
On Monitoring and Failure Localization in Mesh
All-Optical Networks
János Tapolcai∗, Bin Wu†, and Pin-Han Ho†

∗ Dept. of Telecommunications and Media Informatics, Budapest University of Technology, tapolcai@tmit.bme.hu
† Dept. of Electrical and Computer Engineering, University of Waterloo, Canada, {b7wu,pinhan}@bbcr.uwaterloo.ca

Abstract—Achieving fast and precise failure localization has
long been a highly desired feature in all-optical mesh networks.
M-trail (monitoring trail) has been proposed as the most general
monitoring structure for achieving unambiguous failure localiza-
tion (UFL) of any single link failure while effectively reducing
the amount of alarm signals flooded in the networks. However,
it is critical to come up with a fast and intelligent m-trail
design approach for minimizing the number of m-trails and
the totally consumed bandwidth, which ubiquitously determines
the length of alarm code and bandwidth overhead for the m-
trail deployment, respectively. In this paper, the m-trail design
problem is investigated. To gain deeper understanding of the
problem, we firstly conduct a bound analysis on the minimum
length of alarm code required for UFL. Then, a novel algorithm
based on random code assignment (RCA) and random code swap-
ping (RCS) is developed for solving the m-trail design problem.
The algorithm prototype can be found in [1]. The algorithm is
verified by comparing with an Integer Linear Program (ILP), and
the results demonstrate its superiority in minimizing the fault
management cost and bandwidth consumption while achieving
significant reduction in computation time. To investigate the
impact of topology diversity, extensive simulation is conducted
on thousands of random network topologies with systematically
increased network connectivity. Lastly, we provide abundant
discussions and interesting conclusive remarks that position our
discoveries.

I. INTRODUCTION

In transparent optical networks, failure localization is a
very complicated issue that has been extensively investigated
[2]–[12]. Due to the lack of optoelectronic regenerators, the
impact of a failure propagates without electronic boundary,
and a single failure can trigger a large number of redundant
alarms [12], [13]. With failure recovery protocols at different
network layers, various failure management mechanisms with
a specific built-in failure management functionality could be
adopted. Thus, a failure event at the optical layer (such as
a fiber-cut) may also trigger alarms in other upper protocol
layers [14], possibly causing an alarm storm. This not only
increases management cost of control plane but also makes
failure localization difficult. Therefore, isolating failure recov-
ery within the network optical domain is essential to solve
the problem, which will be enabled by an intelligent and
cost-effective failure monitoring and localization mechanism
dedicated to the network optical layer. One of the most
commonly adopted approaches is to deploy optical monitors
responsible for generating alarms when a failure is detected.
The alarm signals then flood in the control plane of the
optical network such that any routing entity can localize the

failure and perform traffic restoration in a timely manner.
Obviously, minimizing the number of alarm signals while
achieving unambiguous failure localization (UFL) serves as
the major target in the development of a failure localization
scheme. In addition, reducing the bandwidth consumption for
fault monitoring should be jointly considered.

Conventional link-based monitoring scheme requires one
monitor at each link, which requires O(|E|) optical monitors
and a length of alarm code as |E|, where |E| is the number of
network links. To make the solution more scalable, the studies
in [3]–[6] investigated monitoring-cycle (m-cycle), which is a
pre-configured optical loop-back connection terminated by a
monitor and launched with supervisory optical signals. When
any link along the cycle is cut, the failure will be detected
by the monitor, and the monitor will issue an alarm to the
rest of the network. Instead of using dedicated lightpaths for
fault monitoring, the studies in [15], [16] proposed to construct
one or a number of trees or simple cycles or simple paths
that are rooted at one or a number of monitoring locations,
where a probe is proactively launched in each tree/cycle/path
to identify any single component failure. Although interesting,
the two studies have not come up with a systematic approach
that can optimally identify the monitoring resources. Also, the
monitoring structure is limited in the shapes of trees, simple
cycles, and simple paths. Similarly, the study in [17] has
focused on SRG failure localization, where an Integer Linear
Program (ILP) using cycle/path enumeration and a heuristic
based on graph decomposition were introduced.

To erase the limitation on the monitoring structure, our
previous work [12] introduced the concept of Monitoring-Trail
(m-trail), where an optimal model based on an enumeration-
free ILP was introduced for m-trail design. M-trail is proved
to yield much better performance by employing monitoring
resources in a shape of trails - a monitoring structure that
generalizes all the previously reported counterparts. However,
due to the huge computation complexity in solving the ILP,
only network topologies with small sizes (such as 30 nodes)
can be handled.

In this paper, we investigate the m-trail design problem
and aim at obtaining deeper understanding and insights in the
problem. Firstly, we analytically derive the minimum length of
alarm code for ring and fully meshed topologies, respectively.
The derivation is based on a deterministic linear algorithm
of m-trail design and random code assignment (RCA), which
serve as the foundation of the subsequent algorithm develop-

ment for general topologies. Based on similar techniques, a
novel algorithm is developed for general topologies, which is
proved to achieve much better performance in terms of both
computation time and solution quality than that by solving the
ILP in [12]. Extensive simulation is conducted on thousands
of randomly generated topologies to investigate the impact
of topology diversity on m-trail solutions. We provide an in-
depth discussion on the simulation results and draw a number
of conclusive remarks which position our discoveries on the
m-trail design problem.

The rest of the paper is organized as follows. Section II
presents the background and problem formulation for m-trail
design. Section III provides a comprehensive analysis on the
m-trail allocation problem, where the minimum length of
alarm code required in a ring and fully meshed topology is
obtained as d|E|/2e and 6 + dlog2 (|E|+ 1)e, respectively.
In Section IV, the proposed algorithm for m-trail design is
presented. Section V provides simulation results along with
abundant discussions on our observations. Finally, the paper
concludes in Section IV.

