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Abstract—Fast reroute (FRR) mechanisms that can instantly
handle network failures in the data plane are gaining attention in
packet-switched networks. In FRR no notification messages are
required as the nodes adjacent to the failure are prepared with a
routing table such that the packets are re-routed only based on
local information. However, designing the routing algorithm for
FRR is challenging because the number of possible sets of failed
network links and nodes can be extremely high, while the algo-
rithm should keep track of which nodes are aware of the failure.
In this paper, we propose a generic algorithmic framework that
combines the benefits of Integer Linear Programming (ILP) and
an effective approach from graph theory related to constructive
graph characterization of k-connected graphs, i.e., edge splitting-
off. We illustrate these benefits through arborescence design for
FRR and show that (i) due to the ILP we have great flexibility in
defining the routing problem, while (ii) the problem can still be
solved very fast. We demonstrate through simulations that our
framework outperforms state-of-the-art FRR mechanisms and
provides better resilience with shorter paths in the arborescences.

Index Terms—fast reroute, routing arborescences, edge
splitting-off, survivable routing

I. INTRODUCTION

Traditional communication networks were prepared to sur-
vive through single link and node failures as the chance of
having two independent failure events within a short period
is very small [1]. Accordingly, it is a common assumption
that there is sufficient time to restore a failure before the
next one occurs. However, with the increasing complexity of
multi-layer networks [2], the effect of a failure event in the
physical infrastructure often manifests as multiple simultane-
ous link and node failures in upper layers [3]. As Internet
service providers often lease the network from a physical
infrastructure provider [4], [5], the correlation between failures
might be completely hidden. Thus, they have to prepare their
IP networks for an excessive number of simultaneous failures.
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Dynamic routing table recomputation immediately after fail-
ures might be harmful to critical connections [6] as the control
plane struggles to provide strict timing requirements [7], [8].
Therefore, fast reroute (FRR) mechanisms [8]–[11] were pro-
posed, which provide failover paths with pre-computed routing
tables towards each root node in the data plane against as many
failures as possible, purely based on local failure information.
Among several FRR implementations, deterministic methods
built on spanning trees (or arborescences) are usually proposed
for intra-domain IP networks, where the topology is known
and well connected [8], [11]. Spanning arborescences can
go beyond single failure resilience and exploit the higher
connectivity of the networks towards “perfect resilience”, i.e.,
source node s can reach root node t as long as the failure does
not isolate s from t. Unfortunately, perfect resilience is not
always achievable with pre-computed static rules [12], [13].

Spanning arborescence-based methods work well in ho-
mogeneous graphs, where the number of link-disjoint paths
between an arbitrary source s and root t is close to the global
connectivity1 k of the network. However, in heterogeneous
graphs where nodes in dense subgraphs have significantly
more link-disjoint paths towards t than k, spanning arbores-
cences cannot fully explore the potential of such additional
redundancy. Although methods using partial arborescences
in these dense components exist [8], it is not clear how
the subpaths can be efficiently “glued together” into static
routing tables. Therefore, our goal is to design an efficient
arborescence-based FRR algorithm that provides resilience
by surviving at least r(s, t) − 1 link (arc) failures between
source s and root t if the local connectivity (the number
of link-disjoint paths between s and t) is r(s, t), even if
the global connectivity, i.e., the minimum local connectivity
between every s and t pair of the graph is very small, e.g.,
2 = k < r(s, t).

In this paper, we propose a generic algorithmic framework
that is applicable to several routing table computation prob-
lems for different local connectivity-based FRR implementa-
tions either using arborescences [8], [11], allowing randomized
forwarding, or even applying packet header rewrite [9], [10].

1Minimum number of links (nodes) whose removal from the network will
separate the remaining nodes into at least two isolated components.
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Fig. 1. Degree and local connectivity preserving graph sequence for the 17-node German backbone network [14]. The blue node is the root, the black larger
nodes are the new nodes. We draw the edges involved in the transformation between Gi−1 and Gi either with the same color or the same line style, e.g.,
the two red edges of G1 correspond to the red edges (solid and dashed) of G2, while the dashed (red) edges of G2 correspond to the dashed edges of G3.

In the absence of a generic algorithmic framework that can
handle complex cases with a massive number of simultaneous
failures, arborescences have been used either for problems
involving global connectivity, for networks with even degree
nodes, for routing on colored trees and directed acyclic
graphs, or as a black box approach. The high-level idea of
our framework is integrating Integer Linear Program (ILP)
formulations with a graph theoretical approach namely edge
splitting-off – which can be used to prove various properties of
graphs with given global [15] and local [16] connectivity, often
called k-connected graph characterization [17] – for achieving
the desired efficiency and flexibility. Note that edge splitting-
off was already successfully applied for different network
design problems [18], [19], including Edmonds’ arborescence
construction [20], [21].

Our proposed framework handles the complexity of FRR
with simultaneous failures and consists of two stages:

(i) General graph decomposition: We generate a graph
sequence Gl, Gl−1, . . . , G2, G1 starting with Gl = G
(i.e., the network topology graph), where in each iteration
we apply one of the following two simple rules:

(i) Remove an even degree node other than the root
node t by splitting off its edges according to [16];

(ii) Remove two adjacent odd degree nodes other than
the root node t by splitting off their edges with a
novel approach proposed in Section II-C.

(ii) Arborescence construction for FRR: Use graph sequence
G1, G2, . . . , Gl−1, Gl = G to iteratively build arbores-
cences by solving an ILP locally for the new node(s) and
edges in each step.

