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Abstract—The Virtual Network Embedding Problem lies at the
heart of many network resource allocation problems. Typically,
this problem is studied in a variant where both the mapping
of nodes (e.g., the virtual machines) as well as the routing
is flexible and hence subject to optimization. However, many
networks today are based on control planes with fixed paths,
which cannot easily be changed. This paper presents the first
approximation algorithm for the embedding cost of a set of
virtual networks which do not have to provide routing flexibilities.
In particular, we analytically prove that our algorithm achieves
an XP approximation: a constant approximation in a resource
augmentation model for scenarios with and without routing
flexibilities. Our extensive simulations further indicate that our
algorithm is not only of theoretical interest but is a practical
solution.

I. INTRODUCTION

Enabled by the increasing virtualization and programmabil-
ity of communication technologies, networked systems are be-
coming increasingly flexible. This, in turn, introduces unprece-
dented optimization opportunities, e.g., in terms of resource
allocations: network applications can be allocated where they
are most useful and/or profitable. For example, frequently
communicating virtual machines can be mapped close to
each other in order to reduce communication overheads, or
computationally intensive tasks can be offloaded to a nearby
edge cloud to ensure minimal latency. The resource allocation
flexibilities are only constrained by policy requirements and
by the specific optimization objectives: e.g., the requirement
to keep data geographically local or the desire to provide a
predictable latency, or more generally, performance. In order
to ensure such a predictable performance, flexibly mapped
resources are often also interconnected by a network providing
bandwidth guarantees.

Many of optimization problems underlying such flexible
networks can essentially be formulated as a Virtual Network
Embedding Problem (VNEP): The VNEP asks for a mapping
of nodes and their interconnecting links from virtual networks
to a substrate network under capacity constraints while opti-
mizing a certain objective function, such as minimizing the
resource costs (the widely studied cost-minimization variant).
Interestingly, however, while there is a large body of literature
on the VNEP, most existing algorithms either require a super-
polynomial runtime or do not provide formal approximation

guarantees. In general, the problem is known to be notoriously
hard for many different variants [1].

In this paper, in addition to the general VNEP, we are par-
ticularly interested in a specific version of the VNEP without
routing flexibilities. Indeed, in many practical scenarios, the
routing between two virtual node locations can be constrained.
For example:

• Fixed control plane: In most networks today, from
wide-area networks to datacenter networks, routes are
determined by the network control plane autonomously.
Most control planes use shortest path protocols, such
as ECMP (equal-cost multi-path routing). For example,
while virtual machines may be allocated flexibly in a
datacenter, traffic between two VMs is restricted by
ECMP.

• Real-time constraints: Also in many application domains
requiring real-time guarantees, routing is restricted to
shortest paths. For example, in industrial automation
applications [2], from manufacturing, to mining and
power generation, virtual networks often describe stream
processing graphs interleaved with control algorithms.
The nodes of these virtual networks are computational
tasks (e.g., Fourier transforms or control functions) while
the edges describe the processing order. By mapping fre-
quently interacting computational tasks to topologically
close substrate nodes and using shortest path routing,
latency requirements can be met.

A. Contributions

We make two major technical contributions, the first one
concerning the general VNEP problem and the second one
concerning scenarios without routing flexibilities.

1) We present a polynomial-time cost approximation algo-
rithm for the general VNEP. Our algorithm is based on
randomized rounding, and to the best of our knowledge,
is the first polynomial-time approximation algorithm with
provable guarantees on the embedding cost.

2) We present a novel variant of the VNEP where routes
cannot be optimized, e.g., due to performance considera-
tions or technological constraints. We show how to adapt
algorithms and analysis to this problem version, resulting
in approximation guarantees again.

For both problems, we present a formal analysis and report
on simulations, showing that our algorithm performs well bothISBN 978-3-903176-28-7© 2020 IFIP



in theory and practice. We also find that restricting routing
to shortest paths does not come at a high embedding price
compared to fully flexible embeddings. We believe that our
technical contribution, based on randomized rounding, as well
as the model introduced in this paper, may be of independent
interest beyond the specific problem considered in this paper.

