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Abstract—Packet classification is a building block in many
network services such as routing, monitoring and policy enforce-
ment. In commodity switches, classification is often performed by
memory components of various rule matching patterns (longest
prefix match, ternary matches, exact match etc.). The memory
components are fast but expensive and power-hungry with power
consumption proportional to their size. In this paper we study
the applicability of rule caching and lossy compression to create
packet classifiers requiring much less memory than the theoretical
size limits of the semantically-equivalent representations, enabling
significant reduction in their cost and power consumption. This
study focuses on longest prefix matching. Our objective is to find
a limited-size longest prefix match classifier that can correctly
classify a high portion of the traffic so that it can be implemented
in commodity switches with classification modules of restricted
size. While for the lossy compression scheme a small amount of
traffic might observe classification errors, a special indication is
returned for traffic that cannot be classified in the rule caching
scheme. We develop optimal dynamic-programming algorithms
for both problems and describe how to treat the small amount of
traffic that cannot be classified. We generalize our solutions for
a wide range of classifiers with different similarity metrics. We
evaluate their performance on real classifiers and traffic traces and
show that in some cases we can reduce a classifier size by orders
of magnitude while still classifying almost all traffic correctly.

I. INTRODUCTION

Packet classification is a core function behind many net-
work services such as forwarding, routing, filtering, intrusion
detection, accounting, monitoring, load-balancing and policy
enforcement. In recent years there has been a rapid growth
in the size and power consumption of classifiers and routing
tables. This phenomenon, driven by the increasing number of
hosts and the appearance of more detailed network policies,
results in a severe scalability problem [2], [3].

In commodity switches, classification often relies on TCAMs
(Ternary Content Addressable Memories). TCAMs are used to
perform very-high-speed, hardware accelerated table lookups
for implementing rule matching but are expensive, often of
a limited size, and power hungry. Their price and power
consumption is known to be roughly proportional to their
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entries number [4]–[6]. While TCAMs support general wild-
card matches, common policies considering a single header
field, e.g., forwarding based on a destination address or load
balancing based on source address, are often encoded in
TCAMs using prefix rules [7], [8]. Likewise, classification
plays an important role in recently suggested programmable
switch architectures such as RMT and Intel’s FlexPipe [6],
[9] combining multiple match-action tables of different kinds
where prefix rule tables are an inherent component.

Huffman coding [10] and the Lempel-Ziv-Welch algo-
rithm [11] are well known lossless compression schemes, but
are less suited for classifiers requiring fast classification without
complicated decoding. Lossless compression of packet classi-
fiers has been deeply investigated in the last decades [12]–[15].
The ORTC algorithm [16] achieves an optimal representation
with a minimal number of prefix rules. For example, the un-
compressed IPv4 routing table in software routers are stored in
a few tens of MBs memory, which can typically be compressed
to a few MBs with ORTC. Recent lossless compressions of
classifiers can almost reach the information theoretical bounds,
typically of a few hundred KBs, with the price of slightly more
complicated lookup and update mechanisms [17]. To achieve a
significant save in power consumption and price of the classifier
in commodity switches we may need to go way beyond the
information theoretical bounds of compression. For instance,
representing a routing table in a few KBs can potentially make
a big difference.

Lossy compression is a methodology for achieving higher
compression ratios at the cost of loosing some information
about the represented object. Lossy representations can be
smaller than the Information theory based lower bounds for
a lossless compression. Implementations of lossy compression
schemes can be found in popular standards and applications
such as JPEG (for images), MPEG (for videos) and MP3 (for
audio) [18]–[20].

Our approach is motivated by an inherent property of Internet
traffic. Measurements show that such traffic tends to be very bi-
ased, often following the Zipf distribution [21] and that a large
portion of the traffic comes from a small number of flows [22],
[23]. Accordingly, traffic matches the classification rules in a
biased distribution such that some of the classifier information
is very seldom useful. While it often requires knowledge on
the traffic distribution, this observation has motivated adapting
rule caching schemes for classifiers [24]–[28], similar to those
used in CPU caching. In particular, this locality behavior was
recently demonstrated in FIB (Forwarding Information Base)
for IPlookup [24], [25] indicating that excellent hit rates are
achieved with cache sizes order of magnitude smaller that of
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a complete FIB. Similar results have been demonstrated in
a detailed measurement study [28] performed in a large ISP
network that showed also that the size of active rules is often
stable over time. While examining several cache replacement
policies, the study pointed out on a high similarity between the
active sets of different routers in the same network.

This work is the first to study applying lossy compression
for packet classifiers. We can see rule caching as a variant of
our more general approach of lossy compression. In general a
cached classifier has two modules: a fast (lossy) classifier with
a small memory and a traditional exact classifier, see also Fig.
1(a) for the block diagram of the system architecture. The fast
classifier often corresponds to a wire speed hardware device
while the exact classifier to a slower component that might
be software-based. A hardware implementing the fast classifier
can be 5 to 100 times power efficient and faster than the exact
classifier. A packet first reaches the fast classifier and is either
classified correctly, or the indication ‘?‘ is obtained and the
packet is sent also to the exact classifier.

Determining the content of the fast classifier is not a sim-
ple task. Due to dependencies between rules with different
priorities, simply caching the most accessible rules can lead
to incorrect classification [29]. Accordingly, previous caching
approaches often relied on heuristic approaches without prov-
able guarantees on their optimality. Moreover, in some systems,
maintaining the classification line rate is a must and there
is no option to access a complete slow memory even for a
small portion of the traffic. Then, taking advantage of the
fast classifier that can be smaller than any exact complete
representation of the classifier, requires a novel approach. Note
that some applications are less sensitive and might allow wrong
classification of a small portion of the traffic, e.g., in the context
of server load balancing [8]. In this case the exact classifier
module is not needed, and we can rely only of the fast classifier
although it sometime provides incorrect classifications. This is
illustrated on Fig. 1(b). We further discuss the applicability of
the schemes later in this paper.

In the paper, we focus on efficient selection of the content of
the fast classifier, often much smaller than any exact represen-
tation of the classifier. We refer to that as lossy compression of
the packet classifier. As a first step, we study one dimensional
packet classifiers with only prefix rules. We would like to im-
plement within a limited-size module a classifier that is similar
under different metrics to the required one while satisfying
various system constraints. To the best of our knowledge, this
is the first time that lossy compression techniques have been
studied in the context of packet classifiers. Of course going
below the bounds of exact representations eliminates the option
to classify all traffic correctly. We describe multiple ways to
express this loss by suggesting various similarity metrics while
considering various system constraints to allow and tradeoff
between possible misclassifications. In the main scheme of
our approach a unique action must be returned for all packets
that cannot be classified due to the lossy representation of the
classifier. For the unclassified packets we can then calculate
the classification in an alternative traditional module. Even
earlier, we provide a toy scheme that serves as a baseline
for better understanding of the main scheme. In this toy

scheme false classifications are allowed and can occur for a
portion of the traffic. We consider additional system constraints
leading to new compression optimization problems. We present
algorithms that optimally solve the presented problems with the
different system constraints and find the best lossy compression
for any allowed number of prefix rules.

To illustrate the intuition behind lossy compression, we
consider a classifier with five rules presented in Table I(a). An
equivalent representation with the minimal number of prefix
rules, four in this case, is the ORTC representation. It appears
in Table I(b) and maps the corresponding action to every header
with a width of W = 3 bits. Assume that the 2W = 8 headers
appear according to a uniform distribution U and that only
n = 3 rules are allowed in a limited-size memory.

The first (toy) scheme, called Approximate Classification
(illustrated in Table I(c)), uses only three rules to classify cor-
rectly 7 of the 8 possible headers. With this encoding, only the
header 101, which appears with probability 0.125, is mapped to
an incorrect action of 1 instead of to the action 4. We say that
this scheme achieves a correctness ratio of 7/8 = 0.875. In the
second (main) scheme, Cached Classification (in Table I(d)), all
headers that cannot be classified correctly are indicated by the
special action ‘?‘. With the same number of rules (three), this
scheme correctly classifies six of the eight headers, obtaining an
a correctness ratio of 6/8 = 0.75, and gives a special indication
for the two headers (100 and 101) that it does not classify
correctly.

The ability to deal with the incompleteness of the lossy
compression can be crucial. The choice of Approximate Clas-
sification vs. Cached Classification and the method for han-
dling incorrect classification and cache misses depends on the
application. For instance, with classification errors, loops can
occur in a routing application, and an application designed to
filter illegal traffic might erroneously allow unwanted packets.
Hence, Cached Classification would be more suitable for these
applications. In some applications, e.g. load balancing among
servers in a data center network, incorrect classification for
a small fraction of the traffic might be tolerable. In the
Cached Classification scheme, upon receiving ‘?‘ we have
several choices how to obtain a correct classification. We can
calculate the classification in a slower path, i.e. by accessing a
second-level larger memory or, in software-defined networks,
by sending one packet header of a flow that cannot be classified
to the network controller.

