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Abstract—Achieving fast and precise failure localization has
long been a highly desired feature in all-optical mesh networks.
M-trail (monitoring trail) has been proposed as the most general
monitoring structure for achieving unambiguous failure localiza-
tion (UFL) of any single link failure while effectively reducing
the amount of alarm signals flooding the networks. However,
it is critical to come up with a fast and intelligent m-trail
design approach for minimizing the number of m-trails and the
total bandwidth consumed, which ubiquitously determines the
length of the alarm code and bandwidth overhead for the m-
trail deployment, respectively. In this paper, the m-trail design
problem is investigated. To gain a deeper understanding of the
problem, we first conduct a bound analysis on the minimum
length of alarm code of each link required for UFL on the most
sparse (i.e., ring) and dense (i.e., fully meshed) topologies. Then,
a novel algorithm based on random code assignment (RCA) and
random code swapping (RCS) is developed for solving the m-trail
design problem. The prototype of the algorithm can be found
in [1]. The algorithm is verified by comparing to an Integer
Linear Program (ILP) approach, and the results demonstrate
its superiority in minimizing the fault management cost and
bandwidth consumption while achieving significant reduction in
computation time. To investigate the impact of topology diversity,
extensive simulation is conducted on thousands of random
network topologies with systematically increased network density.

Index Terms—monitoring trails, failure localization, combina-
torial group testing

I. INTRODUCTION

In transparent optical networks, failure localization is a
very complicated issue that has been extensively investigated
[2]–[12]. Due to the lack of optoelectronic regenerators, the
impact of a failure propagates without electronic boundary,
and a single failure can trigger a large number of redundant
alarms [12], [13]. With failure recovery protocols at different
network layers, various failure management mechanisms with
specific built-in failure management functionality could be
adopted. Thus, a failure event at the optical layer (such as
a fiber-cut) may also trigger alarms in other upper protocol
layers [14], possibly causing an alarm storm. This not only
increases the management cost of the control plane but also
makes failure localization difficult. Therefore, isolating failure
recovery within the network optical domain is essential to
solve the problem, which will be enabled by an intelligent and
cost-effective failure monitoring and localization mechanism

dedicated to the network optical layer. One of the most
commonly adopted approaches is to deploy optical monitors
responsible for generating alarms when a failure is detected.
The alarm signals then flood in the control plane of the
optical network such that any routing entity can localize the
failure and perform traffic restoration in a timely manner.
Obviously, minimizing the number of alarm signals while
achieving unambiguous failure localization (UFL) serves as
the major target in the development of a failure localization
scheme. In addition, reducing the bandwidth consumption for
fault monitoring should also be considered.

In general, a link is a conduit of multiple fibers, and each
fiber supports one or multiple wavelengths. Thus, it is intuitive
to monitor a link cut event by monitoring a single wavelength
along the link, and for this purpose a monitor is activated at
one of the end nodes that will issue an alarm once a loss of
light (LoL) is detected along the wavelength channel. This
is also referred to link-based monitoring, which requires |E|
active alarms (or monitors) to monitor each link independently,
where |E| is the number of network links. In this case, an
alarm code with a length |E| is required in order to identify
any single link cut event.

It is obviously not an efficient approach to dedicatedly
allocate a monitor for each link. To resolve this situation,
the studies in [3]–[6] intorduced the monitoring-cycle (m-
cycle) concept, which is a pre-configured loop-back lightpath
terminated by an optical power monitor and launched with
supervisory optical signals. When any link along the cycle
is cut, this interrupts the supervisory lightpath, and the failure
will be detected by the optical power monitor, and the monitor
will issue an alarm to the rest of the network.

To ease the limitation on the monitoring structure, [12]
introduced the concept of Monitoring-Trail (m-trail), where
the model is based on an enumeration-free Integer Linear
Program (ILP) approach. M-trail is proved to yield much
better performance by employing monitoring resources in
the shape of trails - a monitoring structure that generalizes
all the previously reported counterparts. However, due to
the huge computation complexity in solving the ILP, only
network topologies with small sizes (such as 30 nodes) can
be handled. A similar monitoring structure was considered
in [15], it is called ”permissible probes”. The study has
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focused on theoretical proofs and asymptotic bounds, while the
strength and flexibility of using tree structures for launching
probes has been little explored in possible practical scenarios.
More detailed comparison and descriptions of the monitoring
structures (e.g. cycles, trails, trees, etc.) can be found in [16].

A number of studies focused on practical implementation of
all-optical monitoring using a multi-hop monitoring structure.
They aimed at reducing the number of required supervi-
sory wavelength-links, monitoring structures (or active alarms
[17]), and/or monitoring locations (MLs) [18]. Here, an ML is
defined as a node with at least one active monitor. The study
in [18] set its goal to minimize the number of MLs, which is
determined by analyzing the connectivity among the 2- and
3-edge-connected components in the topology. With each ML
determined, a graph transformation is performed such that the
MLs are merged into a supernode (denoted by m), and cycles
are cumulatively added into the transformed graph one by one
via Suurballe’s algorithm. To distinguish two links l1 and l2, a
cycle must be disjoint from l1 while passing through m and l2.
With this method, the number of active alarms will be O(|E|),
which is essentially the same as the bound for link monitoring.

The study [17] investigated a redundant alarm reduction
problem based on a set of existing working lightpaths, which
aimed to minimize the number of active alarms in the network
while maintaining single link UFL. An ILP was formulated to
solve the problem, and a very fast heuristic was developed to
exploit the hierarchical relationship of the monitors. Note that
[17] relies on the existing lightpaths for UFL, without allocat-
ing any additional supervisory lightpaths for the purpose.

