
Enumerating Shared Risk Link Groups of
Circular Disk Failures hitting k Nodes

Balázs Vass∗, Erika Bérczi-Kovács†, János Tapolcai∗
∗MTA-BME Future Internet Research Group, Budapest University of Technology and Economics, {vb},{tapolcai}@tmit.bme.hu

†Department of Operations Research, Eötvös University, Budapest, Hungary, koverika@cs.elte.hu

Abstract—Current backbone networks are designed to protect
a certain pre-defined list of failures, called Shared Risk Link
Groups (SRLG). It has been observed that some type of failure
events manifested at multiple locations of the network which
are physically close to each other. Such failure events are called
regional failures, and are often caused by a natural disaster. The
aim of the paper is to bring the conventional SRLG based pre-
planned protection and regional failures closer to each other by
providing a systematic approach to generate the list of SRLGs
for regional failures. In our study we overestimate the regional
failures with failures having a shape of disk; however, instead
of fixing the radius we classify the regional failures according to
the network elements they hit. In particular we are interested in
the number of nodes the failure can hit. Formally, we focus on
circular disk failures that hit exactly k nodes, where k is part of
the input. According to simulation results, this list is short with
O(k|V |) SRLGs in total, and can be computed in O(|V |3), where
V denotes the set of the nodes. Applying the obtained SRLG
list network operators can design their networks to be protected
against regional and random failures.

I. INTRODUCTION

Current backbone networks are built to protect a certain list
of failures. Each of these failures (or termed failure states)
forms a Shared Risk Link Group (SRLG), which is a set of
links that is expected to fail simultaneously. The network is
designed to be able to automatically reconfigure in case of
a single SRLG failure, such that every connection further
operates after a very short interruption. In practice it means the
connections are reconfigured to by-pass the failed set of nodes
and links. Thus the network can recover if an SRLG or a subset
of links in an SRLG fails simultaneously; however, there is
no performance guarantee when a network is hit by a failure
that involves links not a subset of an SRLG. Nevertheless,
the list of SRLGs must be defined very carefully, because
not getting prepared for one likely simultaneous failure event
means a significant degradation in the observed reliability of
the network.

Operators have numerous answers what simultaneous fail-
ures mean. One extreme is to list every single link or node
failure as an SRLG. Here the concept is that the failure first
hits a single network element for the protection of which the
network is already pre-configured. Often there is a known risk
of a simultaneous multiple failure that can be added as an
SRLG, for example if two links between different pair of
nodes traverse the same bridge, etc. On the other hand, we
have witnessed serious network outages [1]–[9] because of

a failure event that takes down almost every equipment in a
physical region as a result of a disaster, such as weapons of
mass destruction attacks, earthquakes, hurricanes, tsunamis,
tornadoes, etc. For example the 7.1-magnitude earthquake
in Taiwan in Dec. 2006 caused simultaneous failures of six
submarine links between Asia and North America [10], the
9.0 magnitude earthquake in Japan Earthquake on March 2011
impacted about 1500 telecom switching offices due to power
outages [5] and damages of undersea cables, the hurricane
Katrina in 2005 caused severe losses in Southeastern US [11],
hurricane Sandy in 2012 cased a power outage that silenced
46% of the network in the New York area [4]. These type of
failures are called regional failures, which are simultaneous
failures of nodes/links located in specific geographic areas [1]–
[9]. The number of possible regional failure can be very large,
thus simply listing each of them as an SRLG is not a viable
solution. It is still a challenging open problem how to prepare
a network to protect such failure events, as their location and
size is not known at planning stage. In the paper we propose a
solution to this problem with a technique that can significantly
reduce the number of possible failure states that should be
added as an SRLG to cover all regional failures.

Regional failures can have any location, size and shape.
The shape of a regional failure can be arbitrary; however, it
is a common practice to overestimate the size of the regional
failure by ignoring its shape and rather focus on its radius
[12] [13]. Roughly speaking by overestimating the size of
the regional failure, we may require to have larger distances
between the working and backup resources than it is needed in
reality. However, adopting a failure model that captures only
the diameter of the failed region results in a manageable list of
SRGLs [13]. Nevertheless it is not trivial to define a network
wide parameter for the maximal radius the regional failure
may have. Thus, to have a generic model instead of fixing
the radius we classify the regional failures according to the
network elements it hits. In particular we are interested in the
number of nodes the failure covers. Note that the networks are
more sensible to node failures than link failures. The intuition
behind this model is that there are more network nodes in the
crowded areas, where we would like to generate more SRLGs.

In our previous studies [14] and [15] regional failures hitting
exactly k = 0 and k = 1 nodes have been studied. The lists
proposed for protecting these failures have a length linear
in the number of network nodes and can be calculated in

O(|V | log |V |) and O(|V 2|) for k = 0 and k = 1, respectively,
in practice.

In this study the number of SRLGs is significantly reduced
applying computational geometric tools based on the following
assumptions:

1) The network is a geometric graph G(V ,E) embedded in
a 2D plane.

2) The shape of the regional failure is assumed to be a circle
with arbitrary radius and center position.

3) We focus on regional link k-node failures, failures that
hit k nodes.