The suggested solutions do not directly rely on the TCAM
architecture. We consider encodings of classifiers composed of
prefix rules which are common especially in the context of
longest prefix match (LPM) classifiers where in the case of
several matching rules, a priority is given to the most specific
one. Indeed, our approach can be useful to deal with limited
number of allowed rules in any additional prefix-based rule
memory components. As mentioned, due to their importance,
several recently-suggested switch architectures include such
prefix components like the BST (Binary Search Tree) memory
of Intel’s FlexPipe architecture with up to 64K prefix rules [9]
or in corresponding tables in the RMT architecture [6].

While the focus of the paper is on longest prefix match
with a single field, we demonstrate that the problem is NP-
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Fast lossy classifier Traditional (exact) classifier
‘?‘

a ∈ A

Control module

header
periodical updatetraffic sampling

(a) Cached Classifier. It always provides a correct classification.

Fast lossy classifier a ∈ A

Control module

header

periodical updatetraffic sampling

(b) Approximate Classifier.

Fig. 1: System architecture of the new classifiers based on Lossy Compression. Efficiency is achieved using fast lossy classifier
with a significantly reduced number of rules.

prefix/length action
100/3 3
101/3 4
01/2 2
00/2 1
11/2 1

(a) LPM Classifier with 5 rules

prefix/length action
100/3 3
101/3 4
01/2 2
-/0 1

(b) smallest exact representation
by ORTC [16] with 4 rules

prefix/length action
100/3 3
01/2 2
-/0 1

(c) Approximate Classification,
correctness ratio of 0.875 for n =
3 rules

prefix/length action
10/2 ‘?‘
01/2 2
-/0 1

(d) Cached Classification, correct-
ness ratio of 0.75 for n = 3 rules

TABLE I: Illustration of the suggested encodings for limited size classifiers with a width of W = 3 bits and 2W = 8 uniformly-
distributed headers. (a) shows an LPM-based classifier with 5 rules and (b) presents its ORTC compressed representation [16]
with 4 rules. (c) describes an Approximate Classification encoding of the classifier given n = 3 rules. All headers besides 101 are
classified correctly, yielding a correctness ratio of 7/8 = 0.875. (d) illustrates the Cached Classification encoding given n = 3
rules. The headers 100, 101 are mapped to the unique action ‘?‘ (unclassified) while all other headers are classified correctly,
yielding a correctness ratio of 6/8 = 0.75.

hard even for a single field with wildcard matching. Even
without wildcard matching, it is also difficult to generalize the
approach to an arbitrary number of fields. Consider for instance
a classification based on one longest prefix match field together
with an additional exact match field. In that case, the partial
solutions for the tree based structure should be calculated
independently for each value of the exact match field. The
number of allowed rules can be divided into each of the various
solutions for the different values arbitrarily. Accordingly, the
complexity of a solution would increase exponentially with the
number of possible values of the exact match field, eliminating
the opportunity to apply the approach of this paper for such
classifiers in practice.

Paper outline: In Section II we explain the terminology of the
paper. Next, in Section III we define the two schemes of Ap-
proximate Classification and Cached Classification and point on
their important properties in Section IV. Then in Section V and
Section VI, respectively, we present optimal algorithms for the
two problems. Generalizations of the approach are described in
Section VII for classifiers with numerical classification values
and for two-dimensional classifiers. We also show that finding
optimal encodings with general rules that are not necessarily
prefix is a NP-hard problem and later we study rule updates.
Experimental results that demonstrate the potential of the lossy
compression approach are given in Section VIII. Related work
can be found in Section IX. In Section X we elaborate on the
applicability of the approach to a wide range of classifiers.
Proofs of the main results appear in the Appendix.

II. MODEL AND NOTATION

We first formally define the terminology of this paper.
Definition 1: A packet header x = (x1, · · · , xW ) ∈

{0, 1}W is defined as a W -bit string that serves as an input
to the classification process.

In the main part of the paper we assume a simple case in
which the classification is performed on a single field, e.g. the
source or the destination IP address. Note that the typical values
for W are 32 for IPv4 addresses, and 128 for IPv6. We later
discuss a more general case.

Definition 2: A prefix rule, denoted by S → a, is defined as
a string S = s1 . . . sk ∈ {0, 1}k of length k ≤ W associated
with an action a among a set of actions A. A packet header
x = x1 . . . xW is said to match a rule S, if and only if for all
i ∈ [1, k], si = xi.

Definition 3: A classification function defines the mapping
of each header to an action a ∈ A.

Definition 4: A prefix classifier Cφ = (S1 → a1, ..., Sn →
an) is an ordered set of prefix rules. It encodes a classification
function φ such that for any packet header x ∈ {0, 1}W we
have φ(x) = aj , where Sj → aj is the prefix rule with the
longest length that matches x. We also refer to a classifier as
an encoding.

To guarantee that the classification function of every encod-
ing is well defined, we assume a default action a− ∈ A to
which headers that do not match any of the rules are mapped.
We refer to a classifier that implements a function φ by Cφ.

Definition 5: We assume during the classification that packets
appear according to a header distribution P , where px denotes
the probability of a header x.

A classification function α and a header distribution P
are the input of the problems discussed in this paper. The
classification function can be described by a corresponding
classifier Cα. In practice the exact header distribution might be
unknown and instead it is only estimated by traffic sampling.
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Eventually, this estimation might result in some performance
degradation, which is examined in Section VIII.

For a given classification function α we say that a classifier
is an exact representation if it implements exactly the same
function. A classifier is an exact representation of only one clas-
sification function. Note that the same classification function
can be represented by several classifiers, possibly with different
number of rules. As mentioned, an exact representation with
the smallest number of prefix rules can be computed with the
ORTC algorithm [16]. For a given α, we denote this minimal
number of rules by n0.

This paper studies a scenario in which the classification
module can store fewer rules than the minimal number required
for an exact representation. For instance, in the example from
Table I, with fewer than four rules we cannot guarantee correct
classification for all inputs.

III. OPTIMIZATION PROBLEMS

A. Formal Definitions

We first define a metric that estimates the similarity of a
classifier to a given classification function.

Definition 6: Let α be a classification function and P a
header distribution. Let φ be a second classification function.
The correctness ratio of a classifier that implements φ, denoted
by RP (α, φ), is the probability of a header drawn according to
the header distribution P to be classified to the same action in
α and in φ. Formally,

RP (α, φ) =
∑

x∈{0,1}W |α(x)=φ(x)

px. (1)

In the first optimization problem, we would like to find
an encoding with a limited number of rules that achieves a
maximal correctness ratio.

Problem 1 (Approximate Classification): For a given classifi-
cation function α, a header distribution P and a given number
of prefix rules n, find a classifier Cφ with at most n rules that
obtains a maximal correctness ratio

G(n, α, P ) = max
Cφ,|Cφ|≤n

RP (α, φ). (2)

Note that in the Approximate Classification problem a header
that is not classified correctly can be mapped to an arbitrary
action.

We denote by G(n, α, P ) the optimal (maximal) value of the
above function. We refer to a legal encoding (with at most n
rules) that obtains this correctness ratio as an approximation-
optimal encoding. We also define the error ratio of a classifier
that implements φ as 1−RP (α, φ).

In typical network applications, incorrect classification can
be harmful. It can be more useful to avoid any wrongly classi-
fied packets by leaving some packets unclassified. We define an
indication for headers that cannot be classified correctly by a
given encoding. We denote this unique action by ‘?‘ and by A∗
the generalized set of actions A∗ = A∪ {‘?‘}. We would look
for a classifier that for every header either returns the correct
classification value or the indication ‘?‘. Upon receiving such
an indication, the classification can be completed, e.g. by using

a slower traditional module, in mechanism similar to memory
caching.

We can now define the main optimization problem, where
we look for an encoding that obtains a maximal correctness
ratio while returning the action of ‘?‘ for all headers that are
not classified correctly.

Problem 2 (Cached Classification): For a given classification
function α, a header distribution P and a given number of prefix
rules n, find a classifier Cφ with at most n rules that obtains
a maximal correctness ratio while satisfying ∀x ∈ {0, 1}W ,

(φ(x) = α(x)) or (φ(x) = ‘?‘). (3)

We denote by H(n, α, P ) the optimal (maximal) correctness
ratio that can be obtained while satisfying this additional
condition and we say that an encoding that achieves this is
a cache-optimal encoding. In the context of this problem, we
define the quantity 1−RP (α, φ) as the cache miss ratio. This
is the fraction of headers mapped to ‘?‘.

