r on a Sphere

The Earth is not flat, as its shape (geoid) is much more like a sphere. With this in
mind we can deduce that when studying spread-out networks (e.g., the optic fibre
network of the US), in order to reach a higher precision, one should consider that
networks are embedded on a spherical surface instead of the much more common
planar embedding. Note that [39] found that the spherical counterpart of M, denoted

¥ Under certain conditions, the complexity of the algorithm presented in [30] is optimal.
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M: and M} = M, can be different even in the case of a network having a geograph-
ical extension of 100 km.

More precisely, [39] took network AboveNet [1], and its shrunk instances,
where AboveNet/c means that AboveNet was rotated such that the average
lat and lon coordinates to be both 0, then each coordinate was divided by c. As
a similarity measure, M(r) := |MF AME|/(|MF|+|M¢|) € [0, 1] (the ratio of SRLGs,
which are present in only one of M} and M?) was used : if M(r) is close to 1, it
means the two lists are very different, while if it is close to 0, it means there are few
differences. Radius » = 8 was set to be a bit larger than the half of the diameter of
the current network, r = 0 was set to be a small radius, the rest of the » values were
linearly interpolated.

Figure 1.8 shows that, while in case of AboveNet, M and M? are almost en-
tirely different for many values of r, the tendency is that M(r) decreases as the
physical size of the network decreases, which nicely fits the intuition. Surprisingly,
M(r) is not O for every range r even for AboveNet /300, which equals to the case
when the approximative network diameter is 104 km, AboveNet /400 (having a
diameter of approx. 74 km) being the most spread out instance where M} and M?
are the same for all investigated r ranges.

As a rule of thumb, it can be said that the difference between the planar and
spherical representation of the network can result in different SRLG lists even in
case of networks having a geographic extension as small as 100 km.

3 1 —©— AboveNet
55 08 7% —— AboveNet /10
ST o6l —A— AboveNet /20
" - %- AboveNet /50
= 041 —+— AboveNet /100
Sf 0.2 | : ‘ —=- AboveNet /300 (diam.:104km)
old ;“= SO I A —&— AboveNet /400 (diam.: 78km)

o 1 2 3 4 5 6 7 8

r, where r = 8 equals the half of the network diameter

Fig. 1.8 The ratio of those SRLGs which are different in M and M2, i.e., |[MF AME|/|MF UM

Regarding to calculating list M} of maximal SRLGs of disasters represented as
circular discs with radius r on a sphere, basically, the same ideas could be repeated
on the sphere as we saw earlier. While considering a more general model, where
links of networks are represented as polygonal chains consisting of at most ¥ line
segments between their endpoints (where 7 is a parameter), paper [39] presents an
approach similar to the one seen in Sect. 1.3.2C for determining M;. However, as it
only aims to present that *planar’ approaches can be repeated on the sphere, it pro-
vides a moderately sophisticated algorithm and complexity bound on determining
M. For the sake of complexity analysis, an additional parameter A is defined, which
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is the maximal length of the list of suspected maximal failures M while collecting
the maximal failures.

According to Cor. 9 of [39], if both x and A is O(n), and ¥ is bounded by
a constant, the list M; of maximal link sets which can be hit by a circular disk on
the sphere can be computed in O(n*p,). Simulation results show that p, is propor-
tional to 2 in the interval (0,diam/2], where diam is the geometric diameter of

the network. This means an O(n*

g ) total running time in practice.

E. SRLG Lists of Disaster Sets

In Sect. 1.3.2A-D we investigated the possibilities of SLRG list enumeration when
the concrete disaster zones are not known, and thus they are over-approximated with
circular disks. In reality, the affected region greatly depends on the properties of the
disaster, as well as those of the surrounding area. For example, the region affected
by an earthquake depends on the earthquake’s magnitude, as well as the properties
of the rocks and sediments that the earthquake waves travel through. Thus, it makes
sense to base the SLRGs on a variety of possible failure shapes.

