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Abstract—Current backbone networks are designed to protect
a certain pre-defined list of failures, called Shared Risk Link
Groups (SRLG). During network design and operation protecting
a failure not part of an SRLG is ignored as they assume to
be extremely rare events. The list of SRLGs must be defined
very carefully, because leaving out one likely failure event will
significantly degrade the observed reliability of the network.
The list of SRLGs is typically composed of every single link
or node failure. It has been observed that some type of failure
events manifested at multiple locations of the network, which
are physically close to each other. Such failure events are called
regional failures, and are often caused by a natural disaster. In
this study we focus on link failures only and assume nodes are
never part of the failure. We provide a fast systematic approach
for generating a list of SRLGs the protection of which is essential
to increasing the observed reliability of the network. According
to some practical assumptions this list is very short with O(|V |)
SRLGs in total, and can be computed very fast, in O(|V | log |V |)
time.

I. INTRODUCTION

Current backbone networks are built to protect a certain list
of failures. Each of these failures (or termed failure states) are
called Shared Risk Link Groups (SRLG), which is a set of links
that is expected to fail simultaneously. The network is designed
to be able to automatically reconfigure in case of a single
SRLG failure, such that every connection further operates after
a very short interruption. In practice it means the connections
are reconfigured to by-pass the failed set of nodes and links.
Thus the network can recover if an SRLG or a subset of link
and nodes in SRLG fails simultaneously; however, there is no
performance guarantee when a network is hit by a failure that
involves links not a subset of an SRLG. Nevertheless, the list
of SRLGs must be defined very carefully, because not getting
prepared for one likely simultaneous failure event the observed
reliability of the network significantly degrades.

Operators have numerous answers what simultaneous fail-
ures means. One extreme is to list every single link or node
failure as an SRLG. Here the concept is that the failure
first hits a single network element for whose protection the
network is already pre-configured. Often there is a known
risk of a simultaneous multiple failure that can be added as
an SRLG, for example if two links between different pair of
nodes traverse the same bridge, etc. On the other hand, we
have witnessed serious network outages [1]–[9] because of
a failure event that takes down almost every equipment in a
physical region as a result of a disaster, such as weapons of
mass destruction attacks, earthquakes, hurricanes, tsunamis,

tornadoes, etc. For example the 7.1-magnitude earthquake
in Taiwan in Dec. 2006 caused simultaneous failures of six
submarine links between Asia and North America [10], the
9.0 magnitude earthquake in Japan Earthquake on March 2011
impacted about 1500 telecom switching offices due to power
outages [5] and damages of undersea cables, the hurricane
Katrina in 2005 caused severe losses in Southeastern US [11],
hurricane Sandy in 2012 cased a power outage that silenced
46% of the network in the New York area [4]. These type of
failures are called regional failures which is a simultaneous
failures of nodes/links located in specific geographic areas [1]–
[9]. The number of possible regional failure can be very large,
thus simply listing them as an SRLG is not a viable solution.
It is still a challenging open problem how to prepare a network
to protect such failure events, as their location and size is not
known at planning stage. In the paper we propose a solution
to this problem with a technique that can significantly reduce
the number of possible failure states that should be added as
an SRLG to cover all regional failures.

In practice, regional failures can have any location, size and
shape. It is a common best practice to fix the size or shape of
regional failures, for example as cycles with given size (also
called disk) [12]. In our study we assume the regional failure
has a shape of cycle but do not fix its size. Instead we classify
the regional failures according to the network elements it has.
For example if the failure hit a network node, the node is
no longer going to send traffic in the network which has a
network wide effect. To treat the node failure separately form
link failures, the first class of failure are disk failures that
hits links only. Clearly, a disk failure that does not have a
node cannot be too large. The second class of failures are
disk failures that affects nodes as well which is ignored in
this paper and left for further study.

In this study the number of SRLG are significantly reduced
applying computational geometric tools based on the following
assumptions:

1) The network is a geometric graph G(V ,E) embedded in
a 2D plane.

2) The shape of the regional failure is assumed to be a circle
with arbitrary radius and center position.

3) We focus on regional link failures, failures that does not
affect nodes.