As a contribution to the research community and to facilitate
follow-up work, we publish our implementation and experi-
mental data on GitHub to enable the reproducibility of our
results1.

B. Organization

The remainder of this paper is organized as follows. We
introduce our formal model in Section II, and present the
algorithmic background in Section III. Our approximations
are given in Section IV, while its evaluation is presented in
Section V. After discussing the related work in Section VI,
we conclude our study in Section VII.

II. MODEL

Substrate Network. The substrate network is modeled
as a weighted graph GS = (VS , ES , dS ), where the set of
substrate nodes and substrate edges are denoted by VS and
ES , respectively. There is an edge e = (u, v) ∈ ES exactly if
there is a direct communication link between u and v . When
referring to an arbitrary substrate element x ∈VS∪ES , we write
x ∈GS . Each substrate element x ∈GS has a limited capacity
dS (x) ≥ 0. The capacity of a node v ∈ VS may represent the
number of CPUs or memory constraints, while the capacity
of an edge (u, v) ∈ ES refers to the available bandwidth. The
number of nodes and edges of the substrate network is denoted
by nS and mS , respectively. For simplicity, when referring to
an arbitrary substrate element x ∈VS ∪ES , we write x ∈GS .

Request Graphs. A request graph is modeled as a weighted
directed graph Gr = (Vr ,Er ,dr ), where Vr and Er denote the
set of request nodes and edges or virtual nodes and edges,
respectively. The request edges Er ⊆ Vr ×Vr represent the
directed data flow among the request nodes. Each request
element x ∈ Vr ∪Er has a demand dr (x) ≥ 0. Request nodes
and edges are also referred to as virtual edges and nodes,
respectively. For request node i ∈ Vr , the demand represents
the resource requirements of i , e.g., the needed CPU capacity
or memory.2 In case of request edges, the demand represents
the communication requirements of a pair of nodes (e.g., in
terms of bandwidth). A set of requests R denotes a set of
request graphs. For each request r ∈R, the number of nodes
and edges are denoted by nr and mr , respectively.

Valid Mappings. Virtual nodes and edges can only be
mapped on substrate nodes and edges of sufficient capacity.
Furthermore, the customer or substrate provider may restrict
the mapping of request nodes i ∈ Vr and edges (i , j ) ∈ Er

1https://github.com/vnep-approx/evaluation-ifip-networking-2020
2Instead of a single value, the requirements can be represented by a vector

with one entry for each of the different types of resources. For simplicity, we
present the single value case in this paper, all our results can be extended to
the more general case by normalization and vector norms.

by providing sets of forbidden substrate nodes V
i
S ⊆ VS and

edges E
i , j
S ⊆ ES . The set V

i
S may for example include substrate

nodes too distant to the consumer or not suited to host
the functionality of request node i . Similarly, the set E

i , j
S

contains edges which must be avoided due to security or other
technical policies. Accordingly, we denote the set of suitable
substrate nodes for i ∈Vr by V r,i

S = {u ∈VS \V
i
S |dS (u) ≥ dr (i )}

and the set of suitable substrate edges for (i , j ) ∈ Er by
E r,i , j

S = {(u, v) ∈ ES \ E
i , j
S |dS (u, v) ≥ dr (i , j )}.

Furthermore, we denote by dmax(r, x) the maximal demand
of any single request element of request r ∈ R on a single
substrate resource x ∈GS . Specifically, the following holds:

dmax(r,u) =max
(
{0}∪

{
dr (i ) | i ∈Vr : u ∈V r,i

S }
})

,

dmax(r,u, v) =max
(
{0}∪

{
dr (i , j ) | (i , j ) ∈ Er : (u, v) ∈ E r,i , j

S

})
.

Definition 1 (Valid Mapping). A valid mapping of request
r ∈ R to substrate GS is a tuple (mV

r ,mE
r ) of functions mV

r :
Vr →VS and mE

r : Er → P(ES ), where P(E) denotes the set of
simple substrate paths over the edge set E , such that:

• virtual nodes are placed on suitable substrate nodes, i.e.
mr (v) ∈V r,i

S , for all i ∈Vr ,
• the mapping mE

r (i , j ) of edge (i , j ) ∈ Er is a path connect-
ing mV

r (i ) and mV
r ( j ) which only uses allowed edges, i.e.,

mE
r ⊆ E r,i , j

S holds.
The set of all valid mappings of request r is denoted by Mr .