If we do know the set D of representative disasters (along with the physical
embedding of the network G), the SRLG enumerating process becomes trivial:

1. VD € D, compute SRLG(D), and collect these link sets in list Fp
2. return the maximal elements of Fp as a list Mp.

Note that a detailed knowledge on the nature of possible events taking down
some elements of the network in a region might allow us to refine the definition of a
disaster (in Def. 1.1) to leverage our additional insights on the failure schemes (e.g.,
in case of a flood, optical cables traversing the river on the body of a bridge might
fail, while aerial cables may remain operational)m. With all this, if, for each disas-
ter D, computing SRLG(D) can be done in polynomial time, the above-mentioned
method returns Mp in polynomial time.

Solutions presented in Sect.1.3.2A and 1.3.2E can be viewed as the no and full
information versions of the (non-probabilistic) SRLG enumerating problem, respec-
tively. We could see that these cases can be handled algorithmically easily. In Sect.
1.3.2B-D we tackled the same problem in case of different quality of knowledge on
the physical embedding of the network.

1.3.3 Approximate Polynomial Algorithms Listing SRLGs

We could see in Sect. 1.3.2C a part of a sophisticated theory and relatively complex
algorithms which have to be built to be able to provide an algorithm for determin-
ing just a single kind of regional SRLG list. This raises the question if one could

10 Probabilistic refinements are presented in Sect. 1.3.4A
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Algorithm 2 Approximate algorithm for determining the maximal r-range SRLG
lists
Require: G = (V,E), r, P, geometry type g, coordinates of nodes and polylines of edges
Ensure: M¢
8=
: for P c P do

determine e(P)pi

if e(P)hit 75 ( then

refresh! M$ with e(P)yic

end if
end for
return M,® as M$

A I ol ey

approach the problem better, or at least more general. As we will see in this Subsec-
tion, the answer is yes. In a sense, one of the aims of paper [39] is to show that while
there is a struggle for fast algorithms determining basically any kind of SRLG list
precisely, with relatively low effort one can design discretized approaches which can
make small mistakes, but which might be permissible given the uncertainty in the
failure modelling and the network data. We note that in [38], links are represented
as polygonal chains (or chains of geodesics) between their endpoints, allowing to
represent real topologies accurately.

For a point P (in the plane or on the sphere) and node v € V, let the node-distance
couple be [v,d(v,P)], where d(v,P) is the distance of v to P. Let v(P) be the list
of node-distance pairs of all nodes v € V. We define ¢(P) to be the list of edge-
distance pairs defined similarly. It can be proved that for a given point P, v(P) can be
computed in O(n), and e(P) in O(n+x) (where x is the number of edge crossings).

The plan is to determine these lists for enough points which are also placed
well enough to be able to determine the maximal SRLG lists based on these node-
distance and edge-distance lists. Let /P denote the set of points P for which we want
to construct v(P) and e(P).

Let us restrict ourselves to planar geometry for a moment. Intuitively, we can cal-
culate M, by including the grid points of a sufficiently fine grid (let’s say containing
1 km x 1 km squares) in P. On a sphere, we should choose a similar nice covering.

Alg. 2 is an example discretized algorithm for determining M? (where ’g’ stands
for geometry type, My being M? or MY = M,, if the geometrical representation
is planar or spherical, respectively) for circular disks, which has a complexity of
O(|P|n g ) under some practical assumptions, and it has a low-polynomial com-
plexity indifferent of the nature of the problem input [39, Thm. 11, Cor. 13]. We can
see that although Alg. 2 is much simpler to implement, it is competitive with much
more complex precise Alg. 1 in terms of asymptotic runtime.