II. BACKGROUND

A. Briefs on Monitoring Trails (M-Trails)

The m-trail concept takes advantage of a monitoring struc-
ture in a shape of trails, which generalizes all the previously
reported counterparts. In brief, an m-trail can traverse a node
multiple times. By allocating a sufficient number of m-trails,
a routing entity in the network can localize a single failure
by collecting the alarm signals issued by the corresponding
monitors of m-trails in a timely manner.

An m-trail is a non-simple lightpath in optical networks
with a pair of transmitter and receiver (denoted as T and R,
respectively) along with a monitor at the receiver. As shown
in Fig. 1(a), the supervisory wavelengths can be pre-cross-
connected in either T → a → b → c → a → d → e → R or
T → a → c → b → a → d → e → R. A supervisory optical
signal is launched in the m-trail. If any link traversed by an
m-trail fails, optical signal in the supervisory wavelengths is
disrupted. After detecting the disruption of the optical signal,
the monitor will generate an alarm and flood the alarm in the
optical network control domain.

Generally, an m-trail solution consists of a set of J m-trails
t1, t2, . . . , tJ . Upon a single link failure, the monitor on any
m-trail traversing the failed link will generate an alarm. At
a remote network entity, an alarm code [aJ , . . . , a2, a1] can
be formed after all the flooding alarms are collected, where
aj = 1 means that the monitor on m-trail tj alarms and
aj = 0 otherwise. Fig. 1(b) shows a solution with three m-
trails t1, t2, t3. If link (0, 1) fails, the monitors on t1 and t3
will alarm to produce the alarm code [1, 0, 1]. Similarly, if
link (0, 2) fails, the monitors on all the three m-trails will
alarm and the resulting alarm code is [1, 1, 1]. The alarm code
table (ACT) in Fig. 1(c) is equipped in each network routing
entity, which maintains all the possible alarm codes that could
be received at a network entity. Thus, the network entity can

unambiguously localize a particular link failure by matching
the alarm code in the ACT.

Note that the monitoring result will not be affected by
having a different pre-cross-connection pattern along the same
set of supervisory wavelengths of an m-trail. It is because we
only care about whether the supervisory optical signal in the
m-trail is disrupted or not, which will yield a single binary
digit showing the on/off status of the m-trail.

Link t3 t2 t1 Dec.
(0,1) 1 0 1 5
(0,2) 1 1 1 7
(0,3) 1 0 0 4
(1,2) 0 1 1 3
(1,3) 1 1 0 6
(2,4) 0 0 1 1
(3,4) 0 1 0 2

(b) An m-trail solution (c) Alarm code table(a) m-trail

2

0 3

1
4

t2

t1

t3

R

T

a
b

c

d

e

Fig. 1. Fast link failure localization based on m-trails.

B. Problem Definition - Deployment of M-Trails

Without loss of generality, the target of m-trail design is
to minimize the linear combination of monitoring cost and
bandwidth cost. The monitoring cost generally accounts for
the fault management complexity in terms of the length of
alarm code, which further affects the number of alarms flooded
in the network when a failure event occurs. In addition to
larger fault management cost, a longer alarm code may cause
a longer failure recovery time since a network entity has to
collect all the necessary alarm signals for making a correct
failure localization decision. The bandwidth cost reflects the
additional bandwidth consumption for monitoring, which is
measured by way of the cover length of an m-trail solution
(i.e., the sum of length of each m-trail in the solution). Here,
the length of an m-trail is taken as the number of links
traversed by the m-trail. The target function adopted in the
study is:

Total Cost = monitoring cost + bandwidth cost

= γ × (# of monitors) + cover length (1)

The cost ratio γ determines the relative importance of
monitoring cost and bandwidth cost, which should be defined
according to the carrier operational target. In general, the
monitoring cost concerns not only the monitors’ expense, but
also the efforts on network fault management as explained
before, while the wavelength channels are getting cheaper.
Therefore, γ could be chosen much larger than 1 in order to
reflect the fact that monitoring cost is much more emphasized.

In order to achieve UFL, each link must be assigned with
a unique binary alarm code [aJ , aJ−1, a1], where J is
the length of alarm code, and aj is binary digit, which is 1 if
the jth m-trail traverses through this link and 0 otherwise. The
m-trail tj has to traverse through all the links with aj = 1

while avoiding to take any link with aj = 0. Let Lj denote
the jth link set which contains the set of links with aj = 1;
thus, to form tj , we have to find a non-simple path that
traverses through all the links in Lj but no any other. This
is referred to as m-trail formation. Here, the theoretical lower
bound on J is dlog2 (|E|+ 1)e; however, due to the network
topology limitation and possibly other design objectives (e.g.,
the bandwidth consumption limitation), an m-trail solution
could take more than dlog2 (|E|+ 1)e m-trails.

In summary, the m-trail design problem aims at finding a set
of m-trails in the network with minimized cost as Eq. (1), such
that a network entity can unambiguously localize any single
failure event by reading the alarm code collected from all the
monitors. The alarm code assignment on each link and m-trail
formation are two important tasks that should be subject a joint
design. A good m-trail design can only be achieved through
a manipulative interplay of the two tasks, which makes the
m-trail design problem challenging yet interesting.

C. Network Topology Diversity

Network topology diversity imposes a wide impact on
the design, development, and deployment of various network
algorithms and protocols. Without exception, m-trail solutions
are significantly affected by network topologies. Thus, network
topology diversity is defined in this subsection.

The study focuses on m-trail design in 2-connected net-
works, where any network node has a nodal degree no smaller
than 2. The connectivity of a network topology is defined in
terms of average nodal degree. Obviously, the ring and fully
meshed topology is the most sparsely and densely connected
with an average nodal degree of 2 and |V | − 1, respectively,
where |V | is the number of nodes. In this case, the number of
links is |V | and |V |(|V | − 1)/2, respectively.

