
Enumerating Circular Disk Failures
Covering a Single Node

Balázs Vass∗†, Erika R. Bérczi-Kovács∗, János Tapolcai†

∗Department of Operations Research, Eötvös University, Budapest, Hungary, vassbalazs@gmail.com,koverika@cs.elte.hu
†MTA-BME Future Internet Research Group, Budapest University of Technology and Economics, tapolcai@tmit.bme.hu

Abstract—Current backbone networks are designed to protect
a certain pre-defined list of failures, called Shared Risk Link
Groups (SRLG). The list of SRLGs must be defined carefully,
because leaving out one likely failure event significantly degrades
the observed reliability of the network. In practice, the list of
SRLGs is typically composed of every single link or node failure.
It has been observed that some type of failure events manifested
at multiple locations of the network, which are physically close
to each other. Such failure events are called regional failures,
and are often caused by a natural disaster. A common belief is
that the number of possible regional failures can be large, thus
simply listing them as SRLGs is not a viable solution. In this
study we show the opposite, and provide an efficient algorithm
enumerating all the regional failures having at a node failed
as SRLGs. According to some practical assumptions this list
is surprisingly short with O(|V |) SRLGs in total, and can be
computed in O(|V |2) time.

I. INTRODUCTION

Current backbone networks are built to protect a certain list
of failures. Each of these failures (or termed failure states) are
called Shared Risk Link Groups (SRLG), which is a set of links
that is expected to fail simultaneously. The network is designed
to be able to automatically reconfigure in case of a single
SRLG failure, such that every connection further operates after
a very short interruption. In practice it means the connections
are reconfigured to by-pass the failed set of nodes and links.
Thus the network can recover if an SRLG or a subset of links
and nodes in SRLG fails simultaneously; however, there is no
performance guarantee when a network is hit by a failure that
involves links not a subset of an SRLG. Nevertheless, the list
of SRLGs must be defined very carefully, because not getting
prepared for one likely simultaneous failure event the observed
reliability of the network significantly degrades.

Operators have numerous best practices how to define the
list of SRLGs. One extreme is to list every single link or
node failure as an SRLG. Here the concept is that the failure
first hits a single network element for whose protection the
network is already pre-configured. Often there is a known
risk of a simultaneous multiple failure that can be added as
an SRLG, for example if two links between different pair of
nodes traverse the same bridge, etc. On the other hand, we
have witnessed serious network outages [1]–[9] because of
a failure event that takes down almost every equipment in a
physical region as a result of a disaster, such as weapons of
mass destruction attacks, earthquakes, hurricanes, tsunamis,
tornadoes, etc. For example the 7.1-magnitude earthquake of
Taiwan in Dec. 2006 caused six submarine links between

Asia and North America to fail simultaneously [10], the 9.0
magnitude earthquake in Japan Earthquake on March 2011
impacted about 1500 telecom switching offices due to power
outages [5] and also damaged undersea cables, hurricane
Katrina in 2005 caused severe losses in Southeastern US [11],
hurricane Sandy in 2012 caused a power outage that silenced
46% of the network in the New York area [4]. These type of
failures are called regional failures which is a simultaneous
failure of nodes/links located in a specific geographic area [1]–
[9]. The number of possible regional failures can be very large,
thus simply listing them as SRLGs is not a viable solution. It
is still a challenging open problem how to prepare a network
to protect such failure events, as their location and size is not
known at planning stage. In this paper we propose a solution to
this problem in case of circular disk failures covering a single
node with a technique that can significantly reduce the number
of possible failure states that should be listed as SRLGs to
cover all of this type failures.

In practice, regional failures can have any location, size and
shape. It is a common best practice to fix the size or shape
of regional failures, for example as cycles with given size
(also called disk) [12]. In our study we assume the regional
failure has a shape of cycle but do not fix its size. Instead
we classify the regional failures according to the network
elements they cover. For example if a failure hits a node, the
node is no longer going to send traffic, which has a network
wide effect. In this paper node failures are treated separately
form link failures. The first class of failures is the class of
disk failures that hit links only. Clearly, a disk failure that
does not cover any node cannot be too large. The second
class is the class of disk failures that affect nodes too besides
links. Reconfiguring a network after a failure from this second
class is more complicated than reconfiguring after pure link
failures It is because the failure can cause a degradation in the
control plane communication. Besides, after a node failure the
traffic matrix often changes due to the fact that the failed node
will no longer participate in communication. In particular we
are interested in regional failures that cause the failure of at
most one node. We assume these regional failures are large
enough, thus regional failures covering multiple nodes are left
for further study.

In our previous work we focused on the first class of failures
covering links only. We have shown that the list of such
failures is short in practice, i.e. O(|V |) SRLGs in total, and
can be computed very fast, in O(|V | log |V |) time [13]. The

main contribution of this paper to generalise the results for
second class of regional failures covering one node.