Regarding to its accuracy, 1) let dp be the maximal distance of any geometric
location from the (closed) convex hull of the geometric embedding of graph G to the

11 Similarly to the precise algorithms, this means that M is the set of maximal failures among
which are already checked, and if e(P)p is maximal amongst them, it is added to M?$ and all
e(P)ni’s subsets are eliminated from M ; or if e(P)p is not maximal in M’, nothing happens.
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closest point of set P, i.e., dp := MaX,ccony() Minpep dist(p, ), and 2) let us denote
the relationship of two (link) sets E1 and E; by E; J E;> (E| over-approximates E»)
if and only if for all e, € E, there exists an e; € Eq, such that e; D e, (e over-
approximates e;), conform with Def. 1.7. Using these notations, M7 J Hf I M¥_ dp>
where H is the output of Alg. 2 [38, Thm. 11]. Based on this, if one wants to protect
disasters caused by disks with radius r, it is only needed to run Alg. 2 initializing
the radius as r + dp. Furthermore, by choosing P such that dp to be small, one can
avoid enumerating overprotective SRLGs, more precisely, limg,, o Hf = M;, for
any fixed network!2.

Considering non-circular SRLGS, engineering fast precise algorithms for deter-
mining SRLG lists for arbitrary disaster shape instead of a circle is not trivial'?,
but approximate algorithms similar to the one described for determining M can be
easily designed. In short, while the disk is invariant to rotation, the only additional
hardness here is that the different orientations of the fixed shape should be also con-
sidered. In other words, one should check the links hit by the shape at every centre
point and every orientation. Discretizing the possible orientations of the shape can
be handled just as discretizing the places of centre points. Based on this idea, [39,
Alg. 4.] approximately calculates the list Mgpape of maximal failures which can
be caused by a disaster shape in O(a|P|n g ) under some practical assumptions,
where a is the number of orientations of the shape which are considered. Its com-
plexity is low-polynomial indifferent of the problem input, and, in limit, the output
is precisely Mshape, both in the plane and on the sphere [39, Thm. 15, Cor. 17].

1.3.4 More SRLG Enumerating Approaches

A. SRLGs of Spatially-close Fibres

Paper [17] proposed to call a pair of fibres spatially-close if their distance is at
most 7/, i.e., they can be covered with a circular disk of radius g They propose
to define SRLGs as sets of fibres where any pair of fibres are spatially-close, in
other words, any pair of fibres can be covered with a circular disk of radius %, See
Fig. 1.9 highlighting the difference between this model and the one shown in Sect.
1.3.4A. The intuition is that ' is a small parameter representing those fibres that are
close together having a higher probability of failing simultaneously due to regional
failures. The high-level idea is to provide an approach that generates SRLGs, not
considering failure shapes, but simply considers a threshold : any fibre pairs with
a separation distance smaller or equal to 7 are considered spatially close.

In [17], three spatially-close fibre problems are considered: (1) finding all pairs
of spatially-close fibre segments, (2) finding all spatially-close intervals of fibre to

a set of other fibres, and (3) grouping spatially-close fibres into SRLGs.

12 In other words, the degree of over-approximation (Def. 1.9) tends to (1,0) as dp — 0.
13 [35] tackles a similar problem.
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(a) There are 3 SRLGs each are a pair of links. (b) There is a single SRLG with three links

Fig. 1.9 Example of SRLG according to (a) Def. 1.1, and (b) Sect. 1.3.4A

Fibres are modelled as non-straight concatenations of fibre segments of irregular
lengths. Each of these fibre segments is a straight line connecting two fibre-points
of known geodetic coordinates (latitude and longitude). For easier calculations, the
coordinates are projected to two-dimensional Cartesian coordinates, embedding the
fibres into the 2-D plane.

Problem 1.1 (Detection of Spatially-Close Fibre Segments (DSCFS) [17]). Given
a set E of fibres and a distance /. Each fibre e € E is associated with a set 7, of T,
fibre segments. Each fibre segment ¢ € 7, is associated with two fibre points (¢, vs1)
and (u2,v,2). Find all fibre segment pairs of different fibres that have a minimum
separation distance of at most /.

Clearly, the DSCFS problem is solvable in polynomial time, as the naive approach
(computing the separation distance of all fibre segments) has a time complexity of
O(|E|>T?), where T is the maximum number of fibre segments per fibre. In practice,
the runtime can be reduced significantly by storing each segment in an R-tree!* [17].

The probability that two spatially-close fibres fail simultaneously depends on the
length of the interval(s) of the fibres that are close together.