To simplify the quantification of topology diversity while
without loss of generality, a backbone ring is defined with
a given number of nodes. Fig. 2(a) shows an example of a
backbone ring with 14 nodes. The number labeled at each
node is the corresponding nodal degree, which is 2 for each
node since there are 2 incident link to each node. When links
are added as chords of the ring, the connectivity is increased
accordingly. In the study, the diversity of network topologies
is defined and measured in following two folds: the average
nodal degree, and the total number of nodes with a nodal
degree 2 (or termed degree-2 nodes) in the topology. The
former measures the amount of added links to the backbone
ring, which is the most straightforward way of showing how
densely meshed the topology is. The latter reflects the relative
location of the chords of the added links, which measures
how homogeneously the links are distributed in the network
topology. An example is provided as follows. Fig. 2(b) and
Fig. 2(c) are two different topologies with 6 added links on
the backbone ring. Although with the same average nodal
degree (i.e., 2.857), the number of degree-2 nodes is 2 and
9 for Fig. 2(b) and (c), respectively. Obviously, Fig. 2(c) will
require more m-trails for UFL due to the non-homogeneous
distribution of the chords.

2
2 2

2

2

2

2
2

2

2
2

2

2

2

3 3
3

2

3

2
3

3

33
3

3

3

3 5 2
2

2

5

2
4

2

22
2

2

5

3

(a) (b) (c)

Fig. 2. (a) a backbone ring with 14 nodes; (b) with 2 degree-2 nodes (c)
with 9 degree-2 nodes

III. BOUND ANALYSIS OF M-TRAILS

The bounds on the minimal number of m-trails to meet
the UFL requirement are of interest since they can give us a
clear picture on the overhead of network fault management for
failure localization. Since an m-trail solution is significantly
affected by network topology diversity and connectivity, in
the followings we will focus on analytical derivation of the
bounds on the minimum length of alarm code in ring and fully
meshed topologies, respectively. Without loss of generality,
the subsequent theorems and proofs are developed by only
considering the length of alarm code (i.e., the number of m-
trails), where γ is equivalently set to much larger than 1. We
provide two theorems for a ring and fully meshed network
that the minimum number of m-trails for achieving the UFL
requirement is no more than d|E|/2e and 6+dlog2 (|E|+ 1)e,
respectively. To support the two theorems, a number of nec-
essary lemmas are introduced accordingly.

The sufficient conditions for a set of network links to form
a non-simple path is given by Euler’s Theorem: (1) The links
must form a connected subgraph; (2) The subgraph has all
but up to two (i.e., the two endpoints) odd-degree nodes. The
minimum number of m-trails for a ring topology is derived as
d|E|/2e given in Lemma 1 which is a simplified version of
Theorem 1 of [15].

Lemma 1: A ring network of more than 4 nodes needs
d|E|/2e m-trails for UFL.

Proof: We divide the proof into two claims: (1) a ring
network needs at least d|E|/2e m-trails for UFL, and (2) a
ring network needs no more than d|E|/2e m-trails for UFL.

[Proof of claim (1)] Let e and f be two links with a
common adjacent node n, as shown on Fig. 3. In order to
unambiguously identify failure between these two links, there
must be an m-trail that passes through link e but not link f (or
vice versa). Since n has a nodal degree of two, this can only
happen if an m-trail terminates at node n. It is clear that for a
ring topology, a number of d|E|/2e adjacent link-pairs can be
found, and each m-trail has two terminating nodes. Therefore,
it requires at least d|E|/2e m-trails such that any failed link
can be unambiguously localized according to the status of the
m-trails. [Proof of claim (2)] In a ring topology, every single
link failure can be unambiguously identified in such a way
that each m-trail is 3-hop in length and overlaps with its two
neighbor m-trails by one hop, as shown in Fig. 3. In case the
ring has an odd number of nodes, the last m-trail must be 2-

link e

node n
link f

Fig. 3. Optimal M-trail assignment of an 8-node cycle.

hop in length. Thus, the network needs up to d|E|/2e m-trails
for achieving UFL.

Lemma 1 can be extended to the scenario of general two-
connected topologies, as shown in Theorem 1. Obviously,
a ring topology takes the maximum number of m-trails to
achieve UFL among all the topologies with the same number
of nodes.

Theorem 1: In any two-connected network, the UFL re-
quirement can always be achieved with no more than d|E|/2e
m-trails.

Proof: The theorem is proved with a deterministic poly-
nomial time construction that generates a valid m-trail solution
for a two-connected topology with at most d|E|/2e m-trails.

Firstly, we define a circuit that goes through every link
of the topology, and some links may be passed twice. The
shortest circuit can be found by solving the Chinese postman
problem [18]. The links that are passed twice by the circuit
are called duplex links. Let a tour order of the links be defined
such that every link is visited and labeled one after the other
along the circuit starting from an arbitrary node n. Meanwhile,
3-hop m-trails are allocated in the tour such that each pair
of consecutively allocated m-trails overlaps by a single hop.
During the tour, the length of an m-trail is increased by one
hop when the m-trail passes through any duplex link that has
been already labeled. Since each link is only labeled once,
totally d|E|/2e m-trails will be sufficient such that the failure
of any labeled link can be unambiguously identified by the
m-trail solution.

A
du

pl
ex

lin
k

A duplex link that has been already labelled

t1

t2
t3

t4

Node n

Fig. 4. The m-trails based on the close trail decomposition of a graph.

Theorem 2 gives an upper bound on the minimum number
of m-trails required for UFL in a fully meshed topology. The
theorem is proved by way of a deterministic polynomial time
construction that generates a valid m-trail solution for a fully
mesh topology with 6 + dlog2 (|E|+ 1)e m-trails. The proof
of the theorem also serves as a foundation for the development
of the proposed algorithm, which will be introduced in Section
IV.

Theorem 2: A fully meshed topology needs no more than
6 + dlog2 (|E|+ 1)e m-trails to achieve UFL.

