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Abstract—IP Fast ReRoute (IPFRR) is the IETF standard for
providing fast failure protection in IP and MPLS/LDP networks
and Loop Free Alternates (LFA) is a basic specification for
implementing it. Even though LFA is simple and unobtrusive, it
has a significant drawback: it does not guarantee protection for
all possible failure cases. Consequently, many IPFRR proposals
have appeared lately, promising full failure coverage at the price
of added complexity and non-trivial modifications to IP hardware
and software. Meanwhile, LFA remains the only commercially
available, and therefore, the only deployable IPFRR solution.
Deployment, however, crucially depends on the extent to which
LFA can protect failures in operational networks. In this paper,
therefore, we revisit LFA in order to give theoretical insights and
practical hints to LFA failure coverage analysis. First, we identify
the topological properties a network must possess to profit from
good failure coverage. Then, we study how coverage varies as new
links are added to a network, we show how to do this optimally
and, through extensive simulations, we arrive to the conclusion
that cleverly adding just a couple of new links can improve the
quality of LFA protection drastically.

Index Terms—IP protection, IP Fast ReRoute, Loop Free
Alternates

I. INTRODUCTION

Transporting delay and loss sensitive traffic in the Internet
has become an important requirement in the last few years.
At the moment, the IP protocol suite is not yet amenable to
fully support multimedia streams due to various reasons, one
of which is slow response to failures. Recovery with current
Interior Gateway Protocols (IGPs) is in the order of hundreds
of milliseconds [1], typically beyond what is tolerable to a
multimedia stream. Similar is the case of MPLS networks that
rely on LDP for label exchange, as LDP is dependent on the
IGP for routing. Therefore, the IETF defined a framework,
called IP Fast ReRoute (IPFRR [2]), for native IP protection
in order to reduce failure reaction time to tens of milliseconds
in an intra-domain, unicast setting.

IPFRR is based on two principles: local rerouting and
precomputed detours. Local rerouting means that only routers
directly adjacent to a failure are notified of it, which elim-
inates one of the most time-consuming steps of IGP-based
restoration: global flooding of failure information. Addition-
ally, IPFRR mechanisms are proactive in that detours are
computed, and installed in the forwarding engine, long before
any failure occurs. Thus, when a failure eventually shows
up, routers are able to switch to an alternate path instantly.
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Once alternate next-hops are active, traffic flows undisrupted
bypassing the failed component, letting the IGP to converge
in the background.

A basic specification for IPFRR is Loop-Free Alternates
(LFA, [3]). When connectivity to some next-hop is lost, all
traffic that would have used the unreachable next-hop is passed
on to an alternate next-hop, called a Loop Free Alternate, that
still has a path to the destination that is unaffected by the
failure. LFA is simple, it can be realized with straightforward
modifications to current IGPs, and deployment is easy thanks
to the fact that it does not require support from other routers.
On the other hand, LFAs not always protect both link and
node failures at the same time and may also lead to temporary
loops when multiple simultaneous failures show up. But the
major problem is that often not all routers have LFAs to all
other routers, which means that certain failure scenarios are
impossible repair rapidly.

Unfortunately, complete IP-level local protection is difficult
due to IP’s destination-based forwarding paradigm. As only
adjacent routers are aware of a failure, remote routers do not
know whether an arriving packet is traveling on its shortest
path or it is already on a detour and so exceptional forwarding
should be applied. Without being able to differentiate between
these two cases, local IP protection can never attain 100%
failure coverage1. Most IPFRR proposals, therefore, either
change IP’s destination-based forwarding [4]–[6] or introduce
some forms of signaling to indicate that a packet is on a detour.
Some call for out-of-band failure signaling [7], others use
invaluable extra bits in the IP header [8], [9] or add special
information to it for in-band signaling [10], and still others
propose to mark detours by tunneling [11]–[13]. While modern
routers can handle tunneled packets at wire speed, tunneling
needs additional address management [13], [14] and, if the
additional IP header does not fit into the MTU, can cause
packet fragmentation and time-consuming reassembly at the
tunnel endpoint. It seems, therefore, that the price for IP-
level local protection, capable to handle all possible failure
cases, is considerable added complexity and management
burden, modifications to the essential IP infrastructure, and
the breaking of the incremental deployment path.

It is, therefore, no wonder that today LFA is the only
standardized and readily available IPFRR technology. At least
two major router vendors are offering LFA-based IPFRR

1One can easily prove this claim formally, taking the example of a ring.



support out of the box [15], [16], and other vendors are
expected to follow suit. Consequently, operators in need for
improving network resilience are now facing the question
whether to deploy LFA, and this decision depends crucially on
the extent to which LFA can protect failures in the particular
topology. This paper aims to assist making this decision.

Even though thorough, simulation-based reports are avail-
able [17]–[21], a deep understanding of how certain network
characteristics affect LFA failure coverage is still missing.
Thus, in the first part of the paper we study the graph
topological ingredients needed for good LFA protection. In
this regard, this paper is a sequel to [22], where the authors
study to what extent IP’s destination-based forwarding permits
protection routing, and [23] presenting a similar study for the
O2 scheme. As we find that LFA failure coverage strongly
depends on the topology as well as on the link costs, we study
the effects of both separately.

Existing proposals modify standard IP forwarding in some
way to achieve full protection. Why not choose the other
way around? That is, instead of bending IP to provide full
protection in all networks, paying huge price in complexity
and deployability, why not bend the network topology itself
so that even LFA can guarantee full protection? We study
this question in the second part of the paper. We show real
networks where by adding just two or three new links full LFA
protection can be attained. This might be an acceptable price
for an operator to take the easy deployment path. In some
cases, however, our analysis reveals that full LFA protection
can only be achieved at the cost of a substantial topology
redesign, which is a clear indication to choose alternative
protection schemes [24]. At the least, such an analysis can
be instructive in the next regular network upgrade cycle.

