
Connectivity Preserving Graph Sequences for
Routing Arborescence Construction
János Tapolcai, Péter Babarczi, Balázs Brányi, Pin-Han Ho, and Lajos Rónyai

Abstract—Fast reroute (FRR) is among the fastest survivable
routing approaches in packet-switched networks, because the
routers are equipped with a resilient routing table in advance
such that the packets can be rerouted instantly upon failures
solely relying on local information, i.e., without notification
messages. However, designing the routing algorithm for FRR
is challenging as the number of possible sets of failed network
links can be extremely high, while the algorithm should keep
track of which routers are aware of the failure. Therefore, FRR
methods often rely on spanning arborescences, which provide
multiple disjoint failover paths up to the global connectivity of
the network. In this paper, we propose a generic algorithmic
framework that theoretically increases the number of failover
paths to the local connectivity between each node and the
root by extending an efficient connectivity preserving operation
from graph theory – called edge splitting-off – to decompose
the network topology node-by-node, and use Integer Linear
Programs (ILPs) on these partial subproblems to build routing
arborescences in the reverse direction for the original topol-
ogy. Although our practical implementation cannot reach the
local connectivity in all instances, we demonstrate through
simulations that it still outperforms the state-of-the-art FRR
mechanisms and provides better resilience with shorter paths in
the arborescences.

Index Terms—fast reroute, routing arborescences, edge
splitting-off, survivable routing

A preliminary version of this paper was presented at the IEEE INFOCOM
conference, New York, NY, USA, May 2023.

This work was partly supported by Project no. 134604 and Project no.
146347, which have been implemented with support from the National
Research, Development and Innovation Fund of Hungary, financed under
the FK 20 and K 23 funding schemes, respectively. The research of L.
Rónyai was partly supported by the Hungarian NRDI Office within the
Artificial Intelligence National Laboratory Program framework, and in part by
NRDI through the Program of Excellence TKP2021-NVA-02 at the Budapest
University of Technology and Economics. The authors would like to express
their sincere gratitude to András Frank for the discussions and his valuable
insights that contributed to this research work. Pin-Han Ho serves as the
corresponding author.

J. Tapolcai, P. Babarczi and B. Brányi are with the MTA-BME Information
Systems Research Group, Department of Telecommunications and Artificial
Intelligence, Faculty of Electrical Engineering and Informatics, Budapest
University of Technology and Economics, Műegyetem rkp. 3., H-1111
Budapest, Hungary (e-mail: {tapolcai, babarczi, branyi}@tmit.bme.hu).

Pin-Han Ho is with the Shenzhen Institute for Advanced Study, UESTC,
China; and the Department of Electrical and Computer Engineering, Univer-
sity of Waterloo, Canada (e-mail: p4ho@uwaterloo.ca).

L. Rónyai is with the HUN-REN Institute for Computer Science and Con-
trol; and the Department of Algebra and Geometry, Institute of Mathematics,
Budapest University of Technology and Economics, Műegyetem rkp. 3., H-
1111 Budapest, Hungary (e-mail: ronyai@sztaki.hu).

I. INTRODUCTION

Traditional communication networks were prepared to sur-
vive through single link and node failures as the chance of
having two independent failure events within a short period
is very small [1]. Accordingly, it is a common assumption
that there is sufficient time to restore a failure before the next
one occurs. However, with the increasing complexity of multi-
layer networks [2], the effect of a failure event in the physical
infrastructure often manifests as multiple simultaneous link
and node failures in upper layers [3]. As Internet service
providers often lease the network from a physical infrastruc-
ture provider [4], [5], the correlation between failures might
be completely hidden. Thus, they have to prepare their IP
networks for an excessive number of simultaneous failures.

Dynamic routing table recomputation immediately after
failures might be harmful to critical connections [6] as
the control plane struggles to provide strict timing require-
ments [7], [8]. Therefore, fast reroute (FRR) mechanisms [8]–
[11] were proposed, which provide failover paths with pre-
computed routing tables towards each root node in the data
plane against as many failures as possible, purely based on
local failure information. Among several FRR implemen-
tations, deterministic methods built on spanning trees (or
arborescences) are usually proposed for intra-domain IP net-
works, where the topology is known and well connected [8],
[11]. Spanning arborescences can go beyond single failure
resilience and exploit the higher connectivity of the networks
towards “perfect resilience”, i.e., source node s can reach
root node t as long as the failure does not isolate s from
t. Unfortunately, perfect resilience is not always achievable
with pre-computed static rules [12], [13].

Spanning arborescences perform well in homogeneous
graphs, where the number of link-disjoint paths between an ar-
bitrary source s and root t is close to the global connectivity1

k of the network. However, in heterogeneous graphs where
nodes in dense subgraphs have significantly more link-disjoint
paths towards t than k, spanning arborescences cannot fully
explore the potential of such additional redundancy. Although
methods using partial arborescences in these dense compo-
nents exist [8], it is not clear how the subpaths can be
efficiently “glued together” into static routing tables. There-
fore, our goal is to design an efficient arborescence-based

1Minimum number of links (nodes) whose removal from the network will
separate the remaining nodes into at least two isolated components.

Hamburg

Berlin
HannoverBremen

Norden

Essen

Köln

Düsseldorf

Frankfurt

NürnbergMannheim

Karlsruhe

Stuttgart

Ulm
München

Leipzig
Dortmund

G12 G11 G10 G9 G8

G1 G2 G3 G4 G5 G6 G7

Fig. 1. Degree and local connectivity preserving graph sequence for the 17-node German backbone network [14]. The blue node is the root, the black larger
nodes are the new nodes. We draw the edges involved in the transformation between Gi−1 and Gi either with the same color or the same line style, e.g.,
the two red edges of G1 correspond to the red edges (solid and dashed) of G2, while the dashed (red) edges of G2 correspond to the dashed edges of G3.

FRR algorithm that provides resilience by surviving at least
r(s, t)−1 link (arc) failures between source s and root t if the
local connectivity (the number of link-disjoint paths between
s and t) is r(s, t), even if the global connectivity, i.e., the
minimum local connectivity between every s and t pair of
the graph is very small, e.g., 2 = k < r(s, t).

In this paper, we propose a generic algorithmic framework
that can handle complex cases with a massive number of si-
multaneous failures, and is applicable to several routing table
computation problems for different local connectivity-based
FRR implementations either using arborescences [8], [11],
allowing randomized forwarding, or even applying packet
header rewrite [9], [10]. Previously, arborescences have been
used either for problems involving global connectivity, for
networks with even degree nodes, for routing on colored
trees and directed acyclic graphs, or as a black box ap-
proach. In contrast, the high-level idea of our framework is
integrating Integer Linear Program (ILP) formulations with
a graph theoretical approach namely edge splitting-off –
which can be used to prove various properties of graphs with
given global [15] and local [16] connectivity, often called
k-connected graph characterization [17] – for achieving the
desired efficiency and flexibility. Note that edge splitting-
off was already successfully applied for different network
design problems [18], [19], including Edmonds’ arborescence
construction [20], [21].

The rest of the paper is organized as follows. Section II
introduces routing arborescences. Section III contains our
general degree and local connectivity preserving graph de-
composition algorithm based on edge splitting-off and our
novel approach to handle odd degree nodes. The resulting
(reverse) graph sequence is used for FRR routing table design,
leveraging our general ILP formulations for arborescence
construction in Section IV. Section V provides the scalability
analysis of the framework. Finally, Section VI contains our

simulation results while Section VII concludes our work.