Ways for coping with incorrect classifications and non-
classified traffic have been mentioned in Section I. Note that
for both problems the rules in an optimal encoding are not
necessarily a subset of the rules in an exact classifier enabling
to achieve even higher correctness ratios.

B. A Real-Life Illustrative Example

A classifier with prefix rules is often represented as a labeled
binary prefix tree. Each node of the tree corresponds to a prefix
rule, given by the transition bits along the path from the root
node. A node that corresponds to a rule in the classification
is labeled with the rule action. Fig. 2 shows an example of
a binary tree which is a small branch of the tree for a real
classifier. The left arc corresponds to a 0 bit transition, and the
right to a bit of 1. Fig. 2(a) shows the ORTC compressed prefix
tree. Here, ORTC requires 10 rules in total and guarantees
100% classification. The actions appear with labels in the tree
and the probability of a header to have a longest match in a rule
according to a real-life trace is illustrated. These probabilities
rely on the header distribution of the captured traffic traces.

In Fig. 2(b) the probability that a given header is included
within a given subtree appears next to the subtree such that
in each subtree all headers have a match in the same rule.
Subtrees without such numbers have a negligible probability.
The result shown for optimal Approximate Classification with
3 rules can classify correctly 97.84% of the packets, and
obtains false classifications for the rest. The subtrees from
which headers are not classified correctly are drawn with
dotted circles. The corresponding encoding has the prefix rules
01101/5 → 0, 1100/4 → 1 and −/0 → 2. Fig. 2(c) shows
the results of optimal Cached Classification with 7 rules. It
can correctly classify 98.52% of the packets. It returns ‘?‘ for
headers that cannot be classified correctly and there is no false
classification. See also Table II in Sec. VIII how the correctness
ratio increases by allowing more rules.

IV. PROPERTIES

Before solving these two problems, we would like to discuss
some of their properties. First, to better understand the expected
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(a) The minimal exact classifier requires 10
rules computed by ORTC [16]. The rule
popularities are also drawn.

0
.02

2

.015
.36

1
.04

.006
.008

.1

.45

0 1

(b) Optimal Approximate Classification given 3 rules,
G(3, α, P ) = 97.84%. The leaf probabilities are drawn (with
negligible probabilities of the leaves without values). Headers
in dotted leaves are incorrectly classified.
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(c) Optimal Cached Classification given 7
rules, H(7, α, P ) = 98.52%. Headers
matching the dashed leaves cannot be clas-
sified.

Fig. 2: An illustrative example of a branch of a real classifier. The action of a prefix rule is drawn as a node label.

performance of solutions for the problems we discuss the values
of the optimal correctness ratio in each of the problems.

The first observation compares the optimal values of the
correctness ratios of the two problems for the same number of
rules. Intuitively, the requirement in the Cached Classification
problem for a special indication on the headers that cannot be
classified correctly results in a lower optimal ratio than that of
the Approximate Classification problem.

Observation 1: For (n, α, P ), the optimal correctness ratio
of the Approximate Classification problem equals at least the
optimal correctness ratio of the Cached Classification problem
and the ratios are equal only if an exact representation exists.
I.e.,

H(n, α, P ) < G(n, α, P ) < 1 or
H(n, α, P ) = G(n, α, P ) = 1.

Indeed, in some cases G(n, α, P ) can be much larger than
H(n, α, P ). Consider for instance a classifier (with a classifi-
cation function α) that maps a single header with an arbitrarily
small but positive probability to the action 1 and all other
headers to the action 2. Assume a default action that is not one
of these two actions. For n = 1, an Approximate Classification
encoding of −/0 → 2 classifies almost all headers correctly
and G(n = 1, α, P ) is close to 1. Any Cached Classification
encoding with a single rule must be −/0→ ‘?‘. This encoding
has a correctness ratio of H(n = 1, α, P ) = 0.

Before presenting more observations, we define the popular-
ity of a prefix rule in a classifier.

Definition 7: The prefix rule popularity of a rule in a
classifier C is defined as the sum of the probabilities of all
headers that have a longest match with the rule. For a rule
Sj → aj we denote this popularity by pj . Formally,

pj =
∑

x∈{0,1}W |Sj LPM x

px, (4)

where px denotes the probability for a header x to appear.
See also Fig. 2(a) as an example of prefix rule popularities

drawn next to the nodes along with the probabilities of each
leaf drawn on Fig. 2(b).

We now present a general property of the classifiers. Intu-
itively, the contribution of a rule to the correctness ratio is
limited by its popularity.

Lemma 1: Let Cφ be a classifier. By removing a rule Sj →
aj from the classifier the correctness ratio of the Approximate
Classification problem is decreased by at most pj , where pj

denotes the rule popularity according to Definition 7.
The next observation suggests a lower bound for the optimal

correctness ratio for the first problem. The bound is obtained
as the ratio achieved by a classifier with a subset of the rules in
the input classifier. Without adding additional rules, a header
with a longest match in the input classifier in a selected rule
will have such a match also in the smaller classifier.

Theorem 1: Let Cψ = (S1 → a1, ..., Sn0 → an0) be a
classifier with a minimal number n0 of prefix rules for a given
classification function α. Assume a header distribution P . Let
pi be the prefix rule popularity of Si → ai when the rules
are ordered in a non-increasing order of their popularities. By
relying on a classifier composed of the n rules with the largest
popularities, the optimal correctness ratio satisfies

G(n, α, P ) ≥
∑
i∈[1,n]

pi + 1−
∑

i∈[1,n0]

pi ≥ n/n0.

This intuitively leads to a simple greedy algorithm for Ap-
proximate Classification which selects the n rules with highest
rule popularity (see also Table II(a) as an example).

We can also derive a lower bound for the optimal correctness
ratio for the Cached Classification problem based on the ratio
obtained by such a classifier.

Observation 2: Let n0 denote the minimum number of rules
needed for the exact classifier of classification function α. Let
us sort the prefix rules according to a non-increasing order of
their lengths. For n ∈ [1, n0], the optimal correctness ratio of
the Cached Classification problem satisfies

H(n, α, P ) ≥ Σj∈[1,n−1]p
j .

Similarly this leads to a simple greedy algorithm for Cached
Classification which selects the n− 1 longest rules and adds a
last rule of −/0→ ‘?‘ (see also Table II(b) as an example).

V. APPROXIMATE CLASSIFICATION

In this section we present algorithms that obtain optimal
solutions for the Approximate Classification problem as defined
in Problem 1. We see the Approximate Classification scheme as
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a baseline scheme that can help with the understanding of the
Cached Classification which is the main scheme of the paper.
We first assume a simple case in which the given classifier
is represented by rules with distinct actions and present an
immediate solution for this case. Later, we describe a more
general algorithm of a classifier with arbitrary actions. This
algorithm relies on dynamic programming.

A. The Case of Distinct Actions

Assume that all rules of a classifier have distinct actions
and that these actions differ from the default action a−. Our
first observation is that removing the jth rule decreases the cor-
rectness ratio by exactly pj ; all traffic that previously matched
this rule is now not classified correctly. Thus to maximize the
correctness ratio, we should include the rules with the highest
popularity.

Observation 3: Let C be a classifier with n0 rules with
distinct actions that also differ from the default action a−. For
n ∈ [1, n0], an optimal correctness ratio for the Approximate
Classification problem is composed of n rules with the highest
popularity among the n0.

B. Arbitrary Actions

We now describe a dynamic programming based algorithm
to find an approximation optimal encoding, according to the
header distribution P , for a classifier with arbitrary actions.
Our solution calculates encodings for nodes in the tree such
that each encoding comprises a limited number of rules and
includes a specific last rule.

Let r be the root of the complete binary tree of 2W leaves
that includes all headers. For a node x (represented by a
corresponding prefix) in the complete binary tree, we consider
an encoding with a maximal number of rules n ∈ N+ satisfying
that its last rule (among the n) is of the form x → a for an
action a ∈ A. We define the function g(x, n, a) as the maximal
ratio of headers from the subtree x that can be classified
correctly by such an encoding. Let φ(x, n, a) be an encoding
with the above properties that achieves this ratio.

The next lemma relates the optimal correctness ratio
G(n, α, P ) to a value of the function g(x, n, a). It relies on
the value of the function for the root r with a specific number
of rules and last action.

Lemma 2: The optimal correctness ratio satisfies
G(n, α, P ) = g(r, n + 1, a−) where r is the root node and
a− is the default action. Likewise, an approximation-optimal
encoding is given by the first n rules in φ(r, n+ 1, a−).