In this study the number of SRLGs to be listed is signifi-
cantly reduced applying computational geometric tools based
on the following assumptions:

1) The network is a geometric graph G = (V ,E) embedded
in a 2D plane.

2) The shape of the regional failure is assumed to be a circle
with arbitrary radius and center position.

3) We focus on regional link single node failures, failures
that affect exactly one node.

We will show that the number of SRLGs corresponding to
exclusion-wise maximal link single node failures is small,
O(|V |), in typical backbone network topology, where |V | and
|E | denote the number of nodes and links in the network,
respectively. We propose a systematic approach based on
computational geometric tools that can generate the list of
SRLGs in O(|V |2) steps on typical networks.

The paper is organised as follows. In Section II and III we
present the core mathematical model with several observations.
In Section IV we show the main result, the O(|V |2) algorithm
for generating the list of SRLGs covering every regional link
failure with a shape of disk covering at most one network
node. Finally, in Section V we reflect on related works and in
Section VI we draw the conclusions.

II. MODEL AND ASSUMPTIONS

We model the network as a connected undirected geometric
graph G = (V ,E) with n = |V | nodes and m = |E | edges, we
assume n ≥ 3. The nodes of the graph are embedded as points
in the Euclidean plane, and the edges are embedded as line
segments. The position of node v is denoted by (vx , vy). A
disk c(x, y,r) is a circle with a centre point (x, y) and radius
r . The failure caused by a disk is modelled as every interior
node and edge with interior part is erased from the graph. One
can observe that a node v is erased or becomes isolated iff
every edge incident to v is erased, thus listing erased nodes
beside listing erased edges has no additional information from
the viewpoint of connectivity. This way for our purposes it is
enough to determine the set M1 of the maximal sets of erased
edges. In order to determine M1 we need to introduce some
notations.

It will turn out that every element of M1 can be covered by
a disk which has 1 node interior and 2 nodes on its boundary
(Claim 2). Let denote C w

1,{u,v} the set of disks covering only
node w , and having node pair {u, v} on the boundary; let
denote C1,{u,v} the set of disks exactly 1 node and having
node pair {u, v} on the boundary; let denote C w

1 the set of
disks covering only node w ; and finally, let denote C1 the set
of disks having exactly one node in interior.

For every disk c let Ec denote the set of edges and nodes
erased by c.

Let F1 and F1,{u,v} be the set of failures caused by elements
of C1 and C1,{u,v}, respectively. Formally, F1 = {Ec |c ∈C1} and
F1,{u,v} = {Ec |c ∈C1,{u,v}}. We call the elements of F1 regional
link single node failures, or simply link single node failures.

u

vz

p0 = p1

p2p3

c0
c1

c2

c3

Fig. 1: For disk c0 ∈Ci (i ∈ {0,1}) there exists a c2 ∈Ci such
that c0 ⊆ c2 and c2 has at least 2 nodes on its boundary. Note
that c3 ∈ Ci going through nodes u, v and z and Ec3 not
necessarily contain c0 and Ec0 , respectively.

Let denote M1 and M1,{u,v} the exclusion-wise maximal
elements of F1 and F1,{u,v}, respectively. Our goal is to
determine M1.

Proposition 1. For any c1,c2 ∈C , c1 ⊆ c2 it holds that Ec1 ⊆
Ec2 . �

Let C0 denote the set of disks that have no node of V in
their interior. Clearly, |Ci | is infinite for every i ∈ {0,1}.

Claim 2. For any c1(x, y,r) ∈Ci , i ∈ {0,1} with Ec1 6= ; there
exists a c2 ∈Ci such that c1 ⊆ c2 (so Ec1 ⊆ Ec2) and c2 has 2
nodes of V on its boundary.

Proof. Disk c2 is generated as follows. We start with circle c0

(having centre point p0). and start to increase its radius until it
reaches a node u ∈V . Let the new disk be c1 (see Fig. 1). We
can further blow the circle larger without loosing any covered
area by moving the centre point along the line (x, y)−(ux ,uy)
while keeping u on the boundary.

Assume indirectly that it never reaches a second node. We
get a contradiction because c1 intersects line ab and a,b ∈V .

Thus the circle will reach a second node v ∈V . Let c2 ⊇ c1

be this circle having u, v ∈ V on its boundary and Ec2 ⊇ Ec1 .
Clearly, if c1 ∈Ci , then c2 ∈Ci .

Definition 3. Graph D∆1 = (E∆1,V) is called Delaunay-1
graph, where {u, v} ∈ E∆1 iff there exists a c ∈ C1 such that
u and v are on the boundary of c.

Claim 4. M1 ⊆ ⋃
{u,v}∈E∆1

M1,{u,v}.