Problem 1.2 (Intervals to a Set of Spatially-Close Fibres (ISSCF) Problem [17]).
Given a fibre ¢;, a set ) of Y fibres, and a distance r’. Each fibre ¢; or e;j€)is
associated with a set 7;/7T; of T;/T; fibre segments. Each fibre segment ¢ € 7;/7; is
associated with two fibre points (u1,v1) and (w2, vy2). Find the intervals of fibre e;
that have a minimum separation distance of at most ' to any fibre e; € .

This problem can be solved in O(YT?) time, where T is the maximum number of
fibre segments per fibre, by first finding all fibre segments of Y that are spatially-
close to e; and then computing the spatially-close intervals to these segments by
solving sets of quadratic equations (see Alg. 3 in [17]).

Finally, if a set of fibres are grouped into an SRLG if every pair of fibres are
spatially-close to each other:

Problem 1.3 (Grouping of Spatially-Close Fibres (GSCF) Problem [17]). Given a
set F of F spatially-close fibre pairs. Group all fibres that are spatially close to each
other, such that the number of distinct SRLGs is minimized.

14 An R-tree is an efficient tree data-structure for storing spatial objects. Objects are grouped based
on their minimum bounding rectangle.
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In other words, we want to find all maximal SRLGs, where a maximal SRLG is
a set of fibres that are spatially close to every other fibre in the set, and which is not
a subset of any other SRLG.

In [17], a heuristic algorithm was given that first transforms it to the Maximal
Clique Enumeration (MCE) problem. Second, a variant of the Bron-Kerbosch algo-
rithm [33] to find all maximal cliques is used to find all maximal SRLGs. Note that
MCE is an NP-hard problem in general.

B. A Single Worst SRLG in Case of a Fixed Metric

[23] presents three flavours of problems for finding a most vulnerable place of the
network in case of multiple network vulnerability measures!®. The first problem
assumes that the network is bipartite in the topological and geographic sense and
that the cuts are vertical line segments. In the latter two problems network, links can
be in almost arbitrary locations on the plane. In one of the problems, the disaster
shapes are line segments in any direction. In the other, the disasters are circular disks
with a given range. To solve the problem instances, in [23], both MILP formulations
and polynomial algorithms are given.

We say vulnerability metric u is monotone, if, according to u, for any link set
E| C E», the failure of E; is worse than the failure of E;. We note that in the natural
condition when the vulnerability metric or a protection mechanism is monotone (cf.
Def. 1.6), the worst SRLG will be part of the set of exclusion-wise maximal SRLGs
fulfilling a given criteria ¢ (e.g., SRLGs that can be hit by line segments in any
direction, circular disks with a given range, or by a disaster from a disaster set D),
which can be determined using the techniques depicted in Sect. 1.3.2 and 1.3.3, and
Sect. 1.5 (which uses PSRLGs as an intermediate step). Thus a worst SRLG can be
found according to Alg. 3:16

Algorithm 3 Worst SRLG of a vulnerability metric or protection mechanism

Require: graph G = (V,E), criteria ¢, monotone vulnerability metric or protection mechanism p
Ensure: worst SRLG S according to u fulfilling criteria c.
1: Calculate SRLG list M, of maximal SRLGs fulfilling criteria c (e.g. as in Sec. 1.3.2, 1.3.3 or
1.5)
2: Compute the value p(S) for each S € M,
3: return an S € M, for which u(S) is worst

15 The investigated measures are: (1) the total expected capacity of the intersected links, (2) the
fraction of pairs of nodes that remain connected, (3) the maximum flow between a given pair of
nodes, (4) the average value of maximum flow between all pairs of nodes.

16 Alg. 3 is polynomial assuming the SRLG enumeration and calculating the metric value runs in
polynomial time.
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1.4 Calculating Lists of PSRLGs

1.4.1 Computing Lists of FPs and CFPs

A. Computing FPs From Disaster Sets

Most algorithms for analyzing the vulnerability of networks to disasters, or for cre-
ating regional (P)SRLG lists, assume the regional failure takes a fixed shape ev-
erywhere in the network area. In reality, the affected region greatly depends on the
properties of the disaster, as well as those of the surrounding area.