The rest of the paper is organized as follows. Section II
gives an overview of LFA and provides a useful mathematical
model. Section III is devoted to graph theoretical LFA failure
coverage analysis, and Section IV discusses the LFA graph
extension problem. Then, numerical results are described in
Section V and finally, Section VI concludes the paper.

II. LOOP FREE ALTERNATES

Perhaps the easiest way to demonstrate LFA is through an
example. Consider the network depicted in Fig. 1 and suppose
that router d wishes to send a packet to router f . The next-
hop of d along the shortest path towards f is c. If, however,
link (d, c) fails, then d needs to find an alternative neighbor
to pass on the packet to. It cannot send the packet to, say,
b, as b’s shortest path to f goes through itself, so b would
send the packet back causing a loop (remember that in IPFRR,
routers not immediately adjacent to a failure do not get notified
of it). Instead, it needs to find a neighbor that is closer to
the destination than the length of the route from the neighbor
through itself. This relation can be expressed as follows:

dist(n, d) < dist(n, s) + dist(s, d) , (1)

where s is the actual source node, d is the node the packet is
destined to, n is a neighbor of s other than the failed next-hop
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Figure 1: A sample weighted network topology.

and dist(x, y) denotes the length of the shortest x→ y path.
A neighbor fulfilling (1) is called a link-protecting Loop Free
Alternate (LFA). For instance, a is a link-protecting LFA for
node d towards node f as dist(a, f) < dist(a, d)+dist(d, f).

Many alternative LFA types exist. For instance, g is also an
LFA for d towards f , but it also protects against the failure of
node c, so it is a node-protecting LFA. It is also a downstream
neighbor, as it is closer to f than d, as well as a per-link LFA
for the link (d, c) as it protects all the nodes reachable by d
through (d, c). For a full taxonomy, see [3], [20], [21].

A. Model

We model the network topology by a simple, undirected
weighted graph G(V,E) with V being the set of nodes and E
the set of edges. Let n = |V | and m = |E|, and denote
the complement of the edge set with E. Let the cost of
edge (i, j) be c(i, j). For simplicity, we assume that (i) edges
are bidirectional and point-to-point; (ii) costs are symmetric;
and (iii) each node has a well-defined next-hop towards each
destination. This means that if multiple shortest paths are
available to a destination, then one is chosen arbitrarily.

Being by far the most common in operational networks
(accounting for about 70% of unplanned outages [25]), we
shall limit our attention to single link failures exclusively. As
simple link-protecting LFAs safeguard against just this type of
failures and they contain all the other LFA types as special
cases, we do not treat those henceforth. Consequently, we
shall usually assume that the graph describing the network is
2-edge-connected, which is the minimum topological require-
ment for being able to repair every possible link failure.

B. Theoretical framework

Definition 1: Consider an undirected, weighted graph
G(V,E). For each d ∈ V , define a relation (≺d) on V as
follows: let u ≺d v if at least one shortest path from v to d
goes through u. Let u �d v if either u ≺d v or u = v. Finally,
put u ≺�d v if u is not ordered with respect to v by (�d).

In Fig. 1, for instance, d �f b but d �b b, and a ≺�f d.
The relation (�d) defines a partial order on V , since it is

reflexive, transitive and antisymmetric. The partially ordered
set (V,�d) is called the d-poset. Each d-poset has exactly
one lower bound: d. We say that some u ∈ V is an ancestor
(descendant) of some v ∈ V in the d-poset if u ≺d v (u �d v,
respectively). Additionally, a parent (child) is a neighboring
ancestor (descendant). By assumption, if a node has multiple
parents, then one is assigned as next-hop arbitrarily.



Using this model, we redefine (1) as follows:
Definition 2: For some s ∈ V and d ∈ V , a neighbor n ∈ V

of s that is not the next-hop is a link-protecting LFA (simply
LFA, henceforth) if s �d n.

Simply put, n is an LFA if no shortest path from n to d
passes through s. Hence, no loop will arise if a packet destined
to d is handed by s to n instead of its primary next-hop. Note
that the condition s �d n means that either s ≺�d n or s �d n.

From the above discussion, it is clear that in general
networks not all nodes have LFA protection to every other
node [17]–[21]. To measure the LFA failure coverage η(G) in
a weighted graph G, we adopt the simple metric from [3]:

η(G) =
#LFA protected (s, d) pairs

#all (s, d) pairs

III. LFA FAILURE COVERAGE: A THEORETICAL ANALYSIS

Next, we give a graph-theoretical characterization of LFA
failure coverage, as measured by η(G). First, we identify
worst-case graphs G with minimal η(G). Then we seek the
opposite extreme: graphs with perfect LFA coverage (i.e.,
η(G) = 1). Since both the topological properties of the
underlying network and the actual edge costs have profound
and intricate effect on the efficiency of LFA, it is worth
examining their impact separately. Thus, we first study full
LFA failure coverage under the assumption that costs are
uniform, and then we endue our graphs with costs and see
how our results generalize to the weighted case (if at all).

A. Worst case graphs

It has been observed previously that the quintessential
worst-case graphs for IPFRR are rings, i.e., cycle graphs in
which all nodes are of degree 2 [6], [26]. The reason is the
bad interplay between destination-based forwarding and the
small path diversity in rings. It is not surprising, therefore,
that we find the even ring to have the smallest LFA coverage
out of all 2-connected graphs with the same number of nodes.