II. ROUTING ARBORESCENCES

Fast reroute mechanisms for destination based hop-by-hop
routing rely only on local information such as the destination
(and source) of the packet, in-port the packet arrived, and set
of failed adjacent links; thus, they provide an instantaneous
reaction to failures without control plane messages [11].
Hence, routers not adjacent to a failure will forward packets as
normal, as they have no information about the failure. It was
already demonstrated that given a k-edge-connected graph, k-
arc-disjoint spanning arborescences rooted at node t can be
found efficiently by splitting-off edges by preserving global
connectivity [20], [21], and k−1 arc-failures can be tolerated
with static routing [9], i.e., with pre-configured routing tables
and without changing packet headers, which follows a global
circular permutation of T1, . . . , Tk, where the packet follows
the same Ti as it came from unless the next-hop out-arc
is failed. In this case, the packet is forwarded along Ti+1

according to the global order. As the arborescences are arc-
disjoint, the in-port uniquely identifies Ti.

Although they are simple, spanning arborescences [9],
[21] cannot exploit the available edges in densely connected
subgraphs of the topology, and thus, cannot provide r(v, t)−1
arc-failure resilience in worst-case ∀v ̸= t [8], [12], [13]. In
order to give resilience guarantees beyond global connectivity
in these subgraphs, directed acyclic graph (DAG) based
method DAG-FRR was proposed [8], where in Part 1 rooted
(partial) arborescences are built greedily according to the
root’s nodal degree, referred to as routing arborescences. In
Part 2, as many unused edges are added to these arborescences
as possible to form DAGs.

Our proposed framework handles the complexity of FRR
with simultaneous failures and increases the resilience beyond

the global connectivity with a scalable routing arborescence
design through the following two stages:

(i) General graph decomposition: We generate a graph se-
quence Gl, Gl−1, . . . , G2, G1 starting with Gl = G (i.e.,
the network topology graph), where in each iteration we
apply one of the following two simple rules:

(i) Remove an even degree node other than the root
node t by splitting off its edges according to [16];

(ii) Remove two adjacent odd degree nodes other than
the root node t by splitting off their edges with a
novel approach proposed in Section III-C.

(ii) Arborescence construction for FRR: Use graph sequence
G1, G2, . . . , Gl−1, Gl = G to iteratively build routing
arborescences by solving an ILP locally for the new
node(s) and edges in each step.

Fig. 1 shows an example of such graph sequence
G1, . . . , Gl for a real-world network. The graph Gi is one
or two nodes larger than Gi−1, and the edges of Gi−1 and
Gi differ only around the new node(s). The degree of the
nodes both in Gi and Gi−1 does not change as we step
from i to i − 1 and the connectivity between pairs of such
nodes does not decrease, i.e., ri−1(s, t) ≥ ri(s, t) for each Gi

which we call local connectivity preserving property. Using
this graph sequence, we can build up arborescences and the
routing tables for FRR by solving the small trivial graph G1,
and in each step for Gi+1 we compute a routing table with an
ILP only for the new node(s), by simply copying the routing
tables for the other nodes of Gi without any modifications.

III. CONNECTIVITY PRESERVING GRAPH SEQUENCES

The main idea of our framework is to leverage the benefits
of a graph sequence that can be efficiently generated and flex-
ible enough to be used for resilient routing table computation.
Here we formulate the requirements of the graph sequence,
which keep the subsequent changes local and thus divides the
overall complex design problem into simple local decisions. In
Section III-A we formally introduce edge splitting-off, sum-
marize the corresponding results from the literature and define
the removal of even degree nodes. Armed with these results,
we define a degree and local connectivity preserving (DLCP)
graph sequence and prove that it always exists in 2-connected
graphs in Section III-B. In Section III-C we propose a novel
degree and local connectivity preserving edge splitting-off
operation for two odd degree nodes, which enables us to
generate DLCP graph sequences in Section III-D.

A. Degree and Connectivity Preserving Edge Splitting-Off

We denote an undirected graph as G = (V,E), and use the
notation d(v) for the degree of node v ∈ V , and r(s, t) for the
edge-connectivity between s, t ∈ V . The edge-connectivity
between s, t ∈ V is the maximum number of edge-disjoint
paths connecting s and t. Notations are summarized in Table I.

TABLE I
NOTATION LIST

Notation Description

G = (V,E) Undirected graph with node set V , edge set E.
t Root node t ∈ V of the routing arborescences.

r(s, t) Local edge-connectivity between node s, and root t
d(v) Degree of node v ∈ V .
δ(v) Hop distance of node v from root t.

Gi = (Vi, Ei) The ith graph in the DLCP graph sequence.
χi The number of tear-off edges in Gi.
αi The number of edges that become parallel in step i.
βi The number of edges become loop in step i.
γi The total Euclidean distance of the new edges

in step i (assume node coordinates given).

Definition 1: If we remove edges (x, u), (x, v) and add the
edge (u, v), we say that edge pair (x, u), (x, v) has been split-
off from node x. We say that the edge pair (x, u), (x, v) is
splittable if in the above resulting graph there are still at least
r(s, t) edge-disjoint paths between s and t, ∀s, t ∈ V \ {x}.

The edge splitting-off operation makes a little change in
the graph [22], [23], all the nodes have the same nodal
degree apart from the node x. Note that it may add a parallel
edge to the graph. We are interested in edge splitting-off
that not only preserves the global edge-connectivity k of the
graph [24, Problem 6.53] but also does not change the local
edge-connectivity between any pair of nodes (apart from x).
We will use the following related theorem.

Theorem 1 (Mader [16]): Let G = (V,E) be an undirected
graph that has at least r(s, t) ≥ 2 edge-disjoint paths between
s and t for all s, t ∈ V \ {x}, and x is not incident to a cut-
edge. If d(x) ̸= 3, then some edge pair (x, u), (x, v) can be
split off so that in the resulting graph there are still at least
r(s, t) edge-disjoint paths between s and t, ∀s, t ∈ V \ {x}.

In our case, we would like to remove a node; thus, we split
off all of its adjacent edges as edge pairs, one after the other.
As a resilient topology G is at least 2-connected, there are no
cut-edges in the graph; thus, if the node has an even degree,
then by the above theorem, this can always be done.

For example, in Fig. 2a a possible way is shown to remove
node vi from Gi by splitting off its edges while the degree
and local connectivity of the remaining nodes in Gi−1 are
preserved. Unfortunately, based on Theorem 1 for odd degree
nodes, we can split off the edges only until d(x) = 3.
Therefore, node x with an odd degree cannot be removed with
edge splitting-off operations. This is a barrier to the practical
applicability of this powerful theoretical result, as network
topologies often have nodes with odd degrees, too.

B. Degree and Local Connectivity Preserving Graph Se-
quence

We formally define DLCP graph sequences and prove that
such a sequence always exists in 2-connected graphs. The
DLCP graph sequence starts with a small graph and finishes

with G, thus it is the result of listing graphs in reverse
order after removing nodes one by one and splitting off all
their adjacent edges. Due to the reverse order, the graph
transformation now involves pinching edges and adding a
node on them.

Definition 2: A graph sequence G1, G2, . . . , Gl−1, Gl is
degree and local connectivity preserving (DLCP) if it satisfies
the following properties:

1) First graph G1 = (V1, E1) has two or three nodes, i.e.,
|V1| = 2 or |V1| = 3,

2) Subsequent graphs ∀i = 2, . . . , l : Gi = (Vi, Ei) is
constructed from Gi−1 = (Vi−1, Ei−1):
• Add one or two nodes: either Vi = Vi−1∪{vi}, where

vi denotes the new node, or Vi = Vi−1 ∪ {vi, wi},
where vi and wi denote the new nodes.