The work in [19] attempted to reduce the number of probes
(i.e., the number of monitoring structures or active alarms) sent
from some pre-selected MLs for monitoring single or multiple
node (or link) failures at the TCP/IP layer. The algorithm
first creates a set of candidate probes for every pair of MLs,
and the redundant probes are eliminated without affecting the
capability for single node UFL hereafter. However, migrating
the method to optical networks is subject to a strong limitation:
the probes have to follow least-cost paths through the network.
Experimental results were obtained on randomly generated
topologies with nodal degrees no smaller than 4 for single
node UFL. It was observed that the number of probes for UFL
increases linearly with the number of nodes in the network.
Therefore, an order of Ω(n) monitoring probes is required in
this algorithm, where n is the number of monitored nodes/links
for any single failure.

The study in [20] addresses the problem of localizing the
faulty processors in a multiprocessor system. They work with
the assumption that a monitoring node can monitor the status
of any node within a given distance from it, and developed
an algorithm for localizing any single node failure. Adapting
the scenario to optical networks, nonetheless, is subject to
a serious limitation, because in optical networks there is no
limit on the number of nodes that can be monitored by a
single monitoring node, which was the key design constraint
in multiprocessor systems. This holds because there has not
been any practical technique or a higher layer protocol that
can enable a node to quickly identify the failure of a remote
node in a time order of hundreds of milliseconds.

In this paper, we investigate the m-trail design problem for
single link UFL, and aim at obtaining deeper understanding
and insight into the problem. In particular, our focus is on
the impact of topology diversity to the problem solutions. The
paper first analytically derives the minimum lengths of alarm
codes for ring and fully meshed topologies, respectively. We
answer an open question negatively: we construct examples
of 2-edge-connected networks with all node degrees at least
3, such that alarm codes of length O(1) + log |E| are not
sufficient for single link UFL. Next, a novel m-trail allocation
algorithm is developed for general topologies, which achieves
a much better performance in terms of both computation
time and solution quality than the ILP in [12]. Extensive
simulation is conducted on thousands of randomly generated
topologies to investigate the impact of topology diversity on
m-trail solutions. We provide an in-depth discussion on the
simulation results and draw a number of concluding remarks
which position our results on the m-trail design problem.

The rest of the paper is organized as follows. Section II
presents the background and problem formulation for m-trail
design. Section III provides a comprehensive analysis on the
m-trail allocation problem, where the minimum length of
alarm code required in a ring and fully meshed topology is
obtained as �|E|/2� and 4 + �log2 (|E|+ 1)�, respectively.
Next a construction is proposed as a counter example for
the open question on the m-trail design problem for 2-edge-
connected topologies with node degrees no smaller than 3.
In Section IV, the proposed algorithm for m-trail design is
presented. Section V provides simulation results along with
ample discussions on our observations. Finally, Section IV
concludes the paper.

II. BACKGROUND

A. Monitoring Trails (M-Trails)

The m-trail concept takes advantage of a monitoring struc-
ture in a shape of trails. A trail is a sequence of edges (links)
(v0, v1), (v1, v2), . . . , (vn−2, vn−1), (vn−1, vn) in a network
G = (V,E), where (vi, vi+1) �= (vj , vj+1) if i �= j, and
(vi, vi+1) ∈ E for i = 0, . . . , n−1. Note that a trail may have
repeated nodes but no repeated links. By properly designing a
set of m-trails, the network controller can localize a single
link failure by collecting the alarm signals issued by the
corresponding monitors of m-trails in a timely manner.

An m-trail is a non-simple lightpath with a pair of trans-
mitter and receiver (denoted as T and R, respectively) along
with a monitor at the receiver. As shown in Fig. 1(a), the
supervisory wavelengths can be pre-cross-connected in either
T → a → b → c → a → d → e → R or T → a →
c → b → a → d → e → R. A supervisory optical signal is
launched in the m-trail. If any link traversed by an m-trail fails,
the optical signal in the supervisory wavelengths is disrupted.
After detecting the disruption of the optical signal, the monitor
will generate an alarm and broadcast the alarm in the optical
network control domain.

Generally, an m-trail solution consists of a set of J m-trails
t1, t2, . . . , tJ . Upon a single link failure, the monitor on any
m-trail traversing the failed link will generate an alarm. At
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a remote network entity, an alarm code [a1, a2, . . . , aJ ] can
be formed after all the flooding alarms are collected, where
aj = 1 means that the monitor on m-trail tj alarms and aj =
0 otherwise. Fig. 1(b) shows a solution with three m-trails
t1, t2, t3. If link (0, 1) fails, the monitors on t1 and t3 will
alarm to produce the alarm code [1, 0, 1]. Similarly, if link
(0, 2) fails, the monitors on all the three m-trails will alarm
and the resulting alarm code is [1, 1, 1]. The alarm code table
(ACT) in Fig. 1(c) is available at each network routing entity.
Thus, the network controller can unambiguously localize a
particular link failure by matching the alarm code in the ACT.

Note that the monitoring result will not be affected by
having a different pre-cross-connection pattern along the same
set of supervisory wavelengths of an m-trail. It is because we
only care about whether the supervisory optical signal in the
m-trail is disrupted or not, which will yield a single binary
digit showing the on/off status of the m-trail.

Link t3 t2 t1 Dec.

(0,1) 1 0 1 5
(0,2) 1 1 1 7
(0,3) 1 0 0 4
(1,2) 0 1 1 3
(1,3) 1 1 0 6
(2,4) 0 0 1 1
(3,4) 0 1 0 2

(b) An m-trail solution (c) Alarm code table(a) m-trail
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Fig. 1. Fast link failure localization based on m-trails.