Theorem 1: The LFA failure coverage of a 2-connected
graph G on n nodes is bounded by 1

n−1 ≤ η(G) ≤ 1 and
the lower bound is tight for rings with even number of nodes
and uniform edge costs.

Proof: Consider a ring G(V,E) with n = |V | > 2 and
even, let costs be uniform and choose some d ∈ V . Now, there
are n−2 nodes having exactly one parent and one child in the
d-poset. Since a node cannot get LFA from its children or its
next-hop, these n− 2 nodes do not have LFA. The remaining
node (at the opposite side of d in the ring) has two parents, one
of them is the next-hop and the other provides an LFA. Hence,
for each d ∈ V there is only one node with LFA towards d,
which yields η(G) = n

n(n−1) =
1

n−1 .
To prove that this is a lower bound, we use the fact that in

a 2-connected graph each d ∈ V is contained in at least one
cycle. Take the smallest cycle containing d. Note that this cycle
has no chords. One can use the above reasoning to show that,
over arbitrary edge costs, at least one node has LFA towards
d in this cycle, and from this the result follows.

Rings are important in telecommunications, and the above
theorem suggests that they are very badly suited for LFA.
Besides, the theorem also suggests that graphs without short
cycles are problematic for LFA. For instance, fault-tolerant
networks are often connected in hypercube topologies, 2D and
3D meshes (each consisting of 4-cycles), or 2D and 3D torus
topologies (consisting of longer cycles), and these cannot have
perfect LFA coverage either.

B. Perfect LFA coverage: uniform edge costs

Next, we turn to the characterization of networks with
perfect LFA coverage. Herein, we concentrate on the uniform
cost case, when shortest path routing boils down to min-hop
routing.

Observation 1: Consider an undirected graph G with uni-
form edge costs. Now, η(G) = 1, if and only if each node has
an LFA towards each of its neighbors.

Easily, if all neighbors are protected, then all nodes in the
graph are protected as well since these are reached through the
neighbors. The other way around: if η(G) = 1 then, evidently,
all neighbors must be protected.

Previously, we argued that graphs with long cycles are
problematic for LFA. The next result makes this claim explicit.

Theorem 2: Consider an undirected, simple graph G(V,E)
with uniform costs. Now, η(G) = 1, if and only if each edge
is contained in at least one triangle (cycle of length 3).

Proof: First, we show that if all (u, v) ∈ E are contained
in a triangle, then η(G) = 1. Let some triangle containing
(u, v) be u− v−w. One easily sees that u �v w, as it is the
direct path through edge (w, v) that is the shortest (min-hop)
path from w to v, and w → u→ v is strictly longer than that.
Thus, w is an LFA for u towards v protecting edge (u, v), and
the claim then follows from Observation 1.

To see the reverse direction, we prove that if η(G) = 1, then
every edge is contained in a triangle. If η(G) = 1, then for
each (u, v) ∈ E node u has an LFA towards v. Let this be w.
Easily, (u,w) ∈ E. We only need to show that (w, v) ∈ E as
well to have a triangle. Indirectly, if (w, v) /∈ E, then u �v w,
which contradicts the assumption that w is an LFA.

Theorem 2 implies that complete graphs, chordal graphs and
maximal planar graphs have full LFA coverage in the uniform
cost case.

C. Perfect LFA coverage: weighted graphs

Next, we extend our analysis to weighted graphs. Call an
edge (u, v) a forwarding edge, if the next-hop from u to v is
exactly v. In other words, a forwarding edge is an edge that
connects a node to a neighbor that is a next-hop towards some
destinations. Below is a generalization of Observation 1.

Observation 2: Consider an undirected, weighted graph G.
Now, η(G) = 1, if and only if for each forwarding edge (u, v),
u has an LFA to v.

This observation basically says that we have full LFA
protection if and only if all next-hops remain reachable after a
link failure. The difference from Observation 1 is that we need
to protect forwarding edges only, as in a weighted graph not
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Figure 2: A weighted graph with full LFA coverage.

all edges are actually used to forward traffic. Unfortunately,
Theorem 2 does not extend so naturally to the weighted case.

Theorem 3: Consider an undirected, weighted simple graph
G(V,E). Now, η(G) = 1, if each forwarding edge (i, j) is
contained in a triangle i−j−k for which the triangle inequality
holds with strict inequality:

dist(i, j) < dist(i, k) + dist(k, j) (2)

dist(i, k) < dist(i, j) + dist(j, k) (3)

dist(k, j) < dist(k, i) + dist(i, j) (4)

Proof: Eq. (4) basically states that i �j k, so k is an LFA
from i to j. Then, the result follows from Observation 2.

The theorem suggests that densely connected networks that
use geographical distances as costs are particularly well-suited
for LFA. Many fixed wireless networks fall into this category.

Note that the condition is only sufficient, but not necessary.
As one easily checks, the graph in Fig. 2 has full LFA
coverage, even though the forwarding edge (a, b) is contained
in no triangle at all.

IV. LFA GRAPH EXTENSION

The conditions for full LFA coverage turn out to be some-
what restrictive, suggesting that only special topologies admit
full protection. Indeed, practical studies show that in common
networks LFA coverage is usually in the order of 50-90% [17]–
[21]. In this section, we seek ways to improve this situation.

There are essentially three approaches to increasing LFA
coverage: changing link costs, changing the topology, or doing
both. We study the first option in [27], while this paper is
dedicated to the second approach. In particular, we ask how to
extend the network with new links (e.g., by leasing additional
capacity, provisioning new virtual links, or deploying new
fibers) to improve LFA coverage, and we shall recur to
manipulating costs only if improvement cannot be achieved
otherwise. The reason is that in many operational networks
edge costs are deliberately optimized, for the purposes of load-
balancing, reducing delay and improving resiliency [28], or
to obviate equal-cost paths in order to eliminate packet re-
ordering, unwanted packet fragmentation [29], etc. Modifying
costs would destroy carefully engineered shortest paths and
this would make deploying LFA less attractive to operators.