We will show that with these assumptions the number of
SRLGs is small, O(k|V |) in a typical backbone network
topology, and at most O(|E ||V |) in an artificial worst case
scenario (shown in [14]), where |V | denotes the number of
nodes in the network, and |E | the number of links. We propose
a systematic approach based on computational geometric tools
that can generate the list of SRLGs in O(|V |3) steps on typical
networks.

Using the obtained SRLG list network operators can design
their networks to be protected against regional and random
failures. Backbone networks designed according to our new
failure model should have higher reliability.

The paper is organized as follows. After Sec. I of intro-
duction, in Sec. II our model will be presented. In Sections
III and IV there will be introduced a naive and an improved
algorithm for computing the SRLG list, respectively. After
this, we further refine our insight on proposed algorithms
and auxiliary graphs in Sec. V. Finally, simulation results are
presented in Sec. VI.

II. MODEL AND ASSUMPTIONS

The network is modeled as an undirected connected geo-
metric graph G(V ,E) with n = |V | nodes and m = |E | edges.
E is given as an edge list, and n ≥ 3 is assumed. The nodes
of the graph are embedded as points in the Euclidean plane,
and the edges are embedded as line segments between the
end points. It will be assumed that basic arithmetic functions
(+,−,×,/,p) have constant computational complexity. For
simplicity we assume nodes of V are situated in general
positions of the plane, i.e. there are no three points on the
same line, and no four on the same circle.

In this study failures are caused by a regional disaster
having an area overestimated by a disk, i.e we overestimate the
disaster such that it erases all network elements that intersect
the interior of a circle c, and leaves all other network elements
untouched. Note that we do not assume the failed region has
a shape of disk, instead this modeling technique overestimates
the size of the failed region in order to have tractable problem
space.

Definition 1. If a geometric object g intersects the interior of
a circle c, then we say that g is hit by c.

In this study we focus on disk failures hitting exactly k
nodes, where k ∈ {0, . . . ,n −2} is a given number.

Definition 2. Let C denote the set of all circles in the plane,
and let Ck ⊆C denote the set of those hitting exactly k nodes.

From the viewpoint of connectivity listing failed nodes
beside listing failed edges has no additional information, thus
only the failed edge sets will be considered.

Definition 3. Let Ec denote the set of edges hit by a circle c.

Based on the above we can define the set of failure states.

Definition 4. Let set F (C) denote the set of link sets which
can be hit by a circle c ∈C .

If a network is prepared for the failure of a given edge set
F , then it is prepared for the failure of every edge set F ′ ⊆ F
too, thus it is enough to list only the maximal elements of
F (C) as SRLGs.

Definition 5. For a set C ′ of circles let M(C ′) denote the set
of maximal link sets which can be hit by a circle c ∈C ′.

The aim of this study is to offer fast algorithms computing
M(Ck) for various values of k, which is also denoted by Mk =
M(Ck).

III. NAIVE ALGORITHM FOR ENUMERATING
MAXIMAL FAILURES

In this section a naive polynomial algorithm is presented
for computing Mk . The basic idea is that determining Mk can
be decomposed into several simpler tasks.

A. Basic Observations

Our key observation is the following.

Claim 6. For every f ∈ Mk there exists a circle c ∈ Ck such
that f is hit by c and c has 2 nodes on its boundary.

Proof: Since f ∈ Mk , there exists a c0 ∈ Ck that hits f .
Assume its centre point is P . If c0 does not have any node
on its boundary, it can be magnified until it reaches a node u
while keeping its centre point. Now it can be magnified until
it reaches a node v while keeping u on its boundary and its
centre point on line uP . The resulting circle c still hits f , is
element of Ck , and has 2 nodes on its boundary.

Claim 6 suggests the following simple method to compute
Mk . First, for every node pair {u, v} we compute a set M u,v

k
of failures which contain all the elements of Mk that can be
hit by a circle c ∈ Ck having u and v on its boundary. Mk

can be computed by merging these sets. Let us formalise the
above method.

Definition 7. For every node pair u and v let C u,v
k be the set

of disks from Ck having u and v on their boundary.

Based on the above definition we can define an auxiliary
graph as follows.

Definition 8. Let Dk (V ,Ek) denote the graph with node set V
and edge set Ek , where {u, v} ∈ Ek if and only if C u,v

k 6= ;.

Fig. 1 shows an example of the input topology and the
auxiliary graphs Dk for k = 0,1,2. It can be shown that D0 is

16
15

14

13

12

11

10

9

8

7

6

5

4

3

2 1

0

(a) Input graph

16
15

14

13

12

11

10

9

8

7

6

5

4

3

2 1

0

(b) Graph D0(V ,E0)

16
15

14

13

12

11

10

9

8

7

6

5

4

3

2 1

0

(c) Graph D1(V ,E1)

16
15

14

13

12

11

10

9

8

7

6

5

4

3

2 1

0

(d) Graph D2(V ,E2)

Fig. 1: Input topology and auxiliary graphs Dk for k = 0,1,2.

c− c+

u

v

w− w+

E− E+

e1 e2 e3

e4

Fig. 2: Illustration of an apple with k = 0. Apple Au,v
k consists

of circles c+ and c−, nodes w+ and w− from V ∪ {v;}, and
ordered lists of edges E+ and E−, where E+ = {e4,e3} and
E− = {e2,e1}.

actually the Delaunay triangulation [16] of the graph; thus, we
call Dk the Delaunay-k graph. Clearly, Dk can be computed
in polynomial time. In Sec. VI we will show that Dk is sparse
for small k. In other words, C u,v

k =; for most node pairs u, v
for small k.