We will show with these assumption the number of SRLGs
is small, O(|V |), in typical backbone network topology, and



can be at most O(|E ||V |) in an artificial worst case scenario,
where |V | denotes the number of nodes in the network, and
|E | the number of links. We propose a systematic approach
based on computational geometric tools that can generate the
list of SRLGs in O(|V | log |V |) steps on typical networks.

Using the obtained SRLG list network operators can design
their networks to be protected against regional and random
failures. Backbone networks designed according to our new
failure model should have higher reliability, and leave way less
failures to be recovered with the convergence of higher layer
intra-domain routing protocols (IS-IS, OSPF) with the next
few seconds, minutes or hours after the failure. We believe
the paper fills the gap between the conventional SRLG based
pre-planned protection and regional failures.

The paper is organised as follows. In Section II we present
the core mathematical model with several observations. In Sec-
tion III we show the main result the O(|V | log |V |) algorithm
for generating the list of SRLG covering every regional link
failures with a shape of disk that do not contain network nodes.
Finally, in Section IV we draw the conclusions.

II. MODEL AND ASSUMPTIONS

We model the network as an undirected geometric graph
G(V ,E) with n = |V | nodes and m = |E | edges, we assume
n ≥ 3. The nodes of the graph are embedded as points in the
Euclidean plane, and the edges are embedded as line segments.
The position of node v is denoted by (vx , vz ). A disk c(x, y,r )
is a circle with a centre point (x, y) and radius r . The failure
caused by a disk is modelled as every interior node and edge
with interior part is erased from the graph.

For every disk c let Ec denote the set of edges and nodes
erased by c.

Proposition 1. For any c1,c2 ∈C , c1 ⊆ c2 it holds that Ec1 ⊆
Ec2 . �

Let C0 denote the set of disks that do not have any node of
V in their interior. Clearly, |C0| is infinite.

Claim 2. For any c1(x, y,r ) ∈ C0 there exists a c2 ∈ C0 such
that Ec1 ⊆ Ec2 and c2 has at least 2 nodes of V on its boundary.

Proof. If Ec1 = ;, than we can choose c2 arbitrarily from
among the non-empty set of disks with at least 2 points of
V on their boundary.

If there exists an edge e = {a,b} in Ec1 , than we generate c2

as follows. We start with disk c1(x, y,r ) and start to increase its
radius. We do it until we reach a node u ∈V . We can further
blow the circle larger without loosing any covered area by
moving the central point along the line (x, y)− (ux ,uy ) while
keeping u on the boundary.

Assume indirectly that it never reaches a second node. We
get a contradiction because c1 intersects line ab and a,b ∈V .

Thus the circle will reach a second node v ∈V . Let c2 ⊇ c1

be this circle having u, v ∈ V on its boundary. Clearly, Ec2 ⊇
Ec1 .

For nodes u and v , let C u,v
0 be the set of disks from C0

which have both u and v on the boundary.

Firs let us ignore the edges of the network and focus only
on the nodes. We are searching for disks of maximum size
that do not have any nodes in interior. Clearly, each disk of
maximum size passes through at least three nodes, otherwise
its size could be further increased. By simplicity we assume
that the nodes are in general position i.e. no four nodes are
on the same cycle and no three nodes are on the same line.
In this case connecting the three nodes we get triangles. The
problem was deeply investigated in the past and it was shown
the union of these triangles results a triangulation of the
graph, called Delaunay triangulation [13]. Let DO = (EO,V )
denote the Delaunay triangulation on the set of nodes, where
EO denotes the edges of the triangulation, which can be
very different form the edges of the network. In Delaunay
triangulation no circumcircle of any triangle contains node in
interior. Another interesting property that the dual graph of
the Delaunay triangulation is called Voronoi diagram [14]. An
important observation is the following.

Proposition 3. C u,v
0 is non-empty iff {u, v} is an edge of the

DO = (V ,EO) Delaunay triangulation.�

Let F0 and F u,v
0 be the set of failures caused by elements

of C0 and C u,v
0 , respectively. Formally, F0 = {Ec |k ∈ C0} and

F u,v
0 = {Ec |k ∈C u,v

0 }. We call the elements of F0 regional link
failures, or simply link failures.

Let denote M0 and M u,v
0 the exclusion-wise maximal ele-

ments of F0 and F u,v
0 , respectively. Our goal is to determine

M0.