Proof. Clearly, for all f ∈ M1 there exists a c1 ∈ C1 such
that f = Ec1 . According to Claim 2, there exists a c2 ∈
∪{u,v}∈E∆1C1,{u,v} for which Ec2 ⊇ Ec1 . This implies f ⊆ Ec2 .
Since f is an exclusion-wise maximal element of F1 by
definition of M1, this is possible only if f = Ec2 .

We get that for every f ∈ M1 there exists a c2 ∈
∪{u,v}∈E∆1C1,{u,v} such that f = Ec2 . This implies M1 ⊆
∪{u,v}∈E∆1M1,{u,v}.

(a) Network topology (b) Delaunay graph E∆ (c) Delaunay-one E∆1

Fig. 2: The network topology can be very different from the
Delaunay an Delaunay-one graphs. E∆ ⊆ E∆1 (Claim 6).

It is useful to introduce graph D∆ = (E∆,V) too, which is
called Delaunay triangulation, where {u, v} ∈ E∆ iff there exists
a c ∈C0 such that u and v are on the boundary of c. On Figure
2 we show an example on a triplet of G ,D∆ and D∆1 on a
given point set V . Connections between these graphs will be
discussed in Section III.

Before presenting the algorithm for determining M1, we
bound its size. It turns out that |M1| is O(nm), and in case of
some artificial network families |M1| is Θ(n3) [13].

This gives us the idea to use some parameters which are
in relation with the size of M1 and with the computational
complexity.

We use parameters θ0 and θ1 for the maximum number of
edges in E crossing the circumcircle of a Delaunay triangle,
and a disk c ∈ C1, respectively. Clearly, these parameters are
small in case of backbone networks.

Claim 5. θ0 ≤ θ1.

Proof. Enlarging the circumcircle c0 of a Delaunay triangle
u, v, w while keeping u and v on the boundary gives a disk c1

in C1 (see proof of Claim 6). Note that c1 intersects at least
as many edges in E as c0, which proves the claim.

Since |M1| can be asymptotically large, it is not possible
to give an algorithm which is "really fast" on all graphs. On
the other hand, our algorithm computes M1 in O(n2θ3

1) time
(Thm. 12), giving O(n2) if θ1 is constant, which is a natural
assumption for many types of networks.

III. STRUCTURE OF GRAPH DELAUNAY-1 (D∆1)

In this section we clarify the size, structure and construction
complexity of graph D∆1.

First let us ignore the edges of the network and focus only
on the nodes. For a moment assume that we are searching for
disks of maximum size from the set C0 of circles that have no
node in interior. As it turns out, finding these circles can be
done using disks of maximum size from the set C0, thus we
should first find these disks. Clearly, each disk of maximum
size from C0 passes through at least three nodes, otherwise
its size could be further increased. By simplicity we assume
that the nodes are in general position i.e. no four nodes are
on the same cycle and no three nodes are on the same line. In
this case by connecting the three nodes we get non-degenerate
triangles. The problem was deeply investigated in the past and

it was shown the union of these triangles results a triangulation
of the graph, called Delaunay triangulation [14]. Let D∆ =
(E∆,V) denote the Delaunay triangulation on the set of nodes,
where E∆ denotes the edges of the triangulation, which can
be very different form the edges of the network. In Delaunay
triangulation no circumcircle of any triangle contains node in
interior. Another interesting property is that the dual graph
of the Delaunay triangulation is the so-called called Voronoi
diagram [15].

The high level idea of this study is to generalise the above
idea for the set C1 of circles that have exactly one node in
interior. We have defined graph Delaunay-one, which is similar
to the Delaunay triangulation, but corresponding to cycles with
exactly one node in interior. Note that the Delaunay-one graph
is typically not planar any more.

Claim 6. E∆ ⊆ E∆1.

Proof. If {u, v} ∈ E∆, then there exists a common neighbour w
of u and v in D∆. Because of the general position of the nodes
there exists a c ∈C1 such that u and v are on the boundary of
C1, and w is in its interior, thus {u, v} ∈ E∆1.

It will be shown that the cardinality of E∆1 is linear in n,
D∆1 having fewer than two times as many edges as a planar
graph can have (Lemma 10). On the other hand, the time
complexity of constructing E∆1 is O(n logn) (Lemma 9).

In this section we use the following notations.
For every v ∈ V let Γ(v) denote the neighbourhood of v

in the Delaunay triangulation, and let d∆(v) := |Γ(v)|, i.e. the
degree of v in the Delaunay triangulation. Let u1,u2, . . . ,ud∆(v)

be the nodes of Γ(v) enumerated in clockwise order.
Thus if v is not in the set VH of nodes on the convex hull

of V , {u1,u2}, . . . , {ud∆(v),u1} ∈ E∆ and if node v ∈VH then we
can assume w.l.o.g. that {u1,u2}, . . . , {ud∆(v)−1,ud∆(v)} ∈ E∆.

