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ABSTRACT
Lately, there has been an upsurge of interest in compressed
data structures, aiming to pack ever larger quantities of in-
formation into constrained memory without sacrificing the
efficiency of standard operations, like random access, search,
or update. The main goal of this paper is to demonstrate
how data compression can benefit the networking commu-
nity, by showing how to squeeze the IP Forwarding Infor-
mation Base (FIB), the giant table consulted by IP routers
to make forwarding decisions, into information-theoretical
entropy bounds, with essentially zero cost on longest prefix
match and FIB update. First, we adopt the state-of-the-
art in compressed data structures, yielding a static entropy-
compressed FIB representation with asymptotically optimal
lookup. Then, we re-design the venerable prefix tree, used
commonly for IP lookup for at least 20 years in IP routers,
to also admit entropy bounds and support lookup in opti-
mal time and update in nearly optimal time. Evaluations
on a Linux kernel prototype indicate that our compressors
encode a FIB comprising more than 440K prefixes to just
about 100–400 KBytes of memory, with a threefold increase
in lookup throughput and no penalty on FIB updates.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Store and forward networks; E.4
[Coding and Information Theory]: Data compaction
and compression

Keywords
IP forwarding table lookup; data compression; prefix tree

1. INTRODUCTION
Data compression is widely used in processing large vol-

umes of information. Not just that convenient compression
tools are available to curtail the memory footprint of basi-
cally any type of data, but these tools also come with the-
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oretical guarantee that the compressed size is indeed mini-
mal, in terms of some suitable notion of entropy [8]. Corre-
spondingly, data compression has found its use in basically
all aspects of computation and networking practice, ranging
from text or multimedia compression [63] to the very heart
of communications protocols [59] and operating systems [3].

Traditional compression algorithms do not admit standard
queries, like pattern matching or random access, right on the
compressed form, which severely hinders their applicability.
An evident workaround is to decompress the data prior to
accessing it, but this pretty much defeats the whole purpose.
The alternative is to maintain a separate index dedicated
solely to navigate the content, but the sheer size of the index
can become prohibitive in many cases [25,39].

It is no surprise, therefore, that the discovery of com-
pressed self-indexes (or, within the context of this paper,
compressed data structures) came as a real breakthrough
[18]. A compressed data structure is, loosely speaking, an
entropy-sized index on some data that allows the complete
recovery of the original content as well as fast queries on
it [9, 18, 19, 25, 34, 38, 39, 42, 63]. What is more, as the com-
pressed form occupies much smaller space than the original
representation, and hence is more friendly to CPU cache,
the time required to answer a query is often far less than
if the data had not been compressed [9, 63]. Compressed

data structures, therefore, turn out one of the rare cases in

computer science where there is no space-time trade-off.
Researchers and practitioners working with big data were

quick to recognize this win-win situation and came up with
compressed self-indexes, and accompanying software tools,
for a broad set of applications; from compressors for se-
quential data like bitmaps (RRR), [42]) and text documents
(CGlimpse [18], wavelet trees [19]); compression frontends to
information retrieval systems (MG4J [55], LuceneTransform
[32]) and dictionaries (MG [58]); to specialized tools for struc-
tured data, like XML/HTML/DOM (XGRIND [53], XBZIPIN-
DEX [17]), graphs (WebGraph [57]), 3D models (Edgebreaker
[45]), genomes and protein sequences (COMRi [51]), multi-
media, source and binary program code, formal grammars,
etc. [58]. With the advent of replacements for the standard
file compression tools (LZgrep [40]) and generic libraries
(libcds [38]), we might be right at the verge of seeing com-
pressed data structures go mainstream.

Curiously, this revolutionary change has gone mostly un-
noticed in the networking community, even though this field
is just one of those affected critically by skyrocketing vol-
umes of data. A salient example of this trend is the case of
the IP Forwarding Information Base (FIB), used by Internet
routers to make forwarding decisions, which has been liter-



ally deluged by the rapid growth of the routed IP address
space. Consequently, there has been a flurry of activity to
find space-efficient FIB representations [1,5,10–13,21–23,27,
31,35,41,46,48,49,54,56,60,61], yet very few of these go be-
yond ad-hoc schemes and compress to information-theoretic
limits, let alone come with a convenient notion of FIB en-
tropy. Taking the example of compressing IP FIBs as a use
case, thus, our aim in this paper is to popularize compressed
data structures to the networking community.

1.1 FIB Compression
There are hardly any data structures in networking af-

fected as compellingly by the growth of the Internet as the
IP FIB. Stored in the line card memory of routers, the FIB
maintains an association from every routed IP prefix to the
corresponding next-hop, and it is queried on a packet-by-
packet basis at line speed (in fact, it is queried twice per
packet, considering reverse path forwarding check). Lookup
in FIBs is not trivial either, as IP’s longest prefix match
rule requires the most specific entry to be found for each
destination address. Moreover, as Internet routers operate
in an increasingly dynamic environment [14], the FIB needs
to support hundreds of updates to its content each second.

As of 2013, the number of active IPv4 prefixes in the De-
fault Free Zone is more than 440,000 and counting, and IPv6
quickly follows suit [26]. Correspondingly, FIBs continue to
expand both in size and management burden. As a quick re-
ality check, the Linux kernel’s fib_trie data structure [41],
when filled with this many prefixes, occupies tens of Mbytes
of memory, takes several minutes to download to the for-
warding plane, and is still heavily debated to scale to multi-
gigabit speeds [2]. Commercial routers suffer similar trou-
bles, aggravated by the fact that line card hardware is more
difficult to upgrade than software routers.

Many have argued that mounting FIB memory tax will,
sooner or later, present a crucial data-plane performance
bottleneck for IP routers [36]. But even if the scalability
barrier will not prove impenetrable [16], the growth of the IP
forwarding table still poses compelling difficulties. Adding
further fast memory to line cards boosts silicon footprint,
heat production, and power budget, all in all, the CAPEX/
OPEX associated with IP network gear, and forces operators
into rapid upgrade cycles [30, 62]. Large FIBs also compli-
cate maintaining multiple virtual router instances, each with
its own FIB, on the same physical hardware [47] and build
up huge control plane to data plane delay for FIB resets [20].

Several recent studies have identified FIB aggregation as
an effective way to reduce FIB size, extending the lifetime
of legacy network devices and mitigating the Internet rout-
ing scalability problem, at least temporarily [30, 62]. FIB
aggregation is a technique to transform some initial FIB
representation into an alternative form that, supposedly, oc-
cupies smaller space but still provides fast lookup. Recent
years have seen an impressive reduction in FIB size: from
the initial 24 bytes/prefix (prefix trees [46]), use of hash-
based schemes [1, 56], path- and level-compressed multibit
tries [5, 41, 49], tree-bitmaps [13], etc., have reduced FIB
memory tax to just about 2–4.5 bytes/prefix [10, 54, 61].
Meanwhile, lookup performance has also improved [41].

The evident questions “Is there an ultimate limit in FIB
aggregation?” and “Can FIBs be reduced to fit in fast ASIC
SRAM/CPU cache entirely?” have been asked several times
before [5, 10, 12, 49]. In order to answer these questions,

we need to go beyond conventional FIB aggregation to find
new compressed FIB data structures that encode to entropy-

bounded space and support lookup and update in optimal

time. We coined the term FIB compression to mark this
ambitious undertaking [43]. Accordingly, this paper is ded-
icated to the theory and practice of FIB compression.

1.2 Our Contributions
Our contributions on FIB compression are two-fold: based

on the labeled tree entropy measure of Ferragina et al. [17]
we specify a compressibility metric called FIB entropy, then
we propose two entropy-compressed FIB data structures.

Our first FIB encoder, XBW-b, is a direct application
of the state-of-the-art in compressed data structures to the
case of IP FIBs. XBW-b compresses a contemporary FIB to
the entropy limit of just 100–300 Kbytes and, at the same
time, provides longest prefix match in asymptotically opti-
mal time. Unfortunately, it turns out that the relatively im-
mature hardware and software background for compressed
string indexes greatly constrain the lookup and update per-
formance of XBW-b. Therefore, we also present a practical
FIB compression scheme, called the trie-folding algorithm.

Trie-folding is in essence a “compressed” reinvention of
prefix trees, a commonly used FIB implementation in IP
routers, and therefore readily deployable with minimal or no
modification to router ASICs [15]. We show that trie-folding
compresses to within a small constant factor of FIB entropy,
supports lookup in strictly optimal time, and admits updates
in nearly optimal time for FIBs of reasonable entropy (see
later for precise definitions). The viability of trie-folding
will be demonstrated on a Linux prototype and an FPGA
implementation. By extensive tests on real and synthetic IP
FIBs, we show that trie-folding supports tens of millions of
IP lookups and hundreds of thousands updates per second,
in less than 150–500 Kbytes of memory.

1.3 Structure of the Paper
The rest of the paper is organized as follows. In the next

section, we survey standard FIB representation schemes and
cast compressibility metrics. In Section 3 we describe XBW-

b, while in Section 4 we introduce trie-folding and we estab-
lish storage size bounds. Section 5 is devoted to numerical
evaluations and measurement results, Section 6 surveys re-
lated literature, and finally Section 7 concludes the paper.