Claim 4. M0 ⊆ ⋃
{u,v}∈EO

M u,v
0 .

Proof. Clearly, for all f ∈M0 there exists a c1 ∈C0 such that
f = Ec1 . According to Claim 2 and Prop. 3, there exists a c2 ∈
∪{u,v}∈EOC u,v

0 for which Ec2 ⊇ Ec1 . This implies f ⊆ Ec2 . Since
f is an exclusion-wise maximal element of F0 by definition
of M0, this is possible only if f = Ec2 .

We get that for every f ∈ M0 there exists a c2 ∈
∪{u,v}∈EOC u,v

0 such that f = Ec2 . This implies M0 ⊆
∪{u,v}∈EOM u,v

0 .

Before presenting our algorithm for determining M0, we
should take a look on its size. It turns out that |M0| is O(nm)
(Claim 6), and in case of some artificial network families |M0|
is Θ(n3) (Cor. 7). The details are the following.

On Fig. 1 we can see a sketch of a G = (V ,E) graph having
Θ(n3) maximal single link failures. It has a so long-drawn
shape it cannot be drawn precisely in a paper.

Let us consider v1, . . . , vk ∈ V , different points lying on a
vertical line l , d(vi , vi+1) = d(v j , v j+1), for all i , j ∈ {1, . . . ,k −
1}, and {vi , vi+1} ∈ E for every i ∈ {1, . . . ,k −1}.

Both on the right and left side of l let us take a complete
bipartite graph called K r

j , j and K l
j , j . We locate the points of K r

and K l carefully as follows. For both K r
j , j and K l

j , j one class
of nodes is located on the top and the other in the bottom are
such that their vertices are equidistant on a horizontal line, and
for all v ∈ V \ {v1, . . . , vc } |d(v, l )−d(v1, v2)/2| ≤ ε for a very
small ε > 0. Though the top partiles are much further from
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Fig. 1: Sketch of a graph family with Θ(n3) maximal regional
link failures

v1 than d(v1, vc ), they are much closer to them as the bottom
partiles. The graph is pictured in figure 1. If we want G to be
connected, than take an edge from vc to the bottom class.

This way we can manage to have 2 j 2 edges nearly parallel
with l , which in addition can be arranged nearly equidistant
both in the left and right half plane.

Claim 5. In case that 6|(n−1), k := (n−1)/3+1, j := (n−1)/6,
the graph sketched in Fig. 1 has at least (n−1)3

108 maximal single
link failures.

Proof. It can be shown that the graph has j 2 maximal regional
link failures which can have only he vi , vi+1 point pair on
the boundary, for every i ∈ {1, . . . ,k −1}. This means at least
k j 2 = (n−1)3

108 maximal regional link failures.

Claim 6. The maximum number of single regional link failures
can be at most O(nm).

Proof. The proof can be made by using Claim 4 and the facts
that |EO| ≤ 3n−6 and |M u,v

0 | is O(m) (corollary of correctness
of Algorithm 3).

Corollary 7. The graph illustrated on Fig. 1 has Θ(n3)
regional link failures. �

The size of M0 affects the computational complexity of its
determination. However |M0| can be Θ(nm), in case of many
real-life networks it is O(n). This gives us the idea to use some
parameters which are in relation with the size of M0 and with
the computational complexity.

We use parameters θ0 and τ0 for the maximum number of
edges crossing the circumcircle of a Delaunay triangle, and for
the maximum number of circumcircles of Delaunay triangles
crossed by an edge, respectively.

Since |M0| can be asymptotically large, it is not possible to
give an algorithm which is "really fast" on all graphs. On the
other hand, our algorithm computes M0 in O(n(logn+θ3

0τ0))
time (Thm. 8), what gives O(n logn) if θ0 is constant and τ0

is O(logn), which is a natural assumption for many types of
networks.

Our algorithm computes M0 in the following way. First
it generates the Delaunay triangulation DO = (EO,V ). After
that for every {u, v} ∈ EO it generates sets M u,v

0 . Finally it
computes M0 by gathering the globally maximal elements of
sets M u,v

0 . We will realise this plan in Section III.