If node v ∉VH , then let Dv
∆1 = (E v

∆1,Γ(v)) be a constrained
Delaunay triangulation of Γ(V) such that {w, z} ∈ E v

∆1 iff {w, z}
is an edge of the Delaunay triangulation of Γ(V) and does
not have any part exterior to polygon Pv defined by nodes
u1, . . .ud∆(v),u1.

If node v ∈VH , then let Dv
∆1 = (E v

∆1,Γ(v)) be a constrained
Delaunay triangulation of Γ(V) such that {w, z} ∈ E v

∆1 iff {w, z}
is an edge of the Delaunay triangulation of Γ(V) and does
not have any part exterior to polygon Pv defined by nodes
u1, . . .ud∆(v), v,u1.

Claim 7. C v
1,{w,z} is not empty iff {w, z} ∈ E v

∆1.

Proof. First we prove that if {w, z} ∈ E v
∆1, then C v

1,{w,z} is not
empty.

If v ∈ VH and {w, z} ∈ E∆1 or v ∈ V \ VH and {w, z} lies on
polygon Pv , then {w, z} ∈ E∆, and v is a common neighbour
of w and z in D∆. This means that the circle c0 going through
w, z, v does not contain any node in interior. We construct c1

by increasing infinitesimal the radius of c0 while keeping w
and z on the boundary. Since the nodes are in general position,
there is only v in interior of c1, and thus c1 ∈C v

1,{w,z}.

If v ∈V \VH and {w, z} ∈ E v
∆1, and is in interior of polygon

Pv , consider the followings. Since {w, z} ∈ E v
∆1 \E∆, there exist

circles in C1,{w,z}, which cover v , therefore C v
1,{w,z} is not

empty.
Now we prove that if C v

1,{w,z} is not empty, then {w, z} ∈ E v
∆1.

Assume indirectly that there exists a node pair {w, z} ∈
E∆1 \ E v

∆1 for which set C v
1,{w,z} is not empty. Take a disk

c1 ∈ C v
1,{w,z}. We denote the centre point of c1 by p1. Let c2

be the disk with centre point on line p1v and having v and w
on the boundary. Since c1 ∈C v

1,{w,z}, c2 ∈C0,{v,w}, which means
{v, w} ∈ E∆. Similarly, {v, z} ∈ E∆.

This means that both w and z are element of Γ(v). We can
assume w.l.o.g. that w = uk for some k ∈N and there exists a
k < l ∈N for which z = ul .

For a line ab and point c denote the half plane bounded
by ab and containing c by pc

ab . Since {uk ,ul } ⊂ Γ(v)
and {uk ,ul } ∉ E v

∆1, l − k ≥ 2 and {uk+1, . . . ,ul−1} ⊂ pv
uk ,ul

.
This implies uk+1 ∈ pw

uk ,ul
and uk+1 ∈ pz

uk ,v , because
{{v,ul }, {uk , v}, {uk ,uk+1}} ∈ E∆ and D∆ has no edge cross-
ings. This way uk+1 ∈ i nt (∆uk vul), which implies that if
a c ∈ C1,{uk ,ul } contains v , it contains uk+1 too, which is
contradiction.

Corollary 8. E∆1 =∪v∈V E v
∆1.

Proof. By Claim 7, for every v ∈V , E v
∆1 contains exactly those

{w, z} node pairs, for which C v
1,{w,z} is not empty. This implies

E∆1 =∪v∈V E v
∆1.

Lemma 9. E∆1 can be constructed in O(n logn) time.

Proof. The edge set E∆ can be constructed in O(n logn) [14].
Sets ΓE∆ (v) of neighbours can be computed in O(n) for all
v ∈V .

Since constrained Delaunay triangulation also can be
computed in O(n logn) time [14], present complexity is
O(

∑
v∈V |ΓE∆ (v)| log |ΓE∆ (v)|), which is O(n logn), since∑

v∈V
|ΓE∆ (v)| log |ΓE∆ (v)| ≤ ∑

v∈V
dE∆ (v) logn ≤ (3n −6)logn.

It can be shown that an e ∈ E v
∆1 is in E∆ iff e is part of Pv ,

thus E∆1 can be constructed by adding to E∆ the edges of E v
∆1

interior to Pv for all v ∈ V . Finally the duplications have to
be eliminated. This can be done in O(n logn).

Thus the overall complexity is O(n logn).

Let h denote the number of nodes in V on the convex hull
of V .

Lemma 10. |E∆1| ≤ 6n −2h −9.

Proof. First observe that |E v
∆1| ≤ 2d∆(v)− 3, since it can be

proven by induction that every maximal triangulation on d∆(v)
nodes with every node bounded by the infinite region has
2d∆(v)−3 edges.