B. Problem Definition - Deployment of M-Trails

Without loss of generality, the target of m-trail design is to
minimize the cost function determined by the weighted sum
of management cost and bandwidth cost. The management
cost generally accounts for the fault management complexity
in terms of the length of alarm code, which further affects
the number of alarms flooded in the network when a failure
event occurs. In addition to larger fault management cost, a
longer alarm code may cause a longer failure recovery time
since a network entity has to collect all the necessary alarm
signals for making a correct failure localization decision. The
bandwidth cost reflects the additional bandwidth consumption
for monitoring, which is measured by way of the cover length
of an m-trail solution (i.e., the sum of lengths of m-trails in
the solution). Here, the length of an m-trail is taken as the
number of links traversed by the m-trail. The target function
adopted in the study is:

Total Cost = management cost + bandwidth cost

= γ × (# of m-trails) + cover length (1)

The cost ratio γ determines the relative importance of
management cost and bandwidth cost, which should be defined
according to the carrier operational target. In general, the
management cost includes not only the cost of the m-trails,
but also the efforts on network fault management as explained

before. As the wavelength channels are getting cheaper, γ
could be chosen much larger than 1 in order to reflect the
fact that management cost is much more emphasized.

In order to achieve UFL, each link must be assigned with
a unique binary alarm code [a1, a2, . . . aJ ], where J is the
length of alarm code, and aj is binary digit, which is 1 if the
j th m-trail traverses through this link and 0 otherwise. The
m-trail tj has to traverse through all the links with aj = 1
while avoiding to take any link with aj = 0. Let Lj denote
the j th link set which contains the set of links with aj = 1.
The link set Lj forms an m-trail tj if there is a non-simple
path that traverses through all the links in Lj but no any other.
This is referred to as m-trail formation. Here, the theoretical
lower bound on J is �log2 (|E|+ 1)�, since there are |E|
single failure states plus the no failure state. However, due
to the network topology limitation and possibly other design
objectives (e.g., the bandwidth consumption limitation), an m-
trail solution could take more than �log2 (|E|+ 1)� m-trails.

In summary, the m-trail design problem aims at finding a
set of m-trails in the network with minimized cost as Eq. (1),
such that the network controller can unambiguously localize
any single link failure by reading the alarm code collected
from all the monitors. The alarm code assignments on each
link and m-trail formation are two important tasks that should
be subject to a joint design. A good m-trail design can only
be achieved through a paying attention to both of the two
tasks, which makes the m-trail design problem challenging
yet interesting.

C. Network Topology Diversity

Network topology diversity imposes a wide impact on
the design, development, and deployment of various network
algorithms and protocols. Without exception, m-trail solutions
are significantly affected by network topologies. Thus, network
topology diversity is defined in this subsection.

The study focuses on m-trail design in 2-edge-connected
networks, where any network node has a nodal degree no
smaller than 2. The local density of a network topology is
defined in terms of average nodal degree. Obviously, the ring
and fully meshed topology is the most sparsely and densely
connected with an average nodal degree of 2 and |V | − 1,
respectively, where |V | is the number of nodes. In this case,
the number of links is |V | and |V |(|V | − 1)/2, respectively.

To simplify the quantification of topology diversity while
not loosing much generality, the 2-edge-connected network
topology is modeled as a backbone ring with a given number
of nodes and some additional chords. Fig. 2(a) shows an
example of a backbone ring with 14 nodes. The number label
at each node is the corresponding nodal degree, which is 2
for each node since there are 2 incident link to each node.
When links are added as chords of the ring, the local density
is increased accordingly. In the study, the diversity of network
topologies is defined and measured in following two ways:
the average nodal degree, and the total number of nodes with
a nodal degree 2 (or degree-2 nodes) in the topology. The
former measures the amount of added links to the backbone
ring, which is the most straightforward way of showing how
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densely meshed the topology is. The latter reflects the relative
location of the chords of the added links, which measures
how homogeneously the links are distributed in the network
topology. An example is provided as follows. Fig. 2(b) and
Fig. 2(c) are two different topologies with 6 added links on
the backbone ring. Although with the same average nodal
degree (i.e., 2.857), the number of degree-2 nodes is 2 and
9 for Fig. 2(b) and (c), respectively. Intuitively, Fig. 2(c) will
require more m-trails for UFL due to the non-homogeneous
distribution of the chords.
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Fig. 2. (a) a backbone ring with 14 nodes; (b) with 2 degree-2 nodes (c)
with 9 degree-2 nodes

III. BOUND ANALYSIS OF M-TRAILS

Bounds on the minimal number of m-trails to meet the UFL
requirement are of interest since they serves indicators on the
overhead of network fault management for failure localization.
Since an m-trail solution is significantly affected by network
topology diversity and connectivity, in the following we will
focus on analytical derivation of bounds on the minimum
length of alarm code in sparsest (ring) and densest (complete
graph) topologies, respectively. Without loss of generality, the
subsequent theorems and proofs are developed by only con-
sidering the length of alarm code (i.e., the number of m-trails),
where γ is equivalently set to much larger than 1. We provide
two theorems: the minimum number of m-trails for achieving
UFL is no more than �|E|/2� for rings and 4+�log2 (|E|+ 1)�
for complete graphs. Note that the previous version of the
paper [21] provided a construction for every fully meshed
topology with at most the 6 + �log2 (|E|+ 1)� m-trails for
achieving the UFL requirement.

The sufficient conditions for a set of network links to form
a non-simple path is given by Euler’s Theorem:

1) The links must form a connected subgraph;
2) The subgraph has all but up to two (i.e., the two

endpoints) odd-degree nodes.

The next Theorem 1 is a simplified version of Theorem 1 in
[15].

A. Ring networks

A ring is a network on vertices v1, . . . vn whose edges
(links) are (v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1). Here n
is the lenght of the ring.

Theorem 1: A ring topology of more than 4 nodes needs
�|E|/2� m-trails for single link UFL.

Proof: We divide the proof into two claims: (1) a ring
topology needs at least �|E|/2� m-trails for single link UFL,

and (2) a ring topology needs no more than �|E|/2� m-trails
for single link UFL.

