
Customizable real-time service graph mapping
algorithm in carrier grade networks

Balázs Németh, János Czentye, Gábor Vaszkun, Levente Csikor, Balázs Sonkoly
Budapest University of Technology and Economics

Email: {nemeth.balazs, czentye, vaszkun, csikor, sonkoly}@tmit.bme.hu

Abstract—Today the notion of Service Function Chaining
(SFC) returns to the focus of technological development in the
area of network management and design. Researchers focus on
exploiting the advantages of Network Function Virtualization
(NFV) and Software Defined Networking (SDN) to bring SFC
to a brand new level of fast and flexible, modern end-to-
end service orchestration. The core of SFC architecture is the
orchestration algorithm, which has ultimate decision making
responsibility over compute and networking resource reservation.
There are many sophisticated solutions for this task with long
running times, so those cannot be executed real-time for every
new request arriving within a few seconds. There is a lack of
very fast (meta)heuristic orchestration algorithms to deal with
enormous amount of service request. The goal of this paper is to
demonstrate novel approaches to designing, evaluating and fine-
tuning of real-time parameterizable orchestration algorithms for
carrier grade networks.

Index Terms—SDN, NFV, SFC, resource orchestration, Unify,
mapping

I. INTRODUCTION

Service Function Chaining (SFC) is not new, but the evo-
lution driven by Software Defined Networking (SDN) and
Network Function Virtualization (NFV) has re-spotted the
importance of the concept. A Service Chain (SC) or more
generally a Service Graph (SG) is a set of network functions,
such as firewall, NAT, etc. interconnected in a given order
to support an application. Formerly, building and deploying
a service chain took a huge amount of time and effort.
The network functions were expensive off-the-shelf devices,
and cabling and connecting them in the right order required
careful attention. Moreover, in order to induce these devices
to function in the right manner, each device needed to be
manually configured using their own management interface
and language they “spoke”. The chance for error was high, and
a problem in one component could disrupt the entire network.
In case of a new demand, or just the replacement of a device to
support a higher scale often required a complete reorganizing
of the whole placement. Since chains were constructed in a
way to support multiple applications, it was often the case that
data passed through unnecessary functions and servers slow-
ing down its own end-to-end delay and consuming needless
bandwidth and CPU cycles of other devices.

SDN and NFV simplified and fastened the provisioning of
service chains, however, proper deployment of the functioning
elements is still not an obvious task. Since NFV enables the
network functions to move from the dedicated, special-purpose
hardwares into softwares running in different environments
(e.g., virtualized) over a general purpose, x86 based platform,

the number of properties and coefficients has significantly
raised. In order to deploy a SC, we need to collect many
resource related properties, e.g., unused CPU cores, memory,
space, capabilities and accordingly we need to prepare to the
case when an unexpectedly high traffic demand influences
the packet processing capabilities of other service chains and
consumes more resource than it normally needs.

So far, several research have been arisen but most of them
need to be supplemented to be a perfect solution. For instance,
a similar problem, called Virtual Network Embedding (VNE)
aims at finding a possible or in some sense optimal mapping
of multiple given logical networks on a shared substrate
network. In VNE [1], only the resources of the nodes are taken
into account, therefore requirements for links such as end-
to-end delay cannot be considered. Nevertheless, the problem
itself proved to be NP-hard, and a mixed-integer-programming
(MIP) was given to solve it. However, the algorithm had a sig-
nificant drawback: collocation of nodes (e.g., placing/running
NFs on the same server) is not supported and its running time
is not fast enough for real-time execution. In a fairly different
approach [2], a preprocessing algorithm was proposed to solve
a network embedding problem, in particular, determining the
best collocation in advance. A fast and efficient algorithm,
called LoCo, was also proposed, however, it considers only a
few important parameters, for instance, no latency, NF type,
placement criteria could be given as an input. Moreover, one of
the most important and fundamental property, the end-to-end
quality requirement, is also not considered.

In this paper, we propose a novel fast algorithm that
maps efficiently an enormous amount of constantly arriving
service graphs in huge network consisting tens-to-hundreds of
thousands of nodes. Our algorithm is implemented as an add-
on to an emerging prototyping environment, called ESCAPEv2
(Extensible Service ChAin Prototyping Environment, [3]),
wherein it could become an important supplement.

II. ARCHITECTURE AND ENVIRONMENT

A desirable architecture would unify the control planes of
cloud and telecommunication providers to enable the visual-
ized SFC capabilities. Principles and prototypes for such a
future architecture is being developed by quite a few research
groups and consortia nowadays.

