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Abstract Providing fully distributed, fault tolerant, hop-by-hop routing is
one of the key challenges for intra-domain IP networks. This can be achieved
by storing two next-hops for each destination node in the forwarding table of
the routers, and the packets are forwarded to primary next-hop (PNH), unless
PNH is unreachable and secondary next-hop (SNH) is used instead. We follow
the architecture by [4], where the routing tables are configured in a central-
ized way, while the forwarding and failure recovery is in a fully distributed
way without relying on any encapsulation and signaling mechanisms for fail-
ure notification, to meet the standard IP forwarding paradigm. A network is
protected if no single link of node failure results in forwarding loops. Kwong,
Gao, Guerin and Zhang [4] conjectured that network node connectivity is not
sufficient for a network to be protectable. In this paper we show that this con-
jecture is in contradiction with a conjuncture by Hasunuma [2, 3], and show
that every four connected maximal planar graph and every underlying graph
of a 2-connected line digraph has feasible protection routing.

Keywords IP Fast ReRoute (IPFRR), node-connectivity

1 Introduction

Hop-by-hop routing and IP protocol have become the dominant platform for
telecom services [7, 10]. Commercial applications demand reducing the inter-
ruption in packet forwarding to sub-50ms in case of failures. As a solution for
the problem, in [4] an intra-domain solution was proposed, where a central-
ized unit pre-computes a primary and an alternate next-hops for each router,
where the traffic is instantly switched to the secondary next-hop (SNH) if the
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primary next-hop (PNH) becomes unavailable. Therefore, forwarding and fail-
ure recovery are performed in a fully distributed way relaying on traditional
IP forwarding without any encapsulation and signaling mechanisms for failure
notification, similarly to O2 [11, 9], DIV-R [8], MARA [6], and LFA [1]. The
key challenge is how to avoid forwarding loops in case of failures, when the
traffic is forwarded on SNH at a single node. A network is protected if no single
link of node failure results in forwarding loops. In this paper we investigate
how dense should a topology be to become protected.

Kwong, et. al [4] showed that high edge connectivity is not sufficient for
a network to be protected against every single link and node failure, and
conjectured that high node connectivity is not sufficient either. In this paper
we investigate the latter issue by applying the results and conjectures of Ha-
sunuma [2, 3] to node connectivity. We show that the conjecture by Kwong,
et. al is in contradiction with a conjecture by Hasunuma, besides we define a
class of four-node-connected graphs with feasible protection routing.

2 Problem Formulation

We formulate the protection routing problem at the centralized routing entity.
We assume that the network topology information and link bandwidths are
available, and the packet forwarding is destination based (hop-by-hop) without
reliance on packet marking or encapsulation.

2.1 Protection Routing

We model the network as an undirected graph G = (V,E), with V the node
set, E the link set. For a destination node d ∈ V let Rd = (V,Ed) be a routing
for traffic destined to d, where Ed ⊆ E. Rd is a directed acyclic graph (DAG)
rooted at d and defines a destination based routing. In Rd every node has at
least one outgoing link except for d. Every outgoing link is called primary link,
and the target node of every primary link is called Primary Next Hop (PNH).
See also Fig.1 as an example.

The routing Rd towards node d can be modeled by a partial order. Define
relation ≺d such that x ≺d s, x 6= s if there exists a path from node s to node
x in Rd (i.e. there is a possible packet flight from s to d through x). Node s
is upstream of node x if x ≺d s, and conversely, node s is downstream of node
x if s ≺d x. Additionally, we denote by x ≺�d s the case when nodes x and s
are not ordered with each other. Besides, the neighboring nodes of node n is
denoted by NG(n). Next let us define link and protection1.

Definition 1 A network G = (V,E) is protected (with respect to node d)
against single link failure f ∈ E, if there exists a routing Rd so that either

1 In [4] the two definitions were merged into a more general definition on component
failures.
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Fig. 1: A network G with a routing Rd drawn with solid thick arrows.

f /∈ Rd; or f = (x ← s) ∈ Rd and node s has a neighboring link (s, k) 6= f ,
such that

1. node k is not upstream of node s in Rd (i.e. s 6≺ k).
2. node k and all its downstream nodes (except d) have at least one PNH in

Rd \ f .

On Fig. 1 every link is protected with the routing. Similarly we define node
protection

Definition 2 The network G = (V,E) is protected (with respect to node d)
against single node failure f ∈ V , if there exists a routing Rd so that every
node s ∈ NG(f) having primary link to f (i.e. (f ← s) ∈ Rd) has a neighboring
node k 6= f (i.e. k ∈ NG(s)), such that

1. Node k is not upstream of node s in Rd (i.e. s 6≺ k).
2. Node k and all its downstream nodes (except d) have at least one PNH in

Rd \NG(f).

In both definitions node k is called Secondary Next Hop and denoted by
SNH d(s). On Fig. 1 node e is not protected with the routing, because node f
shall forward the packet to node c after the failure of e; however c has a PNH
towards the failed node e.