2. PREFIX TREES AND SPACE BOUNDS
Consider the sample IP routing table in Fig. 1(a), storing

address-prefix-to-next-hop associations in the form of an in-
dex into a neighbor table, which maintains neighbor specific
information, like next-hop IP address, aliases, ARP info, etc.
Associate a unique label, taken from the alphabet Σ, with
each next-hop in the neighbor table. We shall usually treat
labels as positive integers, complemented with a special in-
valid label ⊥∈ Σ to mark blackhole routes. Let N denote the
number of entries in the FIB and let δ = |Σ| be the number
of next-hops. An IP router does not keep an adjacency with
every other router in the Internet, thus δ ≪ N . Specifically,
we assume that δ is O(polylogN) or O(1), which is in line
with reality [6, 52]. Finally, let W denote the width of the
address space in bits (e.g., W = 32 for IPv4).

To actually forward a packet, we need to find the entry
that matches the destination address in the packet on the
greatest number of bits, starting from the MSB. For the



prefix label
-/0 2
0/1 3

00/2 3
001/3 2
01/2 2

011/3 1

(a)
2 1

3

1
2

1

3

0 1

2

0

(b)
3 1

2

(c)

3 2 2 1

2

(d)
3 2 2 1

2

(e)

Figure 1: Representations of an IP forwarding table: tabu-
lar form with address in binary format, prefix length and
next-hop address label (a); prefix tree with state transi-
tions marked (b); ORTC-compressed prefix tree (c); level-
compressed multibit trie (d); and leaf-pushed trie (e).

address 0111, each of the entries −/0 (the default route),
0/1, 01/2, and 011/3 match. As the most specific entry is
the last one, the lookup operation yields the next-hop label
1. This is then used as an index into the neighbor table and
the packet is forwarded on the interface facing that neighbor.
This tabular representation is not really efficient, as a lookup
or update operation requires looping through each entry,
taking O(N) time. The storage size is (W + lg δ)N bits1.

Binary prefix trees, or tries [46], support lookup and up-
date much more efficiently (see Fig. 1(b)). A trie is a labeled
ordinal tree, in which every path from the root node to a
leaf corresponds to an IP prefix and lookup is based on suc-
cessive bits of the destination address: if the next bit is 0
proceed to the left sub-trie, otherwise proceed to the right,
and if the corresponding child is missing return the last label
encountered along the way. Prefix trees generally improve
the time to perform a lookup or update from linear to O(W )
steps, although memory size increases somewhat.

A prefix tree representation is usually not unique, which
opens the door to a wide range of optimization strategies
to find more space-efficient forms. For instance, the prefix
tree in Fig. 1(c) is forwarding equivalent with the one in
Fig. 1(b), in that it orders the same label to every complete
W bit long key, yet contains only 3 labeled nodes instead
of 7 (see the ORTC algorithm in [12, 54]). Alternatively,
level-compression [5, 41, 49] is a technique to remove excess
levels from a binary trie to obtain a forwarding equivalent
multibit trie that is substantially smaller (see Fig. 1(d)).

A standard technique to obtain a unique, normalized form

of a prefix tree is leaf-pushing [12,47,49]: in a first preorder
traversal labels are pushed from the parents towards the
children, and then in a second postorder traversal each par-
ent with identically labeled leaves is substituted with a leaf
marked with the children’s label (see Fig. 1(e)). The resul-
tant trie is called a leaf-labeled trie since interior nodes no
longer maintain labels, and it is also a proper binary trie
with nice structure: any node is either a leaf node or it is
an interior node with exactly two children. Updates to a
leaf-pushed trie, however, may be expensive; modifying the
default route, for instance, can result in practically all leaves
being relabeled, taking O(N) steps in the worst-case.

2.1 Information-theoretic Limit
How can we know for sure that a particular prefix tree

representation, from the many, is indeed space-efficient? To

1The notation lg x is shorthand for ⌈log2(x)⌉.

answer this question, we need information-theoretically jus-
tified storage size bounds.

The first verifiable cornerstone of a space-efficient data
structure is whether its size meets the information-theoretic

lower bound, corresponding to the minimum number of bits
needed to uniquely identify any instance of the data. For
example, there are exactly δn strings of length n on an al-
phabet of size δ, and to be able to distinguish between any
two we need at least lg(δn) ≅ n lg δ bits. In this example
even a naive string representation meets the bound, but in
more complex cases attaining it is much more difficult.

This argumentation generalizes from strings to leaf-labeled
tries as follows (see also Ferragina et al. [17]).

Proposition 1. Let T be a proper, binary, leaf-labeled

trie with n leaves on an alphabet of size δ. The information-

theoretic lower bound to encode T is 2n+ n lg δ bitsa.

The bound is easily justified with a simple counting argu-
ment. The number of proper binary trees on n leaves is the
(n − 1)-th Catalan number Cn−1 = 1

n

(

2n−2
n−1

)

, therefore we

need at least lgCn−1 = 2n − Θ(logn) bitsb to encode the
tree itself [28]; storing the label map defined on the n leaves
of T requires an additional n lg δ bits; and assuming that the
two are independent we need 2n+ n lg δ bits overall.

A representation that encodes to within the constant fac-
tor of the information-theoretic lower bound (up to lower
order terms) and simultaneously supports queries in optimal
time is called a compact data structure, while if the constant
factor is 1 then it is also a succinct data structure [28].

2.2 Entropy Bounds
A succinct representation very often contains further re-

dundancy in the form of regularity in the label mapping. For
instance, in the sample trie of Fig. 1(e) there are three leaves
with label 2, but only one with label 1 or 3. Thus, we could
save space by representing label 2 on fewer bits, similarly to
how Huffman-coding does for strings. This correspondence
leads to the following notion of entropy for leaf-labeled tries
(on the traces of Ferragina et al. [17]).

Proposition 2. Let T be a proper, binary, leaf-labeled

trie with n leaves on an alphabet Σ, let ps denote the prob-

ability that some symbol s ∈ Σ appears as a leaf label, and

let H0 denote the Shannon-entropy of the probability distri-

bution ps, s ∈ Σ:

H0 =
∑

s∈Σ

ps log2 1/ps . (1)

Then, the zero-order entropy of T is 2n+ nH0 bitsc.

Intuitively speaking, the entropy of the tree structure cor-
responds to the information-theoretic limit of 2n bits as we
do not assume any regularity in this regard. To this, the
leaf-labels add an extra nH0 bits of entropy.
aErratum: In the original manuscript [44] the informa-
tion-theoretic lower bound is wrongly set to 4n+n lg δ. See
the note below for the explanation.
bErratum: The information-theoretic lower bound and the
entropy are off by a constant factor 2 in [44]. The reason
is that the original version takes the number of trees on n
nodes instead of n leaves, thus it wrongly puts the number
of bits to encode the tree to ≈ 4n bits.
cErratum: The claim is revised from [44], where the entropy
wrongly appears as 4n + nH0. See previous note for an
explanation.
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Figure 2: A leaf-pushed trie and its XBW-b transform.

The entropy of a trie depends mainly on the size of the un-
derlying tree and the distribution of labels on it. This trans-
forms to FIBs quite naturally: the more prefixes go to the
same next-hop and the more the FIB resembles “a default
route with few exceptions”, the smaller the Shannon-entropy
of the next-hop distribution and the tighter the space limit.
Accordingly, we shall define the notions FIB information-

theoretic lower bound and FIB entropy as those of the un-
derlying leaf-pushed prefix tree. Both space bounds are well-
defined as the normalized form is unique. Note, however,
that in contrast to general trees IP FIBs are of bounded
height, so the real bounds should be somewhat smaller. Ad-
ditionally, for the purposes of this paper our space bounds
involve binary leaf-labeled tries only. We relax this restric-
tion in [43] using the generic trie entropy measure of [17].

3. ATTAINING ENTROPY BOUNDS
Below, we present our first compressed FIB data struc-

ture, the Burrows-Wheeler transform for binary leaf-labeled

tries (XBW-b). This data structure is a stripped down
version of MBW, the Multibit Burrows-Wheeler transform
from [43], and the XBW-l transform from [44], which in
turn build on the succinct level-indexed binary trees of Ja-
cobson [28] and the XBW transform due to Ferragina et

al. [17]. In contrast to XBW-b that is binary only, the origi-
nal MBW and XBW-l transforms support level-compressed
tries as well, at the price of encoding to a slightly larger rep-
resentation and missing the information-theoretical storage
size bounds defined above.

The basis for the XBW-b transform is a normalized, bi-
naryd, proper, leaf-labeled trie. Let T be a binary tree on
t nodes, let L be the set of leaves with n = |L|, and let l
be a mapping V 7→ Σ specifying for a node v either that v
does not have a label associated with it (i.e., l(v) = ∅) or
the corresponding label l(v) ∈ Σ. If T is proper, binary, and
leaf-labeled, then the following invariants hold:

P1: Either v ∈ L, or v has 2 children.

P2: l(v) 6= ∅ ⇔ v ∈ L.

P3: t < 2n and so t = O(n).