[24] proposes computing the vulnerability of a network to a set of representative
disasters D (each of any shape), instead of to a fixed disaster shape. Each disaster
D € D is assigned a disaster area D C R?, and an occurrence probability pp'”. As
the probability of simultaneous disasters is low (ignoring strongly correlated events
such as aftershocks, which can be combined into a single composite disaster), it
is assumed exactly one disaster will occur, i.e., Y pep pp = 1. Furthermore, it is
assumed that if a disaster D occurs, all links intersecting its disaster area will fail.
A disaster D can take any shape and does not have to be connected, as long as it is
possible to compute if a line segment intersects it.

A representative disaster set D can be obtained in a variety of ways, preferably
in collaboration with experts (e.g., seismologists). For example, one can use a tool
to randomly generate sets of possible disasters, use the last N historical disasters, or
construct a set of custom disaster-scenarios. The concept of a set of representative
disasters is similar to that of the Stochastic Event Set used in Cat-modelling, for
which a large number of models exist. In all cases, it is necessary to convert hazard
intensity values such as ground motions to a binary area D using some threshold
function. [24] gives an example of converting earthquake scenarios to a disaster set
D.

Note that if the disaster locations and shapes are both finite discrete random val-
ues (e.g., a division of the plane into grid points), we can generate a finite disaster set
D of all possible disasters by simply adding each possible combination of disaster
location and shape to D.

Let a failure state s be defined as a set s C E, where e € s if and only if e has
failed. Now, the failure set S(D) of links that are affected by disaster D is the set
of links that intersect D. Note that this definition of S(D) is equivalent to that of
aregional SLRG, SRLG(D).

Let S be the random value indicating the failure state after the disaster. Given
a disaster set D, we can obtain the distribution of S as follows [24]:

1. ¥D € D, compute S(D)
2. Vs € S[D] (the image of S), store
S~!(s)={D e D|S(D) =s}
3. Vse S,FP(s) =P(S=s)= Y pb.
DeS~1(s)

17 In contrast, Sect. 1.3.2E depicts the non-probabilistic version of this regional failure model.
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We now have each possible failures state, as well at its occurrence probability. That
is, we have the complete list of FPs, based on the disaster set D.

B. Calculating Lists of CFPs Based on Correlated Link Failures

A study dealing with the probabilities of correlated link failures is [32], which mod-
els the regional failures as having a random epicentre, and a random size (described
with a size parameter s in [0, 1]). Two assumptions are made: (1) in the investigated
time period there is at most one disaster and (2) for every possible failure epicen-
tre and failure sizes 51 < s the region destroyed by disaster with size s; is totally
contained by the region hit by the one with size s,.

Figure 1.10 briefly depicts the model. It shows an example network and the cor-
responding failure probabilities. Suppose we need to establish a high-availability
connection from the top node through the working path of link » and protection path
a — e. The unavailability of the working path can be computed as CFP(b) = 0.0055,
and for the protection path it is CFP(a) + CFP(e) — CFP(a,¢) = 0.00986. In the tra-
ditional approach, the two paths are assumed to fail independently; thus, the total
connection availability is estimated as 1 — 0.0055 - 0.00986 = 0.999945, i.e., four
nines. However, considering the joint failure probabilities of the links (provided in
the example), the total connection availability should be 1 — CFP(a,b) — CFP(b,e) +
CFP(a,b,e) = 0.9987, i.e., not even three nines, which is a significant difference.

<
Input.—\ Failure model: Type: [tornadonearthquakeHEMPH } )

Network: Model parameters:
pa: the probability of a disaster of type d in the given area and time period;

h(p): quantitative hazard map of the area, that is the probability density function of the
location of the disaster epicentre (e.g. uniform distribution on a bounded area on R?);
r(p,s): the shape function of the disaster depending on epicentre p and size s returning
the damaged zone of the disaster (e.g. a circular disk centered on p with radius s);
Regional failure model: o)
Hazard epicentre: random variable on R? with probability density /().