We aim to compute M u,v
k = M(C u,v

k). Fortunately, according
to Claim 6 we have

Mk ⊆ ⋃
u,v∈Ek

M u,v
k . (1)

B. The Apple Data Structure

Assume that C u,v
k is not empty, this means that C u,v

k has
a rightmost c+ and a leftmost c− element, see also Fig. 2. It
is easy to prove indirectly that circle c+ has 3 nodes on its
boundary, u, v and say w+. Similarly, c− has u, v and w− on
its boundary.

Let Ec+ and Ec− denote the edge sets hit by c+ and c−,
respectively. To compute M u,v

k we use the following observa-
tion.

Claim 9. For all f ∈ F (C u,v
k), f ⊆ Ec+ ∪Ec− .

Proof: It is easy to see that for every circle c ∈ C u,v
k ,

c ⊆ c+∪ c−.
According to Claim 9, a first step towards computing M u,v

k
is to determine the edge sets hit by c+ and c−. Trivially, this

can be done in polynomial time. The remaining question is
how to calculate systematically M u,v

k from Ec+ ∪Ec− . Some
additional notations and definitions precede the presentation
of the solution.

For each edge e ∈ Ec+ ∪Ec− we will compute the maximal
subtending angle of the line segment u, v . Here we consider
the two half planes determined by line u, v separately. Let J
denote the right side of circle c+ cut by the vertical line uv ,
and I the left side of circle c− cut by the vertical line uv .
Let E+ denote the list of edges hit by J, and similarly, let E−
be the list of edges hit by I. Thus, we have E+ ⊆ Ec+ and
E− ⊆ Ec− , and also E+∪E− ≡ Ec+ ∪Ec− .

Let �u,v
+ (e) denote the maximal subtending angle to line

segment [uv] from a point of edge e in J. Similarly, let
�u,v− (e) denote the maximal subtending angle to line segment
[uv] from a point of edge e in I. Let edges in E+ be ordered
ascending by their �u,v

+ values, and let edges in E− be ordered
descending by their �u,v− values.

Note that according to Claim 43 from the Appendix, both
�u,v

+ (e) and �u,v− (e) can be computed in O(1).
Now we can define the data structure apple for each edge

of the Delaunay-k graph.

Definition 10. For an edge {u, v} ∈ Ek , apple Au,v
k is an

ordered system Au,v
k = (c+,c−, w+, w−,E+,E−), where circles

c+ and c−, nodes w+ and w−, and ordered lists of edges E+
and E− are as described in the subsection before.

C. Concept of Sweep Circle Algorithms

1) Concept: In this subsection we highlight the paradigm
of sweep circle algorithms, which is similar to algorithmic
paradigm of sweep line (sweep surface) algorithms in compu-
tational geometry.

In case of sweep line algorithms it is imagined that a line is
moved across the plane, keeping its orientation and stopping
at some points. Geometric operations are restricted to the
immediate vicinity of the sweep line whenever it stops, and
the complete solution is available once the line has passed
over all objects. For example Fortune’s sweep line algorithm
for computing the Voronoi diagram of a point set is a sweep
line algorithm [16].

Definition 11. Let C u,v be the set of circles having u and v
on the boundary.

Our sweep circle algorithms will scan through circle sets
C u,v . In this sense in contrast of the sweep surface paradigm,
our circles have different diameters, and instead of keeping
"orientation" the invariant will be that all circles have u and
v on the boundary. Thus our circle to sweep is "elastic", in
the sense that it can change its diameter, but not its shape.

2) Example: Our first sweep circle algorithm is used for
determining w+ and w− for a given Au,v

k . The algorithm
works as follows. Starting from a circle c ∈C u,v having centre
point ’very far away’ on the right side of line uv , c is swept
throughout the elements of C u,v until a position ’very far
away’ on the left. Meanwhile the number of nodes hit is
followed. Nodes w+ and w− can be determined at the first
and last moment when c hits exactly k nodes, respectively.
(Non-existence of such moments would mean that {u, v} ∉ Ek .)

Technically this can be done as follows. Let V+ ⊆ V be
the list of nodes right from line uv ordered increasingly
by their subtending angles �(uw v). Similarly, let V− be
the list of nodes left from line uv ordered decreasingly by
their subtaining angles. Applying the fact that a node pair
z+ ∈ V+ and z− ∈ V− can be hit by the same circle c ∈ C u,v

iff �(uz+v)+�(uz−v) ≥ π, sweeping can be imitated as in
Algorithm 1.