Fig. 1 shows an example of such graph sequence G1, . . . , Gl

for a real-world network. The graph Gi is one or two nodes
larger than Gi−1, and the edges of Gi−1 and Gi differ only
around the new node(s). The degree of the nodes both in Gi

and Gi−1 does not change as we step from i to i− 1 and the
connectivity between pairs of such nodes does not decrease,
i.e., ri−1(s, t) ≥ ri(s, t) for each Gi which we call local

connectivity preserving property. Using this graph sequence,
we can build up arborescences and the routing tables for FRR
by solving the small trivial graph G1, and in each step for
Gi+1 we compute a routing table with an ILP only for the
new node(s), by simply copying the routing tables for the
other nodes of Gi without any modifications. In Fig. 1 the
farthest node(s) from root t were removed in each step of the
decomposition; thus, we expect that the reverse graph sequence
will mimic that the arborescences are “growing” from the root.

The rest of the paper is organized as follows. Section II
contains our general degree and local connectivity preserving
graph decomposition algorithm based on edge splitting-off and
our novel approach to handle odd degree nodes. The resulting
(reverse) graph sequence is applied for routing table design
for FRR in Section III, where our general ILP formulation for
growing arborescences is presented. Section IV provides the
runtime analysis of the framework. Finally, Section V contains
our simulations results while Section VI concludes our work.

II. CONSTRUCTING GRAPH SEQUENCES

The main idea of our framework is to leverage the benefits
of a graph sequence that can be efficiently generated and flex-
ible enough to be used for resilient routing table computation.
Here we formulate the requirements of the graph sequence,
which keep the subsequent changes local and thus divides the
overall complex design problem into simple local decisions.
In Section II-A we formally introduce edge splitting-off,
summarize the corresponding results from the literature and
define the removal of even degree nodes. Armed with these
results, we define a degree and local connectivity preserving
(DLCP) graph sequence and prove that it always exists in 2-
connected graphs in Section II-B. In Section II-C we propose a
novel degree and local connectivity preserving edge splitting-
off operation for two odd degree nodes, which enables us to
generate DLCP graph sequences in Section II-D.



3

A. Degree and Connectivity Preserving Edge Splitting-Off

We denote an undirected graph as G = (V,E), and use the
notation d(v) for the degree of node v ∈ V , and r(s, t) for
the edge-connectivity between s, t ∈ V . The edge-connectivity
between s, t ∈ V is the maximum number of edge-disjoint
paths connecting s and t.

Definition 1: The edge splitting-off operation in undirected
graphs is that incident edges (x, u) and (x, v) are removed
while edge (u, v) is added.

The edge splitting-off operation makes a little change in
the graph [22], [23], all the nodes have the same nodal
degree apart from the node x. Note that it may add a parallel
edge to the graph. We are interested in edge splitting-off
that not only preserves the global edge-connectivity k of the
graph [24, Problem 6.53] but also does not change the local
edge-connectivity between any pair of nodes (apart from x).
We will use the following related theorem.

Theorem 1 (Mader [16]): Let G = (V,E) be an undirected
graph that has at least r(s, t) ≥ 2 edge-disjoint paths between
s and t for all s, t ∈ V \ {x}, and x is not incident to a cut-
edge. If d(x) ̸= 3, then some edge pair (x, u), (x, v) can be
split off so that in the resulting graph there are still at least
r(s, t) edge-disjoint paths between s and t, ∀s, t ∈ V \ {x}.

In our case, we would like to remove a node; thus, we split
off all of its edges. As a resilient topology G is at least 2-
connected, there are no cutting edges in the graph; thus, if the
node has an even degree, then by the above theorem, this can
always be done2. For example, in Fig. 2a a possible way is
shown to remove node vi from Gi by splitting off its edges
while the degree and local connectivity of the remaining nodes
in Gi−1 are preserved. Unfortunately, based on Theorem 1
for odd degree nodes, we can split off the edges only until
d(x) = 3. Therefore, node x with an odd degree cannot be
removed with edge splitting-off operations. This is a barrier
to the practical applicability of this powerful theoretical result,
as network topologies often have nodes with odd degrees, too.

B. Degree and Local Connectivity Preserving Graph Sequence

We formally define DLCP graph sequences and prove that
such a sequence always exists in 2-connected graphs.

Definition 2: A graph sequence G1, G2, . . . , Gl−1, Gl is
degree and local connectivity preserving (DLCP) if it satisfies
the following properties:

1) First graph G1 = (V1, E1) has two or three nodes, i.e.,
|V1| = 2 or |V1| = 3,

2) Subsequent graphs ∀i = 2, . . . , l : Gi = (Vi, Ei) is
constructed from Gi−1 = (Vi−1, Ei−1):

• Add one or two nodes: either Vi = Vi−1 ∪ {vi},
where vi denotes the new node, or Vi = Vi−1 ∪
{vi, wi}, where vi and wi denote the new nodes.

2Frank proved in [25] a slight strengthening of Theorem 1, that the incident
edges of node x with d(x) ̸= 3 can be partitioned into ⌊d(x)/2⌋ disjoint
splittable pairs. As a direct corollary, by splitting-off these edge pairs of
an even degree node x we get a graph G′ = (V ′, E′) where V ′ =
V \{x}, E′ = E \{(x, u1), (x, v1), . . . , (x, u⌊d(x)/2⌋), (x, v⌊d(x)/2⌋)}∪
{(u1, v1), . . . (u⌊d(x)/2⌋, v⌊d(x)/2⌋)} with ∀s, t ∈ V ′ : r′(s, t) ≥ r(s, t)
and ∀v ∈ V ′ : d′(v) = d(v), i.e., edge splitting-off is a degree-preserving
and local edge-connectivity preserving operation.

vavb

vc vd

Gi−1

vavb

vc vd

vi Gi

(a) The rule removing a single node vi with even degree

vavb

vc vd

Gi−1

vavb

vc vd

vi

wi

Gi

(b) The rule removing two nodes vi and wi, both with odd degree

Fig. 2. Degree preserving edge splitting-off operations. The gray area contains
the common edges, only the edges around the removed node(s) are changed.