Hence, a valid mapping enforces the validity of each single
virtual element with respect to the set of forbidden nodes
and edges. Cumulative resource allocations and their costs are
defined as follows.

Definition 2 (Resource Allocation and Embedding Costs).
We denote by A(mr , x) ∈ R≥0 the resource allocation in-
duced by the valid mapping mr ∈ Mr on substrate element
x ∈ GS . For u ∈ VS and (u, v) ∈ ES , the following holds,
respectively: A(mr ,u) = ∑

i∈Vr :mr (i )=u dr (i ) and A(mr ,u, v) =∑
(i , j )∈Er :(u,v)∈mE

r (i , j ) dr (i ).
Furthermore, the maximal allocation that a single virtual

element may impose on a substrate resource x ∈ GS by
Amax (r, x) = maxmr ∈Mr A(mr , x). Using cS (x) to denote the
unit cost of substrate resource x ∈ GS , the cost cS (mr ) of
a mapping mr ∈ Mr is defined as cS (mr ) = ∑

x∈GS cS (x) ·
A(mr , x).

An embedding that does not exceed the capacity of the
substrate elements is called feasible.

Definition 3 (Feasible Embedding). A set of mappings
{mr }r∈R′ over a set of requests R′ ⊆R constitutes a feasible
embedding, if and only if

∑
r∈R′ A(mr , x) ≤ dS (x) holds for

every x ∈ GS . A single mapping mr is feasible, if this holds
for the singleton set {mr }.

Problem Definitions. In the following, both the profit and
cost variants of the Virtual Network Embedding Problem



(VNEP) and its relaxation, the Valid Mapping Problem (VMP),
are introduced.

The first problem is only concerned with the validity of the
mapping, ignoring capacity limitations:

Definition 4 (Cost Valid Mapping Problem (CVMP)). Given
a single request r and considering substrate costs, a solution
to the CVMP decides whether there exists a valid mapping,
and, if so, returns a valid mapping mr minimizing the cost
cS (mr ).

The VNEP accounts for feasibility with regards to capaci-
ties, and comes in two flavors: profit and cost:

Definition 5 (Cost Virtual Network Embedding Problem
(CVNEP)). The Cost VNEP returns a minimal cost feasible
embedding for the request set R, if one exists.

Definition 6 (Profit Virtual Network Embedding Problem
(PVNEP)). Given a profit br ≥ 0 for each request r ∈R, the
profit VNEP returns a feasible embedding {mr }r∈R′ of a subset
of requests R′ ⊆R maximizing the profit

∑
r∈R′ br .

Restricted Routing. While the VNEP poses a very general
problem formulation, some applications require more restric-
tions. Hence, in addition to the general problem formulation,
we are particularly interested in solving the Cost VNEP under
additional routing restrictions. To this end, a modified problem
version also specifies a routing P over GS such that for each
pair of substrate nodes u, v ∈VS only a single predefined path
P (u, v) ∈ P(ES ) may be used to route flow from u to v . Note
that this differs from the concept of the forbidden set of links
for a request, and restricts the traffic between a source and a
destination, often regardless of the flow.

Definition 7 (VNEP without Routing Flexibilities). Given a
routing P , a mapping mr = (mV

r ,mE
r ) is valid if each virtual

edge (i , j ) ∈ Er takes the predefined path, i.e., mE
r (i , j ) =

P (mV
r (i ),mV

r ( j )) holds. Under this adaptation, CVNEP and
PVNEP return, a feasible embedding minimizing the cost or
maximizing the profit for a request set R as input.

An algorithm produces an (α,β,γ)-approximation of the
CVNEP (or PVNEP) if any solution features at most α > 1
times the cost (or at least 1/α times the profit) of an optimal
solution, and the allocations on nodes and edges are within
factors of β ≥ 1 and γ ≥ 1 of the original capacities respec-
tively, with high probability (whp).