III. THE ALGORITHM

Consider the Delaunay triangulation DO = (V ,EO) and the
set T0 of Delaunay triangles given by their vertices. Since DO
is a planar graph, for an edge (u, v) there exists one or two
nodes in V that are neighbours of both u and v .

If there exist two points of this kind, let us call them w1

and w2. In this case both {u, v, w1} and {u, v, w2} are elements
of T0. Let C 1

u,v and C 2
u,v be the disks with u, v, w1 and u, v, w2

on the boundary.
If there exists only one common neighbour w1 of u and v ,

let C 1
u,v be the same as before, and let C 2

u,v be an infinitely
large disk with boundary going through u and v not containing
w1. Thus {u, v, w1} ∈ T0 and {u, v, w2} ∉ T0.

Let T t
0 denote the set of Delaunay-triangles which have

common edge with t , for all t ∈ T0.
It is easy to see that all disks in C u,v

0 are covered by C 1
uv ∪

C 2
u,v .
Let e ∈ E 3

u,v iff e ∈ E intersects C 1
u,v ∩C 2

u,v , e ∈ E 1
u,v iff

e ∈ E \ E 3
u,v intersects C 1

u,v \ C 2
u,v and e ∈ E 2

u,v iff e ∈ E \ E 3
u,v

intersects C 2
u,v \C 1

u,v (see Figure 2).

u

v

w1

w2

c
C 1

u,v

C 2
u,va

b

Fig. 2: Example on a Delaunay-edge {u, v} with w1, w2, C 1
u,v

and C 2
u,v . Here E 1

u,v = {{a,b}}, E 2
u,v = {{a,b}, {c, w2}}, E 3

u,v =
{{c, v}}.

Using the previous plan and the specific properties of the
Delaunay triangulation we proved the next theorem.

Theorem 8. M0 can be computed in O(n(logn+θ3
0τ0)) using

Algorithm 1, and has O(nθ0) elements, each of them consisting
of O(θ0) edges.

Proof. At line 1 the Delaunay triangulation can be computed
in O(n logn) time [13]. Sets T0 and T t

0 for all t ∈ T0 also can
be computed in O(n logn).

In line 2 we do some preparation in constant time for every
Delaunay edge {u, v}, then we calculate sets E i

u,v simultane-
ously for all {u, v} ∈ EO in O(nθ2

0) time according to Lemma
11.



In line 3 we generate sets M u,v
0 , each in O(θ2

0) time (Lemma
13).

Finally, in line 4 M0 is calculated from lists M u,v
0 in

O(nθ3
0τ0) time (Lemma 16).

According to these results we can derive Theorem 8.

Corollary 9. Assuming θ0 is upper bounded by a constant
and τ0 is O(logn), M0 can be computed in O(n logn) time,
and the total length of it is O(n).

Algorithm 1: Generating the maximal regional link fail-
ures
Input: G = (V ,E)
Output: The set M0 of maximal single regional failures.
begin

1 EO,T0,T t
0 (t ∈ T0) ←DELAUNAY(V );

2 E i
u,v (i ∈ {1,2,3}, {u, v} ∈ EO) ←

GETEDGESETS(V ,E ,EO,T0);
3 M u,v

0 ({u, v} ∈ EO) ← GENERATE
(V ,E ,EO,E i

u,v (i ∈ {1,2,3}, {u, v} ∈ EO));
4 M0 ←

ELIMINATEREDUNTANTS(M u,v
0 ,∀{u, v} ∈ EO);

return M0

A. On the number of edges and size of θ0

Lemma 10. The number of edges is O(nθ0), more precisely
m ≤ (2n −5)θ0.

Proof. The Delaunay triangulation is a planar graph and thus
|EO| ≤ 3n − 6. Since every Delunay triangle has 3 Delaunay
edges, a Delaunay edge is edge of at most 2 Delaunay
triangles, and there are at least 3 Delaunay edges on the convex
hull of V , the number of Delaunay triangles is at most

2|EO|−3

3
≤ 2

3
(3n −6)−1 = 2n −5.

Since every c ∈ C0 intersects at most θ0 edges of the
network, and contains a Delaunay triangle and every edge
intersects at least one triangle, the m number of the links
cannot be larger than θ0 times the number of the Delaunay
triangles. We get m ≤ (2n −5)θ0.