We start by setting the values of g(x, n, a) for a leaf (header)
x assuming a classifier with a classification function α. Since
there exists an encoding with n rules all of the form x→ α(x)
we have

g(x, n, a) = px for n ≥ 1 if a = α(x).

Recall that px is the probability of a header to have the value
of x. In addition,

g(x, 1, a) = 0 for a 6= α(x) and,

g(x, n, a) = px for n ≥ 2.

We can have an encoding with two rules (x → α(x), x → a)
that classifies x correctly for any action a.

More generally, for a given classifier consider the first
matching rule for the 2W headers represented by leaves in the
binary tree of size 2W . Consider a recursive partition of the set
of leaves into halves until each subset of consecutive leaves
contains headers that have a first match in the same rule. This
partition divides the headers into disjoint monochromatic sub-
trees. As explained in [30] the number of these monochromatic
subtrees equals at most W ·n0 where n0 is the number of rules
in the classifier.

Let y be a prefix that represents such a monochromatic
subtree, i.e. a subtree in which all headers have the first
matching in the same rule. Let ay denote the action of that
rule. The above formulas for a leaf can be generalized for such
a subtree as follows.

g(y, n, a) = py for n ≥ 1 if a = ay

where py is the probability of a header to be included in the
subtree represented by y. Likewise,

g(y, 1, a) = 0 for a 6= ay and,

g(y, n, a) = py for n ≥ 2.

The next lemma suggests a recursive formula for the value of
g(x, n, a) for a node x that is not a leaf. Similarly, the encoding
φ(x, n, a) is calculated based on the two encodings for the left
and right subtrees of x according to the value that is selected
among the detailed cases.

Lemma 3: For a non-leaf node x and number of rules n ≥ 1,
the function g(x, n, a) satisfies g(x, n, a) = max

max
m∈[1,n]

g(xL,m, a) + g(xR, n−m+ 1, a),

max
m∈[1,n−1],a1∈A

g(xL,m, a1) + g(xR, n−m, a1)

 ,

where xL and xR are the left child and the right child of the
node x.

The algorithm works as follows. Based on the rules in
the given classifier, we divide the complete binary tree into
monochromatic subtrees. After setting the function values for
the corresponding nodes, we calculate based on the recursive
formulas from Lemma 3 the function values and the corre-
sponding encodings for internal nodes. An optimal encoding is
obtained by Lemma 2 as the encoding for specific parameter
values for the root of the complete binary tree.

Theorem 2: The algorithm obtains an optimal solution for
the Approximate Classification problem.

Theorem 3 describes the time and space complexity of the
algorithm. This analysis simply relies on the above description
of the algorithm.

Theorem 3: The Approximate Classification problem can be
optimally solved in O(W · n0 · |A| · n2) time and O(W 2 · n0 ·
|A| · n2) space, where n0 is the number of rules in an exact
encoding of the classifier.
The linear dependency of the time complexity and the quadratic
dependency of the memory complexity in the header width W
guarantee that the algorithm remains practical also for IPv6.
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The dynamic-programming algorithm, calculates solutions
for increasing tree sizes, has a general form similar to algo-
rithms for calculating semantically-equivalent representations
from [30] as well as [7] (in their one-dimensional case). These
algorithms find optimal exact representations with a minimal
number of prefix rules or with a minimal cost of prefix rules
assuming a rule cost is determined by its action. Unlike the
above, our algorithm also calculates, for trees given different
restrictions on the rules number, best achievable solutions
without completely correct classification. This enables finding
the optimal solution for the problem first described here, that
can often be not semantically-equivalent, and maximizes the
traffic classified correctly while satisfying the constraint on the
rule number.

VI. CACHED CLASSIFICATION

In this section we present an algorithm that obtains an
optimal solution for the Cached Classification problem as
defined in Problem 2. This algorithm is also based on dynamic
programming.

Recall that we define the generalized set of actions A∗ as
A∗ = A∪{‘?‘}. Here, we only consider encodings that for any
header x either return the correct action α(x) or the action ‘?‘.
We define h(x, n, a) as the maximal ratio of correctly classified
headers in such an encoding with n ∈ N+ rules with a last
rule of x→ a. In order to avoid illegal encodings, we use the
function value of −∞ if there does not exist an encoding that
satisfies the above requirements. We also denote by ψ(x, n, a)
an example of an encoding that obtains this ratio.

As in the first problem we can deduce the optimal correctness
ratio and an optimal encoding for the Cached Classification
problem as follows.

Lemma 4: The optimal correctness ratio satisfies
H(n, α, P ) = h(r, n + 1, a−) where r is the root node and
a− is the default action. Likewise, an approximation-optimal
encoding is given by the first n rules in ψ(r, n+ 1, a−).

Again, let y be a monochromatic subtree that its headers,
with a total probability of py , all have a first match in the
same rule with an action ay . For this problem, the encodings
(y → ay) and (y → ‘?‘) are both legal but only the first of
them classifies headers in y correctly. Accordingly,

h(y, 1, a) = py if a = ay and,

h(y, 1, ‘?‘) = 0.

On the contrary, an encoding of the form (y → a) is illegal if
a 6= ay and a 6= ‘?‘. Thus

h(y, 1, a) = −∞ if a /∈ {ay, ‘?‘}.

For any action a ∈ A∗ the encoding (y → ay, y → a) is legal
and classifies all headers in y correctly. Thus

h(y, n, a) = py for n ≥ 2, a ∈ A∗.

For a non-leaf node x the values of h(x, n, a) and the corre-
sponding encoding ψ(x, n, a) should be calculated recursively.
Notice that if the two encodings for a left child xL and a right
child xR are both legal, then the merged encoding for x is legal

as well. Accordingly, the proof of the next lemma is similar to
the proof of Lemma 3.

Lemma 5: For a non-leaf node x, and number of rules n ≥ 1,
the function h(x, n, a) satisfies h(x, n, a) = max

max
m∈[1,n]

h(xL,m, a) + h(xR, n−m+ 1, a),

max
m∈[1,n−1],a1∈A∗

h(xL,m, a1) + h(xR, n−m, a1)

 .

With the described changes in the initial values of the function,
the dynamic programming algorithm is the same as for Approx-
imate Classification, and its optimality can be also deduced
from the above discussion.

Theorem 4: The algorithm achieves an optimal solution for
the Cached Classification problem.

The time and space complexity of the algorithm is essentially
the same as described in Theorem 3. Putting together Lemma
4 and 5 we have the following theorem.

Theorem 5: The Cached Classification problem can be opti-
mally solved in O(W ·n0 ·|A|·n2) time and O(W 2 ·n0 ·|A|·n2)
space, where n0 is the number of rules in an exact encoding
of the classifier.

As stated in Observation 1, requiring an encoding for the
Cached Classification problem to assign a special indication to
every header that cannot be classified correctly has a cost of
potential lower performance. In Section VIII we compare the
optimal correctness ratios of the two problems.

VII. MORE GENERAL CLASSIFIERS

In this section, we generalize our novel approach of lossy
compression to additional types of classifiers and allowed
misclassifications.

A. Numerical Classification

We describe new metrics to capture the notion of similarity
between classifiers. Then, we define new optimization problems
for finding limited-size classifiers and explain how the previ-
ously mentioned algorithms can be modified to obtain optimal
results for the new problems.

In these additional problems, we distinguish between two
classifiers, even if they incorrectly classify the same set of
headers, based on the exact values of the actions for the
incorrectly classified headers. Assume a classifier in which
the possible classification results (thus far called actions) are
among a set of numerical values, i.e. A ⊆ R. Then, the
difference a1 − a2 and the absolute difference |a1 − a2| of
two actions a1, a2 ∈ A are well defined. For instance, in such
a numerical classification a header of a flow can be mapped to
its required QoS level or to its allowed traffic rate.

The following problem generalizes the Approximate Classifi-
cation problem. Here, we limit the encoder to classify a header
to a value not smaller than the correct one. This can be useful
for instance when a flow must be allocated at least its QoS
level.

Problem 3 (One-Sided Approximate): For a
classification function α, a header distribution P and a number
of prefix rules n, find a classifier Cφ with at most n rules that
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obtains a maximal correctness ratio RP (α, φ) while satisfying
∀x ∈ {0, 1}W

φ(x) ≥ α(x).

To solve Problem 3, we define b(y, n, a) as the maximal
correctness ratio in an encoding with n rules for headers in a
subtree rooted by a node y such that the last rule is y → a.
Again, let py be the probability of a header to be included in
the subtree represented by y and let B(n, α, P ) be the optimal
value of the correctness ratio in this constrained problem. Our
algorithm is based on the following lemma. The initial values
of the function b(y, n, a) for monochromatic trees enforce the
restriction on the classification values for any header. The
optimal correctness ratio again can be calculated based on the
root node r.