The main idea in XBW-b is serializing T into a bitstring
SI that encodes the tree structure and a string Sα on the
alphabet Σ encoding the labels, and then using a sophis-
ticated lossless string compressor to obtain the storage size

dErratum: Originally, XBW-b allowed to encode level-com-
pressed (i.e., not necessarily binary) tries as well, which we
do not consider here to be able to meet the tight informa-
tion-theoretical bounds.

boundse. The trick is in making just the right amount of con-
text available to the string compressors, and doing this all
with guaranteeing optimal lookup on the compressed form.
Correspondingly, the XBW-b transform is defined as the tu-
ple xbwb(T ) = (SI , Sα), where

• SI : a bitstring of size t with zero in position i if the
i-th node of T in level-order is an interior node and 1
otherwise; and

• Sα: a string of size n on the alphabet Σ encoding the
leaf labels.

For our sample FIB, the leaf-pushed trie and the corre-
sponding XBW-b transform are given in Fig. 2.

3.1 Construction and IP lookup
In order to generate the XBW-b transform, one needs to

fill up the strings SI and Sα, starting from the root and
traversing T in a breadth-first-search order.

1: i← 1; j ← 1
2: bfs-traverse (node v, integer i, integer j)
3: if v /∈ L then SI [i]← 0
4: else SI [i]← 1; Sα[j]← l(v); j ← j + 1
5: i← i+ 1

The following statement is now obvious.

Lemma 1. Given a proper binary, leaf-labeled trie T on t
nodes, xbwb(T ) can be built in O(t) time.

The transform xbwb(T ) has some appealing properties.
For instance, the children of some node, if exist, are stored
on consecutive indices in SI and Sα. In fact, all nodes at
the same level of T are mapped to consecutive indices.

The next step is to actually compress the strings. This
promises easier than compressing T directly as xbwb(T ),
being a sequential string representation, lacks the intricate
structure of tries. An obvious choice would be to apply
some standard string compressor (like the venerable gzip(1)
tool), but this would not admit queries like “get all children
of a node”without first decompressing the transform. Thus,
we rather use a compressed string self-index [17, 19, 28, 42]
to store xbwb(T ), which allows us to implement efficient
navigation immediately on the compressed form.

The way string indexers usually realize navigability is to
implement a certain set of simple primitives in constant O(1)
time in-place. Given a string S[1, t] on alphabet Σ, a symbol
s ∈ Σ, and integer q ∈ [1, t], these primitives are as follows:

• access(S, q): return the symbol at position q in S;

• ranks(S, q): return the number of times symbol s oc-
curs in the prefix S[1, q]; and

• selects(S, q): return the position of the q-th occurrence
of symbol s in S.

Curiously, these simple primitives admit strikingly com-
plex queries to be implemented and supported in optimal
time. In particular, the IP lookup routine on xbwb(T ) takes
the following formf.
eErratum: The original version also contained a third string
Slast that was needed to correctly encode level-compressed
input, as even with Slast explicitly stored XBW-b met the
(erroneously loose) entropy bound of 4n+H0n. Herein, we
shave off Slast in order to make up for the “lost” constant in
the storage size bounds.
fErratum: Pseudo-code updated.



1: lookup (address a)
2: q ← 0, i← 1
3: while q < W
4: if access(SI , i) = 1 then

5: return access(Sα, rank1(SI , i))
6: r ← rank0(SI , i)
7: f ← 2r
8: j ← bits(a, q, 1)
9: i← f + j; q ← q + 1

The code first checks if the actual node, encoded at index i
in xbwb(T ), is a leaf node. If it is, then rank1(SI , i) tells how
many leaves were found in the course of the BFS-traversal
before this one and then the corresponding label is returned
from Sα. If, on the other hand, the actual node is an inte-
rior node, then r tells how many interior nodes precede this
one and since, as one easily checks, in a level-ordered tree
traversal the children of the r-th interior node are encoded
from position 2r [28], f in fact gets the index of the first
child of the actual node. Next, we obtain the index j of the
child to be visited next from the address to be looked up,
we set the current index to f + j and then we carry on with
the recursion.

3.2 Memory Size Bounds
First, we show that XBW-b is a succinct FIB representa-

tion, in that it supports lookup in optimal O(W ) time and
encodes to information-theoretic lower bound.

Lemma 2. Given a proper, binary, leaf-labeled trie T with

n leaves on an alphabet of size δ, xbwb(T ) can be stored on

2n + n lg δ bits so that lookup on xbwb(T ) terminates in

O(W ) timeg.

Proof. One can encode SI on at most t ≈ 2n bits using
the RRR succinct bitstring index [42], which supports select
and rank in O(1). In addition, even the trivial encoding of
Sα needs only another n lg δ bits and provides access in O(1).
So every iteration of lookup takes constant time, which gives
the result.

Next, we show that XBW-b can take advantage of regular-
ity in leaf labels (if any) and encode below the information-
theoretic bound to zero-order entropy.

Lemma 3. Let T be a proper, binary, leaf-labeled trie with

n leaves on an alphabet of size O(polylog n), and let H0 de-

note the Shannon-entropy of the leaf-label distribution. Then,

xbwb(T ) can be stored on 2n+nH0+o(n) bits so that lookup

on xbwb(T ) terminates in O(W ) timeh.

Proof. SI can be encoded as above, and Sα can be stored
on nH0 + o(n) bits using generalized wavelet trees so that
access is O(1), under the assumption that the alphabet size
is O(polylog n) [19].

Interestingly, the above zero-order entropy bounds can
be easily upgraded to higher-order entropy. A fundamental
premise in data compression is that elements in a data set
often depend on their neighbors, and the larger the context
the better the prediction of the element from its context
and the more efficient the compressor. Higher-order string
gErratum: Claim updated according to the correct informa-
tion-theoretical lower-bound.
hErratum: Claim updated according to the correct entropy
bound.

compressors can use the Burrows-Wheeler transform to ex-
ploit this contextual dependency, a reversible permutation
that places symbols with similar context close to each other.
This argumentation readily generalizes to leaf-labeled tries;
simply, the context of a node corresponds to its level in the

tree and because XBW-b organizes nodes at the same level
(i.e., of similar context) next to each other, it realizes the
same effect for tries as the Burrows-Wheeler transform for
strings (hence the name). Deciding whether or not such con-
textual dependency is present in real IP FIBs is well beyond
the scope of this paper. Here, we only note that if it is, then
XBW-b can take advantage of this and compress an IP FIB
to higher-order entropy using the techniques in [17,43].

In summary, the XBW-b transform can be built fast, sup-
ports lookup in asymptotically optimal time, and compresses
to within entropy bounds. Updates, however, may be ex-
pensive. Even the underlying leaf-pushed trie takes O(n)
steps in the worst-case to update, after which we could ei-
ther rebuild the string indexes from scratch (again in O(n))
or use a dynamic compressed index that supports updates
to the compressed form efficiently. For instance, [34] imple-
ments insertion and deletion in roughly O(log n) time, at
the cost of slower rank and select. The other shortcoming of
XBW-b is that, even if it supports lookups in theoretically

optimal time, it is just too slow for line speed IP lookup
(see Section 5.3). In the next section, therefore, we discuss
a somewhat more practical FIB compression scheme.

4. PRACTICAL FIB COMPRESSION
The string indexes that underly XBW-b are pointerless,

encoding all information in compact bitmaps. This helps
squeezing XBW-b into higher-order entropy bounds but also
causes that we need to perform multiple rank and select
operations just to, say, enter a child of a node. And even
though these primitives run in O(1) the constants still add
up, building up delays too huge for line speed IP lookup. In
contrast, a traditional pointer machine, like a prefix tree, can
follow a child pointer in just a single indirection with only
one random memory access overhead. The next compressed
FIB data structure we introduce is, therefore, pointer-based.

The idea is to essentially re-invent the classic prefix tree,
borrowing the basic mechanisms from the Lempel-Ziv (LZ78)
string compression scheme [8]. LZ78 attains entropy by pars-
ing the text into unique sub-strings, yielding a form that
contains no repetitions. Tree threading is a generalization
of this technique to unlabeled trees, converting the tree into a
Directed Acyclic Graph (DAG) by merging isomorphic sub-
trees [27, 29, 47, 50]. In this paper, we apply this idea to
labeled trees, merging sub-tries taking into account both the
underlying tree structure and the labels [4, 7]. If the trie
is highly regular then this will eliminate all recurrent sub-
structures, producing a representation that contains no rep-
etitions and hence, so the argument goes, admits entropy
bounds like LZ78.

The below equivalence relation serves as the basis of our
trie-merging technique.

Definition 1. Two leaf-labeled tries are identical if each

of their sub-tries are pairwise identical, and two leaves are

identical if they hold the same label.

We call the algorithmic manifestation of this recursion
the trie-folding algorithm and the resultant representation a
prefix DAG. Fig. 3(a) depicts a sample prefix tree, Fig. 3(b)
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Figure 3: A binary trie for a sample FIB (a); the same trie when leaf-pushing is applied from level λ = 0 (b); the prefix DAG
for leaf-push barrier λ = 0 (c); the trie (d) and the prefix DAG (e) for λ = 1; and the prefix DAG for λ = 2 (f). Dashed lines
indicate the leaf-push barrier λ and the invalid label ⊥ was removed from the corresponding leaf nodes in the prefix DAGs.

shows the corresponding leaf-pushed trie, and Fig. 3(c) gives
the prefix DAG. For instance, the sub-tries that belong to
the prefix 0/1 and 11/2 are equivalent in the leaf-pushed
trie, and thusly merged into a single sub-trie that is now
available in the prefix DAG along two paths from the root.
This way, the prefix DAG is significantly smaller than the
original prefix tree as it contains only half the nodes.