In order to reveal the possibilities of the revisited approach
of SFC for end-to-end service delivery and management,
Internet Engineering Task Force (IETF) has created a working
group (SFC WG). The goal is to define the problem statement,

IEEE Conference on Network Function Virtualization and Software Defined Networks 2015 Demo Track

978-1-4673-6884-1/15/$31.00 ©2015 IEEE 30

Fig. 1. A possible layered SFC architecture extended with the orchestration Algorithm Optimization Framework.

determine the core use cases and propose a possible realization
of the SFC architecture [4].

The goal of the UNIFY project is to create a common
service provision architecture for cloud and telecommunication
providers. The UNIFY architecture, depicted in Fig. 1, has
three main layers. The Infrastructure layer (denoted by color
green) is responsible for the underlying, multi-domain, multi-
layered network infrastructure. The red Orchestration layer
takes care of efficient orchestration and manages the whole
system. The new demands can be requested through the
Service layer, where the given service chains are processed
to the Orchestration layer.

A prototype implementation of the UNIFY architecture is
ESCAPEv2, mentioned in Sec. I, which enables recursive
resource orchestration1; interconnects different technological
domains by adapters; is extensible with orchestration algo-
rithms; operates on an abstract resource and service description
model. The core of the framework is implemented on top
of POX (OpenFlow controller) platform. It supports several
infrastructure domains, such as Mininet (extended with the
notion of NF and execution environment), legacy cloud do-
mains managed by OpenStack and the novel Universal Node
with hardware accelerated packet processing defined by the
UNIFY project.

ESCAPEv2 framework eases the implementation of service
chaining architectures and enables its users to experiment with
resource orchestration algorithms. It offers an environment
close to an envisioned real one based on NF virtualization,
where services can be deployed to multiple domains. The
novel Network Function Forwarding Graph (NFFG) model
is implemented for the joint resource abstraction of network
and compute resources, and also for service chain requests.
Furthermore, it offers a well defined interface in order to easily
replace and evaluate several mapping algorithms (denoted by
Orchestration Algorithm box in Fig. 1).

III. THE MAPPING ALGORITHM

A. Preference value based greedy backtrack algorithm

We have designed and implemented a fast and efficient
resource orchestration algorithm in order to handle the full

1Infrastructure Domains on Fig. 1 can have inner orchestrators

mapping of enormous amount of service graphs arriving within
few seconds to provider networks in the scale of several tens-
to-hundreds of thousands of substrate nodes. It is a preference
value based greedy backtrack algorithm based on graph pattern
matching and bounded graph simulation. We have added this
algorithm as a new mapping strategy to ESCAPEv2.

Besides the physical nodes and NFs, the substrate and the
service graph have Service Access Points (SAPs), where the
user connects to the network. These endpoints can be mapped
unambiguously between the two graphs. Service chains are
expressed as end-to-end paths in the service graph (see Service
Layer of Fig. 1), defining which NFs should a specific subset
of network traffic traverse between the appropriate SAPs,
meanwhile the given requirements should hold on the path.

A simplified pseudo code of the algorithm can be found in
Alg. 1. Line 8 in the pseudo code basically says that the service
graph is partitioned into small paths derived from the end-
to-end service chain requirements, so that, the subchains are
disjoint on the edges of the service graph. This aids the greedy
mapping process to find an appropriate host for NFs which
are used by multiple service chains. In line 13, the variable k
indicates the branching factor of the backtrack process.

The substrate nodes are ordered by a composite preference
value function, which takes notice of (i) the weighted sum
of the substrate node’s utilizations of the resource compo-
nents, (ii) the path length measured in latency and (iii)
the average link utilization on the path leading to the node.
Furthermore, the importance among the three components is
also an adjustable parameter. This preference value defines the
best candidates among the substrate nodes, where nf could be
mapped.

The placement criteria in line 15 is determined by the NF
sharing between end-to-end chains. In line 18, the algorithm
subtracts the resources from the substrate graph reserved for
the allocation of nf . If nf could not be mapped and backtrack
is required, the resource reservation is undone in line 22.

B. Parameter fine-tuning survey

The previously presented algorithm has an abundance of
adjustable parameters, which cannot be set without correct ex-
amination of the quality of service requirements of the service
graphs, and their correlation to the resources of the substrate

IEEE Conference on Network Function Virtualization and Software Defined Networks 2015 Demo Track

31

Algorithm 1 Resource Orchestration Algorithm
Input: substrate graph (V,E) with available resources, band-
widths, latencies; service graph (Vp, Ep) with end-to-end
service chains (SC), and its quality of service requirements.
Output: mapping of NFs to substrate nodes, mapping of
logical NF connections to substrate paths.