Lemma 6: The function b(y, n, a) satisfies
(i) For a monochromatic node y with a corresponding action

ay: b(y, 1, ay) = py , b(y, 1, a) = 0 for a > ay , b(y, 1, a) =
−∞ for a < ay . Likewise, b(y, n, a) = py for n ≥ 2, a ∈ A.

(ii) B(n, α, P ) = b(r, n+ 1, a−) and for a non-leaf node y,
b(y, n, a) = max

max
m∈[1,n]

b(yL,m, a) + b(yR, n−m+ 1, a),

max
m∈[1,n−1],a1∈A

b(yL,m, a1) + b(yR, n−m, a1)

 .

In Problems 4 and 5, our goal is to find a classifier
that minimizes the average difference between the requested
actions and the obtained one. Given a classifier with a
classification function α, we define the dissimilarity of a
classifier with a classification function φ as ∆P (α, φ) =∑
x∈{0,1}W px · |α(x)− φ(x)|. This for instance can represent

a scenarios where we would like to match a flow a QoS
level similar as possible to its required one while all kinds
of errors are possible. While in the next problem, there are no
constraints on the obtained actions for a specific header, in the
later problem every header must be classified to a value not
smaller than its corrected value.

Problem 4 (Unconstrained Dissimilarity): For a
classification function α, a header distribution P and a given
number of prefix rules n, find a classifier Cφ with at most n
rules that minimizes the dissimilarity ∆P (α, φ).

Problem 5 (One-Sided Dissimilarity): For a
classification function α, a header distribution P and a given
number of prefix rules n, find a classifier Cφ with at most n
rules that minimizes the dissimilarity ∆P (α, φ) while satisfying
∀x ∈ {0, 1}W φ(x) ≥ α(x).

Notice that Problem 4 and Problem 5 are minimization
problems, unlike the previous problems.

We derive dynamic programming based solutions also for
these problems. We define U(n, α, P ),O(n, α, P ) as the opti-
mal (minimal) dissimilarity values that can be obtained for the
last two problems with n rules given α and P .

To solve Problem 4, we define u(y, n, a) as the minimal
possible dissimilarity value obtained in an encoding for headers
in a subtree rooted by a node y with n rules such that the last
rule is y → a. Again, let py be the probability of a header to
be included in the subtree represented by y.

Lemma 7: The function u(y, n, a) satisfies

(i) For a monochromatic node y with a corresponding action
ay: u(y, 1, a) = |a− ay| · py and u(y, n, a) = 0 for n ≥ 2.

(ii) U(n, α, P ) = u(r, n+ 1, a−) and for a non-leaf node y,
u(y, n, a) = min

min
m∈[1,n]

u(yL,m, a) + u(yR, n−m+ 1, a),

min
m∈[1,n−1],a1∈A

u(yL,m, a1) + u(yR, n−m, a1)

 .

Similarly we define the function o(y, n, a) for Problem 5 and
have the following.

Lemma 8: The function o(y, n, a) satisfies
(i) For a monochromatic node y with a corresponding action

ay: If a ≥ ay then o(y, 1, a) = |a− ay| · py and if a < ay then
o(y, 1, a) =∞. In addition, o(y, n, a) = 0 for n ≥ 2.

(ii) O(n, α, P ) = o(r, n+ 1, a−) and for a non-leaf node y
o(y, n, a) = min

min
m∈[1,n]

o(yL,m, a) + o(yR, n−m+ 1, a),

min
m∈[1,n−1],a1∈A

o(yL,m, a1) + o(yR, n−m, a1)

 .

The dynamic programming algorithms can be easily derived
from the above formulas. The analysis of their time and mem-
ory complexities is the same as for the previously mentioned
algorithms.

B. Two-Dimensional Classifiers

We briefly discuss how all the presented algorithms can be
generalized for two-dimensional prefix classifiers, a popular
class of classifiers in which rules are defined on two fields
such as the source IP and the destination IP addresses. A two-
dimensional prefix rule is composed of two one-dimensional
prefixes and allows headers that match in both fields. In order
for the LPM-based matching to be unambiguous, we assume as
in [30] that the given classifier is consistent. In such a classifier,
any two rules are either disjoint or nested, i.e. either the set of
matching headers in one rule is a subset of the set in the second
or these sets are disjoint.

With a limited number of allowed rules, our goal is to find
a classifier that achieves a maximal correctness ratio based on
a known distribution of the two-dimensional headers. For a
prefix x in the first field and a prefix y in the second, we
calculate an optimal encoding of the headers in the rectangle
(x, y). Such a rectangle represents the Cartesian product of
the two subtrees that correspond to the prefixes x, y in the
two fields. The algorithms for all discussed problems can be
generalized in a similar way. The key observation is that an
optimal encoding for the rectangle is obtained by splitting it
into two halves along one of the fields. A similar claim appears
in [30] regarding exact representations of classifiers.

C. Non-Prefix Classifiers

The discussed Approximate Classification and Cached Clas-
sification problems were defined in the context of limited-size
classifiers that are restricted to include only prefix rules. The
two problems can be easily generalized for maximizing the
correctness ratio with encodings that are not necessarily prefix



9

and the priority of rules is determined by their order. Such
encodings can represent a more general class of classifiers
that are not necessarily LPM-based. We refer to such not-
necessarily prefix rules as general rules and denote these
two generalized versions of the problems by the Generalized
Approximate Classification and the Generalized Cached Clas-
sification problems. Clearly, since the generalized problems
consider a superset of the possible encodings in the original
problems, they can achieve at least the same correctness ratio
and in some cases an improved ratio can be obtained. Since
some classification modules, e.g. TCAM architectures are not
constrained to include only prefix rules, solutions for the
generalized problems might be useful. Unfortunately, we show
that the two generalized problems are NP-hard. To show that
we present a reduction from the problem of finding an exact
representation of a classifier with a minimal number of general
rules. This problem was proved to be NP-hard [31].

Theorem 6: The Generalized Approximate Classification and
the Generalized Cached Classification problems are NP-hard.

Proof: We present a reduction from the mentioned above
NP-hard problem. Consider a classifier with n0 rules that de-
fines a classification function α for which a representation with
a minimal number of rules is required. Assume an arbitrary
header distribution P for which all headers appear with a
positive probability. For each n ∈ [1, n0], find a solution to the
Generalized Approximate Classification problem that achieves
a correctness ratio of 1. For relatively small values of n, such
a solution might not exist. Such a solution always exists for
n = n0, i.e. G(n0, α, P ) = 1. Finally, return a solution obtained
by the minimal n for which such a solution can be found. Such
a solution is necessarily an encoding of the classifier with the
minimal possible number of rules. Note that a linear number
of values for n are examined (even a binary search can be
performed here with examining linear number of values for n)
and the hardness of the Generalized Approximate-Classification
problem follows by this reduction. A similar solution can
be obtained by solving the Generalized Cached-Classification
problem while again requiring a correctness ratio of 1. Note
that for both problems, if all headers appear with a positive
probability, a solution that obtains a correctness ratio of 1 is
necessarily an exact representation.

D. Supporting Updates

Classifiers have to support updates. These updates can in-
clude a change in the header distribution, an insertion of a new
rule, a deletion of a rule, and a modification of the action in
an existing rule. We discuss how to support these changes in
the solutions for the two main optimization problems.

The suggested process for dealing with updates has two
steps. The first step will be required to keep the correctness of
the encodings and will be performed right after the update. The
second step can improve the performance of an encoding (i.e.,
its correctness ratio) but is not required for coherency. This step
can be run offline, either after a fixed number of changes or
periodically in time. In general, supporting updates is easier
in an encoding for the Approximate Classification problem
(Problem 1) in comparison with an encoding for the Cached

Classification problem (Problem 2). The reason is that for the
first problem, any encoding with at most n rules is considered
legal (although it might achieve a non-optimal correctness ratio
due to the update). On the contrary, for the second problem any
encoding must return for every header either its correct action
or the unique action ‘?‘. Thus a change in the required action
even for a single header can make the encoding illegal.

