Algorithms for Asymmetrically Weighted Pair of Disjoint Paths in
Survivable Networks

Péter Laborczi!
Tibor Cinkler!

1 Department of Telecommunications and Telematics,

2 Department of Computer Sciences and Information Theory,
Budapest University of Technology and Economics,
Pdzmdny Péter sétdny 1/D, H-1117 Budapest,Hungary
e-mail: {laborczi,cinkler}@ttt-atm.ttt.bme.hu
{tapolcai,recski}@cs.bme.hu
3 Department of Electrical and Computer Engineering,
Queen’s University, Kingston Ontario, Canada K7L 3N6

e-mail: hoph@ee.queensu.ca, mouftah@ece.queensu.ca

Abstract

To find node-disjoint path-pairs is a critical issue of
survivable networks. One of the paths have frequently
higher priority in which case the problem is called
asymmetrically weighted pair of disjoint paths. In this
novel approach a special, weighted objective function
should be minimized. We prove the problem to be
NP-complete and several heuristics are proposed based
on k-shortest paths searching, Suurballe’s algorithm,
Integer Linear Programming (ILP), Linear Relaxation
(LR), and Minimum Cost Network Flow (MCNF) algo-
rithm to achieve best performance in polynomial time.
The simulation results show that the heuristic based
on MCNF yields the best performance in terms of cost
and running time. The optimal solution is found in
about 99.9% of all cases while a near-optimal solution
in the remaining few cases.

Keywords: Protection and Restoration Algorithms,
Spare Capacity Allocation, Transport Networks

1 Introduction

Modern telecommunication networks carry tremendous
amount of traffic that risks a serious data loss when
a failure occurs (e.g., a fiber cut or a node failure).
The most common way to protect a path is to find
a protection route over which the protected data flow
can be switched when a failure occurs in the network
element the path passes through. The working and
protection path has to be node-disjoint. The protection
path can be computed after its corresponding working
path is determined, however this may lead to a non-
optimal solution. On the contrary, a working path and
a protection path can be found simultaneously to yield
the globally optimal node-disjoint path-pair.

This problem is also known as node-disjoint diverse

Janos Tapolcai
Andras Recski?

jl:2:3 Pin-Han Ho?

Hussein T. Mouftah?

routing problem and usually solved intuitively by the
Two-Step-Approach algorithm [1]. This first finds the
shortest path, then finds the shortest path in the same
graph with the edges and nodes of the first path being
temporarily erased. Although this method is straight-
forward and simple, it may fail to find any disjoint
path-pair since erasing the first path can isolate the
source node from the destination. This can happen
even if the network is highly connected!. This ap-
proach may perform well if the task is to reduce the
cost of working path without any attention paid to the
protection path. We will call this approach 2D (two-
step-Dijkstra).

To find two disjoint paths with minimal total cost,
Suurballe’s algorithm (SUURB) [2] [3] can be used.
This is a modification of Dijkstra’s algorithm and guar-
antees to find the disjoint path-pair if it exists.

However, in many cases a network operator’s aim
is not only to reduce the total cost but to optimize
the cost sum with weighting one of the paths (e.g., the
working path). In this paper, we focus on the optimiza-
tion of the sum acost(Py) + cost(Ps), where cost(Py)
and cost(P,) are the cost of the working path and of
the protection path, respectively.

Parameter « is the weight of the working path, which
is determined by the protection strategy. In other
words the consumption of network resources by the
working path is a times more important than that of
the protection path. For example, if a shared protec-
tion scheme (e.g., 1: N or M : N) is adopted, a could
be 10..100 depending on how many paths share a link
and on the amount of best-effort traffic flowing in the
network. On the other hand, a could be small (e.g.,
1 ~ 5) for dedicated protection (e.g., 1+ 1) since there
is no difference in the consumption of network resources
between a working path and a protection path.

In this paper we will present several solution alterna-
tives. After formulating the problem we will prove that
the problem is NP-hard. In Section 4 we analyze an
enhancement of the widely used routing algorithms of
dynamic routing problems. In Section 5 the problem is
formulated as an Integer Linear Program (ILP). Then
the proposed methods are discussed that are based on
Linear Relaxation and Minimal Cost Flow. In Section

1One can easily construct a graph in that the shortest path
between s and d takes all nodes.