• Add common, and split-off or tear-off edges: every
edge (u, v) ∈ Ei−1 is either part of (u, v) ∈ Ei (called
common edges), or (u, v) is replaced by two edges
which are incident with one of the new nodes, formally
(z, u) ∈ Ei and (z′, v) ∈ Ei, where z ∈ {vi, wi} and
z′ ∈ {vi, wi}. If z = z′ we call it a split-off edge;
otherwise as a tear-off edge. The number of tear-off
edges in Gi−1 is denoted by χi−1.

• Add between edges: if two new nodes vi and wi are
added to Gi, then they are connected by a new between
edge (vi, wi) as well. If χi−1 ≥ 3, then there might be
multiple new parallel (vi, wi) edges added to Gi, but
at most χi−1 − 1.

• Preserve connectivity: for any pair of nodes s, t ∈
Vi−1 the local connectivity is ri−1(s, t) ≥ ri(s, t).

3) Last graph Gl = (V,E) = G is the network topology.
The graphs in Fig. 1 form a DLCP graph sequence. Note

that if a single node vi is added, it will have an even degree. If
two nodes are added, they will be adjacent, and both have odd
degrees. Furthermore, if vi and wi are adjacent odd nodes, the
number of edges incident with either vi or wi (but not both)
is always even2.

Next, we show that a DLCP graph sequence always exists
in 2-connected network topologies:

Theorem 2: For any 2-connected undirected graph G, a
DLCP graph sequence G1, . . . , Gl = G always exists.

Proof: We construct the graph sequence in reverse order
Gl, . . . , G1 applying one of the following two operations in
each iteration, see Fig. 2:

1) Remove even degree node vi of Gi: we can apply
Theorem 1 and split off every edge incident with vi
such that the local connectivity between every node pair
s, t ∈ V \ {vi} does not decrease. Note that G is 2-
connected; thus, there is no cut-edge in the graph.

2) Remove two adjacent odd degree nodes vi and wi of
Gi: we can add a single edge (vi, wi) which obviously
does not decrease the local connectivity between any

2The sum of two odd degrees is even, and we need to subtract two times
the number of edges between vi and wi, which is even again.

node pair s, t ∈ V \ {vi}. Now there are at least two
edges between vi and wi, and both node vi and wi

has even degree. Thus, we can apply Theorem 1 for
each, and split-off every adjacent edge such that the local
connectivity between every node pair s, t ∈ V \ {vi, wi}
does not decrease.

Note that, the adjacency requirement of odd degree nodes is
not a serious restriction, as even degree nodes can be removed
until two odd nodes become adjacent.

Note that, in Case 2) we have added an edge between
the two odd nodes. After the graph decomposition, in our
FRR framework we will use the obtained graph sequence
in a reverse order for routing arborescence construction.
Thus, adding an edge in the decomposition is equivalent of
removing an edge during the construction. If the erased edge
is part of a routing arborescence in Gi−1, then we will not be
able to extend the arborescences to graph Gi. However, the
argument in the proof of Theorem 2 holds even if we remove
edge (vi, wi) from the graph Gi between the two adjacent
odd nodes, instead of adding one extra edge. We refer to this
case as no extra tear-off edge removal, which is related to the
following definition.

Definition 3: Let G = (V,E) be an undirected multigraph.
An edge (u, v) is local, if erasing the edge from G the local
connectivity between s and t remains the same for ∀s, t ∈
V \ {u, v}.

Roughly speaking a local edge is only important to achieve
the connectivity between its end nodes, and it has no global
effect. If we delete a local edge (u, v), then it has no effect on
the local connectivity between any node pair that is disjoint
from {u, v}. Based on this observation, we formulate two
lemmas. Before that, we introduce a few important notions
used in their proofs. We call a set of nodes X tight if there is
a node pair s ∈ X and t ∈ V \X such that r(s, t) = d(X),
where d(X) denotes the number of edges incident with X ,
i.e., between X and V \ X . Similarly, we say that a subset
X ⊆ V is near-tight if d(X) = r(s, t) + 1, and dangerous
if X is tight or near-tight. For a graph G and X,Y ⊆ V ,
d(X,Y) denotes the number of edges between X \ Y and
Y \X . If X is tight then V \X is also tight. We call a tight
set X non-trivial if |X| ≥ 2 and |V \X| ≥ 2, otherwise it is
a trivial cut.

Lemma 1: Let G = (V,E) be a 3-connected undirected
graph with a node t, where every node has degree 3 in V \{t},
and |V | ≥ 2. There is a local edge e in G.

Proof: The poof is a direct consequence of Proposition
8.1.5 of [25]. For the sake of completeness, let us repeat the
proof here.

Since every node V \ {t} has nodal degree 3, and G is 3
connected, all the tight sets are 3-cuts. By Theorem 7.1.2 of
[25], these 3-cuts are cross-free. If every 3-cut is a trivial cut,
then e can be chosen arbitrarily. Suppose now that there is
a non-trivial tight set Z ⊆ V where t /∈ Z and assume that
|Z| is minimal. Here, non-trivial tight set means, d(Z) = 3,
and 2 ≤ |Z| ≤ |V | − 2. Since the 3-cuts are cross-free, every

vavb

vc vd

Gi−1

vavb

vc vd

vi Gi

(a) The rule removing a single node vi with even degree

vavb

vc vd

Gi−1

vavb

vc vd

vi

wi

Gi

(b) The rule removing two nodes vi and wi, both with odd degree

Fig. 2. Degree preserving edge splitting-off operations. The gray area
contains the common edges, only the edges around the removed node(s)
are changed.

3-cut containing an arbitrary edge induced by Z is a trivial
cut.

Lemma 2: Let G = (V,E) be a 2-connected undirected
graph with a root node t, where every node has degree 3 in
V \ {t}, and |V | ≥ 2. There is a local edge e in G that is not
adjacent with t.

Proof: By Theorem 7.1.8 of [25], every 2-cut of G =
(V,E) can be represented with a cactus graph C. In a cactus
graph each edge belongs to exactly one circuit. Each node v
of C corresponds to a 3-connected component of G, called
the preimage of v.

Let v be a node of the cactus, which is either a leaf node
or part of a single circuit, and its preimage does not contain
t. Let X ⊆ G be the preimage of v. X is a 2-cut of G,
where (v1, u1) and (v2, u2) denote the edges of the 2-cut,
with v1, v2 ∈ X and u1, u2 ̸∈ X .

Construct G′, which has the nodes X and all the induced
edges in G, with an additional edge (v1, v2). G′ is 3-regular
and 3-connected. By Lemma 1, G′ has a local edge e that is
not adjacent to v1. Edge e is also local in G because it cannot
be part of any 2-cut or 3-cut.

C. Heuristic Approach to Select Edge Pairs for Splitting-Off

Theorem 2 proves the existence of DLCP graph sequences.
In our observation, the number of different DLCP graph
sequences is huge, and in the following subsections, we
discuss which sequence is the most suitable for our needs.
First, we present the multiple ways the incident edges can be
split off to remove node(s), and how these suitable pairs can
be computed. Then, in the next section, we focus on the order
of the nodes for removal.