A possible update that we would like to support is a
change in the header distribution. Notice that according to the
definition of Problem 2, the property of the returned action
for a header is required for all headers, including those that
with probability 0. This guarantees that a legal encoding for
this second problem remains legal even after a change in the
header distribution that includes increasing the probability of a
header from 0 to a positive value. As mentioned, any solution
is legal for the first problem before or after the change in
header distribution. Such a change can significantly degrade the
correctness ratio of both problems and running the dynamic-
programming solution from the beginning is always possible.
In some cases, we can save running time by relying on the
solution earlier to the change with its calculations for some of
the subtrees in the binary tree. In particular, if the probability is
not changed for all headers within a subtree, all the calculations
for the nodes it includes remain correct. Moreover, based on the
formulas of the dynamic-programming if the probabilities of all
headers in a subtree are changed by a fixed multiplicative factor
(either smaller or greater than 1) there is no need to calculate
the values and the corresponding encodings for all nodes in this
subtree. Due to the linearity of the formulas in the elements’
probabilities, we can simply update the values of the functions
g(x, n, a) or h(x, n, a) (for a node x within the subtree) by
multiplying them by the same factor while the encodings that
obtain these values remain without a change.

Another kind of a possible update includes a rule insertion,
a rule deletion or an action update of an existing rule. As
mentioned, such a change can make an existing encoding for
the second problem to be illegal when a header is classified to
an incorrect action that is neither its action nor ‘?‘. In general,
a change in a rule can affect only headers that are within the
subtree of the rule. Moreover, in the dynamic program this
change influences at most (W + 1) nodes in the path from
the root of the whole binary tree to the node that represents
the affected subtree. To deal with the change, we can also keep
(especially for a large n) a small number of unused rules. Then,
for correctness in any case of a rule change, we can temporarily
add a rule with ‘?‘ for this subtree. Another option is that when
a new rule is inserted, we can add it to the existing classifier
as is if there are no some more specific rules or with ‘?‘ if
this is not the case. If a rule is deleted and it appears in the
encoding it can be changed to the action of the longest matching
prefix for this rule among the other existing rules. For the first
problem the coherency of the solution is kept even after such a
change while this might influence the correctness ratio. In both
problems, the decision whether or when the existing encoding
should be updated can rely on the ratio of headers affected by
this change.

A transition between two rule configurations is often required
to be atomic, avoiding intermediate states combining the two
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configurations as supported by a feature of the OpenFlow
specification [32]. There are several ways to implement such
an atomic bundle change. This can be achieved through a
double-buffered flow-table [33] maintaining an active and a
shadow table such that the first table is used to serve the
traffic when the other is updated before the two tables are
swapped. Another recent approach [34] relies on adding to the
rules a time field describing the time they apply. A query of a
packet is processed by aligning the packet with the timestamp
it entered the network. Rules of the both configurations can
appear within the same time, such that the changed rules
examine the timestamp field in order to apply only before or
after some agreed transition time.

VIII. EXPERIMENTAL RESULTS

We performed extensive simulations to validate the proposed
approaches on a workstation with a 2.50GHz Intel Core i5
CPU. Since the effectiveness of the proposed approach de-
pends on the correlation between the header distribution and
the input classifiers, we have arranged a measurement in a
campus network of the Budapest University of Technology and
Economics (BME) between December 11-14, 2015, exporting
the Forwarding Information Base (FIB) and capturing more
than 2 billion packets to compute the prefix popularities. The
measured link was a 10Gigabit Ethernet port of a Cisco 6500
Layer-3 switch, which transfers the traffic on a campus site to
the core layer of the local network. We refer to the data from
this measurement as the BME FIB and trace.

In addition to the BME FIB, we examined additional clas-
sifier instances of 6 access and core FIB instances, used
previously in [17], as summarized in Table III. The higher
order Entropy of the FIB is also given in KBytes describing the
theoretical memory lower bound of lossless compression [17].
As a rough comparison we may treat a TCAM rule of 32
matching bits as 4 bytes of information. For the calculation of
the prefix popularities, we also made used of a Yahoo’s (G4)
network flows dataset. The dataset includes almost a billion
packets collected from three border routers connected to Yahoo
data centers in October 11, 2007. All IP addresses in the dataset
are anonymized using a random permutation algorithm. Fig. 3
shows the cumulative distribution function of the popularities of
the /24 long prefixes in the BME and Yahoo trace. For example
in the BME trace where a higher locality is observed, roughly
50% of the traffic is mapped to ten /24 prefixes. This illustrates
how biased is the distribution faced in the classification process.

In total we solved 2×7 problem instances with the following
six algorithms. We implemented the two dynamic programming
schemes, providing optimal solutions for both the Approximate
Classification and Cached Classification problems. We also
implemented four other schemes whose solution to the real-
life illustrative example of Fig. 2 in Sec. III-B is shown on
Table II. Three of these schemes compute a subset of rules of
the ORTC representation, which is an exact representation with
minimal number of rules. For Cached Classification the last
rule is always −/0→ ‘?‘. To maintain the cache correctness, a
prefix rule can be selected, only if every existing longer prefix
intersecting rule is also selected. We implemented the greedy

algorithm for Approximate Classification which selects the n
rules with highest prefix rule popularity. We also implemented
two greedy schemes for Cached Classification: the Greedy
Cashed Classifier selects the longest rules and among the same
length the ones with highest prefix rule popularity; the Dep-
Set Cache Classifier [29] selects a subtree that has the highest
popularity in proportion to the number of rules in the subtree.
Finally, the Pragmatic Cached Classifier [25] selects leaf with
the highest popularity. Table II shows for both schemes how
the correctness ratio increases by allowing more rules in each
of the four schemes.

The right side of Table III shows the number of rules required
to reach 90%, 95%, 99%, 99.9% and 99.99% correctness ratio
for the Approximate Classification and Cached Classification
problems on the BME trace. For example, 107K rules are
required for exact classification of the HBONE FIB with
ORTC, and surprisingly with 59 rules a correctness ratio of
95% is reached for the Approximate Classification, and 678
rules are needed for the Cached Classification. Table IV shows
similar results using the prefix popularities computed according
to Yahoo’s trace. Roughly 2% of the rules required by ORTC
was sufficient to classify 99% of the traffic by the fast classifier
for Cached Classification. With 10K-20K rules (approximately
10% of the ORTC representation) we achieve a very high
correctness ratio of 99.99%.

Fig. 4 shows the average error ratio for Cached and Approx-
imate Classification over all the FIBs for the BME traces. It
is an average of the 7 instances. The 95% confidence interval
(among the instances) of the optimal algorithms is also plotted
in one side as a shadow of the curves. Note that logarithmic
scale is used on both axes. We plot 1 − correctness ratio, which
is also called the error ratio or the cache miss ratio for the
Approximate Classification or the Cached Classification prob-
lems, respectively. On average Cached Classification required
2.77 times more rules than Approximate Classification for the
same correctness ratio. This factor decreases as we have a
larger correctness ratio. The figure also shows the results of the
four other schemes. For Approximate Classification the greedy
algorithm performs closest to the optimal solution requiring
10%-30% more rules compared to the optimal solution. For
Cached Classification the schemes that select a subset of the
ORTC rules achieve bad performance. Note that the ORTC
ruleset is the minimal exact representation. The Pragmatic
Caching algorithm provides a decent performance, by dividing
the tree into disjoint subtrees and selecting those with highest
popularity. This approach is close to the optimal if the number
of rules is small. While if the fast classifier has more than 1000
rules the difference becomes large. See also Table IV for the
comparison of these four methods.

Finally, Fig. 5 shows the estimated increase in throughput
compared to the exact classifier with respect to the size of
the fast classifier. We compare the performance of the optimal
Cached Classification and the Pragmatic Caching with the BME
and Yahoo traces using the HBONE FIB. We assume that
the throughput of the fast classifier is roughly 5 times that
of the slow classifiers in inverse proportion to their latencies
[29]. In case of cache miss the lookup is performed on both
the fast and exact classifier which slightly reduces the total
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TABLE II: Illustration of the greedy algorithms for the two schemes on the example of Fig. 2: rules are considered in different
orders based on their popularities and lengths. For a number of rules n the obtained greedy correctness ratio is compared with
the optimal ratio.

(a) Approximate Classification

n G Greedy Approx Class.
opt. ratio rule pop.