III. PRELIMINARIES

In this paper, we will make use of the following graph-
theoretical concepts.

Definition 8 (Tree decomposition and Treewidth [3]).
Given a graph Gr = (Vr ,Er ), a tree decomposition of Gr is
a pair Tr = (Tr ,Br ), consisting of an undirected tree Tr =
(VT ,ET ) and a family of node bags Br = {Bt }t∈VT with Bt ⊆Vr ,
for which the following hold:

1) for node i ∈ Vr , the set V −1
T (i ) = {t ∈VT |i ∈ Bt } of tree

nodes containing i is connected in Tr , and

2) each node and each edge is contained in at least one bag.

A tree decomposition is small if Bt1 * Bt2 holds for all
t1, t2,∈ VT with t1 6= t2. The treewidth tw(Tr ) of a tree
decomposition Tr is the maximum bag size minus 1, i.e.
tw(Tr ) = maxt∈VT |Bt | − 1. The treewidth of a graph, tw(Gr )
is the minimum widths of all its tree decompositions.

While computing a tree decomposition of minimal
treewidth is itself a NP-hard problem, it is fixed-parameter
tractable (FPT), i.e., it can be computed in polynomial time
when the treewidth is bounded by a constant [4]. Furthermore,
any tree decomposition can be transformed into a small one in
linear time [4]. As discussed in [5], many well-known graph
classes, e.g., series-parallel graphs and outerplanar graphs,
have bounded treewidth.

We next review the algorithmic framework that enabled
obtaining the first approximations for the profit variant of the
VNEP [6]. In this paper, we will build upon these techniques
to obtain an approximation of the cost variant of VNEP, both
in a model with and a model without routing flexibilities.

Using tree decompositions, Rost et al. showed in [7] that
the Cost Valid Mapping Problem (CVMP, cf. Section II)
can be solved optimally using Dynamic Programming on
tree decompositions with time complexity exponential in
the tree decomposition’s treewidth. The DYNVMP algorithm
harnesses the following observation: for request graphs of
limited size, optimal valid mappings can readily be computed
by enumerating all potential node mappings for each node
bag and adding the respective lowest valid paths costs to
the respective node mapping costs. Given this insight, first,
for all leaves of a tree decomposition Tr cost-optimal valid
mappings are computed (if a valid mapping exists). Then, for
each inner node tI ∈ TV , the (partial) cost optimal mappings
of the induced graph G[BtI ] of node bag BtI are computed
for each node mapping of BtI by adding the respective costs
of the optimal mappings of the children. For more in-depth
information on the DYNVMP algorithm, we refer the reader
to [7].

Note that, the runtime complexity of DynVMP depends on
the maximal treewidth of any of the requests, more precisely
it is bounded by O (nr

3 ·nS
2·tw(Tr )+3). Hence, when all requests

have bounded treewidth, as is the case for example for cactus
or outerplanar graphs, then the runtime is polynomial.

To obtain an approximation of the profit VNEP, Rost and
Schmid proposed in [6] to apply randomized rounding after
preprocessing all requests (cf. Algorithm 4). Specifically, first,
all requests are removed that cannot be fully embedded in
the absence of other requests and then each mapping mk

r
is chosen with probability f k

r for each request r ∈ R. This
process is iterated until an approximate solution is obtained
or the maximal number of rounding tries is exceeded. In
this paper, we show how to build upon these results to
devise an approximation algorithm for the cost variant of
the embedding problem. Note that we cannot use the same
approach unchanged, as the approximation guarantee in the
profit variant relies on the fact that we can discard any request



LP Formulation 1: Enumerative Cost VNEP – Primal

min
∑

r∈R,mk
r ∈Mr

f k
r · cS (mk

r ) (1)∑
mr

r ∈Mr

f k
r = 1 ∀r ∈R (2)∑

r∈R,mr ∈Mr

f k
r A(mk

r , x)≤ dS (x) ∀x ∈GS (3)

f k
r ≥ 0 r ∈R,∀mk

r ∈Mr (4)