7 methods are given to solve the split-flow problem that
arise in relaxations. Finally, the numerical results are
discussed.

2 Problem Formulation

The input of the problem is a directed or undi-
rected graph G(V, E) representing the network topol-
ogy where the set of nodes denoted by V' and the set
of arcs denoted by E with a positive cost for each link
(denoted as ¢, of edge e € E).

The demand has a source (s), a destination (t), and
a factor (or weight) a for weighting the working path.
The task is to find edge- or vertex-disjoint working
(Py) and protection (P») paths from a given source to
destination such that f(s,t,a) = acost(P;) + cost(Ps)
should be minimal. In this paper we are focusing on
vertex-disjoint paths and we mean this by the term
disjoint path. Please note that here the routing of one
demand is solved. The described methods should be
called as a subroutine if a demand is allocated.

As mentioned if @ = 1 then the problem can be
solved by Suurballe’s algorithm [2] with complexity of
O(n?logn).

3 Complexity Study

In this paper we are going to present a series of ap-
proximation algorithms to solve the asymmetrically
weighted disjoint path problem. The optimization is
proved to be NP-complete, which will be verified in
the following paragraph.

The result given by Suurballe’s algorithm is optimal
only in the case of @ = 1. On the other hand, it can
approximate the derivation of f(s,t,a) = acost(P;) +
cost(P2) no worse than the optimal cost factored by
atl [5], where Py and P, are two disjoint paths be-
tween a given source s and destination ¢ and « is a
given constant, i.e.,

a+1

fapp(sataa) S 5

2 'fopt(s>t7a)

where fapp(s,t, @) is the result given by the algorithm
that approximates (which is Suurballe in this case),
fopt(s,t,a) is the optimal solution. The above rela-
tionship is defined as an approximation with a factor
of afl

.
Theorem 1. Suurballe’s algorithm [3],[2] approxi-
mates the cost of the optimal asymmetrically weighted
path-pair with a factor of 2fL.

Proof. We should prove that

a+1
ar] + x5 < T-(aml + Z2)

where z1 and z» are the optimal solution of our prob-
lem, and z} and x} are the result of Suurballe’s algo-

rithm (2} < z4).

Al (azy +22) asa>1

otl. (21 + 32) as 2} + z} optimal

ofl. (g} + ab) as x| + azh > az| + o
X

! ! ! 1
aT{+aTo+T1+To ! !
ST ENT® > ax) + b

\Y

2
2

O

The following theorem is to claim that there is no
any polynomial-time algorithm that can approximate
the derivation of an asymmetrically weighted path-pair
within a factor of 2%, unless P=NP.

Theorem 2. [4],[5],[6] On directed graphs it is NP-
hard to approximate the cost of the optimal asym-
metrically weighted path-pair within a factor of C“T“,
i.e, if an algorithm achieves an approximated cost

fapp(8,t,0), in which

Sapp(8,t,0) < C - fopr(s,t, @)

1
150<%

then the algorithm is not polynomial, unless P=NP.

Proof. We can reduce our problem to the following one:
Given a directed graph Go = (V, E) and four distinct
vertices sy, t1, 82, t2; decide whether there are two node
disjoint directed paths in Gy so that one of them leads
from s; to t; and the other from s, to t3. This was
proved to be NP-complete by Hopcroft at al., see [7].

Add two vertices s and t to Go = (V, E) and define
the network Gj = (V', E') by

V=V U{s,t)
ElZEU{S—)Sl,S—)Sz,tl—)t,tQ—)t}

where all arcs have cost 1 except arcs s — sy and t; — ¢
which have huge cost denoted by K ,where

C-(na—a+1)+2(a+1)

K =
a+1-2C

+1 Q)

where n is the number of nodes in Gy. Note that K is
well defined only if C < 2tL. Tt is easy to verify that
K>nas021andn21’§mda>1.

