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Abstract—Several recent works shed light on the vulnerability
of networks against regional failures, which are failures of
multiple equipments in a geographical region as a result of a
natural disaster. In order to enhance the preparedness of a given
network to natural disasters, regional failures and associated
Shared Risk Link Groups (SRLGs) should be first identified.
For simplicity, most of the previous works assume the network
is embedded on an Euclidean plane. Nevertheless, since real
networks are embedded on the Earth surface, this assumption
causes distortion. In this work, we generalize some of the related
results on plane to sphere. In particular, we focus on algorithms
for listing SRLGs as a result of regional failures of circular shape.

Index Terms—Shared Risk Link Groups, large scale disasters,
disaster resilience

I. INTRODUCTION

Serious network outages are happening with increasing
frequency due to disasters (such as earthquakes, hurricanes,
tsunamis, tornadoes, etc.) that take down almost every equip-
ment in a geographical area (see [1] for a recent survey con-
ducted within COST Action RECODIS on strategies to protect
networks against large-scale natural disasters). Such failures
are called regional failures and can have many locations,
shapes and sizes.

Due to the huge importance of telecommunication services,
improving the preparedness of networks to regional failures is
becoming a key issue [2]–[10]. Roughly speaking, protecting
networks against regional failures is dealt with either by using
geometric tools [2], [11]–[16] or by aggressively reducing
the problem space to a set of failure candidate locations
[4], [6]–[10]. Nevertheless, both approaches require a detailed
knowledge of the geometry of the network topology, such as
the exact GPS coordinates of nodes and cable conduits’ routes,
and the statistics of past disasters.

In many works, regional failures are computed by trans-
forming the geographical coordinates of an existing network
into a plane, which introduces distortion. Depending both on
the geographical area of the network and on the transforming
procedure, this distortion can vary from negligible to sig-
nificant. For example, the backbone network of a small-to-
medium size country is not suffering a significant distortion
when compared with the uncertainty of the available geo-
graphical data, but when turning to networks covering a large
country, a continent, or even multiple continents, there is no

projection which can hide the spherical-like geometry of the
Earth surface (see Fig. 1).

Since distortion of projections is well studied (see [17] for
a comprehensive study on this field), we do not concentrate on
theoretical aspects of projections and, instead, our focus is on
the practical advantages and disadvantages of using a spherical
model over a planar one to represent network topologies.

Backbone networks are designed to protect a given pre-
defined list of failures, called Shared Risk Link Groups
(SRLGs). Network recovery mechanisms are efficient if this
SRLG list covers the most probable failure scenarios while
having a manageable size.

An SRLG is called regional if it aims to characterize a
failure damaging the network only in a bounded geographical
area. It is still an ongoing research how to define and compute
efficiently regional SRLG lists [14]–[16]. A common simpli-
fication of these works is that they compute the list of SRLGs
on planar representation of the networks; thus, our focus is to
generalize these approaches to sphere.

An SRLG consists of a set of network links, while node
failures are implicitly defined (a node is considered to be failed
with the SRLG if all its adjacent edges are part of the SRLG).
If a failure f is listed as an SRLG, it is a common approach
to skip listing any subset of f (if the network is protected to
f , it is also protected to any of its subsets) and, therefore, it
is enough to list the maximal SRLGs caused by disasters.

Another issue is that the number of the listed SRLGs has to
be kept low. With this aim there is a common practice to fix the
shape of the disasters [12], [13]. Among the possible geometric
failure shapes the most natural one is the circular disc, as it
is compact, and is invariant to rotation. One possibility is to
overestimate the possible failures with circular disks, which
yields short SRLG lists. However, it is not clear, what is
the cost of this overestimation. In this work we choose to
overestimate the disasters by circular disks with a maximum
size according to one among many possible measures.