• Add common, split-off and tear-off edges: every
edge (u, v) ∈ Ei−1 is either part of (u, v) ∈ Ei

(called common edges), or (u, v) is replaced by two
edges which are incident with one of the new nodes,
formally (z, u) ∈ Ei and (z′, v) ∈ Ei, where z ∈
{vi, wi} and z′ ∈ {vi, wi}. If z = z′ we call it split-
off edge; otherwise, it is a tear-off edge. The number
of tear-off edges in Gi−1 is denoted by χi−1.

• Add between edges: if two new nodes vi and wi

are added to Gi, then they are connected by a new
between edge (vi, wi) as well. If χi−1 ≥ 3, then there
might be multiple new parallel (vi, wi) edges added
to Gi, but at most χi−1−1 (see proof of Theorem 2).

• Preserve connectivity: for any pair of nodes s, t ∈
Vi−1 the local connectivity is ri−1(s, t) ≥ ri(s, t).

3) Last graph Gl = (V,E) = G is the network topology.
The graphs in Fig. 1 form a DLCP graph sequence. Note

that if a single node vi is added, it will have an even degree. If
two nodes are added, they will be adjacent, and both have odd
degrees. Furthermore, if vi and wi are adjacent odd nodes, the
number of edges incident with either vi or wi (but not both)
is always even3.

Next, we show that a DLCP graph sequence always exists
in 2-connected network topologies:

Theorem 2: For any 2-connected undirected graph G, a
DLCP graph sequence G1, . . . , Gl = G always exists.

Proof: We construct the graph sequence in reverse order
Gl, . . . , G1 applying one of the following two operations in
each iteration, see Fig. 2:

1) Remove even degree node vi of Gi: we can apply
Theorem 1 and split off every edge incident with vi
such that the local connectivity between every node pair
s, t ∈ V \ {vi} does not decrease. Note that G is 2-
connected; thus, there is no cutting edge in the graph.

2) Remove two adjacent odd degree nodes vi and wi of Gi:
we can add a single edge (vi, wi) which obviously does
not decrease the local connectivity between any node pair
s, t ∈ V \{vi}. Now there are at least two edges between

3The sum of two odd degrees is even, and we need to subtract two times
the number of edges between vi and wi, which is even again.
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vi and wi, and both node vi and wi has even degree. Thus,
we can apply Theorem 1 for each, and split-off every
adjacent edge such that the local connectivity between
every node pair s, t ∈ V \ {vi, wi} does not decrease.

In Case 2) there will be χi−1 tear-off edges in Gi. Each
tear-off edge is the result of two splitting-off operations: first,
splitting-off an edge incident to vi and an edge (vi, wi), and
second, splitting-off this edge and an edge incident to wi, e.g.,
in Fig. 2b (va, vc) is a tear-off edge, because it is the result of
splitting off edges (vi, va) and (wi, vc) in Gi. Hence, χi−1−1
is at most the number of parallel edges (vi, wi) ∈ Ei of Gi.

Note that the adjacency requirement of odd degree nodes is
not a serious restriction, as even degree nodes can be removed
until two odd nodes become adjacent.

Theorem 2 states that a DLCP graph sequence always exists;
in the next two subsections, we investigate how to find one.
Our first observation is that a huge number of different
DLCP graph sequences exist, and we can find a suitable
one for our needs efficiently. Note that the proof of the above
theorem showed that any even degree node could be removed,
and also any two adjacent odd degree nodes can be removed
as well. Thus, we have great freedom in selecting the order
of nodes during the removal, see Section II-D. As there are
multiple ways the incident edges can be split off to remove
node(s), we first discuss how suitable pairs can be found in
Section II-C.

C. Heuristic Approach to Select Edge Pairs for Splitting-Off

Let B denote the edges incident with vi (or wi, but not
both), which we call border edges. If we remove a single
node, each perfect matching among border edges is called a
candidate set of edges for splitting off, which is valid if it
preserves the local connectivity. If there are no parallel edges
in B, then the number of perfect matchings among them equals
a double factorial, i.e., (2b)!

2bb!
, where b = |B|

2 (remember that
|B| is even). In typical network topologies, the nodal degree
and thus b is small and the number of candidates is reasonable:

b 1 2 3 4 5
(2b)!
2bb!

1 3 15 105 945
(1)

When we remove two nodes, not all perfect matchings are
candidates, only those where the number of tear-off edges is
at most the number of parallel edges (vi, wi) ∈ Ei plus one. If
there are parallel edges among the border edges, the number
of candidates will be even less. Overall, it is a reasonable
assumption that we can list the candidates and evaluate their
validity. Once we have valid candidates, we can pick the most
suitable one for our needs.