As before, we again study the impacts of the graph topology
and edge costs separately.

A. LFA graph extension: uniform link costs

In this section, we ask how to add edges to a graph to
achieve full LFA coverage, provided that both the edges
originally existing in the graph and the edges we add have

the same cost. Obviously, we want to do this with the fewest
new edges possible. Consider the problem statement:

Definition 3: LFA graph extension problem in the uni-
form cost case (minLFAu): Given a simple, undirected graph
G(V,E) with uniform edge costs c on all edges and an integer
l, is there a set F ⊆ E with |F | ≤ l and ∀(u, v) ∈ F :
c(u, v) = c so that η(G(V,E ∪ F )) = 1?

Note that adding uniform cost edges to a uniform cost graph
necessarily changes the shortest paths between some of the
nodes. This is because at least the nodes connected by the
new edge will use it to reach each other, instead of whatever
shortest path they had before. Hence, the requirement that
shortest paths be invariant to LFA graph extension cannot be
met when solving minLFAu.

Theorem 4: The LFA graph extension problem in the uni-
form cost case (minLFAu) is NP-complete.

For a complete proof, the reader is referred to the Appendix.
The transformation is from the minimal set cover problem
(SP5, [30]), which is known to be NP-complete.

Next, we turn to discuss the algorithmic aspects of LFA
graph extension. First, we give an Integer Linear Program
(ILP) with O(n3) binary variables for obtaining an exact
solution. Due to its complexity, the ILP is expected to work
in small networks only. Therefore, we also give a greedy
approximation suitable for larger topologies.

Consider a graph G(V,E) with uniform costs. Then, the
task is to compute the minimal set of edges F ⊆ E so that
η(G(V,E ∪ F )) = 1. By Theorem 2, this can be achieved by
ensuring that each edge is contained in a triangle. We introduce(
n
2

)
binary variables xij : (i, j) ∈ E ∪ E to indicate whether

the edge (i, j) is to be added to the graph. We set xij = 1 for
each edge already in G. Additionally, we introduce another
(n − 2)

(
n
2

)
binary variables yikj , whose role will be clear

immediately. Consider the ILP:

min
∑

(i,j)∈E∪E

xij (5)

yikj ≤ 1
2 (xik + xkj) ∀(i, j) ∈ E ∪ E, ∀k ∈ V \ {i, j}(6)

xij ≤
∑

k∈V \{i,j}
yikj ∀(i, j) ∈ E ∪ E (7)

xij = 1 ∀(i, j) ∈ E (8)

xij , yikj ∈ {0, 1} ∀(i, j) ∈ E ∪ E, ∀k ∈ V \ {i, j}(9)

According to the constraint (6), yikj can only take the value
1, if both edges (i, k) and (k, j) are to be contained in the
extended graph. Then, (7) expresses that we want each edge
to be contained in at least one triangle. This is because (7)
requires that for each (i, j) ∈ E ∪ E with xij = 1 there
be at least one k ∈ V with yikj = 1, i.e., both edges (i, k)
and (k, j) be in the graph making up a triangle with (i, j).
Finally, the objective says that we want this to be achieved with
the minimum number of edges. After obtaining an optimal
solution x∗ to (5)–(9), we add the edges (i, j) ∈ E : x∗

ij = 1
to G to attain perfect LFA coverage.

The above ILP has O(n3) binary variables, so solving it to
optimality might not always be an option. Therefore, next we



present a greedy heuristics (inspired by [31]) which, in contrast
to the ILP, runs in polynomial time. The greedy algorithm is
as simple as it can get: in every iteration we add the edge that
increases LFA coverage the most.

Algorithm 1 Greedy LFA graph extension for graph G(V,E)

1: while η(G(V,E)) < 1
2: (u, v)← argmax

(i,j)∈E

η(G(V,E ∪ {(i, j)}))
3: E ← E ∪ {(i, j)}
4: end while

Theorem 5: Given a graph G(V,E) with uniform costs as
input, Alg. 1 terminates with full LFA coverage.

Proof: Alg. 1 certainly terminates when all complement
edges are added to the graph. Since uniform cost complete
graphs have perfect LFA coverage, the statement follows.

The algorithm needs a procedure to compute η(G). This
can be done in O(n3) using the Floyd-Warshall algorithm to
compute the dist(·) function and another O(n3) for checking
(1) for each node tuple (s, d, n). The procedure is called |E|
times in every iteration and at most |E| iterations are run,
which puts the complexity of Alg. 1 to O(n3(n2 −m)2).

B. LFA graph extension: weighted graphs

In contrast to uniform cost graphs, where we could not solve
the LFA graph extension problem without changing some
shortest paths, in weighted graphs we can. If an edge with
sufficiently large cost is added to the graph, then shortest paths
remain intact while LFA coverage may improve. Here, and in
the rest of this paper, “sufficiently large” will generally mean
“larger than the length of the longest shortest path”.

Definition 4: LFA graph extension problem in the weighted
case (minLFAw): Given a simple, undirected, weighted graph
G(V,E) and an integer l, is there a set F ⊆ E with |F | ≤ l
and properly chosen costs, so that η(G(V,E ∪ F )) = 1 and
the shortest paths in G(V,E) coincide with the shortest paths
in G(V,E ∪ F )?