Figure 1: Gy = (V', E')

G{ can be constructed in polynomial time, and all
edge-lengths are bounded by a polynomial in a and
n. Now we show that there exist two directed disjoint

paths between vertices s1,t1, $2,%t2 if and only if the
approximated cost fopp(2,a) < C-(na—a+2K +1).
=
If there exist two directed disjoint paths between ver-
tices s1,t1, S2, ta, then as K > n the cost of s = s1 ~~
t2—>tands—)32wt1—>tis
Sapp < C - acost(Py) + cost(Py)}
<C-(a(24+n-3)+(2K+1)) < C-(na—a+2K+1)0
=
The proof is indirect. Assume that the cost is fopp <
C - min{ac(Py,) + ¢(Pp)} < C - (na + a + 2K + 1)
but there is no pair of directed disjoint paths between
vertices s1,t1, S2,t2. Then the approximated cost is
C'(na+a+2K+1) Z fapp Z fopt
= min{acost(P,)+cost(P,)} > C-(a(K+2)+(K+2))
Therefore

C-na+a+1)+2(a+1)>K-(a+1-2C)

hence
C-(na+a+1)+2(a+1)
a+1-2C

a contradiction to (1). O

K<

Nevertheless, in the the proof of NP-completeness
Hopcroft at al. used a very special graph that can
show the "NP” complexity of the problem. In practi-
cal implementation, the network topology can be much
different, and often undirected graphs are used as the
model of the network. Note that the problem in the
undirected case is an open question (with a fixed «).
Therefore we may hope to be able to derive a very good
approximation in polynomial time even if the approach
can not be guaranteed to outperform Suurballe’s algo-
rithm. The simulation results showed that the approxi-
mation algorithms could achieve a high availability and
quality in finding disjoint path-pairs in the practical
network topologies we engaged (see Section 8 for sim-
ulation results).

4 An Enhancement to the Two-
Step-Approach

We first propose a heuristic that is based on the ap-
proach of finding the k-shortest path. With this heuris-
tic, not only the shortest path is examined but also the
k-shortest paths, where k = 1,2, We implement the
Sub-Optimal Path-Solver (SOPS) algorithm, for find-
ing the k-shortest paths between an S-D pair in the
network.

The SOPS algorithm is based on an iterative replace-
ment, in which a segment of path is erased from the
network, and replaced by a path segment generated by
applying the shortest path first algorithm between the
two cutting nodes. The original path is a seed path
that yields a new path that is called a generated path.
We will refer to this subroutine as ”Replacement”.

The algorithm is briefly stated as follows.

STEP 1: Find a complete set of paths
Min_Path(S, D, 0), where
Min_Path(S, D, k) is the set of k-shortest

paths and is in the k" stage.

STEP 2: Using each path in Min_Path(S,D,0) as a

seed path, running Replacement.

STEP 3: If a generated segment is shorter than the re-
placed segment, erase the generated segment

from the network and run Replacement again.

STEP 4: The generated paths are included into
Min_Path(S,D,1), Min_Path(S,D,2),...,or

Min_path(S, D, K), where N is the offset

STEP 5: Iteratively using Min_Path(S, D,0),
min_Path(S, D, 1).....Min_Path(S,D, K — 1)
to get Min_Path(S,D,K), as shown in

Figure 2

01
02
03
04

12
1+3 23
1+ 24 34

0+*N 1N 2N 3-*N - (N-1)>N
Figure 2: The derivation of the Min_Path(S,D,N)

Find diverse route
for the marked

Optimal
paths
(marked)

working path

the W-P
pair is the
optimal

Find working
paths of the next
stage, mark them

Figure 3: Flow chart for determining node-disjoint path
pair

cost

p00 2
Min_Path(S, D, 0 p0l 2 |4 Index = CP
p02 2
- ——cp,
Min_Path(S, D, 1) nl0 1|
p0 0
pl 0
p2 0
p3 0 -1 &
—t— C ter
(Ci - sz[m)-a> Cqudm - Ci

Figure 4: Checking the optimality of the iteration

Figure 4 shows the flow chart for finding a node-
disjoint working-protection path-pair. Figure 2 illus-
trates how to utilize the SOPS algorithm and to de-
termine if a path-pair is the optimal one. A path is
marked with “2” if it has worked as a seed path to
yield more expensive path. A path is marked with
“1” if it has been “in order”. The order of the paths

marked with “0” are still unknown. For example, the
path p00, p01, p02 and pl0 are “in order”, and it is
impossible to find a path with a cost in between any
two of the paths. However, there might be a path with
a cost larger than the pl0 and less than p0 if the p10
is used as a seed path.