Algorithm 1: Sweeping through C u,v checking the nodes
Input: V and u, v ∈V begin

1 Compute V+ and V−;
2 i , j ← 1;
3 while not reached the end of V+ or V− do
4 increase j until V+[i] and V−[j] cannot be hit by the

same c ∈C u,v ;
5 increase i until V+[i] and V−[j] can be hit by the same

c ∈C u,v ;

From the following Proposition 12, one can check that the
number of hit nodes can be easily followed with the help of
an additional variable.

Proposition 12. Let c ∈C u,v . If V+[i −1] is not hit by c, then
all the preceding elements in V+ are not hit by c. If V+[i] is
hit by c, then all the following elements are hit by c.

Similarly, if V−[i − 1] is hit by c, then all the preceding
elements are hit by c. If V−[i] is not hit by c, then all the
following elements are not hit by c. �

Claim 13. For a given {u, v} ∈ Ek , w+ and w− can be
determined in O(n logn) time.

Proof: According to those written in this subsection, both
V+ and V− can be determined in O(n logn) the dominant step
being a sorting algorithm. Sweeping can be trivially done in
O(n), meanwhile both w+ and w− can be determined.

D. Determining Apples

Claim 14. An apple can be determined in O(m logm).

Proof: Checking if {u, v} ∈ Ek can be done with the help
of Algorithm 1 in O(n logn) time. If {u, v} ∈ Ek , then w+ and
w− can be determined in O(n logn) according to Claim 13.
From w+ and w− we also know c+ and c−, so it remains
to determine E+ and E−. With this aim O(m) edges have
to be checked and sorted which gives a total complexity of
O(m logm).

Definition 15. Let Ak be the set of apples Au,v
k .

Corollary 16. For a given k, the set of apples Ak can be
determined in O(n2m logm).

Proof: O(n2) node pairs have to be examined. According
to Claim 13, a node pair can be examined in O(m logm),
which completes the proof.

E. Computing the Set of SRLGs by Sweeping Through Each
Apple

In order to compute M u,v
k , the algorithm has to be able to

decide if there exists a circle c ∈C u,v
k which hits a given edge

pair e and f from E+∪E−. If both e and f are part of E+ or
E−, then they can be both hit by c+ or c−. If it is not the case,
the following proposition will help in this decision.

Proposition 17. Let e ∈ E+, and f ∈ E−, they can be hit by
the same c ∈C u,v

k iff �u,v
+ (e)+�u,v− (f) ≥π. �

Determining M u,v
k from apple Au,v

k can be done with the
help of a sweep circle algorithm as a subroutine of Algorithm
2 similar to Algorithm 1, the only difference is that here we
check the edges instead of nodes.

Implementation of Algorithm 2 has to be made carefully. On
one hand, while sweeping through C u,v from c+ until c−, not
necessarily all the circles are from C u,v

k . On the other hand,
edges intersecting segment [u, v] should be stored exactly once
in any element of M u,v

k .

Algorithm 2: Processing an apple
Input: Apple Au,v

k
Output: Set Mu,v

k of locally maximal failures.
begin

1 while Sweeping through C u,v from c+, until c−; checking
the edges do

2 Gather in (Mu,v
k)′ the failures hit by a c ∈C

u,v
k with

locally maximal cardinalities

3 Mu,v
k ← maximal elements of (Mu,v

k)′;
4 return Mu,v

k

Claim 18. Algorithm 2 calculates M u,v
k in O(m3).

Proof: Correctness of the algorithm can be easily
checked. Since while sweeping an edge can get hit or unhit
at most once on one side of line uv , there are at most
O(m) failures with locally maximal cardinalities, each of them
having O(m) edges, thus (M u,v

k)′ has O(m) elements of O(m)
size. Trivially, every pair of sets from (M u,v

k)′ can compared in
O(m). This means that from (M u,v

k)′, M u,v
k can be determined

in O(m3). It can be checked that all the other operations have
complexity at most O(m3).

Corollary 19. All M u,v
k can be determined in O(n2m3). �

F. The Naive Algorithm

As presented before, a naive algorithm should determine
and process the apples, and finally merge the obtained lists
M u,v

k in Mk . This way the naive algorithm could be written
as follows:

Algorithm 3: Algorithm for computing Mk

Input: G(V ,E), k
Output: Mk
begin

1 Determine Ek ;
2 Determine set Ak of nonempty apples;
3 Process apples from Ak ;
4 Merge lists Mu,v

k ;
5 return Mk

Theorem 20 gives a loose time complexity for the algorithm:

Theorem 20. Algorithm 3 calculates set Mk in O(n4m3) time.
Mk has O(n2m) elements, and a total length of O(n2m2).

Proof: Let the four phases of the algorithm be examined
separately.

Determining Ek : As mentioned in the proof of Claim 14,
the sweep circle Algorithm 1 can be used to decide whether
a given pair of nodes {u, v} ∈ Ek . According to Claim 13, it
gives the answer in O(n logn). Since there are O(n2) node
pairs, the total complexity of this phase if O(n3 logn).

Determining Ak : According to Corollary 16, Ak can be
determined in O(n2m logm).

Processing apples: In Cor. 19 it was shown that all of the
apples can be processed in O(n2m3).