When talking about (maximal regional) disk failures, the
most natural measure is the disk radius, which represents
the maximum geographical coverage of the natural disaster.
Nevertheless, since the network density is usually not homo-
geneous (i.e., there are more nodes and links in geographical
crowded areas than in non crowded areas) the number of
network elements (either nodes or links) contained by the disk
are also two useful measures (it is natural that more SRLGs



(a) Transverse Mercator Projection (b) Lambert Conformal Conic Projection

(c) Oblique Stereographic Projection

Fig. 1: Distortion patterns on common conformal map projections. Projections are shown with reduction in scale along the
central meridian or at the center of projection, respectively. Each of the projections has > 3% scale error over the US. [17]

are needed in crowded areas and less crowded areas can be
covered with fewer SRLGs). Therefore, in this work, we will
concentrate on the following three types of SRLG lists:

• maximal r -range SRLG list: list of maximal link sets
which can be hit by a disk with radius at most r .

• maximal k-node SRLG list: list of maximal link sets
which can be hit by a disk hitting at most k nodes.

• maximal k-link SRLG list: list of maximal link sets which
can be hit by a disk hitting at most k links.

To distinguish between lists obtained from planar and
spherical representation, we will include attribute planar or
spherical in the list names (e.g. maximal spherical r -range
SRLG list) when needed for clarification.

It turns out that in all three mentioned cases, the size of
maximal SRLG list is linear in the network size in practice,
and can be computed in low polynomial time both in planar
case (maximal r -range list: [14], k-node: [16], k-link: [18])
and spherical case.

To the best of our knowledge, this paper is the first study
on enumerating regional SRLG lists in a spherical model.
In addition, the first comparison of the spherical and planar
representations is provided. We show through an example that
polynomial algorithms could be designed for spherical repre-
sentation of the networks. In our experience, these algorithms

are only 2 times slower than their planar pairs. We also believe
that using our approach, fresh promising results as in [19] can
be further enhanced.

As there are many mathematical derivations in the rest
of the paper, we would like to summarize the concepts in
plane text once again here for the sake of readability. As
learned from previous studies, all of r -range, k-node and l -
link lists can be exactly calculated in low polynomial time
of the network size in case of planar representation. Our
first goal was to show that considering spherical embeddings
of the networks the possibility of designing low-polynomial
time algorithms for determining these SRLG lists remains.
We demonstrated this phenomenon in Sec. III by designing
an algorithm capable of determining the r -range SLRG list
both in planar and spherical case in low polynomial time.
The existence of fast exact algorithms is good news, however,
their drawback is that intuitively the faster the harder they are
to implement. This fact motivates our second goal, namely
designing a framework of simple and fast algorithms capable
of determining all the mentioned SRLG lists in both planar
and spherical representation with enough precision, which are
presented in Sec. V.

The remaining of the paper is organized as follows. Sec.
II describes the network representation model together with
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Fig. 2: Input graph G (V ,E ) with polylines, n = 17, γ= 4

the assumptions made. In Sec. III, we present an example
of polynomial algorithm for computing maximal SRLG list
handling both the planar and spherical cases, while in Sec. IV
a faster and more flexible heuristic approach is presented for
solving the same problem. Simulation results are presented in
Sec. V and, finally, we draw the conclusions in Sec. VI.

II. MODEL AND ASSUMPTIONS

Throughout the paper we will consider two types of em-
beddings of the network: embedding in euclidean planar and
spherical geometry.

The network is modeled as an undirected connected geo-
metric graph G = (V ,E ) with n = |V | ≥ 3 nodes and m = |E |
edges. The nodes of the graph are embedded as points in the
Euclidean plane or sphere, and their exact coordinates are
considered to be given in 2D and 3D Cartesian coordinate
system in planar and spherical case, respectively. Note that
if coordinates are given in polar system (in case of spherical
geometry), one can easily transform them to Cartesian at the
very beginning.

When speaking of planar geometry, for each edge e there is
a polygonal chain (or simply polyline) e l in the plane in which
the edge lies (see Fig 2). Parameter γ will be used to indicate
the maximum number of line segments a polyline e l can have.
Naturally, in spherical case the polyline of an edge refers to a
series of geodesics. Note that this model covers special cases
when edges are considered as line segments (geodesics).