[Proof of claim (1)] Let e and f be two links with a
common adjacent node v, as shown on Fig. 3. In order to
unambiguously identify failure between these two links, there
must be an m-trail that passes through link e but not link
f (or vice versa). Since v has degree of two, this can only
happen if an m-trail terminates at node v. It is clear that in
a ring topology, a number of |E| adjacent link-pairs can be
found, and each m-trail has two terminating nodes. Therefore,
it requires at least �|E|/2� m-trails to achieve that all the n
nodes are endpoints of an m-trail.

link e

node n
link f

Fig. 3. Optimal M-trail assignment of an 8-node ring.

[Proof of claim (2)] In a ring topology, every single link
failure can be unambiguously identified in such a way that
each m-trail is 3-hop in length and overlaps with its two
neighbor m-trails by one hop, as shown in Fig. 3. If the ring
has an odd number of nodes, the last m-trail must be a 2-hop
m-trail. Thus, the network needs up to �|E|/2� m-trails for
achieving single link UFL.

B. Lower bound on the number of m-trails

Theorem 1 can be extended to the scenario of general
Euler graphs in the derivation of an upper bound on the
number of m-trails. Next let us give a lower bound on the
number of m-trails in some ”bad” two-edge-connected graphs.
Clearly we have the lower bound of log2(|E| + 1) due to
the binary coding mechanism, which accounts for the fact
that it takes log2(|E|+ 1) bits to unambiguously identify |E|
different states (if ”000...0” is not considered). In the following
paragraphs we will demonstrate another lower bound on the
number of m-trails of two-edge-connected topologies that
works in parallel with the lower bound by log2(|E|+ 1).

Assume that we have a set of node-disjoint graphs
G1, G2, . . . , Gn. Let the node set of G be the union of the
node set of the Gi i = 1, . . . n. The edges of G are the edges
of Gi and the connecting links e1, . . . en, where ei connects
a node of Gi to a node of Gi+1 for i = 1, . . . n − 1, and
en connects a node of Gn to a node of G1. Clearly G is a
2-edge-connected graph if each G i is 2-edge-connected. The
set of edges Ē = {e1, . . . en} is called the separating set. The
edges from Ē are called separating links. In the example of
Fig. 4(b) we may assume that n = 4, and the grey links are
the separating links. We shall consider m-trails in G. We call
a component Gi a boundary of a trail t, if t includes exactly
one of the separating edges incident to Gi.

Theorem 2: At least � |Ē|
2 � = �n2 � m-trails are needed to

establish single link UFL in the graph G above.
Proof: First we show that any m-trail t has at most two

boundary components. Indeed, contract every component G i
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(a) The i-th component (b) A counter example with
|Ē| = 4

Fig. 4. The structure of each component

into a single node. This transforms G into a ring, while the
image of t will still be a connected subgraph. Connected
subgraphs in a ring have at most two points of degree one.
This implies that t has at most 2 boundary components.

Second, we establish that every component G i must serve
as a boundary for some m-trail t. Indeed, let e and f be the
separating edges incident to Gi. As the collection of our m-
trails provides UFL for single link failures, there must be a
trail t which contains t and does not contains e, or conversely,
one which contains e but not f . In both cases G i must be a
boundary for t.

With the above two claims, we know that each m-trail has
at most two boundary components, and each component must
be boundary of at least a single m-trail. Therefore, the number
of m-trails in the topology is at least |Ē|

2 .
With Theorem 2, the logarithmic relation between the

number of m-trails and network size could be broken due to
the presence of Ē. Therefore, we can easily see that an m-trail
solution for a two-edge-connected topology with C+log2(|E|)
m-trails may not exist even if the topology does not contain
any degree-2 node, where C is a small positive constant. Let
us define a network topology as logarithmically proper if an
m-trail solution for the single link failure localization problem
can be found with C + log2(|E|) m-trails, where C is a small
positive constant. Obviously, a fully meshed topology and grid
topology are logarithmically proper, which can be covered
with C + log2(|E|) m-trails (according to the construction
in III.C and in [22], respectively), while a ring topology is
not (according to Theorem 1). The topology in Fig. 4(b) has
|Ē| = 4 components although without any degree-2 node,
and the structure of the component as illustrated in Fig. 4(a),
is the smallest that can found without a degree 2 node. The
number of m-trails for the graph of Fig. 4(b) has following
lower bound:

J ≥ |Ē|
2

=
|E|
12

(2)

Eq. 2 holds because each component (as shown in ) along
with a separating link totally has 6 links, which yields |E| =
6 · |Ē|

C. Proposed Construction for Fully Meshed Networks

The subsection introduces a deterministic polynomial time
construction of an m-trail solution for fully meshed topologies
(i.e., complete graphs) that employs 4 + �log2 (|E|+ 1)� m-
trails for UFL. Theorem 3 validates the proposed construction.

p q

Fig. 5. Subgraph Gp is drawn with solid lines and Gq with broken lines,
while G′ contains all the rest of the links of the complete graph.

p q

Fig. 6. An example tb+3 and tb+4, where tb+3 is drawn with solid lines
and tb+4 with break lines.

Among the 6 steps in the construction, Step (1) is for initial-
ization, Step (2) - Step (5) are to ensure the code uniqueness
of each link, and Step (6) is for m-trail formation.

Input: Complete graph G = (E, V )
Result: Solution with 4 + �log2 (|E|+ 1)� m-trails with

|V | ≥ 7

Step (1) Let b = �log2(|E|+ 1)� be the theoretical lower
bound on the number of m-trails. G = (E, V ) is first
decomposed into three link-disjoint subgraphs denoted as
G′ = (E′, V ), Gp = (Ep, V ), and Gq = (Eq, V ), such that p
and q are two different nodes of V while Ep consists of every
link adjacent to node p; and similarly Eq consists of every link
adjacent to node q except the link (p, q). All the other links
and nodes v ∈ V \ {p, q} in G′ form a complete graph with
|V |− 2 nodes. Thus, we have |Ep| = |V |− 1, |Eq| = |V |− 2,
and |E ′| = |E| − 2|V | + 3. As shown on Fig. 5, Gp and Gq

are both have the shape of a star with central nodes p and q,
where p �= q.