LP Formulation 2: Enumerative Cost VNEP – Dual

max
∑

r∈R

λr +
∑

x∈GS

µx ·dS (x) (5)

λr ∈R ∀r ∈R (6)

µx ≤ 0 ∀x ∈GS (7)

λr +
∑

x∈GS

µx · A(mk
r , x)≤ cS (mk

r ) ∀r ∈R,mk
r ∈Mr (8)

and still have a valid solution, though maybe less profitable
solution. In other words, in addition to the degrees of freedom
stemming from the embedding options, we have the choice of
the subset of requests that actually are to be embedded without
violating the capacity bounds too much. In contrast, the cost
variant of the problem can only play with the mapping of the
requests and must ensure that all of them are embedded.

IV. APPROXIMATIONS FOR COST VNEP

In this section, the first approximation for the cost variant of
the VNEP is given, yielding solutions for the problem variants
with and without routing flexibilities.

A. General Approximation

While relying on the algorithmic preliminaries presented
above, to obtain the approximation result, several obstacles
need to be overcome. Firstly, while for the profit VNEP a fea-
sible solution can always be easily constructed by simply not
embedding any request, finding a feasible solution to the cost
problem is itself NP-complete [1]. Furthermore, an approach
purely relying on the randomized rounding of fractional Linear
Programming solutions, can in general not guarantee any
approximation guarantee on the achieved cost. Accordingly,
we first discuss how to compute optimal Linear Programming
solutions for the Cost VNEP (cf. LP Formulation 1) and
then present the novel approximation algorithm having a
deterministic approximation guarantee on the achieved cost.

Computing LP Solutions for the Cost VNEP. To com-
pute fractional solutions for the Cost VNEP, we introduce
LP Formulation 1 (later we will also need the dual LP

Algorithm 3: Solving LP 1 via Column Generation
Output: optimal cost LP solution or ⊥ if none exists

1 compute profit LP solution [6] with br = 1 for each r ∈R
2 if LP’s solution profit less than |R| then
3 return ⊥ as no solution can exist

4 initialize sets of valid mappings M̂r using the above LP
solution

5 do
6 compute solution to LP 1 over mapping sets {M̂r }r∈R
7 foreach r ∈R do
8 compute minimal cost mapping m̂r using DYNVMP

under costs cµ(x) := cS (x)−µx for x ∈GS
9 if cµ(m̂r ) <λr then add m̂r to M̂r

10 while any mapping violating Constraint 8 was added
11 return last computed primal LP solution

Formulation 2). Using the approach to enumerate all valid
mappings, Constraint 2 enforces that each request needs to be
fully embedded, while this fractional solution must be feasible
with respect to the capacities (cf. Constraint 3). The objective
function clearly captures the cost of the fractional solution by
multiplying each mapping cost with the corresponding weight
variables. To solve this LP Formulation, we present a novel
column generation approach as Algorithm 3. The algorithm
first computes a feasible fractional embedding (disregarding
the cost) by employing the algorithm for the profit LP Formu-
lation in [6]. Given that the fractional profit LP can be solved
optimally, the returned solution either embeds each request
fully or returns an incomplete solution. In the latter case, there
cannot exist a feasible embedding for the whole request set and
⊥ is returned. The remainder of the algorithm does not use
the normal cost function but the cost function cµ(x), x ∈ GS

which is based on dual variables µx .

Theorem 1. Using Algorithm 3, LP Formulation 1 can
be solved optimally using the DYNVMP algorithm in time
O

(
poly

(∑
r∈R n3

r ·n2·tw(Tr )+3
S

))
given specific tree decomposi-

tions Tr for each request r ∈R, if a feasible embedding exists.

Proof: As argued above, the output of the profit LP
indicates whether a feasible fractional embedding exists and
only if such a solution exists, one is returned (otherwise
the algorithm returns ⊥). Hence, initializing the sets of valid
mappings M̂r according to the mappings used by the profit
LP, also a feasible LP solution for the cost LP (cf. LP Form. 1)
must exist. Hence, each LP computation will yield a primal
feasible solution together with corresponding dual variables.