1 .9184 .55 001/3→ 2 .55
2 .9584 .9102 10/2→ 2 .3602
3 .9784 .9502 1100/4→ 1 .04
4 .9934 .9702 01101/5→ 0 .02
5 .9994 .9852 10100/5→ 0 .015
6 .9996 .9932 01010/5→ 2 .008
7 .9997 .9992 001110/6→ 3 .006
8 .9998 .9997 −/0→ 0 .0005
9 .9999 .9999 011/3→ 2 .0002

10 1 1 00110/5→ 0 .0001

(b) Cached Classification

n H Greedy Cached Class. Dep-Set Cache Class. [29]
opt. rule ratio rule ratio

2 .45 001110/6→ 3 .006 10100/5→ 0
3 .81 01101/5→ 0 .026 10/2→ 2 .3752
4 .91 10100/5→ 0 .041 00110/5→ 0
5 .95 01010/5→ 2 .049 001110/6→ 3
6 .97 00110/5→ 0 .0491 001/3→ 2 .9313
7 .9852 1100/4→ 1 .0891 1100/4→ 1 .9713
8 .9932 001/3→ 2 .6391 01101/5→ 0 .9913
9 .9993 011/3→ 2 .6393 01010/5→ 2 .9993

10 1 10/2→ 2 .9995 011/3→ 2
11 −/0→ 0 1 −/0→ 0 1

with a last rule −/0→ ‘?‘

Pragmatic rule caching [25]
n rule ratio
2 001111/6 → 2 0.45
3 10101/5 → 2 0.81
4 0010/4 → 2 0.91
5 1100/4 → 1 0.95
6 01101/5 → 0 0.97
7 10100/5 → 0 0.985
8 01010/5 → 2 0.993
9 001110/6 → 3 0.999

10 0111/4 → 2 0.9991
11 01100/5 → 2 0.9992
12 01011/5 → 0 0.9993
13 100/3 → 2 0.9994
14 0100/4 → 0 0.9995
15 1011/4 → 2 0.9996
16 1101/4 → 0 0.9997
17 00110/5 → 0 0.9998
18 111/3 → 0 0.9999
19 000/3 → 0 1

with a last rule −/0 → ‘?‘

TABLE III: Description of FIBs examined with the number of distinct actions, the number of leaves and nodes in their original
representations, and the number of ORTC rules. The required number of rules in the Cached and Approximate classifier are
described for different correctness ratio. Results are based on the the BME trace.

FIB Name #leaves #nodes ORTC Entropy Optimal Approximate Classifier (#rules) Optimal Cached Classifier (#rules)
(#rules) (KB) 90% 95% 99% 99.9% 99.99% 90% 95% 99% 99.9% 99.99%

BME (TAZ) 150095 300189 49285 56 4 15 157 778 2184 176 444 1513 3460 6160
SFR-HMS 235624 471247 71802 90 2 17 231 1161 3613 205 560 2048 5582 10679
AS1221 261889 523777 94231 115 10 45 405 1808 5090 223 601 2294 6455 12718
AS4637 105234 210467 35872 41 4 10 128 662 1773 86 236 1014 2463 4316
AS6447 375261 750521 160835 277 52 172 1106 4245 11614 257 745 3103 10582 23628
AS6730 336828 673655 140481 209 35 126 848 3415 9426 254 702 2829 9083 19341
HBONE 284716 569431 107739 142 15 59 552 2336 6505 241 678 2720 8358 17682

TABLE IV: The required number of rules in the Cached and Approximate classifier are described for different correctness ratio.
Results are based on the Yahoo trace.

FIB Name Optimal Approximate Classifier Greedy Approximate Classifier Optimal Cached Classifier Pragmatic Cached Classifier
95% 99% 99.9% 99.99% 95% 99% 99.9% 99.99% 90% 95% 99% 99.9% 99.99% 90% 95% 99% 99.9% 99.99%

SFR-HMS 44 436 1728 3882 70 547 2043 4418 392 701 2126 5145 7439 658 1379 4413 12338 20185
AS1221 260 984 2885 5896 339 1128 3259 6567 667 1222 2977 6619 9986 918 1824 5293 14104 23207
AS4637 68 423 1041 1962 99 481 1155 2157 325 574 1172 2279 3373 457 965 2299 5170 8439
AS6447 632 1979 5960 11157 755 2289 6917 12814 881 1664 4630 11794 18281 1102 2217 6986 19445 31654
AS6730 555 1798 5223 9871 667 2049 6037 11232 780 1493 4130 10083 15620 1032 2078 6482 17792 29013
HBONE 309 1119 3322 6820 462 1500 4529 8941 675 1281 3432 8778 14102 890 1804 5299 14680 24414
BME (TAZ) 76 448 1184 2467 103 495 1311 2730 443 755 1528 3030 4623 635 1274 3169 7715 12849
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throughput. Better performance is observed for the BME trace
that has higher locality. For instance, with 1000 rules with
the BME trace the throughput increase is 4.37 and 4.25 for
Cached Classification and Pragmatic Caching, respectively. For
the Yahoo trace, the corresponding values are 3.93 and 3.54. In
general the optimal Cached Classification scheme achieves up
to 2.8% and 11% larger increase in the throughput for the BME
and Yahoo traces in comparison with the Pragmatic Caching.

IX. RELATED WORK

Reducing the TCAM size is a central idea of building
energy efficient routers [35]–[38]. Compared to our concept
the fundamental difference is that the power consumption is
reduced because of selectively activating only a portion of the
TCAM during lookup. The general idea is to implement the
classification process in two steps, called 2-level architecture,
the first step decides which TCAM segment to perform the
lookup search. The first step can be either implemented in
SRAM [36], [38], or with a TCAM table, called index TCAM,
[35], [37]. It was demonstrated that these techniques can greatly
reduce power, and improve the lookup time while supporting
batch updates. In this paper we take an orthogonal approach
and calculating an approximated classification in the first step,
using a fast classifier.

The concept of using traditional and fast classifiers for rule
caching is not new [26], [27]. In an LPM-based classification,
the existence of a matching rule for an incoming packet among
the set of cached rules does not necessarily mean that this
is the correct rule, since there might exist a longer matching
rule among the non-cached rules. [24] described schemes for
selecting a subset of rules that avoids this phenomenon, known
as the cache hiding problem. [39] tackled the same problem
by introducing rule caching for fast line cards wakeup. [29]
described a system that caches the most popular rules in a
small TCAM while handling the others in software. A recent
approach suggested distributing the rules of a classifier among
several limited-size TCAMs in multiple locations [40], [41].

Compression of packet classifiers as well as of Forwarding
Information Bases (FIBs) is another effective strategy to re-
duce TCAM power consumption. The problem was considered
for a wide range of memories. The ORTC algorithm [16]
obtains an optimal representation of a longest prefix match
(LPM) classifier in the minimal possible number of prefix
rules. A similar approach called FIB aggregation [42] suggests
aggregating rules with the same action. Similar techniques are
described in [43]. Entropy bounds on the size of an LPM-
based classifier and algorithms to obtain them were presented
in [17]. [13] discussed how to reduce the width of a classifier by
eliminating some of its fields. Codes for fixed-width memories
have been described in [44], [45]. In particular, the problem
of dealing with the limited size of TCAMs has been well
studied. A wide range of memory-efficient representations of
classifiers in TCAMs have been suggested [7], [46], [47].
For instance, the compression can be achieved by eliminating
redundant rules [12], by learning the interactions between
different rules [13], [14], or by performing block permuta-
tion [15]. Recently, a novel scheme took advantage of the IP
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address allocation to reduce memory for representing network
policies [48].

X. DISCUSSION ON THE APPLICABILITY OF THE RESULTS

Generality of the solutions: We have described algorithms
that obtain the optimal classifier with a limited number of
rules for the Approximate Classification problem, the Cached
Classification problem, and for additional problems related to
numerical classifiers. The algorithms differ in the initial values
of the recursive formulas for the monochromatic subtrees. In all
problems, the function value of a node for a possible limited-
size encoding is given by the sum of the values of its two
subtrees. As mentioned, the number of rules in an encoding
achieved by combining two encodings for two adjacent subtrees
does not depend on a specific metric. Let the function I(·) be
the indicator function that takes the value of 1 if the condition
that it receives as an argument is satisfied, and 0 otherwise.
The algorithms can be generalized to any metric in which the
value of an encoding that implements a function φ is given by∑
x∈{0,1}W F(α(x), φ(x), px) for an arbitrary function F , and

the constraints of the function φ can be also expressed based on
the values for each header. In such cases, the similarity of the
functions is separable for the different headers. In particular, for
the described problems we have for Approximate Classification
F(α(x), φ(x), px) = px · I(α(x) = φ(x)), for Cached Classifi-
cation it can be px ·I(α(x) = φ(x))−1 ·I(φ(x) /∈ {α(x), ‘?‘}).
Here, an incorrect classification of a single header decreases the
function value for the complete binary tree by at least one and
guarantees that its value will not be positive.