Step (2) We first allocate two m-trails, denoted as tb+3 and
tb+4, to distinguish whether a link of G belongs to G ′, Gp,
or Gq . As shown in Fig. 6, one example to achieve the above
is to route the m-trail tb+3 through all the links in Gp ∪ Gq

while tb+4 over all the links of Gq (and some links of G′).
tb+3 is a valid m-trail (which admits an Euler trail from p to
q) because the nodal degree of each node along t b+3 is always
even except possibly at p and q. Since Gq is a star topology,
the routing of tb+4 needs some links from G′ until the Euler
property is met. An example of such link set is the edge set
in G′ of a perfect matching.

Note that tb+4 is used to distinguish the links in Gp from
those in Gq , and tb+3 is to distinguish links in G′ from those
in Gp or in Gq . Therefore with tb+3 and tb+4, the overall UFL
can be achieved provided that UFL can be achieved separately
in each of the three subgraphs G ′, Gp, Gq . This will be done
in the following steps.

Step (3) Unique non-zero binary codes of lenght � b+1
2 � bits
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are generated for the links in Ep. This can be done because

2�
b+1
2 � ≥ 2

b+1
2 =

√
2 · 2b ≥

√
2|E| =√

2
|V |(|V | − 1)

2
>

√
(|V | − 1)2 = |V | − 1. (3)

The codes generated here are called core codes for Ep, and
each of the codes serves as a � b+1

2 � bit-long prefix for the
alarm code assigned to a link of Ep. The structure of the
codes can be expressed as:

m-trails: t1 . . . t� b+1
2 � t� b+3

2 � . . . tb+2 tb+3 tb+4

for links in Ep core code x . . . xx 1 0

where x denotes the yet undefined bits.

Step (4) Next unique non-zero binary codes with � b+1
2 �

bits are generated for the links in Eq . The codes generated
are called core codes for Eq , and each of the codes serves as
a � b+1

2 � bit-long postfix for the alarm code assigned to each
link in Eq . The structure of the codes can be expressed as:

m-trails: t1 . . . t� b+1
2 � t� b+3

2 � . . . tb+2 tb+3 tb+4

for links in Eq x . . . xx core code 1 1

Step (5) Unique non-zero codes with b+1 bits are generated
as the core codes for the links in E ′. Note that this can easily
be done since |E| < 2b. The generated unique codes are
assigned to the links in a manipulative manner described as
follows. Recall that E ′ is a complete graph on |V | − 2 ≥ 5
nodes. We identify two link-disjoint Hamiltonian cycles on
the links of E ′ (e.g. by way of Walecki’s construction [23],
[24]), denoted by H1 and H2, which cover every node except
{p, q}. For each link in H1, ”1” is assigned to each bit at the
bit positions 1, . . . , � b+1

2 �. Note that according to Eq. (3), at
least |V | − 1 such codes exist. Similarly, for each link of H2,
”1” is assigned to each bit at the bit positions � b+3

2 �, . . . , b+1.
The format of the codes for the links of E ′ is given as follows.

m-trails: t1 . . . t� b+1
2 � t� b+3

2 � . . . tb+1 tb+2 tb+3 tb+4

for links in H1 11 . . .1 code fragment 0 x
H2 code frag. 11 . . . 1 1 0 x

E′ \H1 ∪H2 core code in b+ 1 bits x 0 x

Step (6) After Step (2) - Step (5), we can identify the link
set Lj , ∀1 ≤ j ≤ b+ 2, which contains the links with ”1” in
the j-th bit position in G. Let the link set contain the links
with an undefined bit at the j-th bit position be denoted as Lx

j .
Now our target in this step is to extend Lj by using some of
those links in Lx

j such that a valid m-trail tj can be formed.
This equivalently determines the bits of x in each link.

To ensure that Lj forms an Eulerian trail (either open or
closed), we sequentially check the vertices v ∈ V \ {p, q} to
see if the degree of each v is odd or even in the current L j . If
v has an odd nodal degree, (v, q) is added to L j if j ≤ � b+1

2 �,
and (v, p) is added to Lj if � b+1

2 � < j ≤ b+2. Therefore, we
can make sure that only p and q may have an odd degree in
Lj .

Then we check Lj to see if it spans a connected graph.
If not then, due to the presence of one of the cycles H 1 or
H2, (p, q) ∈ Lj and it must be an isolated edge. In this case
we simply add a link (v, p) into Lj for v ∈ V \ {p, q} (or
(v, q), respectively). The resulting graph must have an Euler
trail because the odd-degree nodes must be in the set {v, p, q}.

Theorem 3: The proposed construction on a complete graph
needs no more than 4 + �log2 (|E|+ 1)� m-trails to achieve
UFL for |V | ≥ 6.

Proof: The proof of the construction is divided into
two parts: (a) the code uniqueness of each link, and (b) the
successful formation of an m-trail for each bit position. As
for the later, we will show that all the links with the j-th bit
position as ”1” are connected to form a valid m-trail, while
disjoint from any link with ”0” at the j-th bit position.

For part (a), the links in each subgraph have unique codes
due to the intrinsic nature of the core code generation in each
subgraph, which were presented in Step (3) - Step (5). Also
by Step (2), the (b+3)-th and (b+4)-th bit positions are used
to distinguish the links of the three subgraphs G ′, Gp, Gq .
Therefore, the code uniqueness of each link can be ensured.
For part (b), Step (6) ensures that each link set Lj are all
connected with no more than 2 nodes with an odd nodal
degree. Note that

b+2−�b+ 1

2
� = b+1−�b+ 1

2
�+1 = �b+ 1

2

+1 ≥ �b+ 1

2
�

hence for 1 ≤ j ≤ � b+1
2 � the edges of Gq , while for � b+3

2 � ≤
j ≤ b + 2 the edges of Gp can be used. Also note that Lj

spans a connected graph on V \ {p, q}, due to the presence
of the Hamiltonian cycles H1 and H2 as described in Step
(5). Therefore, each Lj , ∀1 ≤ j ≤ (b + 4), will form a valid
m-trail.