Merging lists: Mk can be obtained by deleting the non-
maximal and redundant elements while comparing all the
possible list pairs {M u1,v1

k , M u2,v2
k }, then concatenating the

remaining sets. There are O(n2) apples, and therefore O(n2)
M u,v

k lists with at most m elements containing at most m
edges (thus Mk has O(n2m) elements, and a total length of
O(n2m2)). This means O(n4m2) comparisons and deletions.
Since both comparision and deletion can be done in O(m), the
total complexity of this phase is O(n4m3).

We conlcude that Algorithm 3 computes Mk in O(n4m3).

In the following sections we will improve this algorithm.
Note that in Table I the obtained time complexities are
summarised.

IV. IMPROVED ALGORITHM FOR ENUMERATING
MAXIMAL FAILURES

In this section Algorithm 3 will be improved while keeping
its four phases. These phases either will be improved, or their
complexity will be better estimated.

A. Determining Ek Faster

Claim 21. Decision whether a node pair {u, v} ∈ Ek can be
made in O(n +k logk).

Proof: For a given node pair u, v ∈V , let V+ and V− be
as in Subsubsec. III-C2. A useful observation is that based on
Prop. 12, there is no need to determine the whole lists V+ and
V−, we only need to store and sort the k elements of both of
these lists with the biggest subtending angles �(u.v) in V+,k

and V−,k (if there is no k elements right from uv , then let V+,k

be V+, same for left side). Sweep circle algorithm described
in Subsubsec. III-C2 run with V+,k and V−,k can be used for
deciding if {u, v} ∈ Ek , having a complexity of O(k).

It remains to prove that V+,k and V−,k can be determined
in O(n+k logk). Node v+,k with the k. biggest viewing angle
from V+ can be determined in O(n) from V , same for v−,k ,
V−. After this, set containing nodes from V+ with the k biggest
viewing angle can be caluleted in O(n) too, same for V−. V+,k

and V−,k can be obtained by sorting the two determined sets
in O(k logk).

Lemma 22. Ek can be determined in O(n2(n +k logk)).

Proof: The proof is straightforward from Claim 21 and
the fact that there are O(n2) node pairs to examine.

B. Better Complexity Bounds for Determining Apples

Up to this point the fact that G(V ,E) is a graph of a
communication network, and thus it is ’almost planar’ was
not used. Intuitively, an almost planar graph has O(n) edges.
In the followings this will be formalised with the help of a
graph density parameter.

Definition 23. For all i ∈ {0,n − 2}, let θi be the maximum
number of edges hit by a circle from Ci .

Since parameters θi measure local properties of the net-
works, often it will be assumed that these parameters are not
exceeding a constant. For example θ0 is not going to be large,
since where there are many links, it is likely to appear a node
too.

Observation 24. For any 0 ≤ i < j ≤ n −2, θi ≤ θ j .

Claim 25. In any apple a ∈ Ak there are at most 2θk edges.

Proof: All edges in a are hit by either c+ or c−, which
together hit at most 2θk edges.

Lemma 26. The number of edges is O(nθ0), more precisely
m ≤ (2n −5)θ0.

Proof: Consider set E0, i.e. the set of node pairs {u, v}
for which C u,v

0 is not empty, in other words there exists
a circle not hitting any node and having u and v on its
boundary. It can be observed that no two edges from E0 are
intersecting each other in inner points, and that the edges of E0

generate a triangulation D0(V ,E0) of V . In fact, this particular
triangulation is the so-called Delaunay triangulation [16] of
node set V . A triangle in D0 is called a Delunay triangle.

The Delaunay triangulation D0 is a planar graph, thus |E0| ≤
3n−6. Since every Delunay triangle has 3 Delaunay edges and
a Delaunay edge is the edge of at most 2 Delaunay triangles,
and there are at least 3 Delaunay edges on the convex hull of
V , the number of Delaunay triangles is at most

2|E0|−3

3
≤ 2

3
(3n −6)−1 = 2n −5.

Since every edge intersects at least one triangle, and every
triangle can be covered by a circle c ∈ C0, which intersects
at most θ0 edges of the network, we get that the number m
of edges cannot be larger than θ0 times the number of the
Delaunay triangles. We get m ≤ (2n −5)θ0.

Lemma 27. Set Ak of apples can be calculated in
O(|Ek |(nθ0 +θk logθk).

Proof: There are |Ek | apples to determine. For each,
O(m), or alternatively in O(nθ0) edges have to be checked
if they are in the apple. After this, based on Claim 25, there
are O(θk) edges to order, which gives the proposed complexity.

Corollary 28. If θ0 is upper bounded by a constant, then Ak

can be determined in O(|Ek |n). �

C. Storing M u,v
k more Economically and Better Bound for

Processing Apples

One can observe that in case of an apple Au,v
k , a list of

edges can be constructed such that every f ∈ M u,v
k forms an

interval in this list, and this way M u,v
k can be stored more

economically.

Definition 29. For an apple Au,v
k let Lk be the concatenation

of list E+ and list E− minus those edges from E− which
intersect segment [uv].

Claim 30. For a nonempty apple Au,v
k , M u,v

k can be stored in
O(θk) space.