Proof: Based on Theorem 1, a fully meshed topology
with no more than 7 nodes can always be solved within
6 + dlog2 (|E|+ 1)e m-trails due to the fact thatd 21

2 e ≤
6+dlog2 22e = 11. With a fully meshed topology with 8 nodes
or more, at least 4 disjoint Hamiltonian cycles can be identified
in the topology [19]. Strategically, the topology is decom-
posed into three link-disjoint subgraphs denoted as G1(E1, V),
G2(E2, V), and G3(E3, V), such that each G2 and G3 consists
of a union of two Hamiltonian cycles, respectively, while G1

contains all the rest of the links in the topology. In this case,
the number of links in G1 is |E1| = |E| − 4 · (|V | − 1), and
|E2| = |E3| = 2 · (|V | − 1) for each G2 and G3.

We firstly add 2 m-trails for identifying the subgraph subject
to a link failure among the three. With t′2 and t′3, the overall
UFL can be sufficiently achieved by ensuring UFL separately
in each of the three subgraphs. The existence of the 2 m-trails
is guaranteed due to the special structure of G2 and G3, where
all links in each subgraph can be covered with a single m-trail,
denoted as t′2 and t′3, respectively.

Two link sets of different subgraphs can be merged into
a single link set. Without loss of generality, the two link
sets are assumed to be in G1 and G2, denoted as LG1

j and
LG2

k , respectively; and the merged link set is denoted as
L

G1,2
j,k = LG1

j ∪LG2
k . With t′2 and t′3, L

G1,2
j,k is not responsible

in failure localization of G3. Thus, the proof of the theorem
requires the proof of the following two claims: (1) No less than
dlog2 |EG + 1|e link sets are required for UFL in a topology of
EG links; and (2) any merged link set between two subgraphs
can be shaped into a valid m-trail by possibly taking the links
of the third subgraph. The proof of the two claims is provided
in the appendix as Lemma 3, Lemmas 4. Note that the proof
of claim (2) takes advantage of the fact that any link of G3

can be freely taken in the m-trail formation on L
G1,2
j,k .

With the two claims, the minimum required m-trails for a
fully meshed topology is the number of merged link sets plus
two (due to t′2 and t′3), where each link set of G1 is merged
with a link set in G2 or G3 as described in Lemmas 4. Note
that G1 is coded on almost twice as many bits as G2 and G3.
In other words, the number of link sets of G1 is almost as
many as the link sets of both G2 and G3. Clearly, G1 requires
no more than dlog2 (|E|+ 1)e m-trails according to Lemma
3, and a maximum of four m-trails are required after merging
the link sets according to Eq. (3). Thus, in addition to t′2 and
t′3, there will be totally 6 + dlog2 (|E|+ 1)e m-trails required
for UFL, which completes the proof.

Note that the abovementioned construction is a special case
of the problem addresses in [15] by Algorithm 1, and thus it
improves the O(log2 |E|) construction (Theorem 2 of [15]) to
O(1) + log2 |E|.

IV. ALGORITHM FOR M-TRAIL SOLUTION

A novel algorithm for achieving a fast and efficient m-trail
design in a general topology is introduced in this section.
The proposed algorithm takes advantage of random code

assignment (RCA) and random code swapping (RCS), aiming
to overcome the topology diversity in general topologies. With
RCA, it takes |E| unique alarm codes to be randomly assigned
to each link one after the other at the beginning and is kept in
an alarm code table (ACT), which leads to dlog2 (|E|+ 1)e
link sets. The algorithm then performs m-trail formation by
examining the connectivity of the links in each link set. There
could be much more m-trails than dlog2 (|E|+ 1)e formed
at the beginning. To improve the solution quality, RCS is
performed to update the ACT for each link set round by round,
where a better structure of a link set is searched according to
the cost function of Eq. (1). In our design, RCS is performed
independently (or locally) at each link set due to the stipulation
that the codes of two links of different link sets can be swapped
only if the swapping will not alter the connectivity of the
other link sets. This is referred to as strong locality constraint
(SLC), which is an important feature of our design in making
the algorithm simpler and running faster.

Fig. 5 shows a flowchart of the proposed algorithm. At the
beginning, an ACT is formed by randomly assigning each link
with a unique alarm code as shown in Step (1). In Step (2),
the cost of the current ACT is evaluated by Eq. (1) (which
will be further elaborated in subsection IV-A). Next, a greedy
cycle formed by Steps (2), (3), (4), (5), and (6) is initiated,
where RCS is performed in Step (3) and (5) (which will be
further detailed in subsection IV-B). In every cycle, a new ACT
(denoted as ACTnew) is generated and the corresponding cost
CACT new is evaluated in Step (2). If the cost of ACTnew

(denoted as CACT new) is smaller than (or equal to) that of
the cost of previous ACT (denoted CACT) as in Step (2),
the algorithm starts the next greedy cycle by replacing the
old ACT with the new one (i.e., ACT ← ACTnew) and
performing RCS as denoted as ACTnew ← ΨRCS(ACTnew)
in Step (3). In case the new ACT has a cost larger than that
of the old one, the newly derived ACT is simply disregarded,
and the next greedy cycle will perform RCS based on the old
ACT again. Such a greedy cycle is iteratively performed until
a given number (100 in the simulation) of iterations of RCS
has been done without getting a smaller cost at Step (4).

A. M-trail Formation

This subsection introduces the basic idea of our m-trail
formation mechanism, where Eq. (1) is used to evaluate the
ACT in each greedy cycle in Fig. 5 such that the greedy cycle
can possibly converge and yield a set of feasible m-trails with
high quality.