In the table of Figure 4, the “Index” keeps the opti-
mal working path Py, e, with cost Crpges, and another
index “i” keeps the working path P; that is being tried
to derive a disjoint path, which has a cost of C;. The
optimality of a - Crpges + CPrndez can be examined
by the inequality (C, - Cjndew) -a > CPrpges — C;
where CPr,4e; and CP; are the costs of the protection
paths of Prpge, and P;. It is easy to see that if the
inequality holds, any C] that is larger than C; can at
most yield a sum of (a + 1) - C}, which is larger than
CPrpges + @+ Crndes; i-e., @-Crnges + C Prpgeq is always
larger than « - C; + C'P; in this situation.

The heuristic proposed above can solve the asym-
metrically weighted optimal disjoint path-pair problem
without regarding the value of a, however, it has to
be based on an efficient approach to finding k-shortest
path, which is usually notoriously with the exponen-
tial computation complexity. Therefore, more efficient
algorithms have to be developed to cope with this prob-
lem.

5 Integer Linear Programming
(ILP)

The problem can be solved optimally by an Integer
Linear Program (ILP).
Objective:

minimize E (aze + ye)ce
ecE

Subject to constraints:

0 if ¢ # source A i # sink
1 if ¢ = source

N N
E Tij — E T =
j=1 k=1

—1if ¢ = sink
N N 0 if 4 # source A i # sink
Zyz’j - Z Yki = 1 if ¢ = source
j=1 k=1 —1if ¢ = sink

for all nodes i(3)

ze € {0,1},y. € {0,1}, for all edgese € E (4)

ZTe +ye < 1for all edgese € E (5)

The binary flow indicators z. (y.) take value 1 if the
working (protection) path uses edge e or 0 if not. « is

the weight factor for the primary path and ¢, expresses
the cost of using edge e.

According to constraint (5) which ensures edge-
disjoint paths, the working and backup paths may not
use the same edge. For making the working and backup
paths node-disjoint the following constraint should be
used instead of (5): Z;VZI (@i; + yi;) <1 for all nodes
1 except the source and the sink.

6 Relaxations

As shown in 3 even a ”good” relaxation of the problem
is NP-hard, therefore, derivation of the optimal solu-
tion for large networks (e.g., with 100 or more nodes)
needs an unacceptable amount of computation time. It
is crucial especially in the case of dynamic route com-
putation. To solve a linear program (LP) or a flow
problem is much less complex task than to solve an in-
teger program. With the following relaxation process
we got 1.5 to 100 times faster running time, depending
on the size and density of the network. Both LP and
ILP can be solved by many software packages. We did
experiments with CPLEX and LP-SOLVE. Besides, we
adopted two types of relaxation: Linear Programming
Relazation (LPR) and Single Flow Relazation (SFR)
in this work.

Linear Programming Relaxation (LPR). LPR
is a relaxation of the above ILP formulation by relaxing
the constraint (4), i.e., the condition that the variables
should be integers. That is, instead of (4) the follow-
ing constraints are to be applied: 0 < z, < 1 and
0 < y. <1, for all edges e € E, which however allows
fractional flows and may yield useless result (as shown
in Figures 7 and 8). Although relaxation is of poly-
nomial complexity in contrast to the integer problem
but the split-flow problem that may occur needs to be
further manipulated. We will discuss this in details in
Section 7 and show that in most of the situations the
optimal solution still can be found.

Single Flow Relaxation (SFR). The idea of SFR
is based on Minimal Cost Flows (MCF) with the fol-
lowing conditions: all capacity constraints are set to «
and a flow of size 1 4+ « is to be found. SFR renders
split-flow even more often as shown in Figures 5 and 6.