Dealing with attacks: A Cached Classifier can be affected
by malicious traffic leading to performance degradation. This
can be expressed in various aspects. First, malicious traffic can
be used to pollute the cache content by artificially changing
traffic distribution to reduce correctness ratio. Second, mali-
cious traffic can try to achieve cache misses to heavily increase
the load of the traditional exact classifier. We rely on [25] that
recently studied the vulnerability of rule caching schemes to
such attacks. This study explains that the influence of the first
aspect is minor if exists due to the biased distribution of the
real traffic and the popularity of the requested cached rules.
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It is claimed that the traffic rate required to avoid caching the
significant and helpful rules is much larger than any practical
rate. Accordingly, this limited effect on the traffic distribution
guarantees that the efficiency of the approximate classification
and the cached classification schemes will not be highly
degraded by the malicious traffic. Both schemes optimally
maximize the correctness ratio for their input distribution, a
distribution that is very close to the real traffic distribution
without the influence of the malicious traffic.

Regarding the second aspect, clearly the traffic that is mostly
affected is the malicious traffic observing a larger delay; al-
though, this can lead to unrequested large power consumption.
Moreover, there are simple solutions to keep the cache content
clean from attacks. The prefix popularity can be computed
combining long term statistics with short term measurements.
When some information of this traffic is available, we can also
try to limit the influence of a single or a small amount of flows
on the header distribution. For example, such an attack can
be identified by common tools for detecting unrequested large
amount of traffic such as tools for diagnosing DDoS attacks.
We leave such identification of malicious traffic for future work.

XI. CONCLUSIONS

In this paper, we investigate algorithmic aspects of a limited-
size and power efficient packet classifiers. In particular, we
have described a lossy compression approach for limited-size
classification modules. We have presented different similarity
metrics for classifiers and developed algorithms that find opti-
mal classifiers under various constraints. In particular, we have
presented a scheme in which a special indication is always
returned for headers that cannot be classified correctly. Then, a
correct classification can be achieved by accessing the network
controller or another memory level. We have explained how the
approach can be applied to a wide range of classifiers within
different modules. Extensive experiments showed a significant
reduction in the size of real classifiers based on real traffic.
According to our conservative estimations, 1-3% of the original
memory size should be enough for correctly classifying 99%
of the traffic. While we can show the extending the lossy
compression methodology for classifiers with general, non-
prefix rules can result in NP-hard problems, our future work
includes developing techniques also for these scenarios.

REFERENCES

[1] O. Rottenstreich and J. Tapolcai, “Lossy compression of packet classi-
fiers,” in ACM/IEEE ANCS, 2015.

[2] I. Gashinsky, “Datacenter scalability panel,” in North American Network
Operators Group, NANOG 52, 2011.

[3] D. Meyer, L. Zhang, and K. Fall, “Report from the IAB Workshop on
Routing and Addressing,” in RFC 4984, IETF, 2007.

[4] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(CAM) circuits and architectures: A tutorial and survey,” IEEE Journal
of Solid-State Circuits, vol. 41, pp. 712–727, 2006.

[5] Y. Ma and S. Banerjee, “A smart pre-classifier to reduce power con-
sumption of TCAMs for multi-dimensional packet classification,” in ACM
SIGCOMM, 2012.

[6] P. Bosshart, G. Gibb, H. Kim, G. Varghese, N. McKeown, M. Izzard,
F. A. Mujica, and M. Horowitz, “Forwarding metamorphosis: fast pro-
grammable match-action processing in hardware for SDN,” in ACM
SIGCOMM, 2013.

[7] A. X. Liu, C. R. Meiners, and E. Torng, “TCAM Razor: a systematic
approach towards minimizing packet classifiers in TCAMs,” IEEE/ACM
Trans. Netw., vol. 18, pp. 490–500, 2010.

[8] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford, “Efficient
traffic splitting on commodity switches,” in ACM CoNEXT, 2015.

[9] R. Ozdag, “Intel R©Ethernet Switch FM6000 Series-Software Defined
Networking,” Intel Coroporation, 2012.

[10] D. Huffman, “A method for the construction of minimum redundancy
codes,” Proc. IRE, vol. 40, pp. 1098–1101, 1952.

[11] J. Ziv and A. Lempel, “Compression of individual sequences via variable-
rate coding,” IEEE Trans. Information Theory, vol. 24, pp. 530–536,
1978.

[12] A. X. Liu, C. R. Meiners, and Y. Zhou, “All-match based complete
redundancy removal for packet classifiers in TCAMs,” in IEEE Infocom,
2008.

[13] K. Kogan, S. I. Nikolenko, O. Rottenstreich, W. Culhane, and P. Eug-
ster, “Exploiting order independence for scalable and expressive packet
classification,” IEEE/ACM Trans. Netw., vol. 24, pp. 1251–1264, 2016.

[14] E. Norige, A. X. Liu, and E. Torng, “A ternary unification framework for
optimizing TCAM-based packet classification systems,” in ACM/IEEE
ANCS, 2013.

[15] R. Wei, Y. Xu, and H. J. Chao, “Block permutations in boolean space to
minimize TCAM for packet classification,” in IEEE Infocom, 2012.

[16] R. Draves, C. King, S. Venkatachary, and B. Zill, “Constructing optimal
IP routing tables,” in IEEE Infocom, 1999.
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APPENDIX

Proof of Observation 1: A representation classifying all
traffic correctly has a correctness ratio of 1 for both problems.
If such a representation does not exist, consider an optimal
encoding for the second problem. It must include at least
one rule with ‘?‘ matching at least one header. Based on this
encoding, we can simply obtain a solution for the first problem
that achieves a larger correctness ratio. To do so, we replace the
action of ‘?‘ in such a rule by an action in A that corresponds to
one of the headers with a first match in that rule. This change
does not affect a header that was originally classified correctly,
while at least one header previously mapped to ‘?‘ is now
classified to its required action. Note that for the Approximate
Classification a correctness ratio of 1 can be obtained also when
some headers are not classified correctly as long as they have
a probability of zero to appear. �

Proof of Lemma 1: Any header that had a longest match in
one of the rules other than Sj → aj will have a longest match
in the same rule after removing rule Sj → aj . �

Proof of Theorem 1: In such a classifier, a header that
was classified correctly having a longest match in a selected
rule will have again a longest match in the same rule, being
classified correctly. In addition, all headers that had no match in
any of the n0 will not match the subset of rules. Such headers
are mapped to the default action in both cases. The last bound
is deduced by a simple bound on the average of the largest
n popularities and the consideration of the probability that a
header does not match any rule. �

Proof of Observation 2: Consider an encoding with n rules
S1 → a1, . . . , Sn−1 → an−1,−/0→ ‘?‘ composed of the n−1
longest rules in the encoding of Cα and a last default rule that
returns ‘?‘. It classifies correctly all headers matching one of
these n − 1 longest rules in the exact encoding with n0 rules
and therefore achieves a correctness ratio of Σj∈[1,n−1]p

j . This
encoding is legal since it returns ‘?‘ for any other header. �

Proof of Lemma 2: Consider an encoding φ(r, n + 1, a−)
that obtains the correctness ratio g(r, n + 1, a−). In such an

encoding the last rule of the form r → a− is redundant since
a− is the default action. By eliminating this rule we can have an
encoding of n rules that achieves the same ratio and therefore
G(n, α, P ) ≥ g(r, n+ 1, a−). Likewise, for any encoding with
n rules that obtains G(n, α, P ) we can add a rule of the form
r → a− while still obtaining the same correctness ratio. This is
a legal encoding for g(r, n+1, a−). Thus we have G(n, α, P ) ≤
g(r, n+ 1, a−) and the equality is satisfied. �

Proof of Theorem 3: As mentioned, the number of the
monochromatic nodes is at most W · n0. The calculation of
the trees is performed by a single processing of the rules in
the input classifier. A binary tree has the property that the
number of internal nodes is not greater than the number of
leaves. Accordingly the total number of considered nodes is
O(W ·n0). For each node and a given value of n, we consider
n options for a specific value of a and another O(n·|A|) options
that refer to all values of a. Thus the total time complexity is
O(W · n0 · |A| · n2). Likewise, for each calculation we should
keep an encoding of size n ·W . This result in a total memory
complexity of O(W 2 · n0 · |A| · n2). �

Proof of Lemma 6: For a monochromatic node y an encoding
y → a is legal if a ≥ ay and achieves a positive correctness
ratio only if a = ay . Likewise, a legal encoding for a non-leaf
node y is given by the merging of legal encodings for the two
subtrees regardless of the specific optimization function. �

Proof of Lemma 7: Here, for a monochromatic node y the
encoding y → ay with a single rule has a dissimilarity of
0, while an encoding of the form y → a for a 6= ay has a
dissimilarity of |a− ay| · py . �

Proof of Lemma 8: The proof is similar to the previous
proofs. To avoid an illegal encoding of the form y → a for
the monochromatic node y when a < ay , we set the value of
the function o(y, 1, a) to be ∞. �
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