Fig. 6 elaborates Step (2) of Fig. 5 through an example by
considering a simple three-link topology. Initially, an alarm
code with 2-bit long is assigned to each link. The formation
of the jth m-trail has to take all the links with aj = 1 (which
belong to Lj) as shown in Step (2.1) of Fig. 6. The ideal
situation is that an ACT with J bits yields exactly J link
sets, which can form J valid m-trails. A link set forms an m-
trail if all the links can be connected and traversed exclusively
by a non-simple path. In other words, the link set can have
maximally two nodes with an odd nodal degree according

Initiate alarm code table ACT

CACT new ← inf , ACTnew ← ACT

CACT ≥
CACT new

≥ threshold?
Success rate evaluation

CACT new ← Ψcost eval(ACTnew)

CACT ← CACT new

ACT ← ACTnew

ACTnew ←
ΨRCS(ACTnew)

Yes No

No

Yes

Return ACTnew

(1)

(3)

(2)

(4)

(6)

(5)

ACTnew ←
ΨRCS(ACT)

Fig. 5. The flowchart for the proposed heuristic algorithm.

Separate the
alarm bits into
link sets (2.1)

Repair to valid
alarm code table

(2.2)
Evaluate its cost (2)

m-trail 1 m-trail 2 m-trail 3

01

Alarm code:

10 11

Link set 2Link set 1

Fig. 6. An illustration of the cost evaluation method of an alarm code table
of the 4 node line graph.

Euler’s theorem. Checking the validity of a link set for an
m-trail can be done by a breadth-first search (BFS) algorithm
in linear time. A link set could be far from interconnected
and could even yield multiple isolated fragments. If a link set
cannot be shaped into a valid m-trail (e.g. link set 2 of Fig.
6), it will possibly be constructed as a union of multiple m-
trails or cycles as described in Lemma 2 (in appendix), which
states that in case the ith isolated fragment of link set of bit
j (denoted as Ci,j) has more than two odd nodes (denoted by
#odd(Cij)), it can be decomposed into max(1, #odd(Cij)/2)
m-trails. This is also exemplified in Step (2.2) of Fig. 6.

In case m-trail tJ+1 is newly identified, the alarm code,
which was originally J bits in length, is appended with an
additional bit, denoted as aJ+1. Thus, aJ+1 is set to 1 for all
links traversed by tJ+1, and 0 otherwise. Similarly, when tj
merges with tk to form a new m-trail t′j , aj is set to 1 for all
links taken by tj ∪ tk. The kth bit of alarm code of each link
is removed accordingly.

B. Random Code Swapping (RCS)

The initial RCA may yield a unqualified result that contains
many isolated fragments and a large number of odd-degree
nodes. This subsection describes the proposed RCS mecha-
nism for shaping the links of a link set into one or a number
of m-trails while still meeting the overall UFL requirement.
The key idea of the proposed RCS mechanism is on the strong
locality constraint (SLC) on the swapping mechanisms in each
link set. It stipulates when RCS is on Lj for m-trail formation,
the alarm code of a specific link in Lj can be swapped with
that of a link not in Lj if all the other link sets are not
affected due to the swapping. The necessary condition for
meeting the SLC is that the alarm codes of two links in Lj

are bitwise identical except for a single bit at position j. Such
a code pair is called a code pair of Lj , and the two links
corresponding to the code pair form a bitwise link-pair of Lj .
For example, 1011011 and 1010011 form a code pair of L4,
and the corresponding links form a bitwise link-pair of L4.
Thus, swapping alarm codes of the two links meets the SLC
due to the local influence on L4. With the SLC, the RCS
on a link set can be performed independently from that for
the others. Such a mechanism yields merits in terms of easy
implementation and high efficiency.

Note that for Lj , some links may not have a bitwise link-
pair due to two reasons: (1) its code pair of Lj is all 0’s,
which does not correspond to any failure state. For example,
010000 is a code pair of 000000 of L2, but there is not a link
corresponding to the alarm code 000000. (2) The code pair
of Lj of the link was not assigned to any link. In this case,
the unassigned code can be freely used by the link without
violating the SLC.

In summary, RCS is performed on each link set by randomly
swapping alarm codes of all bitwise link-pairs of the link
set, in order to help interconnecting isolated trail fragments
and reducing the numbers of odd-degree nodes in the link set
iteratively in each greedy cycle. The prototype of the proposed
algorithm can be found in [1].

C. An Example on RCS Algorithm

We further provide an example as follows to show how
RCS is performed. The 26-node US network with 42 links are
uniquely and randomly coded in 6 bits at the beginning. Fig.
7(a) shows the link set assigned to the lowest bit (i.e., the 6th).
Except for the link between Denver and Kansas City that was
assigned with an alarm code 0000001, all the other links either
have a bitwise link-pair in L6, or are don’t-care links of L6.
Fig. 7(a) shows each link-pair at L6 by an arrow. For example,
(Atlanta, Charlotte) link and (Indianapolis, Cleveland) link are
bitwise link-pairs of L6. It can be easily seen that swapping the
two links will interconnect two isolated fragments and reduce
the number of odd-degree nodes by two, which leads to a
saving of an m-trail. Similarly, swapping link (Salt Lake City,
Denver) with link (Houston, New Orleans) will not increase
the total cost of the ACT. While in the subsequent greedy
cycle, swapping link (Las Vegas, El Paso) with link (El Paso,
Houston) would further reduce the number of m-trails through

the RCS and thus possibly reduce the total cost. With more
greedy steps on those link pairs and don’t-care links of L6, it is
possible to form a single m-trail corresponding to the 6th bit
in the ACT while keeping all other link sets not modified.
By iterating the greedy process for each bit in the ACT,
the algorithm can guarantee to obtain an m-trail solution for
each bit in the ACT. The solution quality will depend on
the success rate threshold defined in Step (6) in Fig. 5. The
effectiveness and efficiency of the proposed algorithm will be
further demonstrated in the next section.

This link has no
bitwise link-pair
because its error
code is 000001

(a)

Seattle

San Francisco

Chicago
New York

Los Angeles

Las Vegas

Salt Lake City

Denver Kansas City

Oklahoma City

Cleveland

St. Louis
Washington

D.C.