Figure 5: Example when SFR gives optimal solution.
(Dashed arrows represent the working path, with flow
size of alpha and solid lines the protection path, with
flow size of 1).

There exists a large number of fast Minimal Cost
Network Flow (MCNF) implementations, e.g., that of

Figure 6: Example when SFR yields a split flow.
(Numbers on the arcs represent the flow values.)

Goldberg [8]. In addition the Network optimizer of
CPLEX can solve the MCNF problem efficiently (in
O(n®*mlogn) time). It can also be solved by any other
available LP solver, such as LP-SOLVE.

7 Methods for Solving the Split-
Flow Problem

The result of our experiments shows that by the as-
sistance of LR and SFR an optimal solution can be
derived in around 80-90% of all cases (in which the re-
laxation yields a two-path solution). In the other cases
(10-20%) the relaxation does not yield a two-path solu-
tion but a split low. However, if the split-flow problem
occurs, the result of the relaxation may be useless. In
the following paragraphs we propose two approaches,
Tiny Additional Costs (TAC) and a-Shifting, for solv-
ing the split-flow puzzle, and deriving an optimal or a
near-optimal solution for the diverse-routing problem.
Before presenting our approaches, two types of split-
flow problems are defined and described as below.
Reparable split. Because of the essential charac-
teristics of the LPR and MCF solvers, the flows in the
network may be split if there are two or more optimal
paths between source and destination. As an example
shown in Figure 7, every link cost is one, and the total
amount of flow from s to d is one as well. The num-
bers specified on the edges represent the percentage of
flow. In this case, both the working (solid arrows) and
the protection (dashed arrows) paths are split although
they could take single paths with the same minimum
cost as well. Although this situation occurs in a practi-
cal network with relatively small probability 2, it may
ruin the whole computation process once it exists. To
solve this type of split-flow problem, Tiny Additional
Costs (TAC) is proposed and discussed in Section 7.1).

Unreparable split. Figure 8 shows another type of
split-flow problem (links s-1 and 12-d have high cost,
all other links have low cost). In this case the split-flow
would have minimum cost, which cannot be repaired
in polynomial time3. In other words, if a polynomial
computation time has to be guaranteed, it may not be
able to find an optimal solution. To cope with this

2having more than one path of equal cost between source and
destination

3unless P=NP the problem is NP complete (see Theorem 2)
while LP can be solved in polynomial time [9]

Figure 7: Example for reparable split of LPR. The
numbers next to the arc represent the size of the flow.

Yo

i, +*'50%
- "/'

Figure 8: Example for unreparable split. If o = 5 the
total cost is Ta+ 15 = 50, while the disjoint path’s cost
would be 9o + 9 = 54

situation, we propose a heuristic, a-shifting, to find a
possibly good repair in polynomial time.

= mim working path
= protection path

7.1 Tiny Additional Costs (TAC)

TAC is proposed to solve the reparable split prob-
lem, in which a random number ¢, is added to each
edge e, where 0 < ¢, < 1/an, n is the number of
nodes in the network. Based on the fact that the orig-
inal cost of links are all integers, therefore the total
cost of the path-pair is integer as well. On the other
hand, the number of links used by the path-pair is
smaller than n, that is why the deviation of the total
cost (e.g. acost(Py)+cost(Py)) is less than one, since
Yec B, €ean < 1, where E; is the set of edges used by
P, or P,. Therefore, the result of the relaxation is not
influenced by applying TAC, while the probability that
more than one optimal path exist between source and
destination can be significantly reduced.

Two methods based on TAC are tested to solve the
reparable split problem. First, LPT is when TAC is
performed before the relaxation. If the flow problem
still occurs in the relaxation, it fails. Second, LPT+
is an enhancement of LPT when TAC is performed re-
peatedly on the original network until either the split-

flow problem is solved (or an optimal solution is de-
rived) or the time of iterations reaches maxpr, what
is user defined.