Definition 3 A routing Rd is protection routing in network G = (V,E) with
respect to node d if every node and link failure is protected.

Definition 4 An undirected graph G = (V,E) is protectable if a protection
routing exists for all d ∈ V , otherwise the graph is unprotectable.

Note that G is protectable as it is shown on Fig. 3. In 2010 Kwong, et. al
has showed [4], that the graph edge-connectivity is not a sufficient condition
for a network to be protectable. Besides, for node connectivity, 2- and 3-
node-connected unprotectable graphs were constructed, and for networks with
higher node-connectivity the following conjecture was given:

Conjecture 1 ([4, Conjecture 4.1]) For any given k ≥ 4, there exists a k-node-
connected graph that is unprotectable.
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In Section III. we show that this conjecture is in contradiction with a
conjecture by Hasunuma from 2001.

2.2 Completely Independent Spanning Trees

Next we define the completely independent spanning trees problem and some
general notations. Let T be a spanning tree in graph G. Let T (s, t) denote the
path in tree T between nodes s and t.

Definition 5 Let T 1 and T 2 be two spanning trees of an undirected graph
G. We call them completely independent spanning trees if for any two nodes
s and t the paths from s to d in T 1 and T 2 (i.e. T 1(s, d) and T 2(s, d)) are
node-disjoint apart from their end nodes.

In [2] Hasunuma showed that there are k completely independent spanning
trees in the underlying graph of a k-connected line digraph and in [3] that there
are two completely independent spanning trees in any 4-connected maximal
planar graph.

Computing completely independent spanning trees is NP-hard [2]. Accord-
ing to our experiments for real size IP networks it can be done with ILP in
reasonable time.

Completely independent spanning trees are special edge-disjoint spanning
trees. On edge-disjoint spanning trees, Nash-Williams [5] showed that there
are k edge-disjoint spanning trees in any 2k-edge-connected graph. In 2001
[2, 3] Hasunuma gave a similar conjecture for node-disjoint graphs.

Conjecture 2 ([2], [3, Conjecture 2]) There are k completely independent span-
ning trees in any 2k-connected graph.

The main contribution of this paper is to show that two completely in-
dependent spanning trees are sufficient for a network to be protected. As a
result, both Conjecture 2 and Conjecture 1 cannot be true at the same time.

3 Sufficient Conditions for Protectable Graphs

In routing Rd if a node has multiple outgoing links the traffic is split evenly
across them, which is favoured mainly for load balancing issues. As a result,
between certain node-pairs the traffic is routed along multiple paths, called
Equal-Cost Multi-Path (ECMP). In this section, for the sake of simplicity,
we forbid ECMP and consider the case where routing Rd should be a tree
instead of a DAG. Clearly, a d rooted tree is a special DAG, and thus with
this new constraint the protection routing problem becomes harder to solve.
In this case each node n has a single PNH, denoted by PNH d(n), and Rd is a d
rooted spanning tree. An important observation is that when Rd is a spanning
tree the second property of Definition 1 and 2 is not needed. In other words
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(a) The circles are leaf nodes of T 1, the
boxes are leaf nodes of T 2, and rounded
boxes are leaf nodes in both trees.
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(b) The two sub-trees: T̂ 1 is with solid

thick lines, and T̂ 2 is with dashed lines.

Fig. 2: Two complete independent spanning trees, where T 1 is with solid thick
lines, and T 2 is with dashed lines.

our task is to find a d rooted spanning tree Rd, such that each node s has a
neighbor node k not upstream to the downstream adjacent node of s, except
when the downstream adjacent node is the destination node d.

We call a degree one node of a tree as leaf node; otherwise it is an internal
node. In [2] the following property of two completely independent spanning
trees was proven.

Theorem 1 ([2, Theorem 2.1]) Let T1 and T2 be two spanning trees in the
graph G. Then T1 and T2 are completely independent if and only if T1 and T2

are edge-disjoint and for any vertex v of G there is at most one spanning tree
Ti such that node v is an internal node of Ti.

Fig. 2 shows an example of two completely independent spanning trees.
According to Theorem 1 the nodes of the graph can be classified into the
following three categories. Each node n is either

1. a leaf node in T1, or
2. a leaf node in T2, or
3. a leaf node both in T1 and T2.

Next we erase some leaf links from T 1 and T 2 to obtain two sub-trees,
called skeletons.

Definition 6 For each node n ∈ G, we erase a leaf link from either T 1 or T 2.
The resulting trees are called skeletons denoted by T̂ 1 for T 1 and T̂ 2 for T 2.

Note that according to Theorem 1 a node cannot be an internal node in both
trees. Fig. 2(b) shows the skeletons T̂ 1 and T̂ 2 of the example on Fig. 2(a).

Observation 1 Each skeleton is a connected sub-tree of graph G.

Proof T̂ i is a sub-tree of T i having every internal node and some leaf nodes.
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Fig. 3: Protection routing to node d, where PNH is drawn with solid thick
arrows and SNH with dashed arrows.

Observation 2 Each node n ∈ V is a part of a skeleton and adjacent to a
node in the other skeleton.