Let B denote the edges incident with vi (or wi, but not
both), which we call border edges. If we remove a single
node, each perfect matching among border edges is called
a candidate set of edges for splitting off, which is valid if
it preserves the local connectivity. If there are no parallel
edges in B, then the number of perfect matchings among them

equals a double factorial, i.e., (2b)!
2bb!

, where b = |B|
2 (remember

that |B| is even). In typical network topologies, the nodal
degree and thus b is small and the number of candidates is
reasonable:

b 1 2 3 4 5
(2b)!
2bb!

1 3 15 105 945
. (1)

When we remove two nodes, not all perfect matchings are
candidates, only those where the number of tear-off edges
is at most the number of parallel edges (vi, wi) ∈ Ei (plus
one if (vi, wi) is not local). If there are parallel edges among
the border edges, the number of candidates will be even less.
Overall, it is a reasonable assumption that we can list all the
valid candidates and pick the most suitable one for our needs.

To compute the valid candidates we need to identify the
dangerous sets. Note that, there is a polynomial time algo-
rithm [23] to find the dangerous sets, and thus, the splittable
edge pairs based on Gomory-Hu trees [26]. For example, if a
node has 6 adjacent nodes, v1, . . . , v6, then 3 new edges must
be added, and according to the table in Eq (1) the number
of such candidates is 15. Although intuitively there are not
many splittable pairs that maintain the DLCP property, we
demonstrate that surprisingly a significant amount of edge
pairs are valid. For example, if a dangerous set separates
them into two sets, say v1, v2, v3 and v4, v5, v6, then it is
sufficient that the 3 new edges are between the two sides of
this cut. In our example it would result in six valid candidates:

(v1, v4), (v2, v5), (v3, v6) (v1, v4), (v2, v6), (v3, v5)

(v1, v5), (v2, v4), (v3, v6) (v1, v5), (v2, v6), (v3, v4)

(v1, v6), (v2, v4), (v3, v5) (v1, v6), (v2, v5), (v3, v4)

Among these candidates we proceed with the one which
achieves the highest of the following heuristic metrics that
we obtained through hyperparameter optimization:

−10αi + 100βi −
γi
cavg

,

where αi denotes the number of edges that become parallel
in step i, βi the number of edges become loop, γi the total
Euclidean distance of the new edges and cavg is the average
physical length of the links in the topology.

D. Constructing DLCP Graph Sequences

In Section III-C, we described how to remove any node
with an even degree or two adjacent nodes with odd degrees.
According to Theorem 1, we can select any single even-degree
node for removal; however, for adjacent odd-degree nodes, we
prefer to choose those ones that are connected by a local edge.
Note that such a local edge will always exist in 3-regular
graphs; see Lemmas 1 and 2. This still allows significant
freedom in the order of node removal. In this subsection,
we propose heuristic approaches to select the next node(s)
to be removed in each iteration to generate the DLCP graph
sequence Gl, . . . , G1. Our aim is that, in reverse order, this

sequence will help us build the best routing tables towards a
root node t. Therefore, our design goals are the following.
Goal 1: During the node removal process, we can remove

adjacent odd-degree nodes only if they are connected by
a local edge. Thus, we prefer to remove the even-degree
nodes first, and then focus on the removal of the odd-
degree nodes. If the only local edges left in the graph are
those adjacent to the root t, we remove the local edges.

Goal 2: We want to focus first on nodes with high local
connectivity to the root, because they must be connected
to the root by more arborescences. Later, we extend some
of these trees to nodes that have smaller local connectivity
to the root. In reverse order, this means we first remove
the nodes that are 2-connected to the root t, then those
that are 3-connected, and so on.

Goal 3: We aim to mimic the process of growing the trees
from the root t. In other words, if the area around t is
already built, then we do not touch it anymore; instead, we
add nodes only to its periphery. Therefore, in each step,
we try to remove the node or node pair that is farthest
from the root t.

Let δ(v) denote the hop distance of node v from root t. Let
vevenmax be a node with an even degree that has the maximum
hop distance from t. We define the hop distance of an adjacent
node pair as the average hop distance of both terminal nodes.
Let (voddmax, w

odd
max) be a pair of odd adjacent node pair with

maximum average hop distance from t. The root is never
removed, and the algorithm terminates when the graph has
three (or two) nodes; see Fig. 1.

We propose the following approaches, ranging from the
simplest to the one that incorporates all of our design goals:
Random: is our baseline approach, which selects the next

node(s) for removal randomly. If the selected node has
an odd degree, then a second node is chosen randomly
among its neighbors with an odd degree if such exists;
otherwise, another node is selected randomly.

Grow: focuses on Goal 3 and removes a single node veven
max in

the next step if

δ(veven
max) ≥ min{δ(vodd

max), δ(w
odd
max)}, (2)

otherwise, it removes the node pair (vodd
max, w

odd
max).

Even-first: focuses on Goal 3 and partially on Goal 1 by
selecting the even nodes first with descending hop distance
to the root. When only odd nodes remain (apart from
the root), it selects the odd node pairs with descending
hop distance to the root. It only partially follows our first
design goal as it allows the removal of adjacent odd nodes
that are not connected by a local edge.

Advanced: covers all three design goals. It divides the nodes
into sets based on local connectivity and, starting with
r(s, t) = 2, it applies the even-first approach for the sets
in increasing order. Furthermore, it does not remove odd
pairs that are not connected by a local edge.

vavb

vc vd

Gi−1

vavb

vc vd

vi Gi

(a) Adding a single node with even degree

vavb

vc vd

Gi−1

vavb

vc vd

vi

wi

Gi

(b) Adding two nodes both with odd degree

Fig. 3. FRR arborescence construction in G1, . . . , Gl. Gray arcs are the
new arcs, while the head of modified arcs are changed towards vi (and wi).

IV. ROUTING ARBORESCENCE CONSTRUCTION

In this section, we illustrate the applicability of our DLCP
graph sequence in arborescence (i.e., routing table) construc-
tion for FRR. As FRR routing table computation can be
performed independently for each root, the task is to find
a set of directed trees, called arborescences, such that each
tree is directed towards a given root t. Hence, we consider
the edges of G = (V,E) as two directed arcs, one in each
direction. Arborescences in FRR usually span all nodes of
the graph, but there might be partial directed trees, too [8].
In any case, ∀v ̸= t let T1, . . . , Tlv denote the arborescences
in which v can reach the root. Let Pi denote the unique path
from v to the root in tree Ti, for i = 1, . . . , lv . The task in
FRR arborescence routing is to design a set of arborescences,
such that for each node v the corresponding paths P1, . . . , Plv

are pairwise arc-disjoint (thus, the arborescences are arc-
disjoint). Although it is easy to verify if a set of arborescences
meet the arc-disjointness property, it is hard to design a
generic algorithm that computes such arborescences. We will
demonstrate that our DLCP graph sequence can simplify this
process.

A. Arborescence Construction Algorithm

In the directed representation of the graph sequence
G1, . . . , Gl the inverse split-off or tear-off transformation can
be handled by changing the head of some arcs towards the
new node(s) vi (and wi), called modified arcs, and adding
several new arcs Enew

i with their tail at the new node(s), see
Fig. 3. Hence, we can define a one-to-one mapping of the
arcs of Gi−1 to the common and modified arcs of Gi.