7.2 @-Shifting

Recall that ILP can solve the problem and guar-
antee the optimal solution. However, due to NP-
completeness of the ILP, large networks (e.g. number of
nodes > 200) cannot be handled in this way. To reduce
the complexity, we propose a heuristic, a-shifting, to
yield a near-optimal solution within a polynomial com-
putation time. The basic idea of a-shifting is to search
o' that is closest to «, with which the relaxation pro-
cess works with unsplit flows or at least reparable flows,
i.e., a sub-optimal path pair is yielded.

In order to understand the method, we will ana-
lyze the cost of the path-pair plotted against «, de-
noted by t(4)(a). It can be proved that t:) ()
is continuos, monotone increasing, piecewise linear
and concave. The piecewise linearity of the function
comes from the fact that each path-pair has a cost of
acost(Py)+cost(Py) what is linear against . Also pos-
sible to prove that the solution of any LP relaxation
plotted against a has the same properties (denoted
with 6" (@)). Obviously, ¢4 (@) > t(sa)(a) and
equal if the LPR or SFR gives integer solutions (see
Figure 9). It can be proved that ¢75'4" (1) = t(5,a)(1)-
Figure 9 shows an example where the relaxation pro-

ol minfac(R)+c(R)}
60 T
1)

ATt ER @

501

.

40+
30T
207

107

1 2 3 4 5 6 7 8

Figure 9: An example of the cost function plotted
against a

cess suffers from the unreparable split-flow problem
when a = 4. With the proposed a-shifting scheme
we are going to find o' closest to a such that a sub-
optimal path pair can be derived. A binary search is
suggested here to find o', in which o' = 6 will be tried
first, followed by o' = 5, and then o/ =2 and o' = 3.

The heuristic works as follows:
STEP 1: Run relaxation SFR or LPR with 2a.

If successful then find o' closest to a with bi-
nary search (a < o' < 2a)

STEP 2:

If not successful find o' closest to a with bi-
nary search (1 < o' < a)

STEP 3:

With this method in the worst case o' goes to 1
where the problem is degraded and gives the same re-
sult as Suurballe’s algorithm.

7.3 Methods Summary

The process of solving asymmetrically weighted dis-
joint path-pair is summarized by the flow chart shown
in Figure 10. The approaches (0) — (1) — (2) —
(3) — (4) can guarantee to derive an optimal solution
(if there is any) at an expense of being non-polynomial
during (4). On the other hand, the polynomial com-
putation time can be achieved without a guarantee of
optimality via the approach (0) — (1) — (2) — (3).
‘ TAC ’&,’ LPRorSFR‘) l

o -shifting
binary search

fora’
—J(O) WO [

(O]

counter+1

optimal
solution

Figure 10: Flowchart for solving the asymmetrically
weighted optimal disjoint path-pair problem

8 Numerical results

Figure 11 shows a typical function of cost against «
in the case when there are different optimal path pairs
at different values of a. On the vertical coordinate
the value 1 represents the optimum cost (the cost was
normalized). With the growth of a 2D gives better
and better results compared to the optimum, i.e., it is
a decreasing function. Note that for 2D the existence
of the solution is not guaranteed (see also Table 5, row
2D success). On the other hand Suurballe’s algorithm
(SUURB) gives optimal solution at o = 1 and moves
away from it if a increases. In this example in the
interval 4 < a < 12 both 2D and SUURB yields more
than 1.5 times worse solution compared to the optimal
one. It can be seen that our method is always very close
to the optimum. However, one has to mention that in
a number of cases not only our method but also 2D and
SUURB give the optimal solution. That is the reason
to get smaller differences between the average costs of
all node-pairs as for the ”problematic” node pairs in
Tables 1, 2, 3.

Four methods are compared according to 3 criteria:
running time, success, and cost. Simmulations have
been carried out between each pair of nodes and av-
erage calculated for running time and cost. Success
means the percentage of node-pairs for that the method
gives any solution. The methods are: (1) ILP that
yields the optimal solution, (2) Suurballe (SUURB)
that minimizes the total cost of the two paths, (3) 2D
that minimizes the cost of the first paths, (4) LPR, and
(5) SFR: our proposed methods. The tests were carried

3.5

3
2.5 A
2

15 &

—+— 2Dijkstras
—=— Suurballe
LPR

14 -

0.5 T uunmuml
1 14 27 40 53 66 79 92 105 118

Figure 11: A typical function of cost against alpha nor-
malized with the value of the optimal solution, when the
optimal solution differs from the Suurballe’s one.

out on an 500 MHz Intel PentiumlIII based computer
with 64 Mbytes of memory. ILOG’s CPLEX 6.5 and
LP-SOLVE has been used for ILP tasks that are widely
used for solving linear programs.