For the trie-folding algorithm it is essential that the un-
derlying trie be normalized; for instance, in our example
it is easy to determine from the leaf-pushed trie that the
two sub-tries under the prefixes 00/2 and 10/2 are identical,
but this is impossible to know from the original prefix tree.
Thus, leaf-pushing is essential to realize good compression
but, at the same time, makes updates prohibitive [47].

To avoid this problem, we apply a simple optimization.
We separate the trie into two parts; “above” a certain level
λ, called the leaf-push barrier, where sub-tries are huge and
so common sub-tries are rare, we store the FIB as a stan-
dard binary prefix tree in which update is fast; and “below”
λ, where common sub-tries most probably turn up, we ap-
ply leaf-pushing to obtain good compression. Then, by a
cautious setting of the leaf-push barrier we simultaneously
realize fast updates and entropy-bounded storage size.

The prefix DAGs for λ = 1 and λ = 2 are depicted in
Fig. 3(e) and 3(f). The size is somewhat larger, but updat-
ing, say, the default route now only needs setting the root
label without having to cycle through each leaf.

4.1 Construction and IP lookup
We are given a binary trie T (not necessarily proper and

leaf-pushed) of depth W , labeled from an alphabet Σ of size
δ. Let VT (|VT | = t) be the set of nodes and LT (|LT | = n)
be the set of leaves. Without loss of generality, we assume
that T does not contain explicit blackhole routes. Then, the
trie-folding algorithm transforms T into a prefix DAG D(T ),
on nodes VD and leaves LD, with respect to the leaf-push
barrier λ ∈ [0,W ].

The algorithm is a simple variant of trie threading [29]:
assign a unique id to each sub-trie that occurs below level λ
and merge two tries if their ids are equal (as of Definition 1).
The algorithm actually works on a copy of T and always
keeps an intact instance of T available. This instance, called
the control FIB, can exist in the DRAM of the line card’s
control CPU, as it is only consulted to manage the FIB.
The prefix DAG itself is constructed in fast memory. We
also need two ancillary data structures, the leaf table and
the sub-trie index, which can also live in DRAM.

The leaf table will be used to coalesce leaves with identical
labels into a common leaf node. Accordingly, for each s ∈ Σ

the leaf table lp(s) stores a leaf node (no matter which one)
with that label. Furthermore, the sub-trie index S will be
used to identify and share common sub-tries. S is in fact a
reference counted associative array, addressed with pairs of
ids (i, j) ∈ N × N as keys and storing for each key a node
whose children are exactly the sub-tries identified by i and
j. S supports the following primitives:

• put(i, j, v): if a node with key (i, j) exists in S then
increase its reference count and return it, otherwise
generate a new id in v.id, store v at key (i, j) with
reference count 1, and return v; and

• get(i, j): dereference the entry with key (i, j) and
delete it if the reference count drops to zero.

In our code we used a hash to implement S , which sup-
ports the above primitives in amortized O(1) time.

Now, suppose we are given a node v to be subjected to trie-
folding and a leaf-push barrier λ. First, for each descendant
u of v at depth λ we normalize the sub-trie rooted at u
using label l(u) as a “default route”, and then we call the
compress routine to actually merge identical leaves and sub-
tries below u, starting from the bottom and working upwards
until we reach u. Consider the below pseudo-code for the
main trie_fold routine.

1: trie_fold (node v, integer λ)
2: for each λ-level child u of v do

3: if l(u) = ∅
4: then leaf push(u,⊥) else leaf push(u, l(u))
5: postorder-traverse-at-u(compress)

6: l(lp(⊥))← ∅

7: compress (node w)
8: if w ∈ LD then w.id = l(w); u← lp(w)
9: else u = put(w.left.id, w.right.id, w)
10: if u 6= w then re-pointer the parent of w to u; delete(w)

Here, w.left is the left child and w.right is the right child
for w, and w.id is the id of w. As trie_fold visits each node
at most twice and compress runs in O(1) if put is O(1), we
arrive to the following conclusion.

Lemma 4. Given a binary trie T on t nodes, D(T ) can

be constructed in O(t) time.

Lookup on a prefix DAG goes exactly the same way as on
a conventional prefix tree: follow the path traced out by the
successive bits of the lookup key and return the last label
found. We need to take care of a subtlety in handling invalid
labels, though. Namely, in our sample FIB of Fig. 3(a), the
address 000 is associated with label 1 (the default route),
which in the prefix DAG for λ = 1 (Fig. 3(e), derived from



the trie on Fig. 3(d)) would become ⊥ if we were to let leaf
nodes’ ⊥ labels override labels inherited from levels above
λ. This problem is easy to overcome, though, by removing
the label from the leaf lp(⊥). By our assumption the FIB
contains no explicit blackhole routes, thus every traversal
yielding the empty label on T terminates in lp(⊥) on D(T )
and, by the above modification, also gives an empty label.

That being said, the last line of the trie_fold algorithm
renders standard trie lookup correct on prefix DAGs. Since
this is precisely the lookup algorithm implemented in many
IP routers on the ASIC [15], we conclude that prefix DAGs
can serve as compressed drop-in replacements for trie-based
FIBs in many router products (similarly to e.g., [54]).

The following statement is now obvious.

Lemma 5. The lookup operation on D(T ) terminates in

O(W ) time.

In this regard, trie-folding can be seen as a generaliza-
tion of conventional FIB implementations: for λ = 32 we
get good old prefix trees, and for smaller settings of λ we
obtain increasingly smaller FIBs with exactly zero cost on

lookup efficiency. Correspondingly, there is no memory size
vs. lookup complexity “space-time” trade-off in trie-folding.

4.2 Memory Size Bounds
The tries that underlieXBW-b are proper and leaf-labeled,

and the nice structure makes it easy to reason about the
size thereof. Unfortunately, the tries that prefix DAGs de-
rive from are of arbitrary shape and so it is difficult to infer
space bounds in the same generic sense. We chose a dif-
ferent approach, therefore, in that we view trie-folding as a

generic string compression method and we compare the size

of the prefix DAG to that of an input string given to the
algorithm. The space bounds obtained this way transform
to prefix trees naturally, as trie entropy itself is also defined
in terms of string entropy (recall Proposition 2).

Instead of being given a trie, therefore, we are now given a
string S of length n on an alphabet of size δ and zero-order
entropyH0. Supposing that n equals some power of 2 (which
we do for the moment), say, n = 2W , we can think as if the
symbols in S were written to the leaves of a complete binary
tree of depthW as labels. Then, trie-folding will convert this
tree into a prefix DAG D(S), and we are curious as to how
the size of D(S) relates to the information-theoretic limit for
storing S, that is, n lg δ, and the zero order entropy nH0 (see
Fig. 4). Note that every FIB has such a “complete binary
trie” representation, and vice versa.

The memory model for storing the prefix DAG is as fol-
lows. Above the leaf-push barrier λ we use the usual trick
that the children of a node are arranged on consecutive mem-
ory locations [41], and so each node holds a single node
pointer of size to be determined later, plus a label index
of lg δ bits. At and below level λ nodes hold two pointers
but no label, plus we also need an additional δ lg δ bits to
store the coalesced leaves.

Now, we are in a position to state the first space bound. In
particular, we show that D(S) attains information-theoretic
lower bound up to some small constant factor, and so it is
a compact data structure. Our result improves the constant
term in the bound available in [44] from 5 to 4.

Theorem 1. Let S be a string of length n = 2W on an

alphabet of size δ and set the leaf-push barrier as

λ =
⌊ 1

ln 2
W (n ln δ)

⌋

, (2)

where W() denotes the Lambert W-function. Then, D(S)
can be encoded on at most 4 lg(δ)n+ o(n) bits.

Note that the LambertW-function (or product logarithm)

W(z) is defined as z = W(z)eW(z). The detailed proof,
based on a counting argument, is deferred to the Appendix.

Next, we show that trie-folding compresses to within a
constant factor of the zero-order entropy bound, subject to
some reasonable assumptions on the alphabet. Furthermore,
the constant term is improved from 7 as of [44] to 6.

Theorem 2. Let S be a string of length n and zero-order

entropy H0, and set the leaf-push barrier as

λ =
⌊ 1

ln 2
W(nH0 ln 2)

⌋

. (3)

Then, the expected size of D(S) is at most (6 + 2 lg 1
H0

+

2 lg lg δ)H0n+ o(n) bits.

Again, refer to the Appendix for the proof.
It turns out that the compression ratio depends on the

specifics of the alphabet. For reasonable δ, say, δ = O(1)
or δ = O(polylog n), the error lg lg δ is very small and the
bound gradually improves as H0 increases, to the point that
at maximum entropy H0 = lg δ we get precisely 6H0n. For
extremely small entropy, however, the error 2 lg 1

H0
can be-

come dominant as the overhead of the DAG outweighs the
size of the very string in such cases.