Proof Completely independent spanning trees T 1 and T 2 cover every node
of the graph twice, thus by erasing one (leaf) link form T 1 or T 2 each node
remains covered by either T̂ 1 or T̂ 2 but not both. By symmetry let us assume
node n ∈ T̂ 1. Since node n is a leaf node of T 2, node n is adjacent with an
internal node of T 2 which is part of skeleton T̂ 2.

Theorem 2 A graph with two completely independent spanning trees T 1 and
T 2 is protectable.

Proof We give a deterministic polynomial construction, which builds up a
protection routing Rd from two completely independent spanning trees T 1

and T 2 respect to an arbitrary node d. First, we compute the skeletons of the
two completely independent spanning trees T 1 and T 2, denoted by T̂ 1 and T̂ 2

respectively. By symmetry we assume node d ∈ T̂ 1. Let link e be the leaf link
of T 2 adjacent to node d. Note that link e connects the two skeletons. The
protection routing Rd contains the links of T̂ 1 and T̂ 2 and link e, and all the
links are directed to node d. Fig. 3 shows the resulted protection routing of
example Fig. 2.

To complete the proof we need to show that the network is protected by
Rd. Clearly, Rd is a spanning tree because both T̂ 1 and T̂ 2 are connected sub-
tree of graph G covering every node, and edge e connects the two skeletons.
In Rd every node u ∈ T̂ 1 is routed to node d along links of skeleton T̂ 1 only,
while each node v ∈ T̂ 2 is routed to node d along links of skeleton T̂ 2 and
finally link e. Therefore, the routing from any node in T̂ 1 and any node in T̂ 2

are node- and link-disjoint (except for node d). By Observation 2 each node
s 6= d is adjacent with a node n form the other skeleton, which can be chosen
as SNH, and concludes the proof.

Note that the proposed construction is much stronger than needed for
protection routing, because (1) it guarantees that after a packet is sent to
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SNH it will travel a fully disjoint route to the destination, compared to its
original route. By the definition of protection routing the two routes may be
overlapping, and should be disjoint from the failed neighboring link or node.
Besides, (2) the proposed construction cannot take advantages of the possible
ECMPs.

3.1 Corollaries

Corollary 1 Conjecture 2 by Kwong et al. [4] and Conjecture 1 by Hasunuma
[3] is in contradiction.

Proof According to Conjecture 1 there are two completely independent span-
ning trees in any 4-node-connected graph. With two completely independent
spanning trees by Theorem 2 a protection routing can be computed, which is
in contradiction with Conjecture 2.

Corollary 2 Every 4-connected maximal planar graph is protectable, and the
protection routing can be calculated in linear time O(|E|+ |V |).

Proof According to [3, Theorem 2] there are two completely independent span-
ning trees in any 4-connected maximal planar graph, which can be computed
in linear time. With two completely independent spanning trees T 1 and T 2

by Theorem 2 a protection routing can be computed, by iterating through the
nodes of the graph. Each step takes linear time.

Corollary 3 Every underlying graph of a 2-connected line digraph is pro-
tectable.

Proof It has been shown in [2] that there are k completely independent span-
ning trees in the underlying graph of a k-connected line digraph. With two
completely independent spanning trees according to the construction of The-
orem 2 protection routing can be built.

4 Conclusions

In this paper we investigated sufficient conditions for achieving protection
routing in intra-domain IP networks. Kwong et al. propose a protection routing
scheme in [4] and conjectured that node-connectivity of the topology graph is
not sufficient for a network to be protectable. In this paper we show that this
conjecture is in contradiction with a conjecture by Hasunuma [3]. Finally we
show that every four-connected maximal planar graph, and every underlying
graph of a 2-connected line digraph has protection routing.
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10/1–2010-0009, the Magyary Zoltán post-doctoral program and by High Speed Network
Laboratory (HSNLab).



8 János Tapolcai

References

1. Atlas A, Zinin A (2008) Basic specification for IP fast reroute: Loop-Free
Alternates. RFC 5286

2. Hasunuma T (2001) Completely independent spanning trees in the under-
lying graph of a line digraph. Discrete Mathematics 234(1-3):149–157

3. Hasunuma T (2002) Completely independent spanning trees in maxi-
mal planar graphs. In: Graph-Theoretic Concepts in Computer Science,
Springer, pp 235–245

4. Kwong KW, Gao L, Guerin R, Zhang ZL (2011) On the feasibility and effi-
cacy of protection routing in ip networks. Networking, IEEE/ACM Trans-
actions on 19(5):1543 –1556

5. Nash-Williams C (1961) Edge-disjoint spanning trees of finite graphs.
Journal of the London Mathematical Society 1(1):445

6. Ohara Y, Imahori S, Van Meter R (2009) Mara: Maximum alternative
routing algorithm. In: IEEE INFOCOM 2009, pp 298–306

7. Oliveira C, Pardalos P (2011) Mathematical Aspects of Network Routing
Optimization, vol 53. Springer Verlag
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