As Algorithm 1 shows, the proposed arborescence
construction heuristic prepares a DLCP graph sequence
G1, . . . Gl in Phase 1, and iterates through them in Phase 2.
The first graph G1 has 2 or 3 nodes, e.g., the root t and
two other nodes in Fig. 4 (arborescences are denoted with a
different color). The construction of the solution to such a
small graph is simple. For example, for the 3-node network,

G1 G2 G3 G4 G5 G6 G7

G8 G9 G10 G11 G12 G13

Fig. 4. Four arborescences are built up iteratively through graph sequence shown in Fig. 1. As the arborescences are arc-disjoint, a unique color is used to
denote the arcs of each Ti, while non-arborescence arcs are colored black (dotted).

Algorithm 1: Routing Arborescence Construction
Input: Graph G; root node t
Output: Routing arborescences T1, T2, . . . T|C|
// Phase 1: Graph Decomposition

1 Create a DLCP graph sequence G1, . . . , Gl = G
according to Section III-D;
// Phase 2: Arborescence

Construction
2 Assign unique color to each in-arc of t in G1

3 If |V1| = 3, then extend the trees for arcs between
the two nodes V1 \ {t}

4 for i = 2, 3, . . . , l do
5 Transfer colors from Ei−1 to Ei

6 if A local edge (t, v) added adjacent with t then
7 Color arc v → t with a new color.

8 else if single node vi is added to Gi−1 then
9 Color arcs Enew

i by solving ILP of Sec. IV-B

10 else
11 Color arcs Enew

i by solving ILP of Sec. IV-C

// Phase 3: Post-processing
12 for i = 1, 2, . . . , |C| do
13 ∀Tj ̸=i: erase all arcs or Tj
14 Compute an SPT T ′ towards t in the residual

graph
15 Ti = T ′

we color each in-arc of the root differently. In such a way,
each arborescence is composed of one arc. Next, we assign
colors to the arcs between v1 and v2 such that they extend
the arborescences to have two arcs, respectively. Finally, we
assign a unique color to each loop edge of the root (in both
directions). In Step 4 we iterate through G2, . . . Gl, and in

the ith step, we take the arborescences of Gi−1 and map their
common and modified arcs to Gi, i.e., use the same color
for them. Finally, for the new arcs Enew

i of vi (and wi) we
extend the previous arborescences if possible with the ILPs
in Section IV-B and Section IV-C, resulting in spanning and
partial arborescences in Gi. In this way, with the application
of the DLCP graph sequence, we solved the complex FRR
routing table computation problem by dealing with small local
ILPs around the new nodes.

In order to further improve the quality of the routing
arborescences, we have added a simple post-processing step
to Algorithm 1 in Phase 3, where we re-optimize each
arborescence Tj independently by erasing the arcs of all
the other arborescences and computing the shortest path tree
(SPT) towards t in the residual graph. With post-processing,
we can reduce the loss in coverage, i.e., when adding node
vj to the graph in the ith step the ILP is not able to connect
it to r(vj , t) arborescences owing to the restriction of local
modifications around vj . Note that, the number of trees cannot
be more than the local connectivity.

B. Integer Linear Program Formulation: Adding a Node
This section defines the ILP for adding a single node vi.

The task is to assign colors to the new arcs Enew
i which are

the out-arcs of node vi. The variables are:

xc
a =

{
1 if arc a has color c
0 otherwise.

∀c ∈ C,∀a ∈ Enew
i

Here C is the set of colors (arborescences). We also have a
variable for each color:

yc =

{
1 if vi is involved in arborescence c

0 otherwise.
∀c ∈ C

Constraint (3) says that each new arc has at most one color.∑
c∈C

xc
a ≤ 1 ∀a ∈ Enew

i . (3)

vavb

vc vd

vi

wi

Eq. (10)Eq. (11)

vavb

vc vd

vi

wi

Eq. (13) Eq. (12)

Fig. 5. The constraints of the ILP to avoid loops when two nodes are added.

Constraint (4) ensures that for each color c there is an out-
arc from vi only if node vi is involved in arborescence c.

∑
a∈Enew

i

xc
a = yc ∀c ∈ C. (4)

Next, we ensure there are no loops over the same edge.
The colors of the in-arcs of vi are inherited (known) from
Gi−1:

xc
vi→v = 0 ∀(vi → v) ∈ Enew

i , if v → vi has color c.
(5)

Moreover, we ensure that there is no loop over multiple arcs
either. In other words, if v is upstream of vi in arborescence
c then arc vi → v should not be colored to c. Here upstream
means there is a directed path in tree c from v to vi, which
we denote by v

c
⇝ vi. Although the tree in color c is inherited

from Gi−1, it has no out-arcs at node vi; thus, it is currently
not necessarily a valid rooted tree at t. Formally,

xc
vi→v = 0 ∀(vi → v) ∈ Enew

i , if v c
⇝ vi . (6)

We also need to ensure that every arborescence reaches the
root; thus, for each color c, we need to avoid forwarding a
packet to a node with no outgoing arc in color c. Formally,

xc
vi→v = 0 ∀(vi → v) ∈ Enew

i ,∀c ∈ C,
if v ̸= t and node v has no out-arc in color c. (7)

Note that to guarantee that an arborescence is a t rooted tree,
we need to ensure that every node involved in it (except t)
has an out-arc and there are no loops.

Finally, the objective function is to maximize the weighted
sum of the colors we can assign to the new node:

max
∑
∀c∈C

ωcy
c . (8)

We use weight ωc = 1 for color c if node vi has no in-arc of
color c; otherwise, ωc is the number of upstream nodes of vi in
color c plus 1. The intuition behind this is that the importance
of having a color c path from node vi is the number of nodes
it will be used by, i.e., weighting defines that if we have a
loss in coverage, then which is less painful.

C. Integer Linear Program Formulation: Adding Two Nodes

In this section, we formulate the ILP for adding two nodes
vi and wi. We generate the constraints of the ILP for adding
both nodes vi and wi just like adding them as single nodes
described in the previous section, i.e., Constraints (3)–(7).
The variables xc

a corresponding to edges are the same for
both nodes, while the distinct variables for color are denoted
as yc and ŷc for vi and wi, respectively. We merge the two
ILPs by summing up their objectives in Eq. (8), formally:

max
∑
∀c∈C

(ωcy
c + ωcŷ

c) . (9)

Furthermore, to complete the ILP, we need to add some
extra constraints to avoid loops that traverse both nodes vi and
wi. When adding two nodes, Constraint (6) becomes weaker
because of the upstream condition. Roughly speaking, the tree
in color c may fall into more parts than when a single node
is added because initially it has no out-arcs at two nodes vi
and wi. In other words, node va may not be upstream to vi in
the trees inherited from Gi−1; however, once we add the out-
arcs of wi, it may become upstream, causing a loop. Fig. 5
illustrates all possible loops we must avoid. First, we ensure
no loop in any tree along the arcs between the two new nodes.
Note that the two new nodes might be connected with parallel
edges. In this case, we need to add the following constraint
for every combination of arc pairs with opposite directions.

xc

vi
m−→wi

+ xc

wi
m̂−→vi

≤ 1 ∀c ∈ C,

∀m ∈ Mvi,wi ,∀m̂ ∈ Mwi,vi . (10)

Here, Mvi,wi denotes the set of parallel arcs from vi to wi,
while m and m̂ denotes a given instance. We add a similar
constraint for larger loops that traverse both vi and wi:

xc

vi
m−→vb

+ xc

wi
m̂−→vd

≤ 1 ∀c ∈ C, if vb
c
⇝ wi and

if vd
c
⇝ vi,∀m ∈ Mvi,vb

,∀m̂ ∈ Mwi,vd . (11)