Boston

Charlotte

Detroit

Toronto

Atlanta

Indianapolis

Houston

Dallas
El Paso

Nashville

Miami

Minneapolis

New Orleans

(b)

Fig. 7. Link set 6 (a) after random coding (b) after greedy random code
swapping for link set 6 in the ACT.

V. SIMULATION

Extensive simulation on thousands of different random
topologies is conducted to verify the proposed algorithm.
Specifically, we (1) demonstrate the solution quality of the
proposed algorithm by comparing with the ILP in [12]; and (2)
investigate impacts of topology diversity on m-trail solutions.

A. Quality of Solution

We investigated the quality of m-trail solutions generated
by the proposed algorithm and its relation with the granted
computation time. Also, comparison is made between the
results by our algorithm and by the ILP in [12]. A server with
3GHz Intel Xeon CPU 5160 was used on two typical networks:
SmallNet (10 nodes, 22 links) and ARPA2 (21 nodes, 25
links). Fig. 8 shows the quality of m-trail solutions in terms
of total cost defined in Eq. 1 versus the granted running time

by taking cost ratio γ = 5. Each data in Fig. 8 is the mean
and 95% confidence interval of 30 experiment results under a
specific length of granted running time. The ILP solutions for
the two networks under the same condition were also plotted
for comparison.

With the RCS mechanism, the algorithm can achieve better
results (i.e., smaller total cost) when longer computation time
was granted in both networks. The simulation results attested
our expectation. Interestingly, the proposed algorithm has
generated even better solutions than that by the ILP, while
the running time is shorter by several orders. This explicitly
demonstrates the superiority of the proposed algorithm in
terms of both solution quality and required running time
against the ILP. Note that the ILP results in the example have
nonzero gap-to-optimality of 4.17% in SmallNet and 20.41%
in ARPA2, which cannot be erased except for dramatically
increased running time. On the other hand, the proposed
algorithm spent about 0.01 seconds and 1 seconds to achieve
the same total cost in the SmallNet and ARPA2, respectively,
compared with 1,543 seconds and 9,573 seconds by the ILP.

B. Topology Diversity on M-Trail Solutions

This section demonstrates the impact on m-trail solutions
due to topology diversity, for which a huge number of
experiments on thousands of randomly generated topologies
were conducted. Fig. 9 shows the minimal number of m-trails
versus network connectivity on topologies with 50 nodes. The
network connectivity was increased starting from a backbone
ring with 50 nodes and 50 links to a fully meshed topology
with 50 nodes and 1,225 links, where one or a few links
were randomly added to the topology for each data. To make
it statistically meaningful, every data in Fig. 9 is the mean
and 95% confidence interval over 20 different topologies each
obtained by randomly adding a same number of links on
the backbone ring. We observed that the normalized length
of alarm code (i.e., the length of alarm code subtracted by
dlog2 (|E|+ 1)e) dramatically goes down when number of
added links and average nodal degree is increased from 50
to 100 in Fig. 9(a) and from 2 to 3 in Fig. 9(b), respectively.
The length of alarm code approaches to the lower bound (i.e.,
dlog2 (|E|+ 1)e) when γ is large enough. From Fig. 9(a)
and (b), we have also observed that when γ is small, the
confidence interval for each data is larger than that in the case
with larger γ. This indicates the fact that both monitoring cost
and bandwidth cost are more sensitive to different amounts of
degree-2 nodes in the network, possibly due to the interplay
between the two objectives in the cost function of Eq. (1).

Fig. 9(c) shows the normalized cover ratio (i.e., the sum of
cover length of all m-trails divided by |E|) versus average
nodal degree. We have seen that the cover ratio slightly
increases when the average nodal degree is increased from 2 to
9 for all the three γ values. Particularly, the cases with γ = 5
and 10 have better suppressed the increase of cover length
ratio, which demonstrates the effectiveness in the tradeoffs
between the length of alarm code and bandwidth cost by
manipulating the cost ratio γ.

t4
t2

t5

t6

t1

t3

t6
t4t1t2

t3

t5
t7

t8

(a)

(b)

70

72

74

0.001 0.01 0.1 1 10 100 1000 10000
To

ta
l

C
os

t
Running Time in [sec]

SmallNet

Heuristic
ILP [12]

(c)

90

100

110

0.01 0.1 1 10 100 1000 10000

To
ta

l
C

os
t

Running Time in [sec]

ARPA2

Heuristic
ILP [12]

(d)

Fig. 8. The best heuristic solutions for SmallNet with cost of 69 and ARPA2
with cost of 87. In comparisons the ILP resulted 72 with 4.17% gap-to-
optimality for and SmallNet and 98 with 20.41% for ARPA2.

Fig. 10 shows the m-trail solutions with different numbers
of nodes in the network topologies. Fig. 10(a) and (b) shows
the length of alarm code versus the number of links. Clearly,
when γ = 1000, the length of alarm code is only affected by the
number of links when it is small, while quickly converging to
dlog2(|E|+ 1)e when the number of added links is increasing,
regardless of the number of nodes in the topology. Moreover,
the length of alarm code is always dlog2(|E|+ 1)e in case
the network does not contain any node with a nodal degree 2
or smaller, which also verifies the observations. On the other
hand, when γ is small, the convergence becomes slower, and
the length of alarm code deviates more from dlog2(|E|+ 1)e
as γ is reduced.

Fig. 10(c) shows the experiment results on the relationship
between normalized length of alarm code and total number of
degree-2 nodes in the topologies with 20, 30, 40, 50, and 60
nodes, altogether resulting 5,320 different random topologies.

0

5

10

15

20

25

50 70 90 110 130 150 170 190 210 230

#
m

-t
ra

ils
−

lo
g
2
(|E

|+
1
)

Number of Edges

γ = 5

γ = 10

γ = 1000

(a)

0

4

8

12

16

2 3 4 5 6 7 8 9

#
m

-t
ra

ils
−

lo
g
2
(|E

|+
1
|)

Average Nodal Degree

γ = 5

γ = 10

γ = 1000

(b)

2.4

2.8

3.2

3.6

4

2 3 4 5 6 7 8 9N
or

m
al

iz
ed

C
ov

er
R

at
io

Average Nodal Degree
(c)

Fig. 9. Simulation on topologies with 50 nodes. (a), (b): normalized length
of alarm code versus number of links (or the average nodal degree); and (c):
normalized cover ratio versus average nodal degree.