On the other hand, |E∆| = 3n−3−h, and thus
∑

v∈V d∆(v) =
2|E∆| = 6n − 2h − 6. Finally by Corollary 8 during summing
up the |E v

∆1| values, there are counted only the edges of E∆1,

every edge once or twice. The edges of E∆ not on the convex
hull of V are counted twice. Therefore

|E∆1| ≤
∑

v∈V
|E v
∆1|− (|E∆|−h) ≤

≤ ∑
v∈V

(2d∆(v)−3)− (3n −3−2h) =

= 2
∑

v∈V
d∆(v)−3n −3n +3+2h =

= 2(6n −2h −6)−6n +3+2h = 6n −2h −9.

Corollary 11. |E∆1| ≤ 2|E∆| −3, and thus D∆1 has less than
2 times as many edges as many a maximal planar graph has
on point set V .

Proof. Since D∆ is a planar graph on the point set V , it is
enough to prove |E∆1| ≤ 2|E∆| − 3, which is true by Lemma
10.

IV. THE ALGORITHM

Before presenting the algorithm itself, the main idea beyond
will be highlighted. As seen before, all the failures from
M1,{u,v} can be covered with a disk from C1,{u,v} for some
{u, v} ∈ E∆1, thus it is enough to examine the maximal edge
sets covered by disks in ∪{u,v}∈E∆1C1,{u,v}. This gives the idea
to generate the ’locally maximal’ covered edge sets M1,{u,v}

for all {u, v} ∈ E∆1, then merge them in M1 by eliminating
globally non-maximal elements.

The challenging part is determining sets M1,{u,v}. For
solving the problem, consider the followings. For simplicity,
assume for a moment that for an edge {u, v} ∈ E∆1 there exist
at least 2 nodes of V both on the left and right side of line uv .
Clearly, C1,{u,v} has a c1 leftmost and a c2 rightmost element.
Circle c1 is transformed imaginary continuously into c2 while
keeping the shape of disk and keeping {u, v} on the boundary.
The key observation that during this procedure edges from the
left side are getting out from the covered area, while edges
from the right side are getting in. Based on this idea one
can determine sets M1,{u,v} in polynomial time. But first some
additional definitions have to be made.

Consider graph D∆1 = (V ,E∆1). By definition, C1,{u,v} is not
empty for every {u, v} ∈ E∆1. If the set of nodes V1 left from
line uv has at least 2 elements, then let w1 be the node with
the second highest value of angle ∠(uw v), where w ∈ V1; if
|V1| ≤ 1, let w1 be a point infinitely far leftwards from line
uv . We determine w2 similarly on the right side of line uv .

Let c1
u,v and c2

u,v be the disks with u, v, w1 and u, v, w2 on
the boundary. It is easy to see that c1

u,v and c2
u,v are the leftmost

and rightmost disks from line uv in C1,{u,v}, respectively. This
way all disks in C1,{u,v} are covered by c1

uv ∪ c2
u,v .

Let zi be the node in interior of c i
u,v if there exist any, else

zi ← wi for i ∈ {1,2}.
Let e ∈ E 3

u,v iff e ∈ E intersects c1
u,v ∩c2

u,v , e ∈ E 1
u,v iff e ∈ E \

E 3
u,v intersects c1

u,v \c2
u,v and e ∈ E 2

u,v iff e ∈ E \E 3
u,v intersects

c2
u,v \ c1

u,v (see Figure 3).

u

v

w1

z1
w2

z2c1
u,v

c2
u,va

b

Fig. 3: Example on a Delaunay-one-edge {u, v} with w1, w2,
C 1

u,v and C 2
u,v . Here E 1

u,v = {{a,b}}, E 2
u,v = {{a,b}, {z2, w2}},

E 3
u,v = {{z2, v}}.

Using the previously presented plan, Algorithm 1 computes
M1 in the following way. First it generates the Delaunay-1
graph D∆1 = (E∆1,V) (see Algorithm 2). After that for every
{u, v} ∈ E∆1 it generates sets M1,{u,v} (Algorithms 3 and 4).
Finally it computes M1 by gathering the globally maximal
elements of sets M1,{u,v} (Algoithm 5).

We proved the next theorem.

Theorem 12. M1 can be computed in O(n2θ3
1)) using Algo-

rithm 1, and has O(nθ1) elements, each of them consisting of
O(θ1) edges.

Proof. At line 1 the set E∆1 is computed in O(n logn) time.
In line 3 we calculate sets E i

u,v for an edge {u, v} ∈ E∆1 in
O(nθ1) time according to Lemma 17. In line 4 we generate
sets M1,{u,v} ({u, v} ∈ E∆1), each in O(θ2

1) time (Lemma 18).
For all edges these give a running time of O(nθ1(n +θ1)) for
lines 2-4.

Finally, in line 5 M1 is calculated from lists M1,{u,v} in
O(n2θ3

1) time (Lemma 21).

Corollary 13. Assuming θ1 is upper bounded by a constant,
M1 can be computed in O(n2) time, and its total length is
O(n).