It will be assumed that basic arithmetic functions
(+,−,×,/,p ) have constant computational complexity. For
simplicity, we assume that nodes of V and the corner points
of the containing polygons defining the possible route of the
edges are all situated in general positions of the plane, i.e.
there are no three such points on the same line, and no four
points on the same circle, and in the spherical case there
are no antipodal nodes or breakpoints and no great circles
of geodesics of polylines cross the North pole.

We will often refer to circular disks simply as disks. The
disk failure model is adopted, which assumes that all network
elements that intersect the interior of a circle c are failed, and
all other network elements are untouched.

Notation Denomination Short name

M
p
r maximal planar r -range SRLG list planar r -range list

M
p
k

maximal planar k-node SRLG list planar k-node list
M

p
l

maximal planar l -links SRLG list planar l -link list
M s

r maximal spherical r -range SRLG list spherical r -range list
M s

k maximal spherical k-node SRLG list spherical k-node list
M s

l maximal spherical l -links SRLG list spherical l -link list

TABLE I: Notations and denominations of the list types

Definition 1. A circular disk failure c hits an edge e if the
polyline of the edge e l intersects disk c. Similarly node v is
hit by failure c if it is in the interior of c. Let Ec (and Vc )
denote the set of edges (and nodes, resp.) hit by a disk c.

We emphasize that in this model when we say e is hit by
c, it does not necessarily mean that e is destroyed indeed by
c, instead it means that there is a positive chance for e being
in the destroyed area. In other words this modeling technique
does not assume that the failed region has a shape of a disk,
but overestimates the size of the failed region in order to have
a tractable problem space.

In this study our goal is to generate a set of SRLGs, where
each SRLG is a set of edges. Note that from the viewpoint
of connectivity, listing failed nodes besides listing failed
edges has no additional information. We consider SRLGs that
represent worst case scenarios the network must be prepared
for and, thus, there is no SRLG which is a subset of another
SRLG.

Definition 2. Let C p and C s denote the set of all disks in the
plane and the set of all disks on the sphere, respectively. For
both geometry types g ∈ {p, s}, let C

g
r , C

g
k and C

g
l denote the

set of disks part of C g having radius at most r , hitting at most
k nodes of V and hitting at most l links of E , respectively.

Based on the above definition, we define the set of failure
states that a network may face after a disk failure, with a
maximal measure.

Definition 3. For all geometry types g ∈ {p, s} and SRLG type
t ∈ {r,k, l }, let set F (C g

t ) denote the set of edges which can be
hit by a disk c ∈ C

g
t , and let M g

t = M(C g
t ) denote the set of

maximal edge sets in F (C g
t ).

Table I gives an overview on the corresponding notations
and denominations of the SRLG list types we focus on on this
paper. Note that for every SRLG type t ∈ {r,k, l } if f ∈ M g

t=s
there is an f ′ ∈ M g

t=s′ such that f ⊆ f ′ where s ≤ s′.
The aim of this study is to propose fast algorithms comput-

ing these lists for various sizes of m.

III. EXACT ALGORITHMIC APPROACHES FOR
ENUMERATING MAXIMAL FAILURES

As mentioned before, determining the planar lists M p
r , M p

k ,
M p

l is relatively well studied. It remains a question how much
the distortion of maps can affect the calculated SRLG lists.
The answer is that it heavily depends on the projection used to



Algorithm 1: Refreshing M with failure f
Input: M , f
Output: M refreshed with f
begin

1 maximal:=True
2 for fM ∈ M do
3 if f ⊆ fM then
4 maximal:=False

5 if maximal then
6 M := M ∪ { f }
7 for fM ∈ M do
8 if f ⊃ fM then
9 M := M \ { fM }

10 return M

make the map. For example, while the stereographic projection
affect significantly the distances, but in contrast to many other
projections it has the nice property of mapping spherical disks
to planar disks (Theorem in [20]) (fact also used in Appendix
A). One approach for calculating spherical lists would be to
adapt existing algorithms to spherical geometry demonstrating
the interoperability between these geometries. However, in this
paper we follow an approach simpler to present and avoiding
trigonometric calculations via applying the projection in both
directions for numerous times. In other words, some steps of
the algorithm are performed on the plane, while others on the
sphere.