Tables 1 and 2 show numerical results for a dense 30-
node and a sparse 35-node network. The running times
show the average computational time for one demand
in milliseconds. The success value is always 100% ex-
cept in case of the 2D method since it does not always
yield solution. Average normalized cost of all demands
are shown for a = 1,5,100, and average normalized
cost for the ”problematic” path-pairs. ”Problematic”
path-pair means that ILP and SUURB does not yield
the same quality of result for & > 1. Table 3 shows nu-
merical results for 10 demands of a 400-node network.

In smaller networks (n30, n35) SUURB and 2D have
shorter running time but worse quality than the three
other methods. In case of n35 2D did not find solution
in 7% of the cases. LPR did not split any flows. LPR
gives very similar running time compared to ILP. In
case of n30 and n35 SFR gives always the optimal so-
lution. The reason for that is that in networks of such
size SFR runs ILP if the flow splits. The running time
of SFR is a fraction of ILP while it gives result very
near to optimum.

The running time of the algorithm for a network of
1000 nodes and 1900 edges is as follows: 19.2s for LPR,
and 7.1 for SFR. The quality of the results are similar
to the other networks.

Table 4 shows the percentage of optimally routed de-
mands in eight networks: four of them are sparser (N5,
N15, N25, N35) and seven are denser (N30A, N30B,
N30C, N50, N60, N100). The network names refer to
the number of nodes. Simulations have been carried
out between all pairs of nodes and the percentage of op-
timal result is shown in case of SFR, LPR, LPR+SFR,
LPT, LPT+ In case of LPR+SFR after LPR SFR is
applied if and only if LPR did not yield optimal solu-
tion. LPR+SFR yields optimal solution in all sparse
networks, and about 99% of all demands in dense net-
works, and nearly optimal in the remaining 1%. LPT+
yields optimal solution for almost all of the demands
in all networks.

In Table 5 five methods are compared according to
the increase of runtime on different networks.

9 Conclusion

We have proposed methods for finding asymmetrically
weighted minimum cost disjoint paths. It finds solu-
tion in polynomial time that is in 99.9% of all cases
the optimal one. In the remaining cases (1) either a
near-optimal solution is delivered, (2) or the optimal
solution can be found in longer time. The obtained
results can be used for configuring survivable DWDM,
SDH, ATM, MPLS, and other networks. The proposed
methods deliver results even in large networks (1000
nodes or more).

10 Acknowledgement

This work has been supported by HSNLab
(http://hsnlab.ttt.bme.hu) and ETIK
(http://www.etik.hu) and by grants OTKA 29772
and 30122 of the Hungarian National Science Fund,
and by the NATO Collaborative Linkage Grant
PST.CLG.976383. It is also partially supported by
an NSERC of Canada Research Grant 1056 and
the Computer Networks lab at Queen’s University,
Kingston, Canada.

References

[1] Ramesh Bhandari. Survivable networks : algo-
rithms for diverse routing. The Kluwer interna-
tional series in engineering and computer science.
Kluwer Academic Publishers, Boston, 1999.

[2] J. W. Suurballe. Disjoint paths in a network. Net-
works, 4:125-145, 1974.

[3] J. W. Suurballe and R. E. Tarjan. A quick method
for finding shortest pairs of disjoint paths. Net-
works, 14(2):325-336, 1984.

[4] Chung-Lun Li, S. Thomas McCormick, and David
Simchi-Levi. Finding disjoint paths with different
path-costs: complexity and algorithms. Networks,
22(7):653-667, 1992.

[5] Z. Kiraly. Private communication, 2001.
[6] D. Marx. Private communication, 2001.