A. On the number of edges of G and size of θ1

Lemma 14. The number of edges |E | is O(nθ0), more precisely
m ≤ (2n −5)θ0.

Proof. The Delaunay triangulation is a planar graph and thus
|E∆| ≤ 3n − 6. Since every Delunay triangle has 3 Delaunay
edges, a Delaunay edge is the edge of at most 2 Delaunay
triangles, and there are at least 3 Delaunay edges on the convex
hull of V , the number of Delaunay triangles is at most

2|E∆|−3

3
≤ 2

3
(3n −6)−1 = 2n −5.

Since every c ∈ C0 intersects at most θ0 edges of the
network, and contains a Delaunay triangle and every edge
intersects at least one triangle, the number of edges |E | cannot

Algorithm 1: Main algorithm: Generating the maximal
regional link single node failures

Input: G = (V ,E), (vx , vy) for all v ∈V
Output: Set M1 of maximal regional link single node
failures.
begin

1 E∆1 ←1-DELAUNAY(V);
2 for {u, v} ∈ E∆1 do
3 E 1

u,v ,E 2
u,v ,E 3

u,v , w1, w2, z1, z2 ←
GETEDGESETS(G , {u, v});

4 M1,{u,v} ← GENERATE
(G , {u, v},E 1

u,v ,E 2
u,v ,E 3

u,v , w1, w2, z1, z2);

5 M1 ←
ELIMINATEREDUNTANTS(M1,{u,v},∀{u, v} ∈ E∆1);

6 return M1

be larger than θ0 times the number of Delaunay triangles. We
get m ≤ (2n −5)θ0.

Combining the lemma with Claim 5 we get the following.

Corollary 15. The number of edges in G is O(nθ1). �

A graph family may have O(n3) maximal link single node
failures. However, we are convinced that θ1 is small in case of
typical backbone networks and there exists a small constant c
that it never exceeds, thus |M1| ≤ cn.

B. Algorithm 2 (Method Delaunay-1)

Lemma 16. Algorithm 2 computes E∆1 in O(n logn) time from
node set V .

Proof. In Algorithm 2 we realise the plan described in Lemma
9, thus the overall complexity of the algorithm is O(n logn).

Algorithm 2: DELAUNAY-1: Finding set E∆1 of edges
{u, v} with C1,{u,v} 6= ;
Input: V
Output: E∆1.
begin

1 E∆←DELAUNAYTRIANGULATION(V);
2 for v ∈V do
3 E v

∆1 ←CONSTRAINEDDELAUNAY(ΓE∆ (v));

4 E∆1 ←∪v∈V E v
∆1;

5 return E∆1

C. Algorithm 3 (Method Getedgesets)

Lemma 17. Algorithm 3 runs in O(nθ1) time.

Proof. For a fixed edge {u, v} ∈ E∆1, points w1, w2, z1 and
z1 can be determined in O(n) time, after that c1

u,v and c2
u,v

can be determined in constant time. The proof is completed
by applying Corollary 15.

Algorithm 3: GETEDGESETS: Finding E 1
u,v ,E 2

u,v ,E 3
u,v ,

w1, w2, z1, z2

Input: G , {u, v} ∈ E∆1

Output: E 1
u,v ,E 2

u,v ,E 3
u,v , w1, w2, z1, z2

begin
1 Determine w1, w2, z1, z2,c1

u,v and c2
u,v ;

2 E 1
u,v ←;;

3 E 2
u,v ←;;

4 for {a,b} ∈ E do
5 for i ∈ {1,2} do
6 if {a,b}∩ c i

u,v 6= ; then
7 E i

u,v ← E i
u,v ∪ {a,b}

8 E 3
u,v ← E 1

u,v ∩E 2
u,v ;

9 E 1
u,v ← E 1

u,v \ E 3
u,v ;

10 E 2
u,v ← E 2

u,v \ E 3
u,v ;

11 return E 1
u,v , E 2

u,v , E 3
u,v , w1, w2, z1, z2

D. Algorithm 4 (Method Generate M1,{u,v})

Lemma 18. Algorithm 4 generates set M1,{u,v} in O(θ2
1) time

for any given {u, v} ∈ E∆1.

Proof. M1,{u,v} is generated by imaginary transforming con-
tinuously the leftmost disk from C1,{u,v} into the rightmost disk
from C1,{u,v} through disks having u and v on the boundary.
The number nz of covered nodes by the disks is not constant
throughout this process (its value can be both 0 and 2 too),
thus nz is tracked. Using Proposition 19 it van be shown that
Algorithm 4 is correct.

We assume lines 3, 4 and 6 run in constant time. This
means that for a given {u, v} ∈ E∆1 in lines 5 and 6 we get
values mi

a,b in O(θ1) time, in lines 7 and 8 we sort them
in O(θ1 logθ1) time, line 9 runs in constant time, and in
lines 10-22 M u,v

1 is calculated in O(θ2
1) time by listing edge

sets with locally maximal cardinality covered by disks while
transforming c1

u,v into c2
u,v , then eliminating non-maximal

elements of the resulting list. Note that before eliminating sets
the cardinality of which is not locally maximal might be listed
too.