To see that Algorithm 3 returns an optimal cost solution,
consider now the column generation of Lines 5 to 9. Noting

Algorithm 4: Approximation of Profit VNEP [6]
Input : substrate GS , requests R with profit br for each

r ∈R, approx. factors α,β,γ and N rounding tries
Output: (α,β,γ)-approximate solution with high probability

1 foreach r ∈R do // preprocess requests
2 compute profit LP solution for request r
3 remove r from R if solution’s profit is less than br

4 compute profit LP solution for all requests R
5 do // perform randomized rounding
6 foreach r ∈R embed r using mk

r with probability f k
r

// r is rejected with prob. 1−∑
k f k

r
7 while solution not (α,β,γ)-approximate and ≤ N tries



the adapted definition of cµ in Line 8, we first show that
Constraint 8 can be equivalently stated by cµ(mk

r ) ≥ λr for
each valid mapping mk

r and each request r ∈R.

λr +
∑

x∈GS

µx · A(mk
r , x) ≤cS (mk

r ) (9)

⇔ − ∑
x∈GS

cS (x) · A(mk
r , x)+ ∑

x∈GS

µx · A(mk
r , x) ≤−λr (10)

⇔ ∑
x∈GS

(cS (x)−µx ) · A(mk
r , x) ≥λr (11)

⇔ cµ(mk
r ) ≥λr (12)

Above, in Equations 10 and 12, the definition of the costs
of mappings (see Definition 2) was used to first decompose
and then aggregate the respective costs again. Given this
equivalence of the constraints to cµ(mk

r ) ≥ λr , the column
generation approach only adds valid mappings in Line 9 for
which the dual constraints are violated. Furthermore, as µx ≤ 0
holds for all resources x ∈ GS (cf. Constraint 7), the cost
function cµ is positive for all resources x ∈ GS , which is
required for DYNVMP to work.

Lastly, considering the runtime, we note that this is due
to the result by Grötschel, Lovász and Schrijver [8] and the
runtime of DYNVMP.

Description and Analysis of the Cost Approximation.
Given the ability to also solve the fractional Cost VNEP
according to LP Formulation 1, we now present the first
VNEP cost approximation based on randomized rounding as
Algorithm 5. The approximation scheme differs from the one
for the profit (cf Algorithm 4) by performing an important
post-processing step to ensure a deterministic approximation
guarantee for the cost: if a feasible fractional solution exists,
in Lines 4 to 7 all costly mappings are pruned by setting their
respective weight variable f k

r to 0. Specifically, considering
an approximation guarantee on the cost of α > 1, first the
weighted (average) cost W Cr is computed and then all map-
pings whose cost is larger than α ·W Cr are pruned. Accord-
ingly, the following deterministic approximation guarantee is
easy to establish:

Lemma 9. Algorithm 5 only returns α-approximate solutions.

Proof: Let c f r ac denote the cost of the LP solution
computed in Line 1 and let copt denote the minimum cost of
any feasible integral embedding. Clearly, c f r ac ≤ copt holds,
as any integral solution of LP Formulation 1, i.e., f k

r ∈ {0,1}
must hold, is also a fractional solution and Algorithm 3 returns
the minimum cost fractional solution. Furthermore, c f r ac =∑

r∈R W Cr holds and as all mappings of cost larger than
α ·W Cr are removed for each request, the returned solution’s
cost is upper bounded by α ·∑r∈R W Cr =α ·c f r ac ≤α ·copt .

After having removed the costly mappings, the weights
of the remaining mappings are normalized. Specifically,
the weights of the remaining mappings are scaled by
1/

∑
mk

r ∈M̂r
f k

r , such that
∑

mk
r ∈M̂r

f k
r = 1 holds again. Impor-

tantly, by pruning mappings and scaling the weights afterward,
the resulting fractional solution, which is then rounded, will

Algorithm 5: Approximation of Cost VNEP
Input : substrate GS with cost cS : GS →R≥0, requests R,

approx. factors α,β,γ and N rounding tries
Output: (α,β,γ)-approx. solution whp. or ⊥ if none exists