Note that there is a polynomial time algorithm [23] to find
splittable edge pairs based on Gomory-Hu trees [26]. For
example, if a node has 6 adjacent nodes, v1, . . . , v6, then 3
new edges must be added, and according to Table (1) the
number of such candidates is 15. Although intuitively there
are not many splittable pairs that maintain the DLCP property,
we demonstrate that surprisingly a significant amount of edge
pairs are valid. For example, if a minimum cut separates them
into two sets, say v1, v2, v3 and v4, v5, v6, then it is sufficient

that the 3 new edges are between the two sides of this cut. In
our example it would result in six valid candidates:

(v1, v4), (v2, v5), (v3, v6) (v1, v4), (v2, v6), (v3, v5)

(v1, v5), (v2, v4), (v3, v6) (v1, v5), (v2, v6), (v3, v4)

(v1, v6), (v2, v4), (v3, v5) (v1, v6), (v2, v5), (v3, v4)

In our implementation, we generate all the candidate split-
table edge pairs and filter out the invalid ones, i.e., those that
do not preserve the local connectivity. For each valid candidate
set of edges for splitting off, denoted by Espl

i−1 = Ei−1 \ Ei,
we evaluate the following metrics:

α(Espl
i−1) The number of edges that would become parallel

in the following graph, i.e., among Ei ∪ Espl
i−1.

β(Espl
i−1) The number of loop edges among Espl

i−1.
γ(Espl

i−1) The total Euclidean distance of the new edges.
Here we assume the node coordinates are given.

χ(Espl
i−1) The number of tear-off edges. If a single node is

added, it is 0.

Finally, select the Espl
i−1 valid candidate set for the splitting

off whose weighted sum of the above metric is maximal. The
weights depend on heuristic design principles such as avoiding
parallel edges [18] or introducing loop edges, discussed in
Section V.

D. Constructing DLCP Graph Sequences

In Section II-C we described how to remove any node
with an even degree or two adjacent nodes with odd degrees.
According to Theorem 2, we can select any single even
degree node or any adjacent odd node pairs for removal.
Here we propose heuristic approaches to select the node(s)
to be removed in each iteration to generate the DLCP graph
sequence Gl, . . . , G1, which in the reverse order will help us
to build up the best routing tables towards a root node t. We
prefer that if the closed area around t is already built, then we
do not touch it anymore, but instead, we add nodes only to its
periphery. In other words, in each step, we try to remove the
node or node pair that is farthest from the root t.

Let δ(v) denote the hop distance of node v from root
t. Let vevenmax be a node with an even degree that has the
maximum hop distance from t. We define the hop distance
of an adjacent node pair as the average hop distance of both
terminal nodes. Let (voddmax, w

odd
max) be a pair of odd adjacent

node pair with maximum average hop distance from t. We
propose the following heuristic approaches:

• Grow removes single node vevenmax in the next step if

δ(vevenmax ) ≥ min{δ(voddmax), δ(w
odd
max)}, (2)

otherwise it removes the node pair (voddmax, w
odd
max). The

root is never removed, and the algorithm terminates when
the graph has three (or two) nodes; see Fig. 1.

• Even-first selects the even nodes first with descending
hop distance to the root, and when there are only odd
nodes remaining (apart from the root), it selects the odd
node pairs with descending hop distance to the root.
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(a) Adding a single node with even degree
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(b) Adding two nodes both with odd degree

Fig. 3. FRR arborescence construction in G1, . . . , Gl. Gray arcs are the new
arcs, while the head of the modified arcs are changed towards vi (and wi).

• Advanced divides the nodes into sets based on local
connectivity and starting with r(s, t) = 2 it applies even-
first for the sets in increasing order. However, it does not
remove odd pairs, which would produce the maximum
number of tear-off edges4 until another choice exists.

• As a baseline, we evaluate a so-called random approach,
which selects a random node for removal. If the selected
node has an odd degree, then a second node is chosen
randomly among its neighbors with an odd degree if such
exists, otherwise another node is selected randomly.

III. ROUTING ARBORESCENCE CONSTRUCTION

In this section, we illustrate the applicability of our DLCP
graph sequence in arborescence (i.e., routing table) construc-
tion for FRR. As FRR routing table computation can be
performed independently for each root, the task is to find a set
of directed trees, called arborescences, such that each tree is
directed towards a given root t. Hence, we consider the edges
of G = (V,E) as two directed arcs, one in each direction.
Arborescences in FRR usually span all nodes of the graph,
but there might be partial directed trees, too [8]. In any case,
∀v ̸= t let T1, . . . , Tlv denote the arborescences in which v
can reach the root. Let Pi denote the unique path from v to the
root in tree Ti, for i = 1, . . . , lv . The task in FRR arborescence
routing is to design a set of arborescences, such that for each
node v the corresponding paths P1, . . . , Plv are pairwise arc-
disjoint (thus, the arborescences are arc-disjoint). Although
it is easy to verify if a set of arborescences meet the arc-
disjointness property, it is hard to design a generic algorithm
that computes such arborescences. We will demonstrate that
our DLCP graph sequence can simplify this process.

A. Arborescence-Based Fast Reroute

Fast reroute mechanisms for destination based hop-by-hop
routing rely only on local information such as the destination
(and source) of the packet, in-port the packet arrived, and set
of failed adjacent links; thus, they provide an instantaneous
reaction to failures without control plane messages [11].

4It is removed only if χi−1 ≤ the number of parallel edges (vi, wi) ∈ Ei.