Constraint (12) is needed to avoid loops traversing an arc
from vi to wi:

xc

vi
m−→wi

+ xc

wi
m̂−→vd

≤ 1 ∀c ∈ C, if vd
c
⇝ vi,

∀m ∈ Mvi,wi
,∀m̂ ∈ Mwi,vd . (12)

We also add this in the opposite direction to avoid loops
traversing an arc from wi to vi:

xc

wi
m̂−→vi

+ xc

vi
m−→vb

≤ 1 ∀c ∈ C, if vb
c
⇝ wi,

∀m̂ ∈ Mwi,vi
,∀m ∈ Mvi,vb

. (13)

We need to ensure that the arc between wi and vi does not
take a color that has no arborescence from vi:

xc

wi
m−→vi

≤ yc ∀c ∈ C,∀m ∈ Mwi,vi , (14)

and the same constraint in the opposite direction is:

xc

vi
m−→wi

≤ ŷc ∀c ∈ C,∀m ∈ Mvi,wi
. (15)

Finally, we need to ensure that if there is an arc in c from
wi to v such that v is upstream to vi in c then we have a
valid path in color c from node wi only if vi is involved in
arborescence c. This can be formulated in both directions as:

yc ≥ xc

wi
m̂−→v

∀c ∈ C, if v c
⇝ vi,∀m̂ ∈ Mwi,v, (16)

ŷc ≥ xc

vi
m−→v

∀c ∈ C, if v c
⇝ wi,∀m ∈ Mvi,v . (17)

D. Path Length

To illustrate the flexibility of the proposed algorithmic
framework, in this section we show how to extend the ILP
with additional requirements, e.g., to decrease the lengths of
the paths Pi. We extend the objective function to minimize
the length of the paths in each tree as follows:

max
∑
∀c∈C

ωcy
c−

∑
∀c∈C

∑
∀vi→v∈Enew

i

hc
vi→v

100
·xc

vi→v , (18)

where hc
vi→v is a constant and denotes the hop length of the

path in arborescence c from node v, if such exists, otherwise,
it is the maximal path length in Gi−1. We have divided the
path lengths by 100 because providing r(v, t)−1 resilience in
worst-case is our primary objective in the optimization, and
we assumed that the maximum length is smaller than 100.

V. SCALABILITY OF THE PROPOSED ALGORITHMS

In this section, we briefly investigate the running time of
the proposed algorithms. We assume the maximum degree in
graph G, denoted ∆, is a constant value that does not depend
on the number of nodes n = |V |. Note that the number of
candidate edge sets in Eq. (1) has a bound of (2∆)∆ because
the number of border edges is at most |Enew

i | ≤ 2 · ∆. We
call an algorithm scalable if its expected running time is a
polynomial function of n for constant ∆.

We run Gomory-Hu algorithm to find the maximum flows
between every pair of nodes, which has an expected running
time Õ(m · rmax) [27], where rmax is the maximum local
connectivity, that is Õ(n · ∆2

max) because rmax ≤ ∆ and
|E| = m ≤ n ·∆. Computing the hop distance of node v and
root t can be done in linear time O(n·∆) with a Breadth First
Search (BFS) algorithm. The number of graphs is l ≤ n; thus
the expected running time to construct DLCP graph sequence
is at most O(poly(n,∆) · (2∆)∆).

To compute the routing arborescences in Phase 2 of Al-
gorithm 1 we need to solve l ILPs, where each ILP has
|C| + |C| · |Enew

i | ≤ ∆ + 4∆2 ≤ 5∆2 binary variables. To
formulate the ILP we need to deal with the paths in the
arborescences from the border nodes in each color, that is
|C| · |Enew

i | ≤ 2∆2 paths in total. We need to perform mem-
bership queries for each of these paths (whether it traverses
the modified arc or not). We can use Bloom filters [28] as
a probabilistic data structure for constant time membership
testing with the possibility of false positives. We can solve

the ILP in O(poly(n,∆) · 25∆2

) steps because every variable
is binary.

Finally, in the post-process phase in each step we remove
the edges of |C| − 1 arborescences and calculate an SPT
in the remaining graph with a BFS algorithm in O(n · ∆)
time, repeated for each |C| arborescences. Thus, Phase 3
requires O(n ·∆2) steps altogether, which means the overall
complexity of Algorithm 1 is O(poly(n,∆) · 25∆2

).

VI. EVALUATION

In this section, we present numerical results that demon-
strate the effectiveness of the proposed framework on real
network topologies. We investigate the DLCP graph sequence
generator heuristics (proposed in Section III-D) of Phase 1 in
Section VI-A, while we focus on Phase 2 of Algorithm 1
for constructing arc-disjoint routing arborescences with the
ILPs (introduced in Section IV) in Section VI-B. Finally, in
Section VI-C we analyse the improvement of the post-process
in Phase 3. In the evaluation, we have investigated 9 network
topologies [29], [30], see the first three columns of Table II
for the network names and the number of nodes and edges.

A. DLCP Graph Sequence Generator Heuristics

First, we focus on the heuristic approach in selecting the
edge pairs for splitting-off. The results shown in the middle
part of Table II were generated with the node selection
approach Grow according to Eq. (2). The average number
of removed nodes (|Vi \ Vi−1|) depends on the number of
odd and even degree nodes in the input topology. These
backbone network topologies are not very dense; thus, the
number of border edges is 3.2 on average and, at most 10
(it is when removing two nodes). The average number of
candidate split-off edge sets among these border edges is 2.2,
and the maximum was 240. The average number of valid ones
among these candidates is 1.5, and the maximum is 36.

The heuristic approaches select one according to some
parameters such as the number of parallel edges (α), which
was 0.6 on average and a maximum of 5, the number of
loop edges (β) which was 0.1 on average and a maximum
of 2, and the number of tear-off edges (χ) which was 0.6
on average and maximum 4. Loop edges are only needed
to keep the nodal degree, but they have no role in the
network connectivity. In other words, a loop edge means
we can erase an edge from the network, which will not
change the local connectivity. We also evaluated the number
of valid candidates with at least a node pair with increased
local connectivity r(s, t) (better % in Table II), which only
happened when we removed two nodes.

We also added the running time of the DLCP graph se-
quence generator in Phase 1 of Algorithm 1 to Table II, which
was measured on a commodity laptop with a Core i5 CPU
at 1.8 GHz with 4 GB of RAM running the Python code3,

3Code and data available at https://github.com/jtapolcai/graph-sequences.

TABLE II
STATISTICS OF THE INPUT NETWORK TOPOLOGIES, SELECTING THE EDGE PAIRS FOR SPLITTING-OFF IN THE DLCP GRAPH SEQUENCE GENERATOR

ALGORITHM, THE RUNTIMES, AND THE COVERAGE OF THE ROUTING ARBORESCENCES.