1 compute optimal fractional cost LP solution using Algorithm 3
2 if LP solution is ⊥ then
3 return ⊥ // no feasible embedding exists

// post-process: prune costly mappings
4 foreach r ∈R do
5 compute W Cr ←∑

mk
r ∈M̂r

f k
r · cS (mk

r )

6 set f k
r ← 0 for mk

r ∈Mr with cS (mk
r ) >α ·W Cr

7 normalize weights such that
∑

mk
r ∈M̂r

f k
r = 1 holds again

8 do // perform randomized rounding
9 foreach r ∈R embed r using mk

r with probability f k
r

10 while solution not (α,β,γ)-approximate and ≤ N tries;

exceed capacities by a certain amount. Accordingly, we ana-
lyze the maximal scaling factor in dependence of α.

Lemma 10. The weights of the remaining mappings are scaled
by at most a factor α/(α−1) in Line 7 of Algorithm 3.

Proof: Let σr =∑
mk

r ∈M̂r :cS (mk
r ) ≤α·W Cr

f k
r denote the sum

of the weights of the mappings of cost bounded by α ·W Cr .
For the sake of contradiction, assume that σr < 1−1/α holds
for any request r ∈ R. By the definition of W Cr and the
assumption on σr , we obtain the following contradiction:

W Cr = ∑
mk

r ∈M̂r

f k
r · cS (mk

r ) (13)

≥ ∑
mk

r ∈M̂r :cS (mk
r )>α·W Cr

f k
r · cS (mk

r ) (14)

≥ ∑
mk

r ∈M̂r :cS (mk
r )>α·W Cr

f k
r ·α ·W Cr (15)

≥ (1−σr ) ·α ·W Cr >W Cr (16)

The Inequality 14 holds as only a subset of the requests is
considered and Inequality 15 follows as all the considered
decompositions have a cost of at least α ·W Cr . The first
inequality of Equation 16 then follows as each request is fully
embedded and the cumulative weight of the costly mappings
is bounded by (1−σr ) by assumption. As Equation 16 yields
a contradiction, σr ≥ 1− 1/α must hold. Accordingly, after
pruning the costly mappings, the remaining mappings are
scaled by at most a factor of 1/(1−1/α) =α/(α−1).

Accordingly, the fractional solution might violate capacities
by a factor of α/(α−1) and the following holds:∑

r∈R

∑
mk

r ∈M̂r

f k
r · A(mk

r , x) ≤α/(α−1) ·dS (x) . (17)

To prove bounds on node and edge capacity violations, i.e.,
β and γ, we employ the following Lemma of Rost and
Schmid [6], which was proven for the profit approximation.
However, as the randomized rounding procedure for the profit
and the cost variant is identical, this lemma also pertains to
our new cost approximation.



Lemma 11 ([6]). Denote by Ax the random variable de-
scribing the allocations on resource x ∈ GS by performing
randomized rounding. Let 0 < ε ≤ 1 be chosen such that
dmax(r, x)/dS (x) ≤ ε holds for r ∈R, then

P(Ax ≥ E(Ax )+δ(κ) ·dS (x)) ≤ κ−4 (18)

holds for δ(κ) = ε · √
2 ·∆(x) · log(κ) with κ > 2 and

∆(x) =∑
r∈R:dmax(r,x)>0(Amax(r, x)/dmax(r, x))2.

Alas, given the above results, the following main approxi-
mation result is obtained.

Theorem 2 (Approximation for the Cost VNEP).
Algorithm 5 returns an (α,β,γ)-approximate
solution for CVNEP, where β,γ ≥ 1 are defined as

β=α/(α−1)+ε ·
√

2 ·∆(VS ) · log(nS )

γ=α/(α−1)+ε ·
√

2 ·∆(ES ) · log(mS )

with ∆(X ) = maxx∈X
∑

r∈R:dmax(r,x)>0(Amax(r, x)/dmax(r, x))2

being the maximal sum of squared maximal allocation-to-
capacity ratios over the resource set X and the maximum
demand-to-capacity ratio ε = maxr∈R,x∈GS dmax(r, x)/dS (x).
The runtime lies in O

(
poly

(∑
r∈R n3

r ·n2·tw(Tr )+3
S

))
.