A graph family may have O(n3) single regional failures and
as mentioned before, we gave an artificial graph family, which
has Θ(n3) of them (see Fig. 1). However, we are convinced
that θ0 is small in case of typical backbone networks and
there exists a small constant c that it never exceeds and thus
|M0| ≤ cn.

B. Algorithm 2 (Method Getedgesets)

Lemma 11. Algorithm 2 computes sets E i
u,v for all {u, v} ∈ EO

in O(nθ0). If θ0 is constant, this gives O(n) time.

Proof. First we have to show the correctness of the algorithm.
Circles C i

u,v , i ∈ {1,2} are the circumcircles of the Delau-
nay triangles, unless {u, v} is on the convex hull of V . By

definition, if {u, v} is on the convex hull of V , E 2
u,v is empty

set. Therefore, it is easy to see that assuming that in lines 5
- 9 we compute every edge set Et covered by circumcirlce of
Delaunay tirangle t , in lines 10 - 12 we also get set E i

u,v .
It remains to prove that in lines 5 - 9 we compute sets Et

correctly. With this object it is enough to prove that for every
{a,b} ∈ E , {a,b} ∈ Et iff [a,b]∩Ct 6= ;. It is obvious that if
{a,b} ∈ Et after the last run of function Examine, then [a,b]∩
Ct 6= ;. Lemma 12 shows the other way of the statement. Thus
Algorithm 2 is correct.

We make an estimation of the complexity of Algorithm 2
as follows.

Clearly, calculations in lines 1-4 can be done overall in O(n)
time.

Since a Delaunay triangle t has at most 3 Delaunay triangles
having common edge with t , a call of the function Examine
runs in constant time, and for every e ∈ E we examined at
most 4 times as many triangles as the number of circumcircles
crossing e. This means that in lines 5 - 9 we get sets Et in
O(mθ0) time, or by Lemma 10, O(nθ2

0) time. If θ0 is constant,
this gives an O(n) complexity.

It is easy to see that lines 10 - 12 we find the desired E i
u,v

sets in similar complexity.
The overall complexity of Algorithm 2 is O(nθ2

0) time. If
θ0 is constant, this means O(n).

Lemma 12. The set Te of the Delaunay triangles having
circumcircles covering edge e is connected in the sense that
from every element of Te one can reach every element of Te

through triangles having common edge.

Proof. For an edge e = {u, v}, let the set of Delaunay triangles
with circumcircle intersecting e be Te . Let the set of Delaunay
tringles intersecting e be Se (Se ⊆ Te ). Trivially, the triangles
of Se are connected.

Indirectly assume that set X ⊆ Te \Se of elements of Te \Se

not connected with Se is not empty. Let Xr and Xl be the set
of elements of X on the right side of line uv , and on the left
side of it, respectively. Let Xc be the set of elements of X
which have points both on the right and left side of line uv .
This way Xr , Xl and Xc is a partition of X .

Assume there exists a tX Y Z ∈ Xc . Since tX Y Z ∉ Se , tc is
not intersecting edge {u, v}. This means that u or v must be
intersected by the circumcircle CX Y Z of tX Y Z . Assume w.l.o.g.
that CX Y Z covers u. Since tX Y Z is a Delaunay triangle, u
cannot be in interior of CX Y Z , and thus it is situated right on
CX Y Z , which contradicts the assumption that the nodes of V
are in general position. This gives that Xc =;.

Let tPQR be the element of Xr with maximal area of its
circumcirlce on the left side of line uv (see Fig. 3).

Trivially, P , Q and R are all in the half plane on the
right side of line uv . Assume w.l.o.g. that arc ÙQR of the
circumcircle CPQR of tPQR not containing P is intersecting
line uv . Now [QR] cannot be on the convex hull of V , because
P is situated right from it, and at least one from u and v is



Algorithm 2: GETEDGESETS E 1
u,v ,E 2

u,v ,E 3
u,v for all

{u, v} ∈ EO

Input: V ,E ,EO,T0
Output: E i

u,v for all i ∈ {1,2,3}, {u, v} ∈ EO
begin

1 for {u, v} ∈ EO do
2 Determine w1, w2,C 1

u,v an C 2
u,v ;