4.3 Update
What remained to be done is to set the leaf-push barrier λ

in order to properly balance between compression efficiency
and update complexity. Crucially, small storage can only be
attained if the leaf-push barrier is chosen according to (3).
Strikingly, we found that precisely this setting is the key to
fast FIB updates as well2.

Herein, we only specify the update operation that changes
an existing association for prefix a of prefix length p to the
new label s or, within the string model, rewrites an entire
block of symbols at the lowest level of the tree with a new
one. Adding a new entry or deleting an existing one can be
done in similar vein.

update (address a, integer p, label s, integer λ)
v ← D(T ).root; q ← 0
while q < p

if q ≥ λ then v ← decompress(v)
if bits(a, q, 1) = 0 then v ← v.left else v ← v.right
q ← q + 1

if p < λ then l(v)← s; return
w ← T.copy(v); re-pointer the parent of v to w; l(w)← s
postorder-traverse-at-v(u: get(u.left.id, u.right.id))
trie_fold(w, 0)
for each parent u of w: level(u) ≥ λ do compress(u)

decompress (node v)
w ← new node; w.id← v.id
if v ∈ LD then l(w)← l(v)

else w.left← v.left; w.right← v.right
get(v.left.id, v.right.id)

re-pointer the parent of v to w; return w

First, we walk down and decompress the DAG along the
path traced out by the successive bits of a until we reach
2Note that (3) transforms into (2) at maximum entropy.
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Figure 4: Trie-folding as string compression: a string (a), the complete binary trie (b), and the compressed DAG (c). The
third character of the string can be accessed by looking up the key 3− 1 = 0102.

level p. The decompress routine copies a node out from the
DAG and removes the reference wherever necessary. At this
point, if p < λ then we simply update the label and we are
ready. Otherwise, we replace the sub-trie below v with a
new copy of the corresponding sub-trie from T , taking care
of calling get on the descendants of v to remove dangling
references, and we set the label on the root w of the new
copy to s. Then, we re-compress the portions of the prefix
DAG affected by the change, by calling trie_fold on w and
then calling compress on all the nodes along the upstream
path from w towards to root.

Theorem 3. If the leaf-push barrier λ is set as (3), then
update on D(T ) terminates in O(W (1 + 1

H0
)) time.

Proof. If p < λ, then updating a single entry can be
done in O(W ) time. If, on the other hand, p ≥ λ, then
update visits at most W + 2W−λ ≤ W + W

H0
nodes, using

that λ ≥ W − lg( W
H0

) whenever λ is as (3).

In summary, under mild assumptions on the label distri-
bution a prefix DAG realizes the Shannon-entropy up to a
small factor and allows indexing arbitrary elements and up-
dates to any entry in roughly O(log n) time. As such, it is
in fact a dynamic, entropy-compressed string self-index. As
far as we are aware of, this is the first pointer machine of
this kind, as the rest of compressed string-indexes are point-
erless. Regrettably, both the space bound and the update
complexity weaken when the label distribution is extremely
biased, i.e., when H0 is very small. As we argue in the next
section though, this rarely causes problems in practice.

5. NUMERICAL EVALUATIONS
At this point, we have yet to demonstrate that the appeal-

ing theoretical properties of compressed FIBs indeed man-
ifest as practical benefits. For this reason, we conducted a
series of numerical evaluations with the goal to quantify the
compressibility of real IP FIBs and see how our compressors
farei. It was not our intention, however, to compare to other
FIB storage schemes from the literature, let alone evince
that ours is the fastest or the most efficient one. After all,
information-theoretic space bounds are purposed precisely
at making such comparisons unnecessary, serving as ana-
lytically justified ground truth. Instead, our motivation is
merely to demonstrate that FIB compression allows to re-
duce memory tax without any compromise on the efficiency
of longest prefix match or FIB updates.

For the evaluations, we coded up a full-fledged Linux pro-
totype, where FIB compression and update run in user space

iErratum: All results have been updated to the correct FIB
entropy bound and the revised XBW-b transform.

and IP lookup is performed by a custom kernel module em-
bedded in the kernel’s IP stack. The code executed on a sin-
gle core of a 2.50GHz Intel Core i5 CPU, with 2x32 Kbyte
L1 data cache, 256 Kbyte L2 cache, and 3 Mbyte L3 cache.

Research on IP FIB data structures has for a long time
been plagued by the unavailability of real data, especially
from the Internet core. Alas, we could obtain only 5 FIB
instances from real IP routers, each from the access: taz

and hbone are from a university access, access(d) is from
a default and access(v) from a virtual instance of a ser-
vice provider’s router, and mobile is from a mobile oper-
ator’s access (see Table 1). The first 3 are in the DFZ,
the rest contain default routes. Apart from these, however,
what is available publicly is RIB dumps from BGP collec-
tors, like RouteViews or looking glass servers (named as*

in the data set). Unfortunately, these only very crudely
model real FIBs, because collectors run the BGP best-path
selection algorithm on their peers and these adjacencies dif-
fer greatly from real next hops on production routers. We
experimented with heuristics to restore the original next-
hop information (e.g., set next-hop to the first AS-hop), but
the results were basically the same. Thus, these FIBs are
included in the data set only for reference. We also used
two randomly generated FIBs, one of 600,000 (fib_600k)
and another of 1 million prefixes (fib_1m), to future-proof
our results. These synthetic FIBs were generated by itera-
tive random prefix splitting and setting next-hops accord-
ing to a truncated Poisson-distribution with parameter 3

5
(H0 = 1.06, δ = 4).

5.1 Update Complexity
First, we set out to determine a good setting for the leaf-

push barrier λ. Recall that λ was introduced to balance
between the compression efficiency and update complexity
(also recall that no such compromise exists between com-
pression and lookup.). Our theoretical results provide the
essential pointers to set λ (see (2) and (3)), but these are
for compressing strings over complete binary trees. IP FIBs,
however, are not complete.

We exercised the memory footprint vs. update complex-
ity trade-off by varying λ between 0 and 32. The update
time was measured over two update sequences: a random
one with IP prefixes uniformly distributed on [0, 232 − 1]
and prefix lengths on [0, 32], and a BGP-inspired one corre-
sponding to a real BGP router log taken from RouteViews.
Here, we treated all BGP prefix announcements as gener-
ating a FIB update, with a next-hop selected randomly ac-
cording to the next-hop distribution of the FIB. The results
are mean values over 15 runs of 7, 500 updates, each run
roughly corresponding to 15 minutes worth of BGP churn.

Herein, we only show the results for the taz FIB instance
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Figure 6: Size and compression efficiency ν over FIBs with
Bernoulli distributed next-hops as the function of parameter
p.

in Fig. 5. The results suggest that standard prefix trees
(reproduced by the setting λ = 32), while pretty fast to
update, occupy a lot of space. Fully compressed DAGs (λ =
0), in contrast, consume an order of magnitude less space
but are expensive to modify. There is a domain, however,
at around 5 ≤ λ ≤ 12, where we win essentially all the
space reduction and still handle about 100, 000 updates per
second (that’s roughly two and a half hours of BGP update
load). What is more, the space-time trade-off only exists

for the synthetic, random update sequence, but not for BGP

updates. This is because BGP updates are heavily biased
towards longer prefixes (with a mean prefix length of 21.87),
which implies that the size of leaf-pushed sub-tries needed
to be re-packed per update is usually very small, and hence
update complexity is relatively insensitive to λ.

Based on these considerations, we set λ = 11 for the rest
of the evaluations.

5.2 Storage Size
Storage size results are given in Table 1. Notably, real

FIBs that contain only a few next-hops compress down to
about 60–150 Kbytes with XBW-b at 1–2 bit/prefix(!) ef-
ficiency, and only about 2–3 times more with trie-folding.
This is chiefly attributed to the small next-hop entropy, in-
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Figure 7: Size and compression efficiency ν over strings with
Bernoulli distributed symbols as the function of parameter
p.

dicating the presence of a dominant next-hop. Core FIBs,
on the other hand, exhibit considerably larger next-hop en-
tropy, with XBW-b transforms in the range of 100–300 and
prefix DAGs in 330–700 KBytes. Recall, however, that these
FIBs exhibit unrealistic next-hop distribution. Curiously,
even the extremely large FIB of 1 million prefixes shrinks
below 300 Kbytes (800 KBytes with trie-folding). In con-
trast, small instances compress poorly, as it is usual in data
compression. Finally, we observe that many FIBs show high

next-hop regularity (especially the real ones), reflected in
the fact that entropy bounds are 20–40% smaller than the
information-theoretic limit. XBW-b very closely matches

entropy bounds, with trie-folding off by only a small factor.
We also studied compression ratios on synthetic FIBs,

whose entropy was controlled by us. In particular, we re-
generated the next-hops in access(d) according to Bernoulli-
distribution: a first next-hop was set with probability p and
another with probability 1− p. Then, varying p in [0, 1

2
] we

observed the FIB entropy, the size of the prefix DAG, and
the compression efficiency ν, i.e., the factor between the two
(see Fig. 6). We found that the efficiency is around 3 and,
in line with our theoretical analysis, degrades as the next-

hop distribution becomes extremely biased. This, however,
never occurs in reality (see again Table 1). We repeated
the analysis in the string compression model: here, the FIB
was generated as a complete binary trie with a string of 217

symbols written on the leaves, again chosen by a Bernoulli
distribution, and this was then compressed with trie-folding
(see Fig. 7, with XBW-b omitted). The observations are
similar, with compression efficiency again varying around 3
and the spike at low entropy more prominentj.