In the followings we extend an exact algorithm for deter-
mining M p

r (see [14]) to an algorithm computing M p
r or M s

r
depending on the geometry of the input. In the rest of this
section we present this extended algorithm.

A. Smallest Enclosing Disks

Let us make the following definition for the sake of clari-
fying the intuition.

Definition 4. Let a disk c be smaller than disk c0, if c has a
smaller radius than c0, or if they have equal radius and the
center point of c is lexicographically smaller than the center
point of c0. Among a set of circles Sc let c be the smallest if
it is smaller than any other circle in Sc .

Definition 5. Let F ⊆ E be a finite nonempty set of edges (not
necessarily a failure). We denote the smallest disk among the
disks enclosing the polylines of F by cF and we say cF is the
smallest enclosing disk of F .

It is not difficult to see that cF always exists for line
segments or geodesics (depending on the geometry), and thus,
by mapping the corresponding segments/geodesics together we
can deduct that the definition is correct for polylines too. The
key idea of our approach is that we can limit our focus only on
the smallest enclosing disks cF . The consequence of the next
proposition is that the number of smallest enclosing disks cF

is not too large.

Algorithm 2: Determining maximal r -range SRLG lists
Input: G (V ,E ), r , geometry g , coordinates of nodes and edge polylines
Output: M

g
r

begin
1 M

g
r :=;

2 Store E as a list,
3 for i1 ∈ {1, . . . ,m} do
4 for i2 ∈ {i2,m} do
5 for i3 ∈ {i3,m} do
6 ci1 ,i2 ,i3 := c{E [i1],E [i2],E [i3]}
7 if radius of ci1 ,i2 ,i3 is ≤ r then
8 f := F (ci1 ,i2 ,i3 )

9 refresh M
g
r with f // as in Alg. 1

10 return M
g
r

Proposition 6. Let H be a nonempty set of polylines of edges
with smallest enclosing disk cH . Then there exists a subset
H0 ⊆ H with |H0| ≤ 3 such that cH = cH0 .�

Definition 7. Let S denote the set of maximal edge sets hit
by a smallest enclosing disk.

By Prop. 6 we have:

Corollary 8. |S | ≤ (m
3

)+ (m
2

)+m = m3

6 + 5m
6 .�

Lemma 9. Let H be a set of line segments in the plane or
geodesics on the sphere, |H | ≤ 3 . Then cH can be determined
in O(1) time.

The proof of the Lemma is relegated to the Appendix A.

Theorem 1. Let H be a set of polylines of edges, |H | ≤ 3 .
Then cH can be determined in O(γ3) time.

Proof: First, unpack each polyline into the ≤ γ line
segments/geodesics it is consisting of. Then, for each element
hi in H , pick a segment si . For each triplet (couple) of
segments calculate the smallest enclosing disk (which by
Lemma 9 can be done in O(1)), and lastly chose the smallest
from among the resulting disks.

B. Polynomial algorithm for determining maximal failures

In this subsection, we repeat an extension of the basic
algorithm provided by [14] which handles both spherical and
planar inputs. There are two key facts inspiring this algorithm.
Firstly, based on Prop. 6:

Corollary 10 (of Prop. 6). For both g ∈ {p, s} and every f ∈
M g

r there exist {e1,e2,e3} ∈ f such that c{e1,e2,e3} = c f .�

Secondly, according to Theorem 1, smallest enclosing disks
can be computed in O(γ3) both in plane and on sphere. Based
on these, Alg. 2 is presented, which is a straightforward basic
polynomial algorithm. Here, the key idea is to maintain a list
M ′ of maximal failures detected so far while scanning though
the link sets f covered by the smallest enclosing disks of
at most 3 edges. If there is no fM ∈ M ′ containing f , then
f is appended to M ′ and all fM ∈ M ′ which are part of f



are removed as presented in Alg. 1. This process is called
refreshing.