In minLFAw, the task is to add edges as well as to choose
their cost to attain full LFA coverage, with touching no
shortest paths at all. Unfortunately, this latter requirement
cannot always be met. Intuitively speaking, if under the actual
choice of the edge costs some node d has the property that
all traffic destined to d enters via a single edge, say, (n, d),
then that edge can never be protected by an LFA: to whatever
alternate node n tried to send traffic in case of the failure of
(n, d), that traffic would eventually arrive back to n causing
a loop. The following theorem makes this idea explicit:

Theorem 6: Let G(V,E) be a simple, weighted graph. Now,
there is some integer l so that the LFA graph extension
problem in the weighted case (minLFAw) is solvable in G
for l, if and only if each d ∈ V has at least two children in
the d-poset that are not ordered with respect to each other.

Proof: First, we show that if each d ∈ V has at least two
children, say, n1, n2: n1 ≺�d n2, then minLFAw is solvable. We
give a trivial LFA graph extension. By the assumption: �u so

that for each v ∈ V \{d} : u �d v. Thus, for each u ∈ V \{d},
there is another node v = d so that either u ≺�d v or u �d v.
In the first case, if (u, v) ∈ E then v is already an LFA from
u to d. If not, add (u, v) to E with sufficiently large cost.
The latter case means that u has an ancestor v. Now, there
are three cases. Either (i) (u, d) ∈ E in which case add (u, d)
with sufficiently large cost; (ii) (u, d) ∈ E but u is not a child
of d, then u already has an LFA to d through edge (u, d);
or (iii) (u, d) ∈ E and u is a child of d. In this case, u has
at least two parents in the d-poset: d and the parent on the
shortest path to the ancestor v which is guaranteed to exist by
the assumption u �d v. The parent that is not the next-hop
then provides an LFA. Since adding high cost edges does not
alter shortest paths, we can repeat the above process for each
d ∈ V independently to eventually obtain full LFA coverage.

Second, we show that if the condition does not hold then
at least one node cannot have an LFA. Suppose that for some
d ∈ V all children of d in the d-poset are ordered with respect
to each other. Then, there is a “minimal” child n : ∀v ∈
V \{d, n} : n �d v. This precisely means that no node fulfills
the LFA criterion, so neither n has an LFA in G nor G can
be extended with new edges so that is has.

Next, we characterize the complexity of minLFAw. In what
follows, we suppose that the network satisfies the requirements
of Theorem 6, so the existence of a solution is guaranteed.

Theorem 7: The LFA graph extension problem for the
weighted case (minLFAw) is NP-complete.

Consult the Appendix for the full proof.
It seems that LFA graph extension is difficult, both in the

uniform cost case and the weighted case. Thus, we again
present two algorithms, an exact solution for small networks
and an approximation for larger topologies. However, before
turning to the algorithms themselves, we need to make sure
that the problem is solvable in the first place.

Theorem 6 suggests that some networks cannot be extended
for perfect LFA coverage without altering the costs. However,
this opens the door for a wide selection of strategies, based on
whether the operator prefers the invariance of shortest paths or
the invariance of the topology. Some strategies would change
edge costs but would not add new edges, other strategies would
do both in order to minimize the number of shortest paths
altered. Discussing all these strategies goes well beyond the
scope of this paper. Below, we present a simplistic solution,
which changes at most one shortest path and adds at most one
edge per each node that violates Theorem 6.

Let D ⊆ V be the set of nodes not satisfying Theorem 6. In
addition, let leaf(d) denote the leaf nodes on the shortest-path
tree rooted at d: leaf(d) = {v : �u ∈ V so that u �d v}.
Finally, choose some ε < min(i,j)∈E c(i, j).

The idea is to choose some non-transit node v for each
destination node d violating Theorem 6 and make it a child of
d. This amounts to adding an edge (v, d) if no such edge
existed before and setting its cost to ensure that v is not
ordered with respect to any other child of d in the d-poset.
Obviously, this will bring d to terms with Theorem 6.

Theorem 8: Alg. 2 adds at most |D| edges to the graph and



Algorithm 2 Pre-process graph G(V,E) for minLFAw

1: for d ∈ D
2: choose some v ∈ leaf(d)
3: if (v, d) ∈ E then E ← E ∪ {(v, d)}
4: c(v, d)← dist(v, d)− ε
5: recompute D
6: end for

changes at most |D| shortest paths.
Proof: Let G′ denote the graph obtained by executing

Alg. 2 on some graph G. The first claim is straight forward.
To prove the second one, we show that only the shortest path
from the new child v to d changes for each d ∈ D. Suppose
some other shortest path, say, from u to w, changed as well.
Obviously, this path must contain (v, d). Since v ∈ leaf(d),
w = d. Let n be the next-hop from d to w in G ′. Now, (v, d)
must be contained in the shortest path from v to n as well. Note
that n is a child of d. Because v �d n (otherwise, d would
not be in D), dist(v, d) = dist(v, n) + dist(n, d). From this,
we write dist(v, d) + dist(d, n) > dist(v, n). Due to the way
we selected ε, this remains true in G′ as well: dist′(v, d) +
dist′(d, n) > dist′(v, n), which contradicts the assumption
that the shortest path from v to n in G′ goes through d.