Algorithm 1: Iterative Arborescence Construction
Input: DLCP graph sequence G1, . . . , Gl = G, a root t
Output: Routing arborescences T1, T2, . . . T|C| for graph G

1 Assign unique color to each in-arc of t in G1

2 If |V1| = 3, then extend the trees for arcs between the two
nodes V1 \ {t}

3 for i = 2, 3, . . . , l do
4 Transfer colors from Ei−1 to Ei

5 if single node vi is added to Gi−1 then
6 Color arcs Enew

i by solving ILP of Section III-C

7 else
8 Color arcs Enew

i by solving ILP of Section III-D

Therefore, routers not adjacent to a failure will forward packets
as normal, as they have no information about the failure.
It was already demonstrated that given a k-edge-connected
graph, k-arc-disjoint spanning arborescences rooted at node t
can be found efficiently by splitting-off edges by preserving
global connectivity [20], [21], and k − 1 arc-failures can
be tolerated with static routing [9], i.e., with pre-configured
routing tables and without changing packet headers. The static
routing follows a global circular permutation of T1, . . . , Tk,
where the packet follows the same Ti as it came from unless
the next-hop out-arc is failed. In this case, the packet is
forwarded along Ti+1 according to the global order. As the
arborescences are arc-disjoint, the in-port uniquely identifies
Ti.

Note that spanning arborescences [9], [21] cannot exploit
the available edges in densely connected subgraphs of the
topology, and thus cannot provide r(v, t) − 1 arc-failure
resilience in worst-case ∀v ̸= t [8], [12], [13]. In order
to give resilience guarantees beyond the network’s global
connectivity in these subgraphs, in [8], several novel fast
rerouting algorithms were proposed which extend and combine
multiple arborescences to overcome the limitations of spanning
trees. The best algorithm is called DAG-FRR, composed of two
steps called Part 1 and 2. In Part 1 as many rooted (partial)
arborescences are built greedily as the root’s nodal degree.
In Part 2, as many unused edges are added to these trees as
possible to form DAGs. We will use the partial arborescences
in Part 1 of DAG-FRR as a benchmark in Section V.

B. Arborescence Construction Algorithm

In the directed representation of the graph sequence
G1, . . . , Gl the inverse split-off or tear-off transformation can
be handled by changing the head of some arcs towards the new
node(s) vi (and wi), called modified arcs Emdf

i , and adding
several new arcs Enew

i with their tail at the new node(s), see
Fig. 3. Hence, we can define a one-to-one mapping of the arcs
of Gi−1 to the common and modified arcs of Gi.

As Algorithm 1 shows, the proposed arborescence con-
struction heuristic iterates through a DLCP graph sequence
G1, . . . Gl. The first graph G1 has 2 or 3 nodes, e.g., the root
t and nodes v1 and v2 in Fig 4 (arborescences are denoted with
a different color). The construction of the solution to such a
small graph is simple. For example, for the 3-node network,
we color each in-arc of the root differently. In such a way,
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G1 G2 G3 G4 G5 G6 G7

G8 G9 G10 G11 G12 G13

Fig. 4. Four arborescences are built up iteratively through graph sequence shown on Fig. 1. As the arborescences are arc-disjoint, a unique color is used to
denote the arcs of each Ti, while non-arborescence arcs are colored black (dotted).

each arborescence is composed of one arc. Next, we assign
colors to the arcs between v1 and v2 such that they extend
the arborescences to have two arcs, respectively. Finally, we
assign a unique color to each loop edge of the root (in both
directions). In Step 3 we iterate through G2, . . . Gl, and in
the ith step, we take the arborescences of Gi−1 and map their
common and modified edges to Gi, i.e., use the same color for
them. Finally, for the new arcs Enew

i of vi (and wi) we solve
an ILP which extends the previous arborescences if possible,
resulting in spanning and partial arborescences in Gi.

In this way, with the application of the DLCP graph se-
quence, we solved the complex FRR routing table computation
problem by dealing with small local ILPs around the new
nodes.

C. Integer Linear Program Formulation: Adding a Node

This section defines the ILP for adding a single node vi.
The task is to assign colors to the new arcs Enew

i which are
the out-arcs of node vi. The variables are:

xc
a =

{
1 if arc a has color c
0 otherwise.

∀c ∈ C,∀a ∈ Enew
i

Here C is the set of colors (arborescences). We also have a
variable for each color:

yc =

{
1 if vi is involved in arborescence c

0 otherwise.
∀c ∈ C

Constraint (3) says that each new arc has at most one color.∑
c∈C

xc
a ≤ 1 ∀a ∈ Enew

i . (3)

Constraint (4) ensures that for each color c there is an out-
arc from vi only if node vi is involved in arborescence c.∑

a∈Enew
i

xc
a = yc ∀c ∈ C. (4)

Next, we ensure there are no loops over the same edge. The
colors of the in-arcs of vi are inherited (known) from Gi−1:

xc
vi→v = 0 ∀(vi → v) ∈ Enew

i , if v → vi has color c. (5)

Moreover, we ensure that there is no loop over multiple arcs
either. In other words, if v is upstream of vi in arborescence
c then arc vi → v should not be colored to c. Here upstream
means there is a directed path in tree c from v to vi, which
we denote by v

c
⇝ vi. Although the tree in color c is inherited

from Gi−1, it has no out-arcs at node vi; thus, it is currently
not necessarily a valid rooted tree at t. Formally,

xc
vi→v = 0 ∀(vi → v) ∈ Enew

i , if v c
⇝ vi . (6)

We also need to ensure that every arborescence reaches the
root; thus, for each color c, we need to avoid forwarding a
packet to a node with no outgoing arc in color c. Formally,

xc
vi→v = 0 ∀(vi → v) ∈ Enew

i ,∀c ∈ C,
if v ̸= t and node v has no out-arc in color c. (7)

Note that to guarantee that an arborescence is a t rooted tree,
we need to ensure that every node involved in it (except t) has
an out-arc and there are no loops.