[7] Steven Fortune, John Hopcroft, and James Wyllie.
The directed subgraph homeomorphism problem.
Theoret. Comput. Sci., 10(2):111-121, 1980.

[8] Andrew V. Goldberg. An efficient implementation
of a scaling minimum-cost flow algorithm. J. Algo-
rithms, 22(1):1-29, 1997.

[9] L.G. Khachian. A polynomial time algorithm for
linear programming. Doklady Akad. Nauk SSSR
244, 4:1093-1096, 1979.

n30 Running time [ms] Success || Cost of all path-pairs [%] || Cost ”problematic” [%]
methods || LP-SOLVE | CPLEX [%] a=1]a=5]a=10]a=1]a=5[a=100
Suurb 4.02 100 100 102.60 | 105.28 100 111.5 123.0
2D 4.00 100 102.80 | 100.74 | 100.04 109.8 | 102.5 100.1
ILP 46.25 35.08 100 100 100 100 100 100 100
LPR 47.82 32.07 100 100 100 100 100 100 100
SFR 13.79 10.85 100 100 100 100 100 100 100
Table 1: Nummerical results of a (denser) network with 30 nodes and 63 links
n35 Running time [ms] Success || Cost of all path-pairs [%] || Cost ”problematic” [%]
methods || LP-SOLVE | CPLEX (%] a=1]a=5]a=100]a=1]a=5]a=100
Suurb 3.33 100 100 | 101.42 | 103.41 100 108.1 121.0
2D 3.11 93 - - - - - -
ILP 25.48 33.75 100 100 100 100 100 100 100
LPR 25.51 28.62 100 100 100 100 100 100 100
SFR 9.24 10.28 100 100 100 100 100 100 100

Table 2: Numerical results of a (sparser) network with 35 nodes and 51 links

n400 Running time [ms] Success Cost [%]
methods || LP-SOLVE | CPLEX (%] a=1]a=5]a=100
Suurb 721 100 100 105.41 | 106.14
2D 720 100 107.94 | 100.91 | 100.01
ILP 2873 1030 100 100 100 100
LPR 2855 1053 100 100 100 100
SFR 787 167 100 100 100 100

Table 3: Numerical results of 10 relevant demands in a network with 400 nodes and 1378 links

| Relax | N5 | N15 | N25 | N35 || N30A | N30B | N30C | N50 | N60 | N100 |
SFR 100 | 100 | 88 | 81.7 || 95.5 91.4 75.9 | 87.0 | 93.9 | 925
LPR 100 | 100 | 100 | 100 98.6 99.7 | 99.5 | 97.2 | 98.7 | 98.6
LPR+SFR | 100 | 100 | 100 | 100 99.3 99.7 | 99.5 | 98.8|99.1 | 99.0
LPT 100 | 100 | 100 | 100 100 99.7 | 99.5 999|999 | 99.9
LPT+ 100 | 100 | 100 | 100 100 99.7 | 99.5 | 100 | 100 | 100
Table 4: Percentage of optimal routed demands in the 8 examined networks
No. Node 16 22 30 79 100 400
No. of edge 27 43 63 108 191 1382
Network | Avg. length of working path 2.43 2.86 3.27 6.52 7.13 11.16
Avg. nodal degree 3.37 3.91 4.20 2.73 3.82 6.91
2D success 93.03 | 96.20 | 100 90.36 | 91.41 | 100
Normalized time per path-pair 1 1.11 2.44 13.49 | 824 -
SOPS Cost [%] 100 | 100 | 100 | 100 | 100 |-
Normalized time per path-pair 1 2.26 5.32 60.36 | 46.7 3465
ILP Cost [%] 100 | 100 | 100 | 100 | 100 | 100
Normalized time per path-pair 1 2.27 5.52 64.80 | 47.67 | 3384
LPR ["Cost [%] 100 | 100 | 100 | 100 | 100 | 100
Normalized time per path-pair 1 1.10 1.34 5.6 5.25 480
SFR Cost [%)] 100 | 100 | 100 | 100 | 100 | 100

Table 5: The increase of runtime on different networks (o =5)