Next, we discuss algorithms to solve minLFAw. First, we
give an ILP to obtain an exact solution. Let (sk, dk) : k =
1, . . . ,K be the set of source-destination pairs (sk, dk) with
the property that sk does not have an LFA to dk. Additionally,
let (ui, vi) : i = 1, . . . , L be the set of edges in the
complement edge set E and let δik be an indicator whose
value is 1 if edge (ui, vi), when added with sufficiently large
cost to the graph, would provide an LFA for (sk, dk), and zero
otherwise. Note that δik is well-defined and it is invariant to
the operation of adding high cost edges to the graph. Introduce
a binary variable xi for each i = 1, . . . , L indicating whether
edge (ui, vi) is to be added to the graph. Consider the ILP:

min

L∑

i=1

xi (10)

L∑

i=1

δikxi ≥ 1 k = 1, . . . ,K (11)

xi ∈ {0, 1} i = 1, . . . , L (12)

Constraint (11) requires that the edges added to the graph
provide LFA for each unprotected source-destination pair, and
the objective (10) expresses that we want to achieve this with
the fewest edges possible. Readers proficient in combinatorial
optimization will recognize the minimal set cover problem
in the ILP (10)–(12). Indeed, the ILP requires to find a set
of edges that “covers” all the source-destination pairs in that
they provide an LFA. As we used the exact same problem to
prove the NP-completeness of minLFAw (see the Appendix),
we arrive to the interesting conclusion that weighted LFA
graph extension is precisely equivalent to the minimal set cover
problem.

The ILP has O(n2 −m) binary variables, which makes it
intractable in larger topologies, calling for an approximation.
We observe that Alg. 1 readily generalizes to the weighted
case. The only modification is that before examining whether
a particular edge, when added to the graph, would improve
LFA coverage, we must take care of setting its cost sufficiently
large. Observing that in every graph conforming to Theorem 6
an edge improving LFA coverage can always be found (see
the trivial LFA graph extension in the proof) leads us to a
simple generalization of Theorem 5 to the weighted case.

Corollary 1: Given a weighted graph satisfying Theorem 6,
the approximate minLFAw algorithm terminates with full LFA
coverage.

V. NUMERICAL STUDIES

First, we examine how many edges one must add to a
network to achieve full LFA coverage. For conducting the nu-
merical evaluations, we chose topologies that represent a broad
selection of today’s transport networks. We used inferred ISP
data maps from the Rocketfuel dataset [32] (AS1221, AS1239,
AS1755, AS3257, AS3967 and AS6461). We obtained ap-
proximate POP-level maps by collapsing the topologies so
that nodes correspond to cities and we eliminated leaf-nodes.
These networks come with inferred link costs. We also chose
some network topologies from [33], namely, the Abilene, Italy,
Germany, NSF and AT&T networks and the 50 node extended
German backbone, (Germ_50). Unfortunately, except for the
last network no valid link costs were available, so we set each
cost to 1. Note that solving minLFAu and minLFAw yields
different results even for uniform costs graphs, as shortest
paths are allowed to change in the first case but must remain
intact in the latter.

The details are in Table I. Our first conclusion is that,
in line with what is reported in the literature [17]–[21],
LFA failure coverage in real networks is usually far from
being complete. Most results are in the range 75-85%, rarely
reaching 95% and never attaining 100%. Curiously, however,
we found many cases when full protection could be attained
by adding only a few new links. For smaller topologies,
only some 1-6 additional links are needed, while in larger
and sparser networks we need significantly more links. For
instance, we would have to add about one fourth of the
number of links originally existing in the German backbone
(Germ_50). Additionally, initial LFA coverage tends to be
smaller in uniform cost graphs, while more links are needed
for full coverage in weighted graphs. Finally, we observe that
the greedy algorithm performs quite close to the optimum.
This result is expected: LFA graph extension is nothing more
than a minimal set cover problem under the hood, and the
greedy algorithm has been reported earlier to perform well
for this particular problem [31].

Next, we study how robust these results are against the
changing of costs. For this, we generated 100 graph instances
for each topology, where costs were taken randomly from the
range [1, 100] according to a uniform distribution, and we
executed the greedy algorithm on the resultant networks. The



Table I: LFA graph extension results: topology name, number of nodes (n) and edges (m); initial coverage (η 0), ILP size,
number of added edges (“ext”) by the optimal and the greedy (“Gr.”) algorithms, and number of link costs changed and edges
added in the preprocessing phase (“Pre. c/e”) for the uniform cost and the weighted case with real and random costs.

Uniform cost Weighted Weighted random
Topology ILP Gr. Pre. ILP Gr. Pre. Gr.

Name n m η0 ILP size ext ext η0 c/e ILP size ext ext c/e ext
AS1221 7 9 0.833 135 x 126 1 1 0.833 1/1 7 x 11 2 2 1.13 ± 0.18/0.72 ± 0.15 2.85 ± 0.2
AS1239 30 69 0.898 12684 x 12615 6 6 0.877 0/0 107 x 366 6 7 2.68 ± 0.26/1.84 ± 0.22 10.6 ± 0.43
AS1755 18 33 0.889 2634 x 2601 4 4 0.886 0/0 35 x 120 8 8 1.32 ± 0.2/0.92 ± 0.16 7.55 ± 0.3
AS3257 27 64 0.946 9190 x 9126 2 3 0.903 7/7 68 x 280 10 11 4.62 ± 0.42/3.24 ± 0.39 7.69 ± 0.46
AS3967 21 36 0.864 4236 x 4200 7 7 0.743 0/0 108 x 174 9 11 1.53 ± 0.25/1.03 ± 0.19 10.3 ± 0.33
AS6461 17 37 0.919 2213 x 2176 2 2 0.882 3/2 32 x 97 4 4 1.98 ± 0.25/1.18 ± 0.18 4.6 ± 0.3
Abilene 12 15 0.56 767 x 726 6 6 0.56 1/1 44 x 50 7 8 1.35 ± 0.1/1.26 ± 0.18 8.19 ± 0.17
Italy 33 56 0.784 17116 x 16896 12 13 0.784 0/0 228 x 472 17 20 1.82 ± 0.27/1.14 ± 0.2 17.4 ± 0.42
Germany 17 25 0.695 2257 x 2176 5 5 0.695 0/0 83 x 111 9 12 0.6 ± 0.16/0.36 ± 0.11 10.7 ± 0.28
NSF 26 43 0.86 8275 x 8125 9 10 0.86 0/0 91 x 282 11 12 1.24 ± 0.2/0.88 ± 0.17 12.6 ± 0.34
AT&T 22 38 0.823 5023 x 4851 5 6 0.823 0/0 82 x 193 10 13 2.21 ± 0.25/1.57 ± 0.21 10.2 ± 0.35
Germ_50 50 88 0.801 60362 x 60025 21 22 0.92 0/0 194 x 1137 18 21 1.52 ± 0.2/1.28 ± 0.2 26.1 ± 0.49
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Figure 3: LFA coverage in subsequent iterations of the greedy
algorithm in graphs with random costs.