Finally, the objective function is to maximize the weighted
sum of the colors we can assign to the new node:

max
∑
∀c∈C

ωcy
c . (8)

We use weight ωc = 1 for color c if node vi has no in-arc of
color c; otherwise, ωc is the number of upstream nodes of vi in
color c plus 1. The intuition behind this is that the importance
of having a color c path from node vi is the number of nodes
it will be used by. The number of trees cannot be more than
the local connectivity. We say there was some loss in the ith

step if the ILP could not extend one (or multiple) trees for the
new nodes. In this case, the weighting defines the preference
among the trees. Roughly speaking, weighting defines that if
we have a loss, then what is less painful.
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Fig. 5. The constraints of the ILP to avoid loops when two nodes are added.

D. Integer Linear Program Formulation: Adding Two Nodes

In this section, we formulate the ILP for adding two nodes
vi and wi. We generate the constraints of the ILP for adding
both nodes vi and wi just like adding them as single nodes
described in the previous section, i.e., Constraints (3)–(7). The
variables xc

a corresponding to edges are the same for both
nodes, while the distinct variables for color are denoted as yc

and ŷc for vi and wi, respectively. We merge the two ILPs by
summing up their objectives in Eq. (8), formally:

max
∑
∀c∈C

(ωcy
c + ωcŷ

c) . (9)

Furthermore, to complete the ILP, we need to add some
extra constraints to avoid loops that traverse both nodes vi and
wi. When adding two nodes, Constraint (6) becomes weaker
because of the upstream condition. Roughly speaking, the tree
in color c may fall into more parts than when a single node
is added because initially it has no out-arcs at two nodes vi
and wi. In other words, node va may not be upstream to vi
in the trees inherited from Gi−1; however, once we add the
out-arcs of wi, it may become upstream, causing a loop. Fig.
5 illustrates all possible loops we must avoid. First, we ensure
no loop in any tree along the arcs between the two new nodes.
Note that the two new nodes might be connected with parallel
edges. In this case, we need to add the following constraint
for every combination of arc pairs with opposite directions.

xc

vi
m−→wi

+ xc

wi
m̂−→vi

≤ 1 ∀c ∈ C,

∀m ∈ Mvi,wi ,∀m̂ ∈ Mwi,vi . (10)

Here, Mvi,wi
denotes the set of parallel arcs from vi to wi,

while m and m̂ denotes a given instance. We add a similar
constraint for larger loops that traverse both vi and wi:

xc

vi
m−→vb

+ xc

wi
m̂−→vd

≤ 1 ∀c ∈ C, if vb
c
⇝ wi and

if vd
c
⇝ vi,∀m ∈ Mvi,vb ,∀m̂ ∈ Mwi,vd . (11)

Constraint (12) is needed to avoid loops traversing an arc from
vi to wi:

xc

vi
m−→wi

+ xc

wi
m̂−→vd

≤ 1 ∀c ∈ C, if vd
c
⇝ vi,

∀m ∈ Mvi,wi ,∀m̂ ∈ Mwi,vd . (12)

We also add this in the opposite direction to avoid loops
traversing an arc from wi to vi:

xc

wi
m̂−→vi

+ xc

vi
m−→vb

≤ 1 ∀c ∈ C, if vb
c
⇝ wi,

∀m̂ ∈ Mwi,vi ,∀m ∈ Mvi,vb . (13)

We need to ensure that the arc between wi and vi does not
take a color that has no arborescence from vi:

xc

wi
m−→vi

≤ yc ∀c ∈ C,∀m ∈ Mwi,vi , (14)

and the same constraint in the opposite direction is:

xc

vi
m−→wi

≤ ŷc ∀c ∈ C,∀m ∈ Mvi,wi
. (15)

Finally, we need to ensure that if there is an arc in c from
wi to v such that v is upstream to vi in c then we have a
valid path in color c from node wi only if vi is involved in
arborescence c. This can be formulated in both directions as:

yc ≥ xc

wi
m̂−→v

∀c ∈ C, if v c
⇝ vi,∀m̂ ∈ Mwi,v, (16)

ŷc ≥ xc

vi
m−→v

∀c ∈ C, if v c
⇝ wi,∀m ∈ Mvi,v . (17)

E. Path Length

To illustrate the flexibility of the proposed algorithmic
framework, in this section we show how to extend the ILP
with additional requirements, e.g., to decrease the lengths of
the paths Pi. We extend the objective function to minimize
the length of the paths in each tree as follows:

max
∑
∀c∈C

ωcy
c−

∑
∀c∈C

∑
∀vi→v∈Enew

i

hc
vi→v

100
·xc

vi→v . (18)

where hc
vi→v is a constant and denotes the hop length of the

path in arborescence c from node v, if such exists, otherwise,
it is the maximal path length in Gi−1. We have divided the
path lengths by 100 because providing r(v, t)−1 resilience in
worst-case is our primary objective in the optimization, and
we assumed that the maximum length is smaller than 100.

IV. SCALABILITY OF THE PROPOSED ALGORITHMS

In this section, we briefly investigate the running time of
the proposed algorithms. We assume the maximum degree in
graph G, denoted ∆, is a constant value that does not depend
on the number of nodes n = |V |. Note that the number of
candidate edge sets in Eq. (1) has a bound of (2∆)∆ because
the number of border edges is at most |Enew

i | ≤ 2 · ∆. We
call an algorithm scalable if its expected running time is a
polynomial function of n for constant ∆.