The following theorem gives a very loose bound on the
complexity of calculating M g

r .

Theorem 2. Alg. 2 computes M g
r in O(m3(γ3+m4)). M g

r has
O(m3) elements.

Proof: Based on Prop. 6 the algorithm is correct, it is
computing M g

r . There are O(m3) smallest enclosing disks to
calculate, each in constant time. We claim that for each disk
the calculation time of refreshing M g

r with the resulting failure
(according to Alg. 1) is O(m4 + γ3) in case of each disk,
because after the computation of the smallest enclosing disk in
O(γ3) and determining f in O(m) there has to be done O(m3)
comparisons of link set, and each can be done in O(m).

C. On improved complexity bounds

The results from the previous subsection can be easily
improved using parametrization and some computational geo-
metric tricks.

The first observation is that for any meaningful radius of the
disk failure most of the network will remain intact. However,
failures with the same radius taking place in a crowded area
tend to take down more equipment than the ones in sparsely
inhabited areas. This motivates the introduction of a graph
density parameter:

Definition 11. For every r ∈ R+
0 , let ρr be the maximum

number of edges which can be destroyed by a disk with radius
at most r .

This ρr is considered to be small in case of small r values.
Another observation is that there are not much more network
edges than nodes. This is formalized in the upcoming Claim
13.

Informally speaking, we denote the set of crossing points
of the edges by X . A more formal definition follows.

Definition 12. Let X be the set of points P in the plane on
which no node element of V lies and there exist at least 2
edges which have polylines having a finite number of common
points crossing each other in P . Let x = |X |.

Despite the fact that on arbitrary graphs x can be even
O(n4), in backbone network topologies typically x ¿ n be-
cause a node is usually installed if two cables are crossing
each other. This gives us the intuition that G is ’almost’ planar,
and thus it has few edges.

Claim 13. The number of edges in G is O(n + x). More
precisely for n ≥ 3 we have m ≤ 3n +x −6 .

Proof: If G is embedded in plane, do the followings. Let
G0(V ∪X ,E0) be the planar graph obtained from dividing the
polylines of edges of G at the crossings. Since every crossing
enlarges the number of edges at least with two, |E0| ≥ m+2x.
On the other hand, |E0| ≤ 3(n+x)−6 since G0 is planar. Thus
m ≤ |E0|−2x ≤ 3n +x −6.

If G is embedded in sphere, we can project it to the plane
with stereographic projection, repeat the former arguments
then apply an inverse projection to the sphere.

A third trick lies on the fact that in practice |M g
r | is O(n) (as

presented in planar case in [14]), thus in Alg. 1 typically there
has to be done only O(n) comparisons. Thus we introduce a
third parameter:

Definition 14. Let λ be the maximum cardinality of the list
of maximal failures detected so far in Alg. 2.

Combining the former three observations lower
parametrized complexity can be achieved:

Theorem 3. Alg. 2 computes M g
r in O((n+x)3(n+x+λρr +γ3).

Proof: Based on Prop. 6 the algorithm is computing M g
r .

There are O((n + x)3) smallest enclosing disks to calculate,
each in constant time. We claim that for each disk the
calculation time of Alg. 1 is O((n+x)3ρr +γ3) in case of each
disk, because after the computation of the smallest enclosing
disk in O(γ3) and determining f in O(n + x) there has to be
done O(λ) comparisons of link set, and each can be done in
O(ρr ).

Corollary 15. If both x and λ is O(n), Alg. 2 computes M g
r

in O(n3(nρr +γ3)) time.