Proof: It can be observed that every f ∈ M u,v
k forms a

list in Lk , this way after storing Lk , for identifying f it is
only needed to store the index of ’beginning’ and ’end’of f .
Since M u,v

k has at most |Lk | elements, for storing M u,v
k we

only have to store at most |Lk | index pairs beside storing |Lk |,
which means O(|Lk |) space.

Since all the edges in Lk can be hit with at least one of c+
and c−, and every edge e appears at most 2 times in the list
(it can appear twice only if it is hit by both c+ and c−), |Lk |
is at most 2θk . This means that M u,v

k can be stored in O(θk).

Cor. 19 gave a complexity bound on processing apples. Now
it can be rephrased applying the new notions.

Lemma 31. All the apples from Ak can be processed in
O(|Ek |θ2

k).

Proof: There are |Ek | apples to process. Each of them can
be processed in θ2

k time by constructing M u,v
k

′ while scanning
through C u,v

k , then eliminating its nonmaximal and redundant

elements. Note that if the elements of M u,v
k

′ are stored by
noting the indexes of their first and last edges, each pair of
elements from M u,v

k
′ can be compared in O(1).

D. Better Complexity Bound on Merging Lists M u,v
k

Lemma 32. Mk can be computed in O(|Ek |2θ3
k) from lists

M u,v
k .

Proof: There are |Ek | lists containing O(θk) sets contain-
ing O(θk) edges. Mk can be computed by comparing all the set
pairs (and eliminating the redundant or nonmaximal elements),
which means O(|Ek |2θ2

k) comparisions. Since comparing two
sets takes O(θk) time, the total complexity is O(|Ek |2θ3

k).

E. Compexity of an improved algorithm for computing Mk

Theorem 33 gives complexity bound on an improved algo-
rithm for computing Mk .

Theorem 33. Mk can be computed in O(n2(n + k logk) +
|Ek |nθ0 + |Ek |2θ3

k). Mk has O(|Ek |θk) elements with at most
θk edges, and can be stored in O(|Ek |θk) space.

Proof: As presented perviously in this section (in Lemmas
22, 27, 31 and 32), each of the four phases of Alg. 3 can be
examinated in the proposed complexity. There are |Ek | lists
M u,v

k to merge, each of them has at most θk edges, and
according to Claim 30, each M u,v

k can be stored in O(θk),
completing the proof.

Corollary 34. If θk is upper bounded by a constant, then Mk

can be computed in O(n2(n+k logk)+|Ek |n+|Ek |2). Mk has
O(|Ek |) elements, and can be stored in O(|Ek |) space.

Naive Improved

Determining Ek O(n3 logn) O(n2(n +k logk))
Determining apples O(n2m logm) O(|Ek |(nθ0 +θk logθk))
Processing apples O(n2m3) O(|Ek |θ2

k)

Merging lists O(n4m3) O(|Ek |2θ3
k)

Total complexity O(n4m3) O(. . .)
T. c. if θi =O(1) O(n2(n +k logk)+|Ek |2)

TABLE I: Time complexities of naive and improved algo-
rithms for computing Mk

As it was seen, |E0| < 3n, this way M0 can be computed in
O(n3). It can be proven (like in [15]) that |E1| < 6n, this way
M1 also can be computed in O(n3). Furthermore, according
to simulation results, |Ek | < 3kn (Obs. 40). Based on these it
worths to formulate the next corollary.

Corollary 35. If θk is upper bounded by a constant, |Ek | is
O(n1.5) and k is O(n

logn) then Mk can be computed in O(n3).

There are possibilities to write even faster algorithms for
smaller values of k. In [14] and [15] we presented algorithms
which compute M0 and M1 in O(n logn) and O(n2), respec-
tively, if some conditions hold. Proposing similar algorithms
would exceed the limits of this paper.

0
5

10
15
20
25
30
35
40
45

0 1 2 3 4 5 6 7 8 9 10

A
vg

.n
od

al
de

gr
ee

in
D

k

k

BtNorthAmerica n = 36
BellCanada n = 39

germany n = 50
Deltacom n = 103

Fig. 3: Average nodal degrees in Dk for
small k values

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
ed

ge
s

in
D

k

k

Deltacom n = 103

Fig. 4: |Ek | for all possible k values

u

v

W+

q

a

b

p

F+

A

Fig. 5: Illustration for Subsec. VII-A

V. ON GRAPH DELAUNAY-k AND
CALCULATING M0, M1, . . . , Mk SIMULTANEOUSLY

As mentioned before, graph D0(V ,E0) is the Delaunay
triangulation of node set V , therefore it is a plane graph.

Claim 36. For every k ∈ {1, . . . ,dn/2e−1}, Ek−1 ⊆ Ek .

Proof: Let {u, v} ∈ Ei for an i < k. While sweeping
through C u,v with a circle c, nodes are getting hit and
uncovered, but maximum one at a time, this way the number
of hit nodes #c changes one-by-one while sweeping.

Since {u, v} ∈ Ei , #c can drop to i . On the other hand, since
either h+ or h− hits at least dn/2e−1 nodes, thus #c reaches
dn/2e−1. Since i < k ≤ dn/2e−1, this means that there exists
a monent when #c = k, thus {u, v} ∈ Ek .

Claim 37. Graph Ddn/2e−1 is the complete graph on V .