5.3 Lookup Complexity
Finally, we tested IP lookup performance on real software

and hardware prototypes. Our software implementations
run inside the Linux kernel’s IP forwarding engine. For this,
we hijacked the kernel’s network stack to send IP lookup
requests to our custom kernel module, working from a se-
rialized blob generated by the FIB encoders. Our XBW-b

jErratum: Text updated to highlight that the compression
efficiency in terms of the updated entropy measure has in-
creased to 3 for FIBs as well as for string compression, which
is more in line with the theoretical bound.



Table 1: Results for XBW-b and trie-folding on access, core, and synthetic (syn.) FIBs: name, number of prefixes N and
next-hops δ; Shannon-entropy of the next-hop distribution H0; FIB information-theoretic limit I , entropy E, and XBW-b

and prefix DAG size (pDAG, λ = 11) in KBytes; compression efficiency ν; and bits/prefix efficiency for XBW-b (ηXBW-b) and
trie-folding (ηpDAG).

FIB N δ H0 I E XBW-b pDAG ν ηXBW-b ηpDAG

a
cc
es
s

taz 410,513 4 1.00 94 56 63 178 3.17 1.12 3.47
hbone 410,454 195 2.00 356 142 149 396 2.78 1.05 7.71
access(d) 444,513 28 1.06 206 90 100 370 4.1 1.12 6.65
access(v) 2,986 3 1.22 2.8 2.2 2.5 7.5 3.4 1.13 20.23
mobile 21,783 16 1.08 0.8 0.4 1.1 3.6 8.71 2.36 1.35

co
re

as1221 440,060 3 1.54 130 115 111 331 2.86 2.03 6.02
as4637 219,581 3 1.12 52 41 44 129 3.13 1.62 4.69
as6447 445,016 36 3.91 375 277 277 748 2.7 5 13.45
as6730 437,378 186 2.98 421 209 213 545 2.6 3.91 9.96

sy
n
.

fib_600k 600,000 5 1.06 257 157 179 462 2.93 1.14 6.16
fib_1m 1,000,000 5 1.06 427 261 297 782 2.99 1.14 6.26

Table 2: Lookup benchmark with XBW-b, prefix DAGs,
fib_trie, and the FPGA implementation on taz: size, av-
erage and maximum depth; and million lookup per second,
lookup time in CPU cycles, and cache misses per packet over
random IP addresses (rand.) and addresses taken from the
trace [24] (trace).

Linux HW
XBW-b pDAG fib_trie FPGA

size [Kbyte] 106 178 26,698 178
average depth – 3.7 2.42 –
maximum depth – 21 6 –

ra
n
d
. million lookup/sec 0.033 12.8 3.23 6.9

CPU cycle/lookup 73940 194 771 7.1
cache miss/packet 0.016 0.003 3.17 –

tr
a
ce

million lookup/sec 0.037 13,8 5.68 6.9
CPU cycle/lookup 67200 180 438 7.1
cache miss/packet 0.016 0.003 0.29 –

lookup engine uses a kernel port of the RRR bitstring in-
dex [42] and the Huffman-shaped WaveletTree [19] from
libcds [38]. Trie-folding was coded in pure C. We used the
standard trick to collapse the first λ = 11 levels of the prefix
DAGs in the serialized format [61], as this greatly eases im-
plementation and improves lookup time with practically zero
effect on updates. We also experimented with the Linux-
kernel’s stock fib_trie data structure, an adaptive level-
and path-compressed multibit trie-based FIB, as a reference
implementation [41]. Last, we also realized the prefix DAG
lookup algorithm in hardware, on a Xilinx Virtex-II Pro 50
FPGA with 4.5 MBytes of synchronous SRAM representing
the state-of-the-art almost 10 years ago. The hardware im-
plementation uses the same serialized prefix DAG format as
the software code. All tests were run on the taz instance.

For the software benchmarks we used the standard Linux
network micro-benchmark tool kbench [37], which calls the
FIB lookup function in a tight loop and measures the execu-
tion time with nanosecond precision. We modified kbench

to take IP addresses from a uniform distribution on [0, 232−
1] or, alternatively, from a packet trace in the “CAIDA
Anonymized Internet Traces 2012” data set [24]. The route
cache was disabled. We also measured the rate of CPU
cache misses by monitoring the cache-misses CPU perfor-
mance counter with the perf(1) tool. For the hardware
benchmark, we mirrored kbench functionality on the FPGA,
calling the lookup logic repeatedly on a list of IP addresses

statically stored in the SRAM and we measured the number
of clock ticks needed to terminate the test cycle.

The results are given in Table 2. On the software side,
the most important observations are as follows. The pre-
fix DAG, taking only about 180 KBytes of memory, is most
of the time accessed from the cache, while fib_trie occu-
pies an impressive 26 MBytes and so it does not fit into fast
memory. Thus, even though the number of memory accesses
needed to execute an IP lookup is smaller with fib_trie, as
most of these go to slower memory the prefix DAG supports
about three times as many lookups per second. Accordingly,
not just that FIB space reduction does not ruin lookup per-

formance, but it even improves it. In other words, there is
no space-time trade-off involved here. The address locality
in real IP traces helps fib_trie performance to a great ex-
tent, as fib_trie can keep lookup paths to popular prefixes
in cache. In contrast, the prefix DAG is pretty much insen-
sitive to the distribution of lookup keys. Finally, we see that
XBW-b is a distant third from the tested software lookup en-
gines, suggesting that the constant in the lookup complexity
is indeed prohibitive in practice and that our lookup code
exercises some pretty pathologic code path in libcds.

The real potential of trie-folding is most apparent with our
hardware implementation. The FPGA design executes a sin-
gle IP lookup in just 7.1 clock cycles on average, thanks to
that the prefix DAG fits nicely into the SRAM running syn-
chronously with the logic. This is enough to roughly 7 mil-
lion IP lookups per second even on our rather ancient FPGA
board. On a modern FPGA or ASIC, however, with clock
rates in the gigahertz range, our results indicate that prefix
DAGs could be scaled to hundreds of millions of lookups per
second at a terabit line speed.

We also measured packet throughput using the udpflood
macro-benchmark tool [37]. This tool injects UDP packets
into the kernel destined to a dummy network device, which
makes it possible to run benchmarks circumventing network
device drivers completely. The results were similar as above,
with prefix DAGs supporting consistently 2–3 times larger
throughput than fib_trie.

6. RELATED WORKS
In line with the unprecedented growth of the routed Inter-

net and the emerging scalability concerns thereof [26,30,62],
finding efficient FIB representations has been a heavily re-
searched question in the past and, judging from the substan-



tial body of recent work [22, 31, 54, 61], still does not seem
to have been solved completely.

Trie-based FIB schemes date back to the BSD kernel im-
plementation of Patricia trees [46]. This representation con-
sumes a massive 24 bytes per node, and a single IP lookup
might cost 32 random memory accesses. Storage space and
search time can be saved on by expanding nodes’ strides to
obtain a multibit trie [5], see e.g., controlled prefix expan-
sion [27,49], level- and path-compressed tries [41], Lulea [10],
Tree Bitmaps [13] and successors [1, 48], etc. Another ap-
proach is to shrink the routing table itself, by cleverly rela-
beling the tree to contain the minimum number of entries
(see ORTC and derivatives [12,54]). In our view, trie-folding
is complementary to these schemes, as it can be used in com-
bination with basically any trie-based FIB representation,
realizing varying extents of storage space reduction.

Further FIB representations include hash-based schemes
[1, 56], dynamic pipelining [23], CAMs [35], Bloom-filters
[11], binary search trees and search algorithms [21,61], mas-
sively parallelized lookup engines [22, 61], FIB caching [31],
and different combinations of these (see the text book [60]).
None of these come with information-theoretic space bounds.
Although next-hop entropy itself appears in [54], but no an-
alytical evaluation ensued. In contrary, XBW-b and trie-
folding come with theoretically proven space limits, and thus
predicable memory footprint. The latest reported FIB size
bounds for >400K prefixes range from 780 KBytes (DXR,
[61]) to 1.2 Mbytes (SMALTA, [54]). XBW-b improves this
to just 100–300 Kbytes, which easily fits into today’s SRAMs
or can be realized right in chip logic with modern FPGAs.

Compressed data structures have been in the forefront
of theoretical computer science research [9, 18, 19, 25, 34, 38,
39, 42, 63], ever since Jacobson in his seminal work [28] de-
fined succinct encodings of trees that support navigational
queries in optimal time within information-theoretically lim-
ited space. Jacobson’s bitmap-based techniques later found
important use in FIB aggregation [1, 13, 48]. With the ex-
tensive use of bitmaps, XBW-b can be seen as a radical
rethinking of these schemes, inspired by the state-of-the-art
in succinct and compressed data structures.