Relative size: random variable uniform distribution on [0, 1]. Each link fails having a
~— \point in the disaster area defined by shape function r(), the rest remain intact.

Output:
CFP(a) =.0055 CFP(b)=.0055 CFP(c)=005 CFP(d)=.005 CFP(e)=.005 CFP(f)=.005
CFP(a,b) =.00068  CFP(b,e) =.00064  CFP(a,e) =.00064  CFP(c,e) =.00056
CFP(d,e) =.00056  CFP(d,f) =.00056  CFP(c,f) =.00056  CFP(c,b)=.00052
CFP(a,d) =.00052 CFP(a,e,d) =.00031 CFP(b,e,c) =.00031 CFP(a,b,e) =0

Fig. 1.10 An illustration of the CFP problem inputs and outputs

Now an implementation strategy follows which uses discrete functions instead of
continuous ones. The problem is discretized by defining a sufficiently fine resolu-
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tion, say 1 km, and placing a grid of 1 km x 1 km squares over the plane to assume
that the disaster regions r(p,s) and hit link sets R(p,s) are “almost identical”!® for
every size s and disaster centre point p inside each grid cell c¢. This way the whole
integration problem translates to a summation. The inputs are defined over the grid,
and the Euclidean plane is considered as a Cartesian coordinate system.

Let r denote the absolute maximum range of a disaster in km. Let (Xin, Vinin) be
the bottom left corner and (Xmqyx, Vmax) the top right corner of a rectangular area in
which the network lies. It is sufficient to process each c in the rectangle of bottom
left corner (Xin — 7, Ymin — ¥) and top right corner (Xpmax + 7, Ymax + 1), and we denote
by c; ; the grid cell in the i-th column and j-th row. In this range, for each c; ;, we
will consider the probability 4; ; of the next disaster having epicentre p in the cell
cij. (e, hyj= fpec,-_j h(p)dp, where h(p) is the probability density function of the
disaster epicentre).

To build up the list of CFPs, an associative array CFP|[ | is used, which can be
addressed by a set of links {ej,ez,...,e;} and returns its cumulative failure proba-
bility. For this, in the pre-computation process, we have to extract the contribution
of ¢; j to the cumulative failure probability of every subset S of links. We do this
by working with the list S; j = (e1,e2,...,e) (where ¢; is the ith closest link to cell
¢i,j), and increment the CFP values accordingly, i.e., CFP[{e| }|4+ = h; ; - f(e1,¢i ),
CFP[{ex}]+ = hi i -f(ez,ci,j), CFP[{e1,e2}]+ = hi -f(ez,ci_’j), etc.

For the probability CFP(S) of failing at least the set S of links, we need to look up
S in CFP. If not found, then CFP(S) = 0. The query time of sets can be reduced to a
constant with very high probability (with the help of hashing). Using self-balancing
binary trees, the worst-case query time is always O(p log((n+x)p)), where p is the
maximum number of links hit by a disaster.

The drawback of the CFP list is that it has an Q(2P) space complexity, which
makes it inefficient for bigger network densities. With this in mind, one can build
up also a list of FPs representing the same disasters, which will be significantly
shorter, but some pre-computations will be needed to determine CFP(S).

C. CFPs and FPs from Historical Earthquake Data

Intuitively, the models presented in Sect. 1.4.1A and 1.4.1B are somewhat related.
In fact, both models could be used for computing lists of FPs and CFPs. In [36],
an approach for determining the list of CFPs and FPs based on the available histor-
ical earthquake data is presented. This approach can be viewed as a special case of
both models presented in Sect. 1.4.1A and 1.4.1B.

Namely, the next possible earthquake has a random epicentre taken from a set of
grid points over the evaluated area, and the disaster area has also a random range
(which is a function of the earthquake moment magnitude) taken from a discretized

18 In particular, we may assume that the probability f(e,p) that link e fails if a disaster with
epicentre p happens is independent of p as long as it is in ¢. We denote this common value by

fle,c).
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scale. This results in a set of disaster scenarios with some probabilities as in Sect.
1.4.1A, and also can be viewed as a discrete version of the model in Sect. 1.4.1B.
Simulation results of [36] show that the graph of f(x) = ‘the probability of the
x™ most probable (C)FP’ follows an exponential distribution in case of FPs, and fits
the power law in case of CFPs. In other words, if one stores only (C)FPs having a
probability higher than a threshold T, lowering T by several orders of magnitude
does not cause a severe increase in the number of listed FPs, but the size of the CFP

list explodes.