Proof: Let {u, v} ⊆V . Let the number of nodes hit by h+
and h− be #h+ and #h− , respectively. Clearly, #h++#h− = n−2,
and a node from V \ {u, v} is hit by h+ iff it is not hit by h−,
this way it can be assumed w.l.o.g. that #h+ ≥ dn/2e−1 and
#h− ≤ dn/2e−1. This way while sweeping from h+ to h− in
C u,v , there exists a moment, when the number of hit nodes
equals dn/2e−1, thus {u, v} ∈ Edn/2e−1

Definition 38. Let M0,k be the concatenation of
M0, M1, . . . , Mk .

As it turns out, calculating M0,k is not harder than calcu-
lating Mk :

Theorem 39. If k ≤ dn/2e − 1, then M0,k can be computed
in O(n2(n +k logk)+ |Ek |nθ0 + |Ek |2θ3

k). M0,k has O(|Ek |θk)
elements with at most θk edges, and can be stored in O(|Ek |θk)
space.

Proof: To calculate M0,k , we only need a small modifica-
tion of the improved algorithm from Section IV. First, Ek , then
Ak should be determined as in phases 1 and 2 in the original
algorithm. Processing an apple Au,v

k should be modified: while
a single sweeping we construct all of M u,v

0 , M u,v
1 , . . . , M u,v

k ; it
can be proved that this is still possible in the same complexity
as proven for phase 3 in the original improved algorithm
(Lemma 31). Construction of lists M0, . . . , Mk by merging, then

concatenation can be also done in the same complexity proven
for original phase 4 in Lemma 32.

VI. SIMULATION RESULTS

In this section we focus on the number of edges of graph
Delaunay-k. As seen in Fig. 1, graph D0 is a planar graph,
this way |E0| ≤ 3n −6. As proven in [15], |E1| ≤ 6n −15. We
deduct that |Ek | < 3kn for k = 0 and k = 1. However we coud
not prove it mathematically yet, simulation results show that
that |Ek | < 3kn holds for greater values of k too, as shows
Fig. 3. Note that if a graph has an average nodal degree d ,
than it has m = nd/2 edges.

While increasing k, the linear growth of |Ek | slightly slows
as in Fig. 4, and finally, at k = dn/2e−1, Ddn/2e−1 becomes
the complete graph on V , as proven in Claim 37. If k is
increased further from dn/2e−1, another process starts: edges
are dropping out of Dk causing a linear decrease in |Ek |.

Let us formalise some of these observations and their
corollaries.

Observation 40. According to simulation results, |Ek | is
O(kn), more precisely |Ek | < 3kn. �

Using Obs. 40, the complexity results could be rephrased.
Instead of this we show most of these results in a tabular form
in Table II.

Improved Improved + ”|Ek | < 3kn”

Determining Ek O(n2(n +k logk)) O(n2(n +k logk))
Determining apples O(|Ek |(nθ0 +θk logθk)) O(nk(nθ0 +θk logθk))
Processing apples O(|Ek |θ2

k) O(nkθ2
k)

Merging lists O(|Ek |2θ3
k) O(n2k2θ3

k)

Total complexity O(. . .) O(n2(n +k2θ3
k))

TABLE II: Time complexity of the improved algorithm for
computing Mk with and without using |Ek | < 3kn

Using simulation resulsts Theorem 39 can be written as
follows:

Claim 41. If k ≤ dn/2e − 1, then M0,k can be computed in
O(n2(n+k2θ3

k)). M0,k has O(nkθk) elements with at most θk

edges, and can be stored in O(nkθk) space. �

Corollary 42. If k ≤ dn/2e−1 and θk is upper bounded by a
constant, then M0,k can be computed in O(n2(n +k2)). M0,k

has O(nk) elements with O(1) edges, and can be stored in
O(nk) space. �

VII. CONCLUSIONS

In this paper we propose a fast and systematic approach to
enumerate the list of possible circular disk failures having at
most k nodes inside. Defining the size of the region as the
number nodes inside is a very general failure model, which
does not require the knowledge of absolute coordinates and
the physical distances in the network topology. Note that, we
do not assume the failed region has a disk shape, instead this
modelling technique overestimates the size of the failed region
in order to have tractable problem space. Roughly speaking,
by setting a too large maximum radius, we require to have
larger distances between the working and backup resources,
than it is actually needed in reality. However, adopting a failure
model that captures the number of nodes of the failed region
results in model manageable list of SRGLs. This opens up a
straightforward way of protecting regional failures by simply
configuring them as a list of SRLGs for the current self-healing
mechanisms.

ACKNOWLEDGEMENT

This article is based upon work from COST Action
CA15127 (”Resilient communication services protecting end-
user applications from disaster-based failures - RECODIS”)
supported by COST (European Cooperation in Science and
Technology). J.T. is partially supported by the Hungarian
Scientific Research Fund (grant No. OTKA 108947).

REFERENCES

[1] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano, “Assessing
the vulnerability of the fiber infrastructure to disasters,” Networking,
IEEE/ACM Transactions on, vol. 19, no. 6, pp. 1610–1623, 2011.