The basic idea of folding a labeled tree into a DAG is
not particularly new; in fact, this is the basis of many tree
compacting schemes [29], space-efficient ordered binary de-
cision diagrams and deterministic acyclic finite state au-
tomata [4], common subexpression elimination in optimizing
compilers [7], and it has also been used in FIB aggrega-
tion [27, 47, 50] earlier. Perhaps the closest to trie-folding
is Shape graphs [47], where common sub-trees, without re-
gard to the labels, are merged into a DAG. However, this
necessitates storing a giant hash for the next-hops, making
updates expensive especially considering that the underly-
ing trie is leaf-pushed. Trie-folding, in contrast, takes labels
into account when merging and also allows cheap updates.

7. CONCLUSIONS
With the rapid growth of the Web, social networks, mobile

computing, data centers, and the Internet routing ecosystem
as a whole, the networking field is in a sore need of com-
pact and efficient data representations. Today’s networking
practice, however, still relies on ad-hoc and piecemeal data
structures for basically all storage sensitive and processing
intensive applications, of which the case of IP FIBs is just
one salient example.

Our main goal in this paper was to advocate compressed
data structures to the networking community, pointing out
that space reduction does not necessarily hurt performance.
Just the contrary: the smaller the space the more data can
be squeezed into fast memory, leading to faster processing.
This lack of space-time trade-off is already exploited to a
great extent in information retrieval systems, business an-
alytics, computational biology, and computational geome-
try, and we believe that it is just too appealing not to be
embraced in networking as well. This paper is intended
as a first step in that direction, demonstrating the basic
information-theoretic and algorithmic techniques needed to
attain entropy bounds, on the simple but relevant example
of IP FIBs. Our techniques could then prove instructive in
designing compressed data structures for other large-scale
data-intensive networking applications, like OpenFlow and
MPLS label tables, Ethernet self learning MAC tables, BGP
RIBs, access rules, log files, or peer-to-peer paths [33].

Accordingly, this paper can in no way be complete. For in-
stance, we deliberately omitted IPv6 for brevity, even though
storage burden for IPv6 is getting just as pressing as for
IPv4 [48]. We see no reasons why our techniques could not
be adapted to IPv6, but exploring this area in depth is for
further study. Multibit prefix DAGs also offer an intriguing
future research direction, for their potential to reduce stor-
age space as well as improving lookup time from O(W ) to
O(logW ). On a more theoretical front, FIB entropy lends
itself as a new tool in compact routing research, the study
of the fundamental scalability of routing algorithms. We
need to see why IP FIBs contain vast redundancy, track
down its origins and eliminate it, to enforce zero-order en-
tropy bounds right at the level of the routing architecture.
To what extent this argumentation can then be extended to
higher-order entropy is, for the moment, unclear at best.
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Z. Heszberger. Compressing IP forwarding tables: Towards
entropy bounds and beyond. ACM SIGCOMM, 2013.

[45] J. Rossignac. Edgebreaker: Connectivity compression for
triangle meshes. IEEE Trans. Visual Comput. Graphics,
5:47–61, 1999.

[46] K. Sklower. A tree-based packet routing table for Berkeley
UNIX. Technical Report, Berkeley, 1991.

[47] H. Song, M. S. Kodialam, F. Hao, and T. V. Lakshman.
Scalable IP lookups using Shape Graphs. In IEEE ICNP,
pages 73–82, 2009.

[48] H. Song, J. Turner, and J. Lockwood. Shape shifting tries
for faster IP route lookup. In IEEE ICNP, pages 358–367,
2005.

[49] V. Srinivasan and G. Varghese. Faster IP lookups using
controlled prefix expansion. SIGMETRICS Perform. Eval.
Rev., 26(1):1–10, 1998.

[50] S. Stergiou and J. Jain. Optimizing routing tables on
systems-on-chip with content-addressable memories. In
System-on-Chip, pages 1–6, 2008.

[51] H. Sun, O. Ozturk, and H. Ferhatosmanoglu. CoMRI: a
compressed multi-resolution index structure for sequence
similarity queries. In IEEE CSB, pages 553–, 2003.

[52] R. Teixeira, K. Marzullo, S. Savage, and G. M. Voelker. In
search of path diversity in ISP networks. In ACM IMC,
pages 313–318, 2003.

[53] P. M. Tolani and J. R. Haritsa. XGRIND: a query-friendly
XML compressor. In ICDE, pages 225–234, 2002.

[54] Z. A. Uzmi, M. Nebel, A. Tariq, S. Jawad, R. Chen,
A. Shaikh, J. Wang, and P. Francis. SMALTA: practical
and near-optimal FIB aggregation. In ACM CoNEXT,
pages 1–12, 2011.

[55] S. Vigna and P. Boldi. MG4J: Managing Gigabytes for
Java. http://mg4j.dsi.unimi.it, 2007.

[56] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner.

http://www.ezchip.com/Images/pdf/NP-4_Short_Brief_online.pdf
http://www.caida.org/data/passive
http://bgp.potaroo.net/
http://code.google.com/p/lucenetransform
https://kernel.googlesource.com/pub/scm/linux/kernel/git/davem/net_test_tools
http://libcds.recoded.cl
http://mg4j.dsi.unimi.it


Scalable high speed IP routing lookups. In ACM
SIGCOMM, pages 25–36, 1997.

[57] WebGraph. A framework for graph compression.
http://webgraph.di.unimi.it .

[58] I. H. Witten, A. Moffat, and T. C. Bell. Managing
Gigabytes: Compressing and Indexing Documents and
Images. Morgan Kaufmann, 1999.

[59] J. Woods. PPP Deflate Protocol. RFC 1979, 1996.
[60] W. Wu. Packet Forwarding Technologies. Auerbach, 2008.
[61] M. Zec, L. Rizzo, and M. Mikuc. DXR: towards a billion

routing lookups per second in software. SIGCOMM
Comput. Commun. Rev., 42(5):29–36, 2012.

[62] X. Zhao, D. J. Pacella, and J. Schiller. Routing scalability:
an operator’s view. IEEE JSAC, 28(8):1262–1270, 2010.

[63] N. Ziviani, E. S. de Moura, G. Navarro, and R. Baeza-Yates.

Compression: A key for next-generation text retrieval systems.

IEEE Computer, 33(11):37–44, 2000.

Appendix
Proof of Theorem 1. As D(S) is derived from a com-

plete binary tree the number of nodes V j
D of D(S) at level j

is at most |V j
D| ≤ 2j , and each node at level j corresponds to

a 2W−j long substring of S so |V j
D| ≤ δ2

W−j

. Let κ denote

the intersection of the two bounds 2κ = δ2
W−κ

, which gives:

κ2κ = 2W log2(δ) = n log2(δ) . (4)

Set the leaf push barrier at λ = ⌊κ⌋ = ⌊ 1
ln 2

W (n ln δ)⌋ where
W() denotes the Lambert W -function. The left side of Fig.
8 is an illustration of the shape of DAG. Above level λ we
have

λ
∑

j=0

|V j
D| =

λ
∑

j=0

2j = 2λ+1 − 1 ≤ 2 · 2κ

nodes; at level λ + 1 we have 2κ nodes at maximum; at

λ+2 there are |V λ+2
D | ≤ δ2

W−λ−2 ≤
√
2κ nodes; and finally

below level λ+ 3 we have an additional
√
2κ nodes at most

as levels shrink as |V j+1
D | ≤

√

|V j
D| downwards in D(S).

Finally, setting the pointer size at ⌈κ⌉ bits and summing up
the above yields that the size of D(S) is at most

(

2 + 2

(

1 +
2√
2κ

))

⌈κ⌉2κ + (2 · 2κ + δ) log2 δ

= 4n log2(δ) + o(n)

bits, using the fact that ⌈κ⌉2κ = n log2(δ)+ o(n) by (4) and
the number of labels stored in the DAG is at most 2 · 2κ
above the leaf-push barrier and further δ below it.

Proof of Theorem 2. Let E(|V j
D|) denote the expected

number of nodes at level j of the DAG. We shall use the fol-
lowing bounds on E(|V j

D|) to prove the claim:

E(|V j
D|) ≤ min

{

2j ,
H0

j
2W + 3, δ2

W−j
}

. (5)

Here, the first and the last bounds are from the proof
of Theorem 1, while the second one is obtained below by
treating the problem as a coupon collector’s problem on the
sub-tries of D(T ) at level j. Suppose that we are given
a set of coupons C, each coupon representing a string of
length 2W−j on the alphabet Σ of size δ and entropy H0,
and we draw a coupon o with probability po : o ∈ C. Let
HC =

∑

o∈C po log2
1
po

= H02
W−j , let V denote the set of

coupons after m = 2j draws, and suppose m ≥ 3.

level 0

level W

ζ
κ

ξ

E(|V j
D|) ≤ 2j

E(|V j
D|) ≤

H0
j
2W + 3

E(|V j
D|) ≤ δ2

W−j

head

body

tail

Figure 8: The shape of the DAG as divided into three parts
with bounds on the expected number of nodes at each level.

Lemma 6. E (|V |) ≤ m
log2(m)

HC + 3.