Network topologies DLCP graph sequences Arborescence coverage [%]
|Vi\ borders candidates valid α β χ better runtime Algorithm 1 Partial

name |V | |E| Vi−1| avg max avg max avg max avg max avg max avg max [%] [sec] random grow even-first advanced arb. [8]
German 17 26 1.2 3 6 1.4 8 1.2 4 0.6 2 0.2 1 0.2 1 1.8 0.074 99.4 99.9 100 100 100
ARPA 21 25 1.1 2.4 4 1.3 4 1.2 4 0.1 1 0.1 1 0.3 2 0 0.13 99.9 99.4 99.8 100 97.6
EU 22 45 1.2 4.4 10 2.9 21 2.1 14 1.2 4 0.1 2 0.7 4 13.4 0.19 99.4 99.7 99.5 99.9 98.3
USA 26 42 1.3 3.4 6 1.9 5 1.3 3 0.6 2 0.1 2 0.4 2 16.6 0.25 96.7 99.3 99.8 100 99.0
EU (Nobel) 28 41 1.4 3.2 6 2.2 8 1.5 4 0.4 2 0.1 1 0.6 2 5.2 0.23 92.0 99.5 98.6 100 99.9
Italy 33 56 1.2 3.5 10 2.8 240 1.5 36 1.4 5 0.1 2 0.9 4 0.7 0.48 98.6 99.3 99.9 100 99.2
EU (COST266) 37 57 1.4 3.4 6 2.5 18 1.6 10 0.4 2 0.1 2 0.7 2 7.1 0.71 98.5 98.5 98.6 100 97.0
N.-America 39 61 1.2 3.4 6 2.3 18 1.5 7 0.4 2 0.1 2 0.5 2 3.4 0.69 96.6 99.3 99.8 100 98.0
US (NFSNet) 79 108 1.3 2.9 6 2.2 18 1.6 10 0.2 2 0.1 1 0.6 3 5.4 5.03 96.6 96.4 98.5 100 92.6

where the graph algorithms were implemented in networkx.
Note that, the runtime is dominated by Phase 1 and performs
similarly for each heuristic presented in the paper. The total
running time of the arborescence construction with the ILPs
in Phase 2 and the post-process in Phase 3 of Algorithm 1
were below 0.5 sec in all cases, except the US network, where
they took almost a second; however, it is still much less than
the running time of the DLCP construction. The results back
up the complexity analysis in Section V, demonstrating that
the heuristics scale well with increasing network size.

Fig. 6 shows the number of nodes removed (one or two)
in each step with the heuristic approaches described in Sec-
tion III-D. We take the graph sequence G1, . . . , Gl = G and
evaluate |Vi\Vi−1|. As expected, even-first removes the single
nodes first, then the odd node pairs, while others provide a
relatively balanced way of removing single or two nodes.

B. Evaluating the Arborescence Construction Algorithm

We compared the performance of Algorithm 1 to the state-
of-the-art partial arborescences used in Part 1 of the DAG-
FRR heuristic [8] (called Partial arb. in the figures), which
generates arc-disjoint routing arborescences with a greedy
approach: starts with d(t) arborescences on the in-arcs of t,
and grows them greedily one after the other until possible. Our
main performance metric for arborescences is coverage, which
is 100% for a node s ̸= t if there are r(s, t) arborescences,
and thus there are r(s, t) arc-disjoint paths from s to the root
t which provide r(s, t) − 1 resilience in worst-case. Hence,
100% coverage for graph G is

∑
∀s∈V \{t} r(s, t), while it is

lower if some nodes have fewer trees available.
The last part of Table II shows the coverage of the

arborescences constructed by our ILP formulations in Sec-
tion IV on the obtained DLCP graph sequences. One can
observe that there is a significant improvement for grow, even-
first and advanced compared to the baseline approach, which
randomly selects the next node(s) for removal. Furthermore,
the advanced method has near-optimal performance. It
removes the farthest even degree node with the smallest local
connectivity and, in case of an odd node-pair, the one that
produces the fewest tear-off edges. We believe this (reverse)
order helps the ILPs in Phase 2 to build trees in dense

G1 25% 50% 75% Gl = G

1

1.5

2

Relative network size
|V

i
\
V
i−

1
|

Even-first
Grow
Advanced
Random

Fig. 6. The number of nodes removed in each step of the DLCP graph
sequence Gl, . . . , G1 (from right to left).

subgraphs first; thus, no loss in coverage occurs due to
previously lost trees. Such loss inevitably happens when a
high degree node v is connected to low degree neighbors
which already do not have d(v) trees together.

C. Post-Processing

The impact of loss in coverage can be reduced with the
post-process approach in Phase 3. Fig. 7 shows the average
coverage versus the path stretch in the arborescences for all
networks. The path stretch is the hop length of each path
divided by the minimum hop distance between the end nodes
of that path. In the ILPs of Phase 2 we use Eq. (18) as a
secondary objective to minimize path length. In Fig. 7 we
present two points connected with a line: the left one is the
result of Algorithm 1 (with post-processing), and the right
one is without the post-processing in Phase 3. Post-processing
can only increase the coverage; thus, it is always the point
with better coverage among the two. Overall, as expected the
advanced method outperforms all other approaches both in
terms of coverage and path stretch.

VII. CONCLUSIONS

In this paper, we proposed an algorithmic framework to
efficiently solve the routing problems corresponding to fast
reroute. The framework is scalable and has great flexibility in
defining multiple routing problems at the same time, as we
strongly build on several optimization and graph-theoretical

2.4 2.6 2.8
94

96

98

100

The average stretch of the paths in the arborescences

C
ov

er
ag

e
[%

]

Even-first
Grow
Advanced
Random
Partial arb. [8]

Fig. 7. Comparison of the FRR algorithms averaged for paths between 20
randomly selected root nodes and all sources in each 9 network topologies.

approaches, such as constructive graph characterization of k-
connected graphs, dynamic programming, and integer linear
programming. We showed how to compute arc-disjoint rout-
ing arborescences for FRR with the help of a degree and local-
connectivity preserving graph sequence. In the simulations,
we observed that our DLCP graph sequence generated with
the Advanced heuristic outperformed the other FRR algo-
rithms and provided 100% coverage in almost all topologies
with low path stretch. We envision this flexible and efficient
algorithmic framework as a first step that can pave the way
to deal with more complex routing algorithms needed for an
ideal FRR mechanism that allows local circular permutation
of the arborescences, allows packet header rewrite, or even
stores different routing table for each set of adjacent link
failures.

REFERENCES

[1] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C. Chuah, Y. Gan-
jali, and C. Diot, “Characterization of failures in an operational IP
backbone network,” IEEE/ACM Trans. Netw., vol. 16, no. 4, pp. 749–
762, 2008.

[2] M. S. Javed, K. Thulasiraman, and G. Xue, “Logical topology design
for ip-over-wdm networks: A hybrid approach for minimum protection
capacity,” in 2008 Proceedings of 17th International Conference on
Computer Communications and Networks, 2008, pp. 1–7.

[3] J. Rak and D. Hutchison, Guide to disaster-resilient communication
networks. Springer Nature, 2020.

[4] B. Vass, J. Tapolcai, and E. R. Bérczi-Kovács, “Enumerating maximal
shared risk link groups of circular disk failures hitting k nodes,”
IEEE/ACM Transactions on Networking, vol. 29, no. 4, pp. 1648–1661,
2021.

[5] “Shaping Europe’s digital future, Actors in the broadband value chain,”
European Commission, Available: https://digital-strategy.ec.europa.eu/
en/policies/broadband-actors-value-chain, 2019, Accessed: 2022-07-19.

[6] M. Caesar, M. Casado, T. Koponen, J. Rexford, and S. Shenker,
“Dynamic route recomputation considered harmful,” SIGCOMM CCR,
vol. 40, no. 2, pp. 66–71, Apr. 2010.

[7] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: measurement, analysis, and implications,” in Proceedings
of the ACM SIGCOMM 2011 Conference, 2011, pp. 350–361.

[8] K.-T. Foerster, A. Kamisiński, Y.-A. Pignolet, S. Schmid, and
G. Tredan, “Grafting arborescences for extra resilience of fast rerouting
schemes,” in IEEE INCOCOM, 2021, pp. 1–10.