γ is set 1,000. Each data was obtained by averaging the results
on 20 randomly generated topologies of the same total number
of degree-2 nodes. We observed that all the topologies of
different numbers of nodes require more m-trails for UFL
as the number of degree-2 nodes grows, which meets our
expectation. Interestingly, it is observed that all the topologies
have to take similar normalized length of alarm code for UFL
given the same number of degree-2 nodes. This indicates a
deterministic effect and serious impact on m-trail solutions due
to the number of degree-2 nodes in a topology. We found that
the following relationship holds and can be taken as a rule of
thumb for approximating the normalized length of alarm code
in a general network topology when γ is very large:

#m-trail / dlog2(|E|+ 1)e +
#degree-2 nodes

2
(2)

VI. CONCLUSIVE REMARKS

As a generalization of all the previously reported all-optical
monitoring structures, Monitoring-Trail (m-trail) has been an
effective approach for achieving unambiguously failure local-
ization (UFL) under any single failure. The paper investigated
the m-trail design problem by firstly obtaining the minimum

10

20

30

20 40 60 80 100 120 140 160 180 200 220 240

N
um

be
r

of
M

-T
ra

ils

Number of Links

20 node network
30 node network
40 node network
50 node network
60 node network

(a)

10

20

30

20 40 60 80 100 120 140 160 180 200 220 240

N
um

be
r

of
M

-T
ra

ils

Number of Links
(b)

0

10

20

1 10 20 30 40 50 60

#
m

-t
ra

ils
−

lo
g
2
(|E

|+
1
)

Total number of degree-2 nodes

Total degree-2 nodes
2

(c)

Fig. 10. The length of alarm code versus the number of added links for
topologies of 20, 30, 40, 50, and 60 nodes. (a) γ = 1000 and (b) γ = 5.

length of alarm code (or equivalently, the minimum number of
m-trails) for ring and fully meshed topologies. To achieve fast
and high-quality m-trail solutions, a novel algorithm based on
random code assignment (RCA) and random code swapping
(RCS) was introduced. Extensive simulation was conducted to
verify the proposed algorithm and obtain insights on the m-
trail design problem. We have seen that the proposed algorithm
can achieve significantly better performance compared with
that by an ILP, where much shorter computation time is
required without losing any solution quality.

With the proposed algorithm, the impacts on m-trail so-
lutions due to topology diversity and cost ratio γ were an-
alyzed by conducting experiments on thousands of different
topologies. Our observations are summarized as follows: (1)
In case the bandwidth cost is not emphasized (i.e., γ is very
large), the minimum length of alarm code for achieving UFL
is decreased as the network connectivity is increased. The
minimum length of alarm code approaches to dlog2 (|E|+ 1)e,
and the normalized cover ratio grows mildly, when most nodes
have a nodal degree larger than 2, or generally when the
average nodal degree reaches 3∼4. (2) When the emphasis
on monitoring cost and bandwidth cost is comparable (i.e.,
γ is small and close to 1), the impact due to the number
of degree-2 nodes becomes more significant. Meanwhile, the

normalized cover ratio is getting smaller as the average nodal
degree is increased due to a smaller γ. (3) The minimum length
of alarm code can be generally approximated by way of the
total number of degree-2 nodes in the topology as shown in
Eq. (2).

We expect that the research not only contributes to the fail-
ure localization in all-optical networks, but also possibly helps
the design of monitoring systems for military surveillance,
quantum computing, and production automation, etc. Also, this
study is fundamental to the effort of unambiguous localization
for multiple simultaneous failures using m-trails, which will
be our future study.

REFERENCES

[1] J. Tapolcai, P.-H. Ho, and B. Wu, “Web page on m-trail design:
Source codes, simulation environments, examples and technical reports,”
http://opti.tmit.bme.hu/∼tapolcai/mtrail.

[2] C. Mas, I. Tomkos, and O. Tonguz, “Failure Location Algorithm for
Transparent Optical Networks,” IEEE Journal on Selected Areas in
Communications, vol. 23, no. 8, pp. 1508–1519, 2005.

[3] H. Zeng and C. Huang, “Fault detection and path performance monitor-
ing in meshed all-optical networks,” in IEEE GLOBECOM ’04, vol. 3,
2004, pp. 2014–2018.

[4] H. Zeng, C. Huang, and A. Vukovic, “A Novel Fault Detection and Lo-
calization Scheme for Mesh All-optical Networks Based on Monitoring-
cycles,” Photonic Network Communications, vol. 11, no. 3, pp. 277–286,
2006.

[5] H. Zeng and A. Vukovic, “The variant cycle-cover problem in fault
detection and localization for mesh all-optical networks,” Photonic
Network Communications, vol. 14, no. 2, pp. 111–122, 2007.

[6] B. Wu and K. Yeung, “M2-CYCLE: an Optical Layer Algorithm for
Fast Link Failure Detection in All-Optical Mesh Networks,” in IEEE
GLOBECOM ’06, 2006, pp. 1–5.

[7] ——, “Monitoring Cycle Design for Fast Link Failure Detection in All-
Optical Networks,” in IEEE GLOBECOM ’07, 2007, pp. 2315–2319.

[8] C. Li, R. Ramaswami, I. Center, and Y. Heights, “Automatic fault
detection, isolation, and recovery in transparentall-optical networks,”
Journal of Lightwave Technology, vol. 15, no. 10, pp. 1784–1793, 1997.