With all the above, we proved that the proposed construction
has each link coded with (b+4) bits. This gives (b+4) valid
m-trails for achieving UFL in the fully meshed (or complete)
graph G.

Note that the proposed construction of m-trail solution for
fully meshed topologies is a special case of the problem
addressed in [15] by Algorithm 1, and thus it improves the
O(log2 |E|) construction (Theorem 2 of [15]) to O(1) +
log2 |E|.

IV. ALGORITHM FOR M-TRAIL SOLUTION

A novel algorithm for achieving a fast and efficient m-
trail design in general topologies is introduced in this section.
The proposed algorithm takes advantage of random code
assignment (RCA) and random code swapping (RCS), aiming
to overcome the topology diversity. With RCA, it takes |E|
unique alarm codes which are randomly assigned to each link
one after the other at the beginning and is kept in an alarm
code table (ACT). This leads to �log2 (|E|+ 1)� link sets.
The algorithm then performs m-trail formation by examining
the connectivity of each link set. There could be much more
m-trails than �log2 (|E|+ 1)� formed at the beginning. To
improve the solution quality, RCS is performed to update the
ACT for each link set round by round, where a better structure



7

of a link set is searched according to the cost function of Eq.
(1). In our design, RCS is performed independently (or locally)
at each link set, where the codes of two links of different link
sets can be swapped only if the swapping will not alter the
connectivity of the other link sets. This is referred to as the
strong locality constraint (SLC), which is an important feature
of our design in making the algorithm simpler and running
faster.

Fig. 7 shows a flowchart of the proposed algorithm. At the
beginning, an ACT is formed by randomly assigning each link
with a unique alarm code as shown in Step (1). In Step (2),
the cost of the current ACT is evaluated by Eq. (1) (which
will be further elaborated in subsection IV-A). Next, a greedy
cycle formed by Steps (2), (3), (4), (5), and (6) is initiated,
where RCS is performed in Step (3) and (5) (which will be
further detailed in subsection IV-B). In every cycle, a new ACT
(denoted as ACT new) is generated and the corresponding cost
CACT new is evaluated in Step (2). If the cost of ACT new

(denoted as CACT new) is smaller than (or equal to) that of
the cost of previous ACT (denoted CACT ) as in Step (2),
the algorithm starts the next greedy cycle by replacing the
old ACT with the new one (i.e., ACT ← ACTnew) and
performing RCS as denoted as ACTnew ← ΨRCS(ACTnew)
in Step (3). In case the new ACT has a cost larger than that
of the old one, the newly derived ACT is simply disregarded,
and the next greedy cycle will perform RCS based on the old
ACT again. Such a greedy cycle is iteratively performed until
a given number (100 in the simulation) of iterations of RCS
have been done without getting a smaller cost at Step (4).

Initiate alarm code table ACT

CACT new ← inf, ACTnew ← ACT

CACT ≥
CACT new

≥ threshold?
Success rate evaluation

CACT new ← Ψcost eval(ACTnew)

CACT ← CACT new

ACT ← ACTnew

ACTnew ←
ΨRCS(ACTnew)

Yes No

No

Yes

Return ACTnew

(1)

(3)

(2)

(4)

(6)

(5)

ACTnew ←
ΨRCS(ACT )

Fig. 7. The flowchart for the proposed heuristic algorithm.

A. M-trail Formation

This subsection introduces the basic idea of our m-trail
formation mechanism, where Eq. (1) is used to evaluate the
ACT in each greedy cycle in Fig. 7 such that the greedy cycle
can possibly converge and yield a set of feasible m-trails with
high quality.

Separate the

alarm bits into

link sets (2.1)

Repair to valid

alarm code table

(2.2)

Evaluate its cost (2)

m-trail 1 m-trail 2 m-trail 3

01

Alarm code:

10 11

Link set 2Link set 1

Fig. 8. An illustration of the cost evaluation method of an alarm code table
of the 4 node line graph.

Fig. 8 elaborates Step (2) of Fig. 7 through an example by
considering a simple three-link topology. Initially, a 2-bit long
alarm code is assigned to each link. The formation of the j th

m-trail has to take all the links with aj = 1 (which belong to
Lj) as shown in Step (2.1) of Fig. 8. The ideal situation is that
an ACT with J bits yields exactly J link sets, which can form
J valid m-trails. A link set forms an m-trail if all the links can
be connected and traversed along a not necessarilyy simple
path. In other words, the link set can have maximally two
nodes with an odd nodal degree according to Euler’s theorem.
Checking this m-trail condition for a link set an m-trail can
be done by a breadth-first search (BFS) algorithm in linear
time. A link set could be far from interconnected and could
even yield multiple isolated fragments. If a link set cannot
be shaped into a valid m-trail (e.g. link set 2 of Fig. 8), it
will possibly be constructed as a union of multiple m-trails or
cycles according to the following Lemma.

Lemma 1: A connected graph can be efficiently decom-
posed into (1) a single cycle, if every node has an even nodal
degree; or (2) a number of #odd(G)/2 trails, where #odd(G)
denotes the number of odd-degree nodes in the graph.

Proof: The lemma is a consequence of Euler cycle and
path theory. In both cases (1) and case (2), the cycle and the
trails can be formed in linear time with Fleury’s algorithm.

The Lemma states that in case the ith isolated fragment of
link set of bit j (denoted as Ci,j) has more than two odd nodes
(denoted by #odd(Cij)), then it can be decomposed into the
#odd(Cij)/2 m-trails. This is also exemplified in Step (2.2)
of Fig. 8.

In case at a specific bit position the links with ”1” bit do not
form a trail, we can always ”separate” those links into several
trails. And each trail is going to be a separate m-trail.