[2] O. Gerstel, M. Jinno, A. Lord, and S. B. Yoo, “Elastic optical network-
ing: A new dawn for the optical layer?” Communications Magazine,
IEEE, vol. 50, no. 2, pp. s12–s20, 2012.

[3] M. F. Habib, M. Tornatore, M. De Leenheer, F. Dikbiyik, and B. Mukher-
jee, “Design of disaster-resilient optical datacenter networks,” Journal
of Lightwave Technology, vol. 30, no. 16, pp. 2563–2573, 2012.

[4] J. Heidemann, L. Quan, and Y. Pradkin, A preliminary analysis of
network outages during hurricane sandy. University of Southern
California, Information Sciences Institute, 2012.

[5] F. Dikbiyik, M. Tornatore, and B. Mukherjee, “Minimizing the risk from
disaster failures in optical backbone networks,” Journal of Lightwave
Technology, vol. 32, no. 18, pp. 3175–3183, 2014.

[6] I. B. B. Harter, D. Schupke, M. Hoffmann, G. Carle et al., “Network
virtualization for disaster resilience of cloud services,” Communications
Magazine, IEEE, vol. 52, no. 12, pp. 88–95, 2014.

[7] X. Long, D. Tipper, and T. Gomes, “Measuring the survivability of
networks to geographic correlated failures,” Optical Switching and
Networking, vol. 14, pp. 117–133, 2014.

[8] B. Mukherjee, M. Habib, and F. Dikbiyik, “Network adaptability from
disaster disruptions and cascading failures,” Communications Magazine,
IEEE, vol. 52, no. 5, pp. 230–238, 2014.

[9] R. Souza Couto, S. Secci, M. Mitre Campista, K. Costa, and L. Maciel,
“Network design requirements for disaster resilience in iaas clouds,”
Communications Magazine, IEEE, vol. 52, no. 10, pp. 52–58, 2014.

[10] D. M. Masi, E. E. Smith, and M. J. Fischer, “Understanding and
mitigating catastrophic disruption and attack,” Sigma Journal, pp. 16–22,
2010.

[11] J. P. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer,
M. Schöller, and P. Smith, “Resilience and survivability in commu-
nication networks: Strategies, principles, and survey of disciplines,”
Computer Networks, vol. 54, no. 8, pp. 1245–1265, 2010.

[12] S. Neumayer, A. Efrat, and E. Modiano, “Geographic max-flow and min-
cut under a circular disk failure model,” Computer Networks, vol. 77,
pp. 117–127, 2015.

[13] J. Tapolcai, L. Rónyai, B. Vass, and L. Gyimóthi, “List of shared risk
link groups representing regional failures with limited size,” in Proc.
IEEE INFOCOM, Atlanta, USA, may 2017.

[14] B. Vass, E. Bérczi-Kovács, and J. Tapolcai, “Shared risk link group
enumeration of node excluding disaster failures,” in Int. Conference on
Networking and Network Applications (NaNA), 2016.

[15] B. Vass, E. Bérczi-Kovács, and J. Tapolcai, “Enumerating circular disk
failures covering a single node,” in Int. Workshop on Resilient Networks
Design and Modeling (RNDM), Halmstad, Sweden, Sep. 2016.

[16] F. Aurenhammer, “Voronoi diagrams: a survey of a fundamental geo-
metric data structure,” ACM Computing Surveys (CSUR), vol. 23, no. 3,
pp. 345–405, 1991.

APPENDIX

A. Determining �u,v
+ (e) and �u,v− (e) in Constant Time

Claim 43. For any edge e = {a,b} and node pair {u, v} ⊂ V ,
both �u,v

+ (e) and �u,v− (e) can be calucated in O(1).

Proof: Let us concentrate on calculation of �u,v
+ (e),

because �u,v− (e) can be determined similarly.
Maximal subtended angle from line: First let us compute

the maximal subtended angle by segment [uv] from a point
of line ab right from uv . Let {A} = uv ∩ ab. Clearly, the
subtending angle function su,v (W) :=�(uW v) is unimodal in
both rays (R+ and R−) defined by line ab and point A (i.e.
it has a strictly monotone increasing and a strictly monotone
decreasing interval). Let the two points where local maximum
is reached be W+ on the right side and W− on the left side of
uv . Let the cetre point of circles c(uvW+) and c(uvW−) be F+
and F−, respectively. W+ can be determined via determining
F+.

Since point F+ is located equidistant from u and v , it is
located on perpendicular bisector q of segment [uv]. On the
other hand, F+ is located equidistant from v and line ab, thus
it is on parabola p defined by point v and line ab.

Since q can be described with a linear equasion and p with
a quadratic one, determining their intersections can be made
via solving a quadratic expression, which can be done in O(1).

From this point it is easy to describe circles c(uvW+) and
c(uvW−) , and to determine and distinguish F+ and F− via
solving quadratic expressions in constant time.

Maximal subtended angle from segment: Clearly, if W+ ∈
[AB], then �u,v

+ (e) =�(uW+v), since su,v is unimodal in ray
R+. If it is not the case then �u,v

+ (e) = max(�(u Av),�(uB v)),
again due to unimodality. This way �u,v

+ (e) can be determined
in O(1).