3 P 1 ← the half plane having uv line as boundary and
containing w1 ("the half plane on left hand side");

4 P 2 ← the half plane having uv line as boundary and
containing w2 ("the plane on right hand side");

5 for t ∈ T0 do
Et ←;

6 for {a,b} ∈ E do
7 for t ∈ T0 do

V i si tedt ← f al se

8 Take a t = aw z∆ Delaunay triangle;
9 Examine(t , {a,b});

10 for {u, v} ∈ EO do
for i ∈ {1,2} do

if wi ∈V then
11 E i

u,v ← Ewi uv∆ \ Ew3−i uv∆ ;

else if {u, v} ∈ E then
E i

u,v ← {{u, v}}

12 E 3
u,v ← Ew1uv∆ ∩Ew2uv∆ ;

13 return E i
u,v for all i ∈ {1,2,3}, {u, v} ∈ EO

Function Examine(t , {a,b})
14 if V i si tedt = f al se and [a,b]∩Ct 6= ; then
15 V i si tedt ← tr ue ;
16 Et ← Et ∪ {{a,b}} ;

for ti ∈ T t
0 do

Examine(ti , {a,b})

situated on the left side of line QR. This means there must
exist a point S ∈V on the left part of line QR such that tQRS

is a Delaunay triangle. Clearly, S ∉ i nt (CPQR ), since we have
Delaunay triangulation.

If tQRS intersects edge {u, v}, then tQRS ∈ Se , thus tPQR is
connected to Se , which contradicts to its choice.

If tQRS does not intersect edge {u, v}, but it intersects line
uv , then tQRS ∈ Xc , since tPQR is not connected with Se and
we can deduct that ; 6= CPQR ∩ [uv] ⊂ i nt (CQRS ) from the
definition of the Delaunay triangulation. This contradicts the
fact that Xc =;.

This means that S is in the half plane right from line uv .
Since ; 6=CPQR ∩ [uv] ⊂ i nt (CQRS ), tQRS is element of Tr . It
is easy to see that the area of disk CPQR left from line QR is
contained by the area of disk CQRS left from line QR, which
contradicts the choice of tPQR . Thus Xr is empty.

Xl is empty for similar reasons.
It turned out that X = Xr ∪ Xl ∪ Xc = ;, and thus Te is

connected.

C. Algorithm 3 (Method Generate M u,v
0 )

Lemma 13. Algorithm 3 generates sets M u,v
0 in O(nθ2

0) time.

u

v

C

B

A

D

Le f t

Ri g ht

C ABC

CBC D

Fig. 3: Illustration for proof of Lemma 12

Algorithm 3: Generaring sets M u,v
0 for all {u, v} ∈ EO

Input: V ,E ,EO,E i
u,v (i ∈ {1,2,3}, {u, v} ∈ EO)

Output: Sets M
u,v
0 for all {u, v} ∈ EO .

begin
for {u, v} ∈ EO do

1 for i ∈ {1,2} and {a,b} ∈ E i
u,v do

2 mi
a,b ← max{m(ûcv)|c ∈ [a,b]∩P i }

3 L1 ←SORT(E 1 by m1
a,b values increasingly);

4 L2 ←SORT(E 2 by m2
a,b values decreasingly);

5 i ← 1, j ← 1;
6 M

u,v
0 ←; ;

7 repeat
8 while m1

L1(i )
+m2

L2( j )
≤π and j ≤length(L2) do

j ← j +1

9 M
u,v
0 ←

M
u,v
0 ∪ {{L1(i ), . . . ,L1(n),L2(1), . . . ,L2( j −1)}}∪E 3;

10 while m1
L1(i )

+m2
L2( j )

>π and i ≤length(L2) do
11 i ← i +1

until i >length(L1) or j >length(L2);

12 Eliminate the non-maximal elements of M
u,v
0 ;

return M
u,v
0

Proof. Proposition 14 shows the correctness of Algorithm 3.
We assume line 2 runs in constant time. This means that

for a given {u, v ∈ EO} in lines 1 and 2 we get values mi
a,b

in O(θ0) time, in lines 3 and 4 we sort them in O(θ0 logθ0)
time, and in lines 7-12 M u,v

0 is calculated in O(θ2
0) time. Since

|EO| ≤ 3n −6, this gives an overall complexity O(nθ2
0).