B. Random Code Swapping (RCS)

The initial RCA may yield a unqualified result that contains
many isolated fragments and a large number of odd-degree
nodes. This subsection describes the proposed RCS mecha-
nism for shaping the links of a link set into one or a number of
m-trails while still meeting the overall UFL requirement. The
key idea of the proposed RCS mechanism is the strong locality
constraint (SLC) which governs the swapping mechanism in
each link set. It means that the alarm code of a specific link in
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Lj can be swapped with that of a link not in Lj if all the other
link sets are not affected due to the swapping. The necessary
condition for meeting the SLC is that the alarm codes of two
links in Lj are bitwise identical except for a single bit at
position j. Such a code pair is called a code pair of L j , and
the two links corresponding to the code pair form a bitwise
link-pair of Lj . For example, 1011011 and 1010011 form a
code pair of L4, and the corresponding links form a bitwise
link-pair of L4. Thus, swapping alarm codes of the two links
meets the SLC due to the local influence on L4. With the
SLC, the RCS on a link set can be performed independently
from the others. this mechanism allows easy implementation
and provides high efficiency.

Note that for Lj , some links may not have a bitwise link-
pair due to two reasons: (1) its code pair of Lj is all 0’s,
which does not correspond to any failure state. For example,
010000 is a code pair of 000000 of L 2, but there is not a link
corresponding to the alarm code 000000. (2) The code pair
of Lj of the link was not assigned to any link. In this case,
the unassigned code can be freely used by the link without
violating the SLC.

In summary, RCS is performed on each link set by randomly
swapping alarm codes of all bitwise link-pairs of the link
set, in order to help interconnecting isolated trail fragments
and reducing the number of odd-degree nodes in the link set
iteratively in each greedy cycle. The prototype of the proposed
algorithm can be found in [1].

C. An Example on RCS Algorithm

We provide an example here to show how RCS is per-
formed. A 26-node network of US cities considered with 42
links. Initially with 6 bit long unique random codes were
assigned to the links. Fig. 9(a) shows the link set assigned
to the lowest bit (i.e., the 6th). Except for the link between
Denver and Kansas City that was assigned with an alarm code
0000001, all the other links either have a bitwise link-pair in
L6, or are don’t-care links of L6. Fig. 9(a) shows each link-
pair at L6 by an arrow. For example, (Atlanta, Charlotte) and
(Indianapolis, Cleveland) are bitwise link-pairs of L6. It can
be easily seen that swapping the two links will interconnect
two isolated fragments and reduce the number of odd-degree
nodes by two, which leads to a saving of an m-trail. Similarly,
swapping link (Salt Lake City, Denver) with link (Houston,
New Orleans) will not increase the total cost of the ACT. While
in the subsequent greedy cycle, swapping link (Las Vegas, El
Paso) with link (El Paso, Houston) would further reduce the
number of m-trails through the RCS and thus possibly reduce
the total cost. With more greedy steps on those link pairs and
don’t-care links of L6, it is possible to form a single m-trail
corresponding to the 6 th bit in the ACT while keeping all other
link sets not modified. By iterating the greedy process for each
bit in the ACT, the algorithm can guarantee to obtain an m-
trail solution for each bit in the ACT. The solution quality will
depend on the success rate threshold defined in Step (6) in Fig.
7. The effectiveness and efficiency of the proposed algorithm
will be further demonstrated in the next section.

This link has no
bitwise link-pair
because its error
code is 000001

(a)

Seattle

San Francisco

Chicago
New York

Los Angeles

Las Vegas

Salt Lake City

Denver Kansas City

Oklahoma City

Cleveland

St. Louis

Washington
D.C.

Boston

Charlotte

Detroit

Toronto

Atlanta

Indianapolis

Houston

Dallas
El Paso

Nashville

Miami

Minneapolis

New Orleans

(b)

Fig. 9. Link set 6 (a) after random coding (b) after greedy random code
swapping for link set 6 in the ACT.

V. SIMULATION

Extensive simulation on thousands of different random
topologies was conducted to verify the proposed algorithm.
Specifically, we (1) demonstrated the solution quality of the
proposed algorithm by comparing to the ILP in [12]; and (2)
investigate impacts of topology diversity on m-trail solutions.

A. Quality of Solution

We investigated the quality of m-trail solutions generated
by the proposed algorithm and its relation with the granted
computation time. Also, comparison was made between the
results by our algorithm and by the ILP in [12]. A server with
3GHz Intel Xeon CPU 5160 was used on two typical networks:
SmallNet (10 nodes, 22 links) and ARPA2 (21 nodes, 25
links). Fig. 10 shows the quality of m-trail solutions in terms
of the total cost defined in Eq. 1 versus the granted running
time by taking cost ratio γ = 5. Each little data interval in
Fig. 10 is 95% confidence interval around the mean of 30
experiments. The ILP solutions for the two networks under
the same condition were also plotted for comparison.

With the RCS mechanism, the algorithm can achieve better
results (i.e., smaller total cost) when longer computation time
was granted in both networks. The simulation results con-
firmed our expectation. Interestingly, the proposed algorithm
has generated even better solutions than the ILP, while the
running time is shorter by several orders. This explicitly
demonstrates the superiority of the proposed algorithm in
terms of both solution quality and required running time
against the ILP. Note that the ILP results in the example have
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nonzero gap-to-optimality of 4.17% in SmallNet and 20.41%
in ARPA2, which cannot be erased only with dramatically
increased running time. On the other hand, the proposed
algorithm spent about 0.01 seconds and 1 seconds to achieve
the same total cost in the SmallNet and ARPA2, respectively,
compared with 1,543 seconds and 9,573 seconds by the ILP.
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t6

t1

t3

t6
t4t1t2
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Fig. 10. The best heuristic solutions for SmallNet with cost of 69 and
ARPA2 with cost of 87. In comparisons the ILP resulted 72 with 4.17%
gap-to-optimality for and SmallNet and 98 with 20.41% for ARPA2.