results are given in the last columns of Table I. In addition,
the procession of the greedy algorithm is highlighted in Fig. 3.
Results displayed are the mean values and the confidence
intervals near 95% significance. The results indicate that (i)
the preprocessing phase is necessary, but in most of the cases
it only touches at most 1-3 shortest paths and adds about 1-
2 links; (ii) some topologies readily lend themselves to LFA
extension (in particular, AS1221 and AS6461); (iii) the first
iteration attains a significant 5-12% improvement in the LFA
coverage, while subsequent iterations gradually attain less; and
(iv) the greedy algorithm usually realizes about 95% LFA
failure coverage by adding no more than 2-4 new links.

VI. CONCLUSIONS

At the moment, Loop Free Alternates seems the best choice
for providing fast protection in pure IP and MPLS/LDP
networks. Enabling LFA is a matter of issuing just a handful of
configuration commands on modern routers, and this prompted
many operators to seriously consider deployment. In this
paper, we attempt to help making this decision.

As far as we know, this is the first time that a thorough
graph theoretical analysis for LFA failure coverage is given.

We showed worst case graphs for LFA and we gave conditions
for full coverage, characterizing numerous important network
topologies. As many real-world networks do not have 100%
LFA coverage, we formulated the LFA graph extension prob-
lem to augment graphs with new links for higher coverage.
This problem proved NP-hard, but efficiently approximable
in practice. Our numerical results suggest that there are some
cases when only a minor topology upgrade is enough for 100%
LFA coverage, but in most cases significantly more new links
are needed. On the other hand, we found that only 2-4 links can
bring most networks close to full coverage, and this might be
an acceptable price to many operators for being able to benefit
from cheap IP-level protection by deploying LFA. For the rest,
alternative protection schemes might be more attractive [24].
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APPENDIX

Definition 5 (SP5, [30]): Minimal set cover problem
(minSC): Given a bipartite graph G ′(A∪B,C) and a positive
integer k, is there a set of nodes Bc ⊆ B with |Bc| ≤ k,
such that every node in A has a neighbor in B c?

We make the following trivial assumptions: (i) each node
a ∈ A is connected to at least two nodes in B (otherwise
covering a is trivial); (ii) |B| ≥ 3; and (iii) |A| ≥ 2.

Proof of Theorem 4: Instead of solving minLFAu di-
rectly, we use Theorem 2. Consider the definition:

Definition 6: Minimal triangular problem (minTR): Given
a graph G(V,E) and a positive integer l, is it possible to add
at most l edges to G so that every edge is contained in a
triangle?

Easily, minTR is solvable for l if and only if minLFAu
is also solvable for l. Hence, proving that minTR is NP-
complete will yield the required result. MinTR is in NP, since
a nondeterministic algorithm needs to guess the set of edges
F with |F | ≤ l and a polynomial time algorithm can verify
if every edge is part of a triangle. To prove that minTR is
indeed NP-hard, we (Karp-)reduce it to minSC: given a minSC
instance with a bipartite graph G′(A∪B,C) and an integer k,
our task is to define an input graph G(V,E) for minTR that
is solvable with at most k edges, if and only if the minSC
instance is solvable with at most k nodes.

Construct G(V,E) as follows: let V = A1 ∪A2 ∪B ∪ {s},
|V | = 2|A| + |B| + 1. Denote the nodes in V by a1

i ∈ A1,
a2i ∈ A2, bj ∈ B and s, respectively, where i = 1, . . . , |A| and
j = 1, . . . , |B|. Additionally, let E = E1 ∪ E2 ∪ E3 where:
E1: (a1i , bj) and (a2i , bj) if (ai, bj) ∈ C,
E2: (s, a1i ) and (s, a2i ) for i = 1, . . . , |A|,
E3: (bj , bl) for all j = 1, . . . , |B|, l = 1, . . . , |B| and j = l.

A minSC instance and its transformation are given in Fig. 4.
We say that an edge is protected if it is part of a triangle,

unprotected otherwise. We make the following observations:
edges in E1 are protected because of assumption (i), similarly
edges in E3 are also protected because of (ii), while edges in
E2 are all unprotected. The idea is that in order to protect all
edges in E2 we need to add (s, bj) : bj ∈ B edges, called
cover edges henceforth. Each such (s, bj) cover edge, when
added, protects the (s, a1

i ), (s, a
2
i ) ∈ E2 edges for all ai ∈ A

nodes adjacent to bj in G′. Thus, we get a minimal cover of
G′ exactly when all edges in E2 become protected.

To conclude the proof we need to show that (a) if G ′ can be
covered with k nodes from B, then we can identify k edges to
be added to G so that every edge becomes protected; and (b) if
k edges are added to G so that every edge becomes protected,
then we can identify a k node subset of B that covers every
node in A.