Cor. 15 proposes that M g
r can be determined in quartic time

of n in practice. On the other hand, Alg. 2 has its limits of
speed: because of the three nested for-loops it runs in Ω(n3).
In order to achieve better results, the algorithm would have to
be changed. For the planar case, [14] gives an algorithm which
runs in O((n + x)2ρ5

r ) for γ= 1 (i.e. the edges are considered
as line segments there). Furthermore, we are convinced that
an algorithm with parametrized running time near linear in
network size could be achieved for determining M g

r (and also
for determining M g

k and M g
l , despite they can be computed

based on very different theories). However, presenting this
kind of algorithms would exceed the limits of this paper.

IV. HEURISTICS AND IMPLEMENTATION ISSUES

It is always good to have fast exact polynomial algorithms
for solving a given problem. However, this approach also
has some disadvantages: 1) the lower complexity an exact
algorithm for determining a maximal circular SRLG list has,
the harder to implement and prove its correctness and com-
plexity; 2) designing algorithms for computing different types
of maximal SRLG lists need totally different mathematics.

Moreover, in most cases, the available geographical data of
networks is inaccurate. Adding this fact to the inconveniences
of the exact approach results into the idea of designing some
heuristics that are able to compute these lists with enough
precision.

In this section we present a heuristic approach suitable for
computing all types of maximal SRLG lists defined in Sec. II.

Definition 16. For a point P (in the plane or on the sphere)
and node v ∈ V , let the node-distance couple be [v,d(v,P )],



Algorithm 3: Heuristic for determining the maximal r -
range SRLG lists

Input: G (V ,E ), r , geometry type g , coordinates of nodes and polylines
of edges

Output: M
g
r

begin
1 Store E as a list,
2 for P ∈P do
3 determine e(P )
4 if e(P )[1][distance] < r then

i := max{ j |e(P )[ j ][distance] < r }
5 refresh M

g
r with {e(P )[1][edge], . . . ,e(P )[i ][edge]}

// according to Alg. 1

6 return M
g
r

where d(v,P ) is the distance of v and P . Let v(P ) be the list
consisting of the node-distance pairs of all nodes v ∈V , sorted
increasingly by the distance values.

We define e(P ) to be the list consisting of the edge-distance
pairs defined similarly.

Proposition 17. For a given point P , v(P ) can be computed
in O(n logn), while e(P ) in O((n +x) log(n +x)).�

Clearly, node-distance lists, and edge-distance lists can be
determined quickly. The plan is to determine these lists for
enough points which are also placed well enough to be able
to determine the maximal SRLG lists based on these node-
distance and edge-distance lists.

Definition 18. Let P denote the set of points P for which we
want to construct v(P ) and e(P ).

Let us stick to planar geometry for a moment. Intuitively, we
can calculate M p

r by including the grid points of a sufficiently
fine grid (let’s say containing 1 km × 1 km squares) in P . On
sphere we should choose a similar nice covering. It is possible
that we have some extra short links, thus for calculating the
k-node and k-link list we should include some extra points
in P . For example, by adding some random points of each
polyline of edge and some point near every node we can solve
this issue.

Algorithm 3 is an example heuristic for determining M g
r .

Theorem 4. Alg. 3 approximately computes M g
r in O(|P |[(n+

x)(log(n +x)+λ)]).

Proof: For an element P of P we have to construct
e(P ), which can be done in O((n+x) log(n+x)), then refresh
the list of suspected maximal failures with the resulting
set {e(P )[1][edge], . . . ,e(P )[i ][edge]} in O(λ(n+x)). The proof
follows.

Corollary 19. If both x and λ is O(n), Alg. 3 approximately
computes M g

r in O(|P |n2) time.

Comparing Cor. 19 and 15 we can see that despite the
heuristic Alg. 3 is much simpler to implement, it clearly
outperforms the exact Alg. 2.