1.4.2 Probabilistic Modelling of the Worst Place of a Disaster

Similarly to [23] (in Sect. 1.3.4B), [3] aims to find the single worst place of a disaster
under a certain metric. While [23] models the disaster effect to be deterministic
(every network element which has an intersection with the disaster area fails with
probability 1), in [3], every link has a probability € [0, 1] of failing in case of each
disaster place. However, an incompleteness of the paper is that, in case of a fixed
disaster, it considers that the affected links fail independently of each other.

To be more precise, the model of [3] is the following. They define a failure proba-
bility distribution function f : Q x R> — R > 0. Given a disaster location P € R and
g € Q, f(g,p) = fy(p) is the probability that g is affected by the disaster at p. For
a compound component £ composed of a sequence of simple components g1, ..., g,
the probability of being damaged by a disaster at a location p is denoted as fx(p)
and being defined to be the probability that at least one of its simple component is
damaged. i.e.. fe(p) = 1 ~yen(1 — fy(p).

For finding the most vulnerable point according to various metrics (expected
component damage, average two-terminal availability, and expected maximum post-
attack flow), [3] presents Las Vegas and Monte Carlo algorithms. It also offers ap-
proximate solutions to the problem of finding the worst arrangement of k simultane-
ous disasters (attacks), which is a generalization of the NP-hard maximum set cover
problem[16].

1.4.3 On Two-Stage PSRLGs and Denomination Issues

The first paper considering probabilistic SRLGs was [20]. There the structure which
in this chapter is called ’two-stage PSRLG’ is named simply as ’Probabilistic
SRLG’ (PSRLG). Since we felt that FPs and CFPs deserve to be called probabilistic
SRLGs at least as much as the structure defined in [20], we call these structures
collectively as PSRLGs, and name the [20]-PSRLG as 'two-stage PSRLG’.

Due to this historical reason, we believe it worth presenting its model even though
[20] does not tackle the question of calculating PSRLGs (it only uses PSRLGs as
inputs for a diverse routing problem). [20] defines the two-stage PSRLGs as follows.
There is a set R of SRLG events that can incur link failures. Each SRLG event r € R
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occurs with probability 7., and once an SRLG event r occurs, link (i, j) will fail
independently of the other links with probability p} ; € [0,1]. Link (i, j) is part of
the resulting (two-stage) PSRLG if p; ; > 0. This definition from [20] is slightly
generalized in Def. 1.5 while keeping the form of the data structure.

As Fig. 1.1 also suggests, using lists of two-stage PSRLGs one could store the
same information more compactly as in lists of FPs or CFPs. However, there are
numerous open questions related to this field, as to the best of our knowledge, no
paper investigated how to enumerate in an efficient way lists of two-stage PSRLGs.

We believe that lists of FPs or CFPs are the right standard structures describing
the probabilistic effects of the disasters, and any other versions of PSRLGs may be
viewed as model-specific compact representations of these lists.

1.5 Advanced: SRLG Lists Obtained from PSRLG Lists

It is a natural idea to list the (maximal) link sets which have a probability of failing
together higher than a given threshold T (like in [27])'°. Obviously, for this, as an
intermediate step, one has to generate a set of probabilistic SRLGs. More precisely,
CFP is the most useful structure in this context, since, by definition, for a link set S,
the Cumulative Failure Probability CFP(S) is the probability that at least the links
of S will fail. The advantage of this approach is that SRLG lists can be generated
based on sophisticated objectives. Alg. 4 sketches this framework.