Thus the overall complexity of the algorithm is O(θ2
1).

Proposition 19. It can be shown that if a c ∈ C u,v
1 does not

contain L1[i −1] but contains L1[i], then L1[j] is covered by c
iff j ≥ i . Similarly, if c contains L2[i −1] but does not contain
L2[i], then L2[j] is covered by c iff j ≤ i −1. Trivially, E 3 is
covered by c, and that is also clear that for any e1 ∈ E 1 and
e2 ∈ E 2 the edges e1,e2 are covered by c iff m1

e1
+m2

e2
≤π. �

Corollary 20. For every {u, v} ∈ E∆1, |M1,{u,v}| is O(θ1).

Algorithm 4: Generaring set M1,{u,v |
Input: G , {u, v} ∈ E∆1,E i

u,v (i ∈ {1,2,3}), w1, w2, z1, z2

Output: Set M1,{u,v}

begin
1 P 1 ← half plane bounded by line uv , containing w1

("the half plane on left hand side");
2 P 2 ← half plane bounded by line uv , containing w2

("the half plane on right hand side");
3 mz1 ←∠uz1v ;
4 mz2 ←∠uz2v ;
5 for i ∈ {1,2} and {a,b} ∈ E i

u,v do
6 mi

a,b ← max{∠ucv |c ∈ [a,b]∩P i }

7 L1 ←SORT(E 1 ∪ {z1} by m1
a,b values and mz1

increasingly);
8 L2 ←SORT(E 2 ∪ {z2} by m2

a,b values and mz2

decreasingly);
9 M1,{u,v} ←;, i ← 1, j ← 1, nz ← 1 ;

10 repeat
11 while m1

L1(i)
+m2

L2(j)
≤π and j ≤length(L2) do

12 j ← j +1;
13 if L2(j) i sNode then
14 nz ← nz +1;

if nz = 1 then
15 ADDCOVERED(M1,{u,v},L1,L2,L3, i , j)

if nz = 1 then
16 ADDCOVERED(M1,{u,v},L1,L2,L3, i , j) ;

17 while m1
L1(i)

+m2
L2(j)

>π and i ≤length(L2) do
18 i ← i +1;
19 if L1(i) i sNode then
20 nz ← nz −1;

if nz = 1 then
21 ADDCOVERED(M1,{u,v},L1,L2,L3, i , j)

until i >length(L1) or j >length(L2);
22 Eliminate the non-maximal elements of M1,{u,v} ;
23 return M1,{u,v}

24 Function ADDCOVERED(M1,{u,v},L1,L2,L3, i , j)
25 M1,{u,v} ←

M1,{u,v}∪({L1(i), . . . ,L1(n),L2(1), . . . ,L2(j −1)}∪E 3)∩E

E. Algorithm 5 (Method Eliminateredundants)

Lemma 21. Algorithm 5 computes M1 in O(n2θ3
1) using sets

M1,{u,v}.

Proof. The correctness proof of Algorithm 5 can be made by
checking that it eliminates all globally non-maximal elements
of M1,{u,v} and leaves exactly one copy of each globally
maximal element of M1,{u,v} in the end.

There are O(n2θ2
1) times two sets of size O(θ1) to be

compared, thus the overall complexity of Algorithm 5 is
O(n2θ3

1). If θ1 is constant, this means O(n2).

Algorithm 5: ELIMINATEREDUNTANTS
Input: M1,{u,v} for all {u, v} ∈ E∆1

Output: M1

begin
1 for {u, v} ∈ E∆1 do
2 for {w, z} ∈ E∆1, {w, z} 6= {u, v} do
3 for fu,v ∈M1,{u,v} do
4 for fw,z ∈M1,{w,z} do
5 if fu,v ⊇ fw,z then

M1,{w,z} ←M1,{w,z} \ fw,z

6 else
if fu,v ⊂ fw,z then

7 M1,{u,v} ←M1,{u,v} \ fu,v

8 M1 ←⋃
{u,v}∈E∆1 M1,{u,v};

9 return M1

V. RELATED WORKS

One approach to analyse the network vulnerability against
regional failures is using probabilistic failure models, where
each link in the SRLG has some probability to fail [1].
The probabilistic failure models can quantify the network
protection schemes through evaluating their end-to-end con-
nection availabilities. However often the end-to-end connec-
tion availability is not a sufficiently detailed modelling of
the failure state, because it ignores the reconfiguration costs,
possible traffic changes due to the failure, some limitations in
the protocol and failure discovery mechanisms and physical
impairments of the network. Therefore during network planing
it is preferred to model the network behaviour of each possi-
ble failure state independently, and preconfigure the network
for fast failure recovery of the failure state. The power of
probabilistic failure models is that they implicitly treat a great
number of failure states, but this on the other hand strongly
limits the applicability of these models for network planing.
Instead, the scope of this study is to define a small number of
failure states (as SRLGs) to protect.