(a) Let Bc ⊆ B be a cover in G′ with |Bc| ≤ k. Add edges
(s, bl) : ∀bl ∈ Bc to E. Then, since Bc is adjacent to every
node in A1 and A2 (due to it being a cover), every edge in E2

becomes protected. This is because, the edges (s, ax
i ) ∈ E2,

(axi , bl) ∈ E1 and (s, bl) make up a triangle; where ax
i is

adjacent to bl and x = 1, 2.
(b) Suppose that there is a set of cover edges F ′ such that

F ′ = (s, bj) : bj ∈ B′ ⊆ B and B′ is adjacent to every node in
A1 and A2. Then, by the above reasoning, F ′ can be converted
to a set cover. Let F ∈ E be a set of edges which, when added
to G, protect all edges. First, we add all cover edges of F to
F ′. Now, suppose that some edges in F are not cover edges.
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Figure 5: The converted graph topology and link costs. Fig. (a) depicts the graph and Fig. (b), (c) and (d) give the shortest
paths and distances with different choices of the destination d.

F does not contain edges of the form (b i, bj) : bi, bj ∈ B
and (s, axi ) : a

x
i ∈ A1 ∪ A2, since these all exist in E. Edges

(axi , bj) : a
x
i ∈ A1 ∪ A2, bj ∈ B can be dropped from F , as

these do not protect any unprotected edge. What remains are
edges of the type (ax

i , a
z
j ) : a

x
i , a

z
j ∈ A1∪A2. Call these cross

edges. Furthermore, call a node ax
i ∈ A1 ∪ A2 protected if

the edge (s, axi ) is protected. We shall convert cross edges to
cover edges before adding to F ′. Clearly, we need to consider
only those cross edges where both a1

i ∈ A1 and a2i ∈ A2 are
protected by a cross edge, otherwise a cover edge in F ′ already
covers both a1i and a2i . Let A′

1 ⊆ A1 and the “opposite nodes”
A′

2 ⊆ A2 be the set of these nodes. Since one cross edge can
protect at most two nodes, there are at least |A′

1| cross edges
protecting A′

1 and A′
2, and these are trivially substituted by

exactly |A′
1| cover edges: for each a1

i ∈ A′
1 choose a neighbor

bj ∈ B and add the cover edge (s, bj) to F ′. This will protect
a2i ∈ A′

2 too. Finally, all nodes B ′ are adjacent to every node
in A1 and A2, which completes the proof.

Proof of Theorem 7: minLFAw is in NP, since it was
formulated as an ILP in Section IV-B. To prove that it is NP-
hard, we again reduce it to minSC (see Definition 5): given
a minSC instance with a bipartite graph G′(A ∪ B,C) and
an integer k, our task is to define an input graph G(V,E) for
minLFAw, so that minLFAw is solvable by adding at most k
edges if and only if minSC is solvable with at most k nodes.

Let us construct G(V,E) as follows: V = A∪B ∪{s} and
E = E1 ∪ E2 ∪E3 ∪ E4 where

E1: (s, ai) with cost 1 for each i = 1, . . . , |A|,
E2: (ai, bj) with cost 2 for each (ai, bj) ∈ C,
E3: (bj , bl) with cost 3 for all j = 1, . . . , |B|, l = 1, . . . , |B|

and j = l,
E4: (ai, aj) with cost 4 for all i = 1, . . . , |A|, j = 1, . . . , |A|

and i = j.

Fig. 5a shows the converted graph for the same minSC
instance we used in the previous proof (see Fig. 4a).

The idea here is that we embed G′ into G and, by carefully
choosing the edge costs, we ensure that achieving perfect LFA
coverage in G precisely solves the minSC instance on G ′.
More formally, we show that some B c ⊆ B is a cover, if and
only if η(G, V ∪F ) = 1 for some set of edges F : {(s, b) : b ∈

Bc} of sufficiently large cost. We discuss the LFA coverage
for different destinations separately.

1. d = s: As one easily checks in Fig. 5b, each node has
an LFA towards destination s. Nodes in A provide LFA for
each other as they are not ordered in the d-poset and |A| ≥ 2
by assumption (iii). Using (ii), one easily shows that nodes in
B also provide LFA for each other.

2. d ∈ A: All nodes in A \ {d} have an LFA towards d,
since they are not ordered in the d-poset and |A| ≥ 2 due to
(iii) (see Fig. 5c). Similarly, each b ∈ B has an LFA from
some other node in B. This leaves us with the single node
s that does not have an LFA to d. This is because all of its
neighbors are in A, but d is its next-hop so it can not be used
as an LFA and all other nodes in A are its children. Nodes
not connected to d can not provide an LFA to s either, since
these are all its descendants. What remains are the neighbors
of d. So, we have to add an edge (s, bj) for some (d, bj) ∈ C
with sufficiently large cost to protect edge (s, d).

3. d ∈ B: First, each b ∈ B is protected due to (ii).
Second, each a ∈ A that is a neighbor of d is protected by
some neighbor b ∈ B \ {d}. Such neighbor exists due to (i).
Similarly, each a ∈ A that is not a neighbor of d is protected
by some neighbor b ∈ B \ {d}, which again exists due to (i).
Again, node s remains without an LFA to d. However, at this
point there already is at least one edge (s, bj) : bj ∈ B that
we added previously to have an LFA from s to some a ∈ A.
This will serve as an LFA for s to d in this case too. Note
that it is guaranteed by (iii) that at least one such (s, bj) edge
must have been added, and it is enough to have just a single
edge from s to B to have an LFA for each d ∈ B.

In summary, in order to have an LFA from s to all nodes
in A, we need to add edges from s to some nodes B c ⊆ B.
Observe that Bc is adjacent to every node in A, otherwise, we
do not have LFA available from s to some of the nodes in A.
So Bc is a cover exactly when we have perfect LFA coverage,
which completes the proof.