B. Topology Diversity on M-Trail Solutions

This section demonstrates the impact on m-trail solutions
due to topology diversity. A huge number of experiments on
thousands of randomly generated topologies were conducted.
Fig. 11 shows the minimal number of m-trails versus network
density on topologies with 50 nodes. The network connectivity
was increased starting from a backbone ring with 50 nodes
and 50 links to a fully meshed topology with 50 nodes and
1,225 links, where one or a few links were randomly added
to the topology for each data set. To make it statistically
meaningful, every data interval in Fig. 11 is 95% confidence
interval around the mean of 20 different topologies each

obtained by randomly adding the same number of links to the
backbone ring. We observed that the normalized length of the
alarm code (i.e., from the length of alarm code we subtracted
�log2 (|E|+ 1)�) dramatically goes down when we add 50 to
100 links, or increase the nodal degrees from 2 to 3. See Fig.
11(a) and Fig. 11(b), respectively. The length of the alarm code
approaches the lower bound (i.e., �log2 (|E|+ 1)�) when γ is
large enough. From Fig. 11(a) and (b), we have also observed
that when γ is small, the confidence interval for each data is
larger than in the case of larger γ. This indicates the fact that
both monitoring cost and bandwidth cost are more sensitive to
different amounts of degree-2 nodes in the network, possibly
due to the interplay between the two objectives in the cost
function of Eq. (1).

Fig. 11(c) shows the normalized cover ratio (i.e., the sum
of cover length of all m-trails divided by |E|) versus average
nodal degree. We have seen that the cover ratio slightly
increases when the average nodal degree is increased from 2 to
9 for all the three γ values. Particularly, the cases with γ = 5
and 10 have better suppressed the increase of cover length
ratio, which demonstrates the effectiveness in the tradeoffs
between the length of the alarm code and bandwidth cost by
manipulating the cost ratio γ.
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Fig. 11. Simulation on topologies with 50 nodes. (a), (b): normalized length
of alarm code versus number of links (or the average nodal degree); and (c):
normalized cover ratio versus average nodal degree.

Fig. 12 shows the m-trail solutions with different numbers
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of nodes in the network topologies. Fig. 12(a) and (b) shows
the length of the alarm code versus the number of links.
Clearly, when γ = 1000, the length of the alarm code is only
affected by the number of links when it is small, while quickly
converges to �log2(|E|+ 1)� when the number of added links
is increasing, regardless the number of nodes in the topology.
Moreover, the length of alarm code is always �log2(|E|+ 1)�
in case the network does not contain any node with a nodal
degree 2 or smaller, which also verifies the observations. On
the other hand, when γ is small, the convergence becomes
slower, and the length of alarm code deviates more from
�log2(|E|+ 1)� as γ is reduced.
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Fig. 12. The length of alarm code versus the number of added links for
topologies of 20, 30, 40, 50, and 60 nodes. (a) γ = 1000 and (b) γ = 5.

Fig. 12(c) shows the results of the experiment, on the
relationship between normalized length of the alarm code and
total number of degree-2 nodes in the topologies with 20,
30, 40, 50, and 60 nodes, altogether resulting 5,320 different
random topologies. γ was set to 1,000. Each data point was
obtained by averaging the results on 20 randomly generated
topologies of the same total number of degree-2 nodes. We
observed that all the topologies with different numbers of
nodes require more m-trails for UFL as the number of degree-
2 nodes grows, which meets our expectation. Interestingly, it is
observed that all the topologies have to take similar normalized
length of alarm code for UFL given the same number of
degree-2 nodes. This indicates a serious impact on m-trail
solutions due to the number of degree-2 nodes in a topology.

We found that the following relationship holds and can be
taken as a rule of thumb for approximating the normalized
length of the alarm code in a random network topology when
γ is very large:

#m-trail ≈ �log2(|E|+ 1)� +
#degree-2 nodes

2
(4)

VI. CONCLUDING REMARKS

As a generalization of all the previously reported all-optical
monitoring structures, Monitoring-Trail (m-trail) has been an
effective approach for achieving unambiguous failure localiza-
tion (UFL) under any single failure. The paper investigated the
m-trail design problem by first obtaining the minimum length
of alarm code (or equivalently, the minimum number of m-
trails) for ring and fully meshed topologies. We have also
investigated an open question: whether a 2-edge-connected
topology without any degree-2 node can always achieve an m-
trail solution with O(1)+log2(|E|+1) m-trails. To obtain fast
and high-quality m-trail solutions, a novel algorithm based on
random code assignment (RCA) and random code swapping
(RCS) was introduced. Extensive simulation was conducted to
verify the proposed algorithm and obtain insights on the m-
trail design problem. We have seen that the proposed algorithm
can achieve significantly better performance compared to our
previously developed enumeration-free ILP model. The new
algorithm uses much less computation time without losing
solution quality.

With the proposed algorithm, the impact on m-trail solutions
of topology diversity and cost ratio γ were analyzed by
conducting experiments on thousands of different topologies.
Our observations are summarized as follows:

1) In case the bandwidth cost is not emphasized (i.e.,
γ is very large), the minimum length of alarm code
decreases as network density is increases. The minimum
length of alarm code approaches �log2 (|E|+ 1)�, and
the normalized cover ratio grows mildly, when most
nodes have a nodal degree larger than 2, or generally
when the average nodal degree reaches 3∼4.

2) When the emphasis on management cost and bandwidth
cost is comparable (i.e., γ is close to 1), the impact
due to the number of degree-2 nodes becomes more
significant. Meanwhile, the normalized cover ratio is
getting smaller as the average nodal degree increases
due to a smaller γ.

3) The minimum length of the alarm code can be generally
approximated by way of the total number of degree-2
nodes in the topology as shown in Eq. (2).
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