TABLE II: Running times of Alg. 3 on some physical back-
bone topologies of [21] (in sec, |P | ' 50000)

Name |V | |E | Planar runtime Spherical runtime
Polygon Line Polygon Line Polygon Line Polygon Line

AboveNet 9 22 15 28 232 156 410 757
LambdaNet 10 33 10 33 282 225 444 410
GARR (Italy) 16 16 18 18 107 92 204 187
GTS (Hungary) 14 15 39 26 175 146 311 291

V. PRELIMINARY SIMULATION RESULTS

In this section, we present numerical results that validate
our heuristic approach presented in Sec. IV and demonstrate
the use of the proposed algorithms on some realistic physical
networks. The algorithm was implemented in Python3.5 using
various libraries. Distance functions were implemented from
scratch. No special efforts were made to make the algorithm
space or time optimal. Run-times were measured on a com-
modity laptop with core i5 CPU at 2.3 GHz with 8 GiB of
RAM. The output of the algorithm is a list of SRLGs so that
no SRLG contains the other.

We interpret the input topologies in two ways: polygon,
where links are polygonal chains, and line, where the corner
points of the polygonal links are substituted with nodes (of
degree 2). Here links are line segments. We found that running
times for spherical representations were ∼ 2 times slower than
the planar ones in case of most networks (see Table II). The
only exception is when the network has an extreme geographic
extension (e.g. AboveNet), in this case the obtained SRLG lists
tend to be longer (Fig. 3 demonstrates this in case of k-link
lists) causing a slight increase both in parameter λ and in the
running time.

Another issue which can be noticed related to the achievable
preciseness using the heuristic approach. Based on Thm. 4,
running time is proportional with |P |; given this and the
running times collected in Table II, we can deduct that if the
drop of price of computation power remains for an additional
short time period, one will be able to run these simulations
even at home for huge |P | (e.g. |P | ' 5∗108, which number
is approximately the Earth’s surface in km2), yielding a high
precision. Note that Alg. 3 could be easily parallelized.

The k-link list is chosen as an illustrative example on Fig.
3. In Fig. 3a and 3b we can see that for k = 1 there are listed
all the single link failures. For k ≥ 2 there is a higher chance
on the sphere for k links to be ‘close’ to each other than on
the plane, thus |M s

l | > |M p
l |. This phenomenon might appear

because mapping the sphere to the plane intuitively lets fewer
edges to be next or close to each other. As the number of
links in the SRLGs l increases, |M g

l | first increases too, then
after plateauing it starts to decrease, which is just a rephrasing
of the intuition that there are the most possible scenarios of
a disk hitting exactly l links when l ' m. Finally, |M g

m | = 1,
because there is only one possibility of hitting all the links.

The obtained SRLG lists are different for the two geome-
tries, thus it makes sense to use the much precise spherical
model.
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Fig. 3: Example on extreme geographic extension: AboveNet (n = 22, m = 28 in line case) touching three continents.

VI. CONCLUSION

We investigated the problem of generating SRLG lists of
networks. We found that the known exact low-polynomial
SRLG generating techniques can be modified in order to fit the
spherical geometry, allowing us to generate SRLG lists with
more precision. A heuristic framework of easy-to-implement
algorithms for determining the SRLG lists in both planar and
spherical representation was also presented.

In our experience, SRLG lists generated using spherical
representation of the networks are different from the planar
ones, and also they tend to be longer, especially in case of ex-
treme geographical extension. In case of our implementation,
enumerating SRLG lists in case of spherical representation
was typically 2 times slower than in planar case.
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APPENDIX

A. Determining Smallest Enclosing Disk of Line Segments or
Geodesics in O(1)

Proof of Lemma 9:
Proof: For planar geometry, this problem is already

solved, see Thm. 3 of paper [14]. It remains to prove it in
case of spherical embedding.

Let e1,e2,e3 be three geodesics on the sphere. The endpoints
(pi 1, pi 2) are given by Cartesian coordinates (xi 1, yi 1, zi 1),
(xi 2, yi 2, zi 2). Let pi 3 be an arbitrary point inside ei . Points
pi 1, pi 2 and pi 3 determine the great circle on sphere containing
geodesic ei .