We run Gomory-Hu algorithm to find the maximum flows
between every pair of nodes, which has an expected running
time Õ(m · rmax) [27], where rmax is the maximum local
connectivity, that is Õ(n · ∆2

max) because rmax ≤ ∆ and
|E| = m ≤ n ·∆. Computing the hop distance of node v and
root t can be done in linear time O(n ·∆) with a Breadth First
Search (BFS) algorithm. The number of graphs is l ≤ n; thus
the expected running time to construct DLCP graph sequence
is at most O(poly(n,∆) · (2∆)∆).

To compute the routing arborescences with Alg. 1 we need
to solve l ILPs, where each ILP has |C|+ |C| · |Enew

i | ≤ ∆+
4∆2 ≤ 5∆2 binary variables. To formulate the ILP we need
to deal with the paths in the arborescences from the border
nodes in each color, that is |C| · |Enew

i | ≤ 2∆2 paths in total.
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TABLE I
STATISTICS OF THE INPUT NETWORK TOPOLOGIES, SELECTING THE EDGE PAIRS FOR SPLITTING-OFF DESCRIBED IN SECTION II-C OF THE DLCP

GRAPH SEQUENCE GENERATOR ALGORITHM, THE RUN TIMES, AND THE COVERAGE OF THE ROUTING ARBORESCENCES.

Network topologies DLCP graph sequences runtime Arborescence coverage [%]
IterativeILP (DLCP + Alg. 1) Partial

|Vi\ borders candidates valid α β χ better DLCP Alg. 1 grow even-first random adv. arb.
name |V | |E| Vi−1| avg max avg max avg max avg max avg max avg max [%] [sec] [sec] post post post [8]
German 17 26 1.2 3 6 1.4 8 1.2 4 0.6 2 0.2 1 0.2 1 1.8 0.074 0.16 99.9 99.9 100 100 98.3 99.4 100 100
ARPA 21 25 1.1 2.4 4 1.3 4 1.2 4 0.1 1 0.1 1 0.3 2 0 0.13 0.16 99.1 99.4 99.7 99.8 99.9 99.9 100 97.6
EU 22 45 1.2 4.4 10 2.9 21 2.1 14 1.2 4 0.1 2 0.7 4 13.4 0.19 0.23 99.3 99.7 98.7 99.5 98.0 99.4 99.9 98.3
USA 26 42 1.3 3.4 6 1.9 5 1.3 3 0.6 2 0.1 2 0.4 2 16.6 0.25 0.22 96.6 99.3 99.7 99.8 90.8 96.7 100 99.0
EU (Nobel) 28 41 1.4 3.2 6 2.2 8 1.5 4 0.4 2 0.1 1 0.6 2 5.2 0.29 0.23 98.5 99.5 98.6 98.6 91.1 92.0 100 99.9
Italy 33 56 1.2 3.5 10 2.8 240 1.5 36 1.4 5 0.1 2 0.9 4 0.7 0.48 0.26 99.3 99.3 99.8 99.9 97.3 98.6 100 99.2
EU (COST266) 37 57 1.4 3.4 6 2.5 18 1.6 10 0.4 2 0.1 2 0.7 2 7.1 0.71 0.29 97.8 98.5 98.6 98.6 96.0 98.5 100 97.0
N.-America 39 61 1.2 3.4 6 2.3 18 1.5 7 0.4 2 0.1 2 0.5 2 3.4 0.69 0.30 98.8 99.3 99.7 99.8 92.7 96.6 100 98.0
US (NFSNet) 79 108 1.3 2.9 6 2.2 18 1.6 10 0.2 2 0.1 1 0.6 3 5.4 5.03 0.67 95.3 96.4 98.5 98.5 91.7 96.6 100 92.6

We need to perform membership queries for each or these
paths (whether it traverses the modified arc or not). We can use
Bloom filters as a probabilistic data structure for constant time
membership testing with the possibility of false positives. We
can solve the ILP in O(poly(n,∆) ·25∆2

) steps because every
variable is binary. Thus, the overall complexity for the DLCP
graph sequence generation and Alg. 1 is O(poly(n,∆) ·25∆2

).

V. EVALUATION

In this section, we present numerical results that demon-
strate the use of the proposed framework on some real network
topologies. We investigate the DLCP graph sequence generator
algorithm (proposed in Section II) in Section V-A, and we
focus on Algorithm 1 for constructing arc-disjoint routing
arborescences (introduced in Section III) in Section V-B. In
the evaluation, we have investigated 9 network topologies [28],
[29], see the first three columns of Table I for the network
names and the number of nodes and edges.

A. DLCP Graph Sequence Generator Heuristics

First, we focus on the heuristic approach in selecting the
edge pairs for splitting-off described in Section II-C. The
results are shown in the middle part of Table I, which were
generated with the node selection approach “grow” according
to Eq. (2). The average number of removed nodes (|Vi\Vi−1|)
depends on the number of odd and even degree nodes in
the input topology. These backbone network topologies are
not very dense; thus, the number of border edges is 3.2 on
average and, at most 10 (it is when removing two nodes).
The average number of candidate split-off edge sets among
these border edges is 2.2, and the maximum was 240. The
average number of valid ones among these candidates is 1.5,
and the maximum is 36. The heuristic approaches described in
Section II-C selects one according to some parameters such as
the number of parallel edges (α), which was 0.6 on average
and a maximum of 5, the number of loop edges (β) which
was 0.1 on average and a maximum of 2, and the number of
tear-off edges (χ) which was 0.6 on average and maximum
4. Loop edges are only needed to keep the nodal degree, but
they have no role in the network connectivity. In other words,
a loop edge means we can erase an edge from the network,
which will not change the local connectivity. We also evaluated
the number of valid candidates with at least a node pair with

increased local connectivity r(s, t) (“better” %), which only
happened when we removed two nodes.