[9] M. Chiesa, I. Nikolaevskiy, S. Mitrović, A. Panda, A. Gurtov,
A. Maidry, M. Schapira, and S. Shenker, “The quest for resilient (static)
forwarding tables,” in IEEE INFOCOM, 2016, pp. 1–9.

[10] M. Chiesa, A. Gurtov, A. Madry, S. Mitrovic, I. Nikolaevskiy,
M. Shapira, and S. Shenker, “On the resiliency of randomized rout-
ing against multiple edge failures,” in Int. Colloquium on Automata,
Languages, and Programming (ICALP), 2016.

[11] M. Chiesa, A. Kamisinski, J. Rak, G. Retvari, and S. Schmid, “A
survey of fast-recovery mechanisms in packet-switched networks,”
IEEE Communications Surveys and Tutorials, pp. 1–50, 2021.

[12] J. Feigenbaum, B. Godfrey, A. Panda, M. Schapira, S. Shenker, and
A. Singla, “Brief announcement: On the resilience of routing tables,”
in Proceedings of the 2012 ACM symposium on Principles of distributed
computing, 2012, pp. 237–238.

[13] K.-T. Foerster, J. Hirvonen, Y.-A. Pignolet, S. Schmid, and G. Tredan,
“On the feasibility of perfect resilience with local fast failover,” in SIAM
Symposium on Algorithmic Principles of Computer Systems (APOCS
2021), January 2021.

[14] S. Verbrugge, D. Colle, P. Demeester, R. Huelsermann, and M. Jaeger,
“General availability model for multilayer transport networks,” in Proc.
Int. Workshop on Design of Reliable Communication Networks (DRCN).
IEEE, 2005, pp. 1–8.

[15] L. Lovász, “On the ratio of optimal integral and fractional covers,”
Discrete Mathematics, vol. 13, no. 4, pp. 383 – 390, 1975.

[16] W. Mader, “A reduction method for edge-connectivity in graphs,” in
Annals of Discrete Mathematics. Elsevier, 1978, vol. 3, pp. 145–164.

[17] A. Frank and T. Jordán, “Graph connectivity augmentation,” Handbook
of Graph Theory, Combinatorial Optimization, and Algorithms, pp.
313–346, 2015.

[18] Y. H. Chan, W. S. Fung, L. C. Lau, and C. K. Yung, “Degree bounded
network design with metric costs,” SIAM Journal on Computing,
vol. 40, no. 4, pp. 953–980, 2011.

[19] T. Jordán, “On minimally k-edge-connected graphs and shortest k-edge-
connected steiner networks,” Discrete applied mathematics, vol. 131,
no. 2, pp. 421–432, 2003.

[20] H. N. Gabow, “A matroid approach to finding edge connectivity and
packing arborescences,” Journal of Computer and System Sciences,
vol. 50, no. 2, pp. 259–273, 1995.

[21] A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi, “Fast edge split-
ting and Edmonds’ arborescence construction for unweighted graphs,”
in Proc. ACM-SIAM symposium on Discrete algorithms, 2008, pp. 455–
464.

[22] H. N. Gabow, “Efficient splitting off algorithms for graphs,” in Pro-
ceedings of the Twenty-Sixth Annual ACM Symposium on Theory of
Computing (STOC), 1994, pp. 696–705.

[23] L. C. Lau and C. K. Yung, “Efficient edge splitting-off algorithms
maintaining all-pairs edge-connectivities,” in Integer Programming and
Combinatorial Optimization, F. Eisenbrand and F. B. Shepherd, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 96–109.

[24] L. Lovász, Combinatorial problems and exercises. American Mathe-
matical Soc., 1993, vol. 361.

[25] A. Frank, Connections in combinatorial optimization. Oxford Univer-
sity Press Oxford, 2011, vol. 38.

[26] R. E. Gomory and T. C. Hu, “Multi-terminal network flows,” Journal
of the Society for Industrial and Applied Mathematics, vol. 9, no. 4,
pp. 551–570, 1961.

[27] R. Hariharan, T. Kavitha, D. Panigrahi, and A. Bhalgat, “An o (mn)
gomory-hu tree construction algorithm for unweighted graphs,” in Proc.
ACM symposium on Theory of computing, 2007, pp. 605–614.

[28] J. Tapolcai, J. Biro, P. Babarczi, A. Gulyás, Z. Heszberger, and
D. Trossen, “Optimal false-positive-free bloom filter design for scalable
multicast forwarding,” IEEE/ACM Transactions on Networking, vol. 23,
no. 6, pp. 1832–1845, Dec 2015.

[29] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0–
Survivable Network Design Library,” in Proc. INOC, 2007.

[30] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in
Communications, vol. 29, no. 9, pp. 1765–1775, October 2011.

Péter Babarczi received the M.Sc. and Ph.D.
(summa cum laude) degrees in computer science
from the Budapest University of Technology and
Economics (BME), Hungary, in 2008 and 2012,
respectively. From 2017 to 2019, he was an Alexan-
der von Humboldt Post-Doctoral Research Fellow
with the Chair of Communication Networks at the
Technical University of Munich, Germany. He is
currently working as an Associate Professor with
the Department of Telecommunications and Arti-
ficial Intelligence at BME. He received the János

Bolyai Research Scholarship of the Hungarian Academy of Sciences in 2013,
and from 2020 to 2024 he was the lead researcher of an OTKA FK Young
Researchers’ Excellence Programme supported by the National Research,
Development and Innovation Fund of Hungary. His current research interests
include self-adapting networks, multi-path routing, cloud gaming, network
coding, and combinatorial optimization in softwarized networks.

Balázs Brányi received the M.Sc. degree in ap-
plied mathematics from the Budapest University
of Technology and Economics in 2022. He has
worked on multiple papers with the High-Speed
Network Laboratories. His research interests are
network optimizations and network simulations.

Pin-Han Ho is currently a Full Professor in the De-
partment of Electrical and Computer Engineering,
University of Waterloo. He is the author/coauthor
of over 400 refereed technical papers, several book
chapters, and the coauthor of two books on In-
ternet and optical network survivability. His cur-
rent research interests cover a wide range of top-
ics in broadband wired and wireless communi-
cation networks, including wireless transmission
techniques, mobile system design and optimization,
and network dimensioning and resource allocation.

János Tapolcai received the M.Sc. degree in tech-
nical informatics and the Ph.D. degree in computer
science from the Budapest University of Technol-
ogy and Economics (BME), Budapest, in 2000
and 2005, respectively, and the D.Sc. degree in
engineering science from the Hungarian Academy
of Sciences (MTA) in 2013. He is currently a Full
Professor with Department of Telecommunications
and Artificial Intelligence, BME. He is a winner of
the MTA Lendület Program and the Google Faculty
Award in 2012, Microsoft Azure Research Award

in 2018. He is a TPC member of leading conferences, e.g. IEEE INFOCOM
2012-, and the general chair of ACM SIGCOMM 2018.

Lajos Rónyai is a research professor with the Arti-
ficial Intelligence Laboratory of the HUN-REN In-
stitute of Computer Science and Control, Budapest,
Hungary. He leads a research group there which
focuses on theoretical computer science and dis-
crete mathematics. He is also a full professor at the
Mathematics Institute of the Budapest University of
Technology and Economics. He received his PhD in
1987 from the Eötvös Loránd University Budapest.
His research interests include efficient algorithms,
complexity of computation, algebra, and discrete

mathematics. He is a member of the Hungarian Academy of Sciences and a
recipient of the Count Széchenyi Prize.