We will project geometric objects on the sphere to the plane
using the stereographic projection from the north pole, which
has the property that the image of a spheric circle will be a
circle on the plane, or in special case, if it contains the north
pole, its image image is a line (Theorem in [20]). Note that
for the sake of simplicity it is assumed that the no great circle
investtigated crosses the north pole.

Projecting the 9 spherical points onto the plane we receive
qi j points given by Cartesian coordinates (xi j , yi j , zi j ) →
qi j =

(
xi j

1−zi j
,

yi j

1−zi j

)
. We denote the images of e1,e2,e3 by arcs

f1, f2, f3. Calculating the radius and center point of the contain-
ing circle ci for arc fi requires constant number of coordinate
geometric steps. Let (x1, y1), (x2, y2), (x3, y3) and r1,r2,r3 be
the Cartesian coordinates of the center of containing circles,
and radiuses, respectively.



The smallest enclosing disk cH on sphere has an image c ′H
on the plane. However the parameters of c ′H are different from
the parameters of cH , the images of the fitting points of cH and
ei are the fitting points of c ′H and fi . That inspires the plan to
find all the fitting circles of fi (i.e. those which have exactly
1 common point with each fi or which have 1 common point
with 2 of them and containing the third) on the plane, project
them back onto sphere and select the minimal among them, as
that is the minimal enclosing disk of e1,e2,e3. Thus we need
to find the potential best fitting circles in the plane.

It is possible that the disk fits for two arcs and include
some points of the third. We can choose two arbitrary arcs
in 3 ways. Choosing f1, f2 we must calculate the distance of
the two arcs and use it as the diameter of the potential disk.
On each arc the distance is determined by an inside point or
one of the boundary points. Calculating the distance of two
points, a point and a circle or two circles have both constant
complexity. So in this case 3 ·32 ·O(1) calculation required.

If the smallest disk touches all of the arcs there are also
more different cases. Each arc can be touched on a boundary
point or on an inside point (33 cases). Fortunately fitting a
circle is already solved in all of the cases and called problems
of Apollonius [22].

If the smallest enclosing disk touches all three arcs f1, f2

and f3, we have three cases for each arc fi : the disk either
touches the arc in an interior point or at one of its endpoints. In
the former case let (x1, y1) and ri be the Cartesian coordinates
of center point and radius of the containing circle of arc fi ,
respectively. In the latter case, let (x1, y1) be coordinates of the
endpoint itself, while let ri be 0. Numbers s1, s2 and s3 are
+/−1 representing that the fitting circle touches on the outside
or on the inside of the containing circles of c1,c2 and c3 (23

different possibility to be checked on each case). Parameters
xs , ys and rs of the fitting C circle can be calculated by solving
the following equation system [23]:

(xs −x1)2 + (ys − y1)2 = (rs − s1 · r1)2

(xs −x2)2 + (ys − y2)2 = (rs − s2 · r2)2

(xs −x3)2 + (ys − y3)2 = (rs − s3 · r3)2.

The system in quadratic, thus it can be solved by constant
number of arithmetic calculations. The complexity of these
calculations all together are 33 ·23 ·O(1).

After finding the 33 ·23 +3 ·32 possible minimal disks, we
must project them back to the surface of the sphere. We are
allowed to use only the two endpoint of an arbitrary diameter
from each possible circle. This requires 2 ·35 number of coor-
dinate transformations (x, y) →

(
2x2

1+x2+y2 , 2y2

1+x2+y2 , −1+x2+y2

1+x2+y2

)
.

Finding the minimal radius of potential disks requires 35−1
comparisons between diameters. Using this method the mini-
mal disk for e1,e2,e3 can be determined in O(1) time. However
the algorithm could be improved by using preconceptions
for the edges, exclude some possible disks already on plane
instead of transforming back or fixing si in case of boundary
points. Note that only basic arithmetic functions (+,−,×,/,p )
were used during the computation.
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