[9] S. Stanic, S. Subramaniam, H. Choi, G. Sahin, and H. Choi, “On mon-
itoring transparent optical networks,” in Proc. International Conference
on Parallel Processing Workshops (ICPPW ’02), 2002, pp. 217–223.

[10] Y. Wen, V. Chan, and L. Zheng, “Efficient fault-diagnosis algorithms
for all-optical WDM networks with probabilistic link failures,” Journal
of Lightwave Technology, vol. 23, pp. 3358–3371, 2005.

[11] C. Assi, Y. Ye, A. Shami, S. Dixit, and M. Ali, “A hybrid distributed
fault-management protocol for combating single-fiber failures in mesh-
based DWDM optical networks,” in IEEE GLOBECOM ’02, vol. 3,
2002, pp. 2676–2680.

[12] B. Wu, P.-H. Ho, and K. Yeung, “Monitoring trail:a new paradigm
for fast link failure localization in WDM mesh networks,” in IEEE
GLOBECOM ’08, 2008.

[13] M. Maeda, “Management and control of transparent optical networks,”
IEEE Journal on Selected Areas in Communications, vol. 16, no. 7, pp.
1008–1023, 1998.

[14] P. Demeester, M. Gryseels, A. Autenrieth, C. Brianza, L. Castagna,
G. Signorelli et al., “Resilience in multilayer networks,” IEEE Com-
munications Magazine, vol. 37, no. 8, pp. 70–76, 1999.

[15] N. Harvey, M. Patrascu, Y. Wen, S. Yekhanin, and V. Chan, “Non-
Adaptive Fault Diagnosis for All-Optical Networks via Combinatorial
Group Testing on Graphs,” in IEEE INFOCOM, 2007, pp. 697–705.

[16] S. Ahuja, S. Ramasubramanian, and M. Krunz, “Single link failure
detection in all-optical networks using monitoring cycles and paths,”
accepted for publication in IEEE/ACM Transactions on Networking,
2009, http://www.ece.arizona.edu/ srini/Publications.php.

[17] ——, “SRLG Failure Localization in All-Optical Networks Using Mon-
itoring Cycles and Paths,” in IEEE INFOCOM, 2008, pp. 181–185.

[18] “CPLEX,” http://www.ilog.com/products/cplex/.
[19] B. Alspach, J. Bermond, and D. Sotteau, “Decomposition into cycles 1:

Hamilton decompositions,” Cycles and Rays, 1990.

APPENDIX

Lemma 2: A graph can be decomposed into (1) a single
cycle, if every node has an even nodal degree; or (2) a number
of #odd(G)/2 trails, where #odd(G) denotes the number of
odd-degree nodes in the graph.

Proof: The lemma is a consequence of Euler cycle and
path theory. In both case (1) and case (2), the cycle and the
trails can be formed in linear time with Fleury’s algorithm,
respectively.

Lemma 3: In any graph with |EG| links, UFL can be
achieved with dlog2 (|EG|+ 1)e link sets.

Proof: Let unique alarm codes except 00 . . . 0 be assigned
to the |EG| links one after the other. The alarm code of each
link can be converted into an alarm code of dlog2 (|EG|+ 1)e
bits, which define LG

1 , LG
2 , . . . , LG

dlog2 (|EG|+1)e link sets such
that link l belongs to the ith link set, denoted by LG

i , if ai = 1
at link l.

With Lemma 3 the UFL can be achieved by
b1 = dlog2(|E1|+ 1)e link sets for G1 denoted by
LG1

1 , LG1
2 , . . . , LG1

b1
, and by b2 = dlog2 (|E2|+ 1)e link sets

for each of G2 and G3, denoted by LG2
1 , LG2

2 , . . . , LG2
b2

and
LG3

1 , LG3
2 , . . . , LG3

b2
respectively. Note that b1 + 4 ≥ 2 · b2

because

2 · b2 − b1 = 2dlog2(|E2|+ 1)e − dlog2(|E1|+ 1)e
= 2dlog2 (2|V | − 2 + 1)e−dlog2 ((|V | − 8)(|V | − 1)/2 + 1)e

≤ 2 · d1 + log2 |V |e − dlog2 (|V |2/4)e
≤ 4 + d2 log2 |V |e − d2 log2 |V |e = 4 (3)

where |E1| = |E| − 4 · (|V | − 1) = (|V | − 8)(|V | − 1)/2 and
(|V | − 8)(|V | − 1)/2 + 1 ≥ |V |2/4 holds for |V | ≥ 4 based
on the quadratic formula. Next, these link sets can be merged
and m-trails are shaped based on the following lemma.

Lemma 4: Let LG1
j and LG2

j be merged as a single link set
for all j = 1, 2, . . . , b2, denoted as L

G1,2
j = LG1

j ∪LG2
j . L

G1,2
j

can always be shaped into a valid m-trail tj by possibly taking
the links of G3 in the m-trail formation.

Proof: Let L̂G3
j be the set of links added to L

G1,2
j forming

m-trail tj , formally tj = L
G1,2
j ∪ L̂G3

j . Recall that G3 consists
of two disjoint Hamiltonian cycles. Thus, the links in one of
the Hamiltonian cycles can be added to L̂G3

j such that the
connectivity of the link set is guaranteed.

Meanwhile, by staring at an arbitrary node of the second
Hamiltonian cycle, we can check each node one-by-one along
the cycle. If a node with an odd nodal degree is encountered,
the link of next hop at the node is added to L̂G3

j and otherwise
disregarded. This step is repeated until the number of odd-
degree nodes is reduced to two and an Euler path can traverse
all the links in the subgraph of L

G1,2
j ∪ L̂G3

j .
Using the construction of Lemma 4, LG3

1 , . . . , LG3
b2

can be
merged into the rest of the LG1 link sets and by possibly
taking links of G2 they can be shaped into a valid m-trail.
Finally, the link sets of LG3 that were not merged into LG1

(no more then four) can be shaped into a valid m-trails by
possibly taking links in G2.