1: procedure MAP((V,E), (Vp, Ep), (SC))
2: Basic preprocessing on request and substrate graph.
3: for all SAPp ∈ Vp do
4: Find SAP from V for SAPp.
5: end for
6: Find helper subgraphs for each end-to-end chain in the

substrate graph.
7: for all c ∈ SC do
8: Divide c into subchains (subc) so every edge in

Ep is exactly in one subchain.
9: Add subc to sSC

10: end for
11: for all subc ∈ sSC do
12: for all nf ∈ subc do
13: Push k best substrate nodes and paths to

backtrack(nf) stack.
14: if nf ∈ other subchains then
15: Set placement criteria for nf .
16: end if
17: Map nf to best substrate node and path leading

to it.
18: Update graph resources.
19: end for
20: if nf could not be mapped anywhere then
21: Pop substrate node and path from

backtrack(nf) stack.
22: Redo graph and path resources.
23: Try allocating nf again.
24: end if
25: Map last unmapped edge of subc.
26: end for
27: return Complete mapping
28: end procedure

graph. So a right parameter setting is highly dependent on the
environment where the algorithm is to be applied.

How should the utilization of a substrate node’s resource
component (e.g. memory) be valued? What weighting should
be used between the resource components? How should a
substrate path leading to a candidate host node be selected?
What should be the relative importance of the components of
the substrate node preference value? What branching factor
and depth should the backtrack process have?

These questions must be answered so that the acceptance
ratio and possibly the quality of orchestration of the algorithm
would be maximized (see Algorithm Parameter Optimizer
(APO) in Fig. 1). The problem with the assessment of the
mapping quality is that the optimal solution for an input is

unknown due to the complexity of the problem. Acceptance
ratio is tested with benchmark service graph requests, which
is much easier to define.

As a part of the Algorithm Optimization Framework, an
arbitrary, large scale service provider network can be defined
with all of its resource parameters, where the fine-tuned
algorithm will be applied. Using this target substrate network,
a combinatorial optimization process2 in the parameter space
defined by a set of the mentioned tunable algorithm parameters
is conducted to achieve the desired acceptance ratio and quality
of orchestration of the algorithm. This method is summarized
by the inputs and output of APO in Fig.1.

During the demo, we showcase two example setups of
the algorithm: (i) Deployable service graph requests in the
ESCAPEv2 framework, where a small substrate network is
simulated by Mininet. Arbitrary service request can be given
to ESCAPEv2 via a graphical interface and any parameter
of the algorithm can be adjusted to demonstrate their effect
on the mapping results. (ii) An all-round abstract description
of a carrier grade network with several tens-to-hundreds of
thousands of substrate nodes connected into a real world
topology, where the already fine-tuned3 resource orchestration
algorithm can be executed with arbitrary service request. The
results of the mapping can be examined on visualizations in
both cases.

Furthermore, a slide show will be presented to explain the
algorithm demonstration setups and to give an idea about the
mapping process and the parameter fine-tuning survey.

ESCAPEv2 and the orchestration simulation to the carrier
grade network will run on a notebook, which will be taken to
the demo by the presenters. A projector or a large screen is
required for the slides and the result visualizations. Approxi-
mately 40-60 minutes and a table are required for setting up
the demo.
Acknowledgements - This work was conducted within the
framework of the FP7 UNIFY project, which is partially
funded by the Commission of the European Union.

REFERENCES

[1] N. M. Mosharaf Kabir Chowdhury, Muntasir Raihan Rahman, Raouf
Boutaba, Virtual Network Embedding with Coordinated Node and Link
Mapping, in IEEE INFOCOM 2009

[2] Carlo Furst, Stefan Schmid, Anja Feldmann, Virtual network embedding
with collocation: Benefits and limitations of pre-clustering, in Cloud Net-
working (CloudNet), IEEE 2nd International Conference, San Francisco,
CA, USA, 2013.

[3] Balázs Sonkoly, János Czentye, Robert Szabó, Dávid Jocha, János Elek,
Sahel Sahhaf, Wouter Tavernier, Fulvio Risso, Multi-Domain Service
Orchestration Over Networks and Clouds: A Unified Approach, In Proc.
of ACM SIGCOMM 2015

[4] Jim Guichard, Thomas Narten, Alia Atlas, Service Function Chaining
- Charter for Working Group, https://datatracker.ietf.org/wg/sfc/charter/,
accessed: 13.08.2015.

2MIP cannot be applied because the objective function which maps vectors
from the algorithm parameter space to the scalar numbers (e.g. acceptance
ratio) is nor linear.

3The fine-tuning process takes too much time to demonstrate its operation
at the time and place of the demo.

IEEE Conference on Network Function Virtualization and Software Defined Networks 2015 Demo Track

32