Using this Lemma, we have that the expected number
of nodes at the j-th level of D(S) is at most E(|V j

D|) ≤
2j

log2(2
j)
H02

W−j + 3 = H0
j
n + 3 = H0

j
2W + 3, which coin-

cides with the second bound in (5). Note that here 2j is an

increasing function of j, while both H02
W /j + 3 and δ2

W−j

are monotone decreasing functions.
Using these bounds, we divide the DAG into three parts

(the “head”, “body”, and “tail”) as illustrated at the right
side of Fig. 8. Let ξ denote the intersection of the first two
upper bounds, let ζ be that of the latter two and let κ be the

level where 2j and δ2
W−j

meet. It is easy too see, that the
relation between these three values can only be ξ ≤ κ ≤ ζ
or ξ ≥ κ ≥ ζ. We discuss these two cases separately.
Case 1: ξ ≤ κ ≤ ζ.

The three parts of the DAG are as follows (again, see the
right side of Fig. 8):

head for levels 0, . . . , ⌊ξ⌋;
body for levels ⌊ξ⌋+ 1, . . . , ⌈ζ⌉ − 1;

tail for levels ⌈ζ⌉, . . . ,W .

In the following, we give upper bounds on the expected
number of the nodes in the head, the tail, and the body of
the DAG. Set the leaf-push barrier at λ = ⌊ξ⌋.

First, the expected number of nodes in the head is

⌊ξ⌋
∑

j=0

E(|V j
D|) ≤

⌊ξ⌋
∑

j=0

2j = 2⌊ξ⌋+1 − 1

< 2 · 2ξ = 2

(

H0

ξ
2W + 3

)

= 2M (6)

where M =
(

H0
ξ
2W + 3

)

.

Second, for the size of the tail we have

W
∑

j=⌈ζ⌉

E(|V j
D|) ≤

W
∑

j=⌈ζ⌉

δ2
W−j

=

W−⌈ζ⌉
∑

j=1

δ2
j

= δ2
W−⌈ζ⌉

+

W−⌈ζ⌉−1
∑

j=1

δ2
j

< δ2
W−ζ

+

2W−⌈ζ⌉−1
∑

i=1

δi

= δ2
W−ζ

+ δ2
W−⌈ζ⌉−1+1 − 2 < δ2

W−ζ

+ δ
√

δ2W−ζ
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= δ2
W−ζ

(

1 +
δ√

δ2W−ζ

)

=

(

H0

ζ
2W + 3

)

(1 + ǫ1)

<

(

H0

ξ
2W + 3

)

(1 + ǫ1) = M(1 + ǫ1) , (7)

where

ǫ1 =
δ√

δ2W−ζ
≤ δ
√

δ
W−log2 W/H0

log2 δ

=
δ
√

W/H0

2W/2
,

which tends to zero if W goes to infinity.
Third, for the number of nodes in the body we write

⌈ζ⌉−1
∑

j=⌊ξ⌋+1

E(|V j
D|) ≤

⌈ζ⌉−1
∑

j=⌊ξ⌋+1

(

H0

j
2W + 3

)

<

<

⌈ζ⌉−1
∑

j=⌊ξ⌋+1

(

H0

ξ
2W + 3

)

= (⌈ζ⌉ − 1− ⌊ξ⌋)M

≤ (ζ − (ξ − 1))M = (1 + ζ − ξ)M .

Lemma 7. The following bounds on ξ, ζ, and κ apply:

ξ ≥ W − log2 W/H0 , (8)

ζ ≤ W − log2 (W − log2 W/H0) + log2 log2(δ) , (9)

κ ≤ W − log2 (W − log2 W ) + log2 log2 δ . (10)

Using (8) and (9) for the body we write

⌈ζ⌉−1
∑

j=⌊ξ⌋+1

E(|V j
D|) ≤ (1 + ζ − ξ)M

≤



1 + log2

(

W

H0

)

− log2





W − log2

(

W
H0

)

log2(δ)







M

= (1 + log log2(δ)− log2 H0 + ǫ2)M, (11)

where

ǫ2 = log2
W

W − log2

(

W
H0

) −−−−→
W→∞

0 .

Choose the pointer size to ⌈κ⌉ bits, using that the DAG

contains at most 2⌈κ⌉ nodes at its broadest level. For the
head we need one pointer for each node, while for the rest
we need two. Summing up with (7), (6), and (11) we get
the following bound on the number of pointers:

(2 + 2(1 + ǫ) + 2 (1− log2 H0 + log log2(δ) + ǫ2))M

=

(

6 + 2 log2
log2 δ

H0
+ 2 (ǫ1 + ǫ2)

)

M .

We have to store labels above the barrier and at the bot-
tom level, which is at most 2M+ δ labels, hence the average
number of the bits is at most
(

6 + 2 log2
log2 δ

H0
+ 2 (ǫ1 + ǫ2)

)

M⌈κ⌉ + (2M + δ) log2 δ .

Using (8) for ξ and (10) for κ we have

M⌈κ⌉ = ⌈κ⌉
(

H0

ξ
2W + 3

)

≤ κ+ 1

ξ
H0n+ 3⌈κ⌉

≤
(

W − log2
W−log2 W

log2 δ
+ 1

W − log2 W/H0

)

H0n+ 3⌈κ⌉ =

=

(

1 +
log2 W/H0 − log2

W−log2 W

log2 δ
+ 1

W − log2
W/H0

)

H0n+ 3⌈κ⌉

= H0n+ o(n) .

In summary, for the expected size of the DAG we get (6−
2 log2 H0+2 log log2(δ))H0n+o(n) bits, since (2M + δ) log2 δ =
o(n).
Case 2: ζ ≤ κ ≤ ξ

In this case the DAG contains only the head and tail parts.
According to Theorem 1 we get the upper bound 5n log2 δ+
o(n) on the number of bits. As κ ≤ ξ, we have

n log2 δ

κ
= 2κ ≤ H0

κ
n+ 3 .

So the upper bound on the number of required bits is 5n log2 δ+
o(n) ≤ 5H0n+o(n) < (6+2 log (log2(δ)/H0))H0n+o(n).

Proof of Lemma 6. The probability of having coupon o
in V is Pr(o ∈ V ) = 1− (1−po)

m and so the expected cardi-
nality of V is E(|V |) =∑o∈C(1−(1−po)

m). The right-hand

side of the statement of the Lemma is m
log2(m)

∑

o∈C po log2
1
po

+

3. The claim holds if ∀o ∈ C:

po <
1

e
⇒ 1− (1− po)

m ≤ m

log2(m)
po log2

1

po
. (12)

First, assume m ≥ 1
po

. As the right hand size is a monotone

increasing function of m when e ≤ 1
po

≤ m:

1−(1−po)
m ≤ 1 =

1/po

log2(1/po)
po log2

1

po
≤

m

log2(m)
po log2

1

po
.

Otherwise, if m < 1
po

then let x = log 1
po

m. Note that

0 < x < 1. After substituting m = 1
pxo

we have

1− (1− po)
1
pxo ≤

1
pxo

log2

(

1
pxo

)po log2

(

1

po

)

=

=

1
pxo

x log2

(

1
po

) po log2

(

1

po

)

=

1
pxo

x
po =

1

xpx−1
o

.

which can be reordered as

(1− po)
1
pxo ≥ 1− 1

xpx−1
o

.

Taking the px−1
o > 0 power of both sides we get

(1− po)
1
po ≥

(

1− 1

xpx−1
o

)px−1
o

.

Using that x < 1 and so 1
x
> 1, we see that the above holds

if

(1− po)
1
po ≥

(

1− 1

px−1
o

)px−1
o

.

Note that (1− po)
1
po is monotone decreasing function, thus

the inequality holds if po ≤ 1

px−1
o

, but this is true because

pxo ≤ 1. This proves (12) under the assumption po < 1
e
.

Note also that there are at most 3 > 1
e
coupons for which

(12) cannot be applied.

Proof of Lemma 7. To prove (8), for level l = W −
log2 W/H0 we have

2l = 2W−log2 W/H0 ≤ 2W−log2 W/H0 = 2W
H0

W
<

H0

l
2W + 3 .



For (9), at level l = W − log2

(

W−log2 W/H0
log2 δ

)

we have

δ2
W−l

= δ

W−log2

(

W
H0

)

log2(δ) = δ

log2

(

H0
W

2W
)

log2(δ)

=
H0

W
2W <

H0

l
2W + 3 .

Finally, for (10) at level l = W−log2

(

W−log2 W
log2 δ

)

we write

δ2
W−l

= δ
W−log2 W

log2 δ = 2W−log2 W ≤ 2l .

This completes the proof.


	1 Introduction
	1.1 FIB Compression
	1.2 Our Contributions
	1.3 Structure of the Paper

	2 Prefix Trees and Space Bounds
	2.1 Information-theoretic Limit
	2.2 Entropy Bounds

	3 Attaining Entropy Bounds
	3.1 Construction and IP lookup
	3.2 Memory Size Bounds

	4 Practical FIB Compression
	4.1 Construction and IP lookup
	4.2 Memory Size Bounds
	4.3 Update

	5 Numerical Evaluations
	5.1 Update Complexity
	5.2 Storage Size
	5.3 Lookup Complexity

	6 Related Works
	7 Conclusions
	8 References