In [16] the circulant failure model is generalised and the
regional failures are modelled by a given elementary geometric
figures as ellipse, rectangle, square, or equilateral triangle with
a predetermined size. The problem is similar to our one, and
it is showed that there is a polynomial number of non-trivial
positions for such a figure that need to be considered. In this
study for simplicity we stick to failures of cycles only but
with arbitrary size. Our main contribution compared to [16]
is that this polynomial is basically linear in practice for disks
covering a single node.

VI. CONCLUSIONS

In this paper we propose a fast and systematic approach to
enumerate the list of possible failures deleting a node caused

by natural disasters. Our approach assumes the disaster erases
the network elements in a shape of a disk of any size which
have exactly node interior. Although the number of possible
areas affected by such disasters is infinite, we show that the
generated list of failures is short, it is basically linear to the
network size. We provide a fast polynomial time algorithm
for enumerating the corresponding set of Shared Risk Link
Groups.

REFERENCES

[1] S. Neumayer, G. Zussman, R. Cohen, and E. Modiano, “Assessing
the vulnerability of the fiber infrastructure to disasters,” Networking,
IEEE/ACM Transactions on, vol. 19, no. 6, pp. 1610–1623, 2011.

[2] O. Gerstel, M. Jinno, A. Lord, and S. B. Yoo, “Elastic optical network-
ing: A new dawn for the optical layer?” Communications Magazine,
IEEE, vol. 50, no. 2, pp. s12–s20, 2012.

[3] M. F. Habib, M. Tornatore, M. De Leenheer, F. Dikbiyik, and B. Mukher-
jee, “Design of disaster-resilient optical datacenter networks,” Journal
of Lightwave Technology, vol. 30, no. 16, pp. 2563–2573, 2012.

[4] J. Heidemann, L. Quan, and Y. Pradkin, A preliminary analysis of
network outages during hurricane sandy. University of Southern
California, Information Sciences Institute, 2012.

[5] F. Dikbiyik, M. Tornatore, and B. Mukherjee, “Minimizing the risk from
disaster failures in optical backbone networks,” Journal of Lightwave
Technology, vol. 32, no. 18, pp. 3175–3183, 2014.

[6] I. B. B. Harter, D. Schupke, M. Hoffmann, G. Carle et al., “Network
virtualization for disaster resilience of cloud services,” Communications
Magazine, IEEE, vol. 52, no. 12, pp. 88–95, 2014.

[7] X. Long, D. Tipper, and T. Gomes, “Measuring the survivability of
networks to geographic correlated failures,” Optical Switching and
Networking, vol. 14, pp. 117–133, 2014.

[8] B. Mukherjee, M. Habib, and F. Dikbiyik, “Network adaptability from
disaster disruptions and cascading failures,” Communications Magazine,
IEEE, vol. 52, no. 5, pp. 230–238, 2014.

[9] R. Souza Couto, S. Secci, M. Mitre Campista, K. Costa, and L. Maciel,
“Network design requirements for disaster resilience in iaas clouds,”
Communications Magazine, IEEE, vol. 52, no. 10, pp. 52–58, 2014.

[10] D. M. Masi, E. E. Smith, and M. J. Fischer, “Understanding and
mitigating catastrophic disruption and attack,” Sigma Journal, pp. 16–22,
2010.

[11] J. P. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer,
M. Schöller, and P. Smith, “Resilience and survivability in commu-
nication networks: Strategies, principles, and survey of disciplines,”
Computer Networks, vol. 54, no. 8, pp. 1245–1265, 2010.

[12] S. Neumayer, A. Efrat, and E. Modiano, “Geographic max-flow and min-
cut under a circular disk failure model,” Computer Networks, vol. 77,
pp. 117–127, 2015.

[13] B. Vass, “Shared risk link groups of disaster failures,” in IEEE
Conference on Computer Communications Student Poster (INFOCOM
Poster), 2016. [Online]. Available: http://lendulet.tmit.bme.hu/lendulet_
website/wp-content/papercite-data/pdf/vass16infocomposter.pdf

[14] F. Aurenhammer, “Voronoi diagramsÑa survey of a fundamental geo-
metric data structure,” ACM Computing Surveys (CSUR), vol. 23, no. 3,
pp. 345–405, 1991.

[15] M. De Berg, M. Van Kreveld, M. Overmars, and O. C. Schwarzkopf,
Computational geometry. Springer, 2000.

[16] S. Trajanovski, F. Kuipers, P. Van Mieghem et al., “Finding critical re-
gions in a network,” in IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS). IEEE, 2013, pp. 223–228.