Proposition 14. It can be shown that if a k ∈ C u,v
0 does not

contain L1[i −1] but contains L1[i ], then L1[ j ] is covered by k
iff j ≥ i . Similarly, if k contains L2[i −1] but does not contain
L2[i ], then L2[ j ] is covered by k iff j ≤ i −1. Trivially, E 3 is
covered by k, and that is also clear that for any e1 ∈ E 1 and
e2 ∈ E 2 the edges e1,e2 are covered by k iff m1

e1
+m2

e2
≤π. �

Corollary 15. For every {u, v} ∈ EO, |M u,v
0 | is O(θ0).

Proof. It can be deducted from the description and correctness
of Algortithm 3.



D. Algorithm 4 (Method Eliminateredundants)

Lemma 16. Algorithm 4 computes M0 in O(nθ3
0τ) using sets

M u,v
0 .

Algorithm 4: ELIMINATEREDUNTANTS
Input: M

u,v
0 for all {u, v} ∈ EO

Output: M0
begin

for {a,b} ∈ E do
1 Ta,b ←;

for t ∈ T0 do
for {a,b} ∈ Et do

2 Ta,b ← Ta,b ∪ {t }

for {a,b} ∈ E do
3 E d

a,b ←⋃
tuv w∆∈Ta,b

{{u, v}, {v, w}, {w,u}}

for {u, v} ∈ EO do
4 E D

u,v ←⋃
{a,b}∈E 3

u,v
E d

a,b ;
5 for fu,v ∈M

u,v
0 do

for {w, z} ∈ E D
u,v do

for fw,z ∈ M w,z
0 do

if fu,v ⊇ fw,z then
M

w,z
0 ←M

w,z
0 \ fw,z

else
if fu,v ⊂ fw,z then

6 M
u,v
0 ←M

u,v
0 \ fu,v

7 M0 ←⋃
{u,v}∈EO M

u,v
0 ;

8 return M0

Proof. We can prove the correctness of Algorithm 4 by
checking that it eliminates all globally non-maximal elements
of M u,v

0 and leaves exactly one copy of each element of M u,v
0

in the end.
The proof of complexity is as follows.
For every {a,b} ∈ E let Ta,b be the set of Delaunay triangles

with circumcircle intersected by [a,b]. In lines 1 and 2 we
determine the sets Ta,b . Obviously the complexity of these
lines is O(nθ0).

Recall that the maximum number of circumcircles of De-
launay triangles crossed by an e ∈ E with τ0. By definition in
line 3, for all {a,b} ∈ E , E d

a,b is a set containing those {u, v}
edges of the Delaunay triangulation which are covered by a
k ∈ C u,v

0 . In line 3 we compute these sets. This step has an
O(nτ0) complexity.

By definition in line 4, E D
u,v ⊇ {{w, z}|∃m ∈ M u,v

0 : m =
Ecu,v = Ecw z ,cuv ∈C u,v

0 ,cw z ∈C w,z
0 }, in other words it contains

all {w, z} edges of the Delaunay triangulation which may have
single regional link failures which can have the point pair
w, z, and can have u, v on the boundary, because such failures
must contain edge from E 3

u,v . In line 4 this set is calculated
in O(nτ0) time.

In lines 5 - 7 we get M0 by comparing at most O(nθ2
0τ0)

failures, and eliminate the redundant and non-maximal ele-
ments. Obviously this can be done in O(nθ3

0τ0) time.
The overall complexity of algorithm 4 is O(nθ3

0τ).

IV. CONCLUSIONS

In this paper we propose a fast and systematic approach to
enumerate the list of possible link failures caused by regional
failures. Our approach assumes the regional failure has a shape
of circle of any size which does not have a node interior.
Although the number of possible regional failure is infinite, we
show that the generated list of failures is short, it is basically
linear to the network size.

We provide a fast polynomial time algorithm for enumer-
ating the corresponding set of Shared Risk Link Groups.
According to our knowledge this is the first study providing
a comprehensive solution for this problem. As a future work
we plan to extend our model to generate regional failures with
exactly one, two, etc., nodes interior. Note that, it is a common
practice to distinguish failures involving nodes from failures
involving links only. It is because if the failure hits a network
node, the node is no longer going to send traffic in the network
which has a network wide effect.
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