We also added the running time of the DLCP graph se-
quence generator algorithm to Table I, which was measured
on a commodity laptop with a Core i5 CPU at 1.8 GHz
with 4 GB of RAM running the Python code, where the
graph algorithms were implemented in networkx. The Alg. 1
column corresponds to the total runtime of the arborescence
construction. The results back up the runtime analysis in
Section IV, demonstrating that the algorithms scale well with
increasing network size. We refer to the DLCP graph sequence
generation and Alg. 1 together as IterativeILP.

Finally, we investigated the four heuristic approaches de-
scribed in Section II-D in selecting the next node or node pair
for removal. Fig. 6 shows the number of nodes removed in
each step. We take the graph sequence G1, . . . , Gl = G and
evaluate |Vi\Vi−1|. As expected, even-first removes the single
nodes first, then the odd node pairs, while others provide a
relatively balanced way of removing single or two nodes.

B. Evaluating the Arborescence Construction Algorithm

Our main performance metric for arborescences is coverage,
which is 100% for a node s ̸= t if there are r(s, t) arbores-
cences, and thus there are r(s, t) arc-disjoint paths from s
to the root t which provide r(s, t) − 1 resilience in worst-
case. Hence, 100% coverage for graph G is

∑
∀s∈V \{t} r(s, t),

while it is lower if some nodes have fewer trees available.
In our evaluation the DLCP graph sequence generator

selects the set of split-off edges Espl
i−1 based on the following

fitness function:

−10 · α(Espl
i−1) + 100 · β(Espl

i−1)−
γ(Espl

i−1)

cavg
− 1000 · χ(Espl

i−1)

where cavg is the average physical length of the links in the
topology. However, we note that the approach is robust as we
have observed similar results with most parameter settings.

We have evaluated how IterativeILP performs compared
to the state-of-the-art partial arborescences used in Part 1
of the DAG-FRR heuristic [8] (called Partial arb. in the
figures). Part 1 of DAG-FRR generates arc-disjoint routing
arborescences with a greedy approach: starts with d(t) ar-
borescences on the in-arcs of t, and grows them greedily one
after the other until possible. For comparison, we have added
a simple post-processing step to our IterativeILP, where we
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G1 25% 50% 75% Gl = G

1
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Relative network size
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Fig. 6. The number of nodes removed in each step of the DLCP graph
sequence Gl, . . . , G1 (from right to left).

re-optimize each arborescence Ti independently by erasing
the arcs of all the other arborescences and computing the
shortest path tree towards t in the residual graph. With post-
processing, we can reduce the “loss” in coverage (i.e., when
adding node vi to the graph, the ILP is restricted only to local
modifications around vi, and thus it is not able to connect it
to r(vi, t) arborescences), discussed in the last paragraph of
Section III-C.

The last part of Table I shows the obtained results for
the proposed strategies of selecting the next node(s) for
removal. There is a significant improvement for grow, even-
first and advanced compared to the baseline approach, which
randomly selects the next node(s) for removal. Furthermore,
the advanced method has near-optimal performance. It
removes the farthest even degree node with the smallest local
connectivity and, in case of an odd node-pair, the one that
produces the fewest tear-off edges. We believe this (reverse)
order helps the IterativeILP to build trees in dense subgraphs
first; thus, no loss in coverage occurs due to previously lost
trees. Such loss inevitably happens when a high degree node
v is connected to low degree neighbors which already do
not have d(v) trees together. For the other strategies, the loss
effect of the IterativeILP can be reduced with the post-process
approach, which is beneficial to increase coverage based on
our observations. The runtime is dominated by the graph
decomposition stage (DLCP) and performs similarly for each
heuristic presented in the paper.

Fig. 7 shows the average coverage versus the path stretch
in the arborescences for all networks. The path stretch is
the hop length of each path divided by the minimum hop
distance between the end nodes of that path. For IterativeILP
minimizing path length as a secondary objective with Eq. (18),
we present two points connected with a line: the left one is
the result with, and the right one is without post-processing.
Post-processing can only increase the coverage; thus, it is
always the point with better coverage among the two. Overall,
the advanced IterativeILP outperforms all other approaches in
terms of coverage and path stretch.

VI. CONCLUSIONS

In this paper, we proposed a novel algorithmic framework
to efficiently solve the routing problems corresponding to fast
reroute. The framework is scalable and has great flexibility in
defining multiple routing problems at the same time, as we

2.4 2.6 2.8
94

96

98

100

The average stretch of the paths in the arborescences

C
ov

er
ag

e
[%

]

Even-first IterativeILP
Grow IterativeILP
Advanced IterativeILP
Random IterativeILP
Partial arb. [8]

Fig. 7. Comparison of the FRR algorithms averaged for paths between 20
randomly selected root nodes and all sources in each 9 network topologies.

strongly build on several optimization and graph-theoretical
approaches, such as constructive graph characterization of k-
connected graphs, dynamic programming, and integer linear
programming. We showed how to compute arc-disjoint routing
arborescences for FRR with the help of a degree and local-
connectivity preserving graph sequence. In the simulations, we
observed that our DLCP graph sequence generated with the
“advanced” heuristic outperformed the other FRR algorithms
and provided 100% coverage in almost all topologies with low
path stretch. We envision this flexible and efficient algorithmic
framework as a first step that can pave the way to deal
with more complex routing algorithms needed for an ideal
FRR mechanism that allows local circular permutation of the
arborescences, allows packet header rewrite, or even stores
different routing table for each set of adjacent link failures.

The authors have provided public access to their code and
data at https://github.com/jtapolcai/graph-sequences.
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