Algorithm 4 SRLG list obtained from CFP list

Require: graph G = (V,E), threshold T € [0, 1], CFP model C (e.g., as in one of [24, 26, 27, 32]),
additional parameters needed for C
Ensure: list M7 of maximal link sets having a CFP at least T
1: Calculate list L of CFPs according to C
2: Collect CFPs of L with probability > T in list Fr
3: return list My of maximal elements of Fr

As a concrete example, [27] modifies the CFP enumerating model presented in
[32] (and Sect. 1.4.1B) in order to take in count also the availabilities of the links.
Compared to [32], a link e with low availability makes CFPs it is involved in to
have higher probabilities, while reliable links decrease these probabilities. Figure
1.11 shows the cardinality of the output M7 and average length of SRLGs in M7 in
function of threshold 7' and maximal disaster area R in case of backbone topology
16_optic_pan_eu[25]. Note that the unit of R is not a km, as the Euclidean dis-
tances are altered during the CFP enumerating process, based on the availabilities.

19 In Sect. 1.4.1B, we could see how CFPs (and thus all kind of PSRLGs) can be used for calculat-
ing the availability of services. To leverage the probabilistic information stored in PSRLGs in case
of resilient routing, one needs to calculate a list of SRLGs based on a PSRLG input.



1 How to Model and Enumerate Geographically Correlated Failure Events... 25

Bomb range

[} w1 = W u W - u u u — [a] i - [l i w1 — un ul u —~
=} ™~ [=] r~ =] ™~ =] -~ =] ™~ (=] [=] ™~ [=] r~ =] ™~ =] P~ (=} ~ (=}
£ 5§ 2 5 g8 85 g 8 8 g 5§ 2 5 g8 2 8 5 g o 8
= =] =1 =1 S = = =i =] S © =1 S & =
= = S =5 & o = = s & 8 4

p= p= p= p=

Threshold Threshold
(a) [Mr| (b) Average SRLG length in My

Fig. 1.11 Cardinality of [M7| and avg. length of SRLGs in M7 in function of probability threshold
T and maximum disaster radius R in case of backbone topology 16_optic_pan_eu [25]

Figure 1.11 shows that a radius R > 80 (which roughly corresponds to the 20% of
the network diameter) or larger combined with a threshold 7' <0.001 yields a high
number of maximal probable failures. This translates to the fact that a bigger disaster
possibly hits a larger number of edges, and the failures above the small threshold
cannot be dominated by only a few sets from M7.20 Further observations of [27]
are that: (i) if R € [0,80], Mr is likely to contain only a handful of most probable
SRLGs; (ii) similar R - T value indicates similar cardinality of M. For reasonable
disaster sizes, M7 has a manageable size, with its cardinality being comparable with
the number of network elements. In addition, one can observe that the average size
of the SRLGs scales with the radius.

20 Of course, in a non-practical extreme case of R being greater than half of the network diameter,
it is possible that My = {E}, meaning |[Mr| = 1.
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1.6 A Mind Map of the Chapter
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Fig. 1.12 A mind map of the chapter. (C)FP() stores PSRLGs, while lists M. consist of SRLGs.
SRLGs are used, e.g., by resilient routing, while PSRLGs, e.g., in determining service availability

1.7 Conclusions

In this chapter, we overviewed the state of the art algorithms for enumerating re-
gional Shared Risk Link Groups (SRLGs) and regional Probabilistic SRLGs (PSRLGs),
which structures are key in translating the composed geometric problem of pro-
tecting telecommunication networks against regional failures to purely combina-
torial and probabilistic problems, respectively. We showed that the best technique
to choose for enumerating the vulnerable regions varies on (1) the available geo-
metric information on the network topology, (2) (probabilistic) information on the
effects of possible disasters in the network area, and (3) the desired output struc-
ture (SRLG/PSRLG). In the chapter, first, we presented a range of deterministic ap-
proaches for enumerating maximal regional SRLGs under various conditions. Then,
for regional PSRLG enumeration, we visited some models, which are easily tunable
to the available knowledge on the network topology and the disasters. Lastly, as an
advanced technique, we described an SRLG enumerating approach, which uses an
arbitrary probabilistic model in an intermediate step.
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