Proof: The deterministic approximation guarantee of α
follows from Lemma 9. Considering the resource augmenta-
tion factors β and γ, we first note that the expected allocation
E(Ax ) on resource x ∈ GS is bounded by α/(α− 1) times
the resource’s capacity by Equation 17. Hence, applying
Lemma 11 using κ= nS , the probability to exceed the capacity
of any node resource by a factor of the above-defined value
β is bounded by nS

−4. Analogously, the probability to exceed
the capacity of any edge resource by a factor of γ is bounded
by ms

−4. As there are only nS nodes and at most n2
S edges,

the probability to violate any resource by factors of β or γ,
respectively, is bounded by 1/n3

S + 1/n2
S , which is less than

3/8 for nS ≥ 2. Hence, the probability to obtain a (α,β,γ)-
approximate solution within N rounding iterations is lower
bounded by 1−(3/8)N , i.e., approximate solutions are returned
with high probability. Lastly, the runtime of the approximation
is upper bounded by the time to construct the fractional LP
solution and the result follows.

Notably, and in contrast to the profit approximation, our
approximation allows to trade off the approximation guarantee
for the cost with the resource augmentations. Specifically,
compared to the profit approximation, the resource augmenta-
tions increase by the additive term α/(α−1)−1 > 0. Hence,
choosing, for example, α= 2, the resource augmentations are
only increased by one compared to the profit approximation.
Lastly, we note that Algorithm 5 is an XP-approximation, as
its runtime is exponential in the request graphs’ treewidth.
However, this is the best one can hope for, as, e.g., the VNEP
is inapproximable for general graphs (unless P = N P).

B. Approximation without Routing Flexibilities

The model without routing flexibilities is a restriction of
the Cost VNEP, such that flows between substrate nodes must

be routed along predefined paths and location-bound request
nodes must be assigned to the correct substate nodes. In
the following, we show that the DYNVMP algorithm can be
adapted to only use these predefined paths. Hence, given the
ability to compute such restricted fractional VNEP solutions
efficiently, the cost approximation for the VNEP carries over
to the variant without routing flexibilities.

As discussed in Section III, the DYNVMP algorithm works
by computing minimum cost valid mappings for all potential
node mappings of subgraphs of the given request. Specifically,
for each node bag of the respective tree decomposition all
(valid) node mappings are enumerated. Computing the min-
imum costs under fixed node mappings reduces to summing
up the respective node mapping costs and computing shortest
valid paths between the fixed endpoints for each contained
virtual edge. Hence, under a fixed routing scheme, computing
shortest paths is superfluous and the costs for edge mappings
are just a function of the routing scheme.

Hence, adapting the DYNVMP accordingly, only valid
mappings restricted on the given routing are obtained. This
way, Algorithm 3 can be readily applied to compute optimal
LP solutions for the model without routing flexibilities. As our
presented approximation for the Cost VNEP does only depend
on the ability to compute optimal LP solutions, we have the
following corollary.

Corollary 12 (Cost Approximation without Routing Flexibili-
ties). Adapting DYNVMP to only consider predefined routes,
Algorithm 5 yields an approximation for the variant without
routing flexibilities, of the same quality guarantees as stated
in Theorem 2.

V. EVALUATIONS

In this section we evaluate the performance of Algorithm 5.
We study the effect of fixed path routing by comparing
simulation results to solve the Cost VNEP with and without
routing flexibility. Furthermore, we analyze our algorithm
in terms of cost approximation, running time and resource
capacity violation ratios by increasing input size on synthetic
and real-world topologies.

Synthetic substrate graph topology. Industrial communi-
cation network topologies are often similar to the cactus graph
class as tree-like hierarchical structures mix with cycles for
redundancy [2]. Cacti are undirected graphs, where each node
is contained by at most one cycle and thus they fit the above
description. Furthermore, it has been shown that almost a third
of the topologies in well-known internet topology-datasets are
cactus graphs, too [9]. We generate random cactus graphs
for our substrate network structure having a similar number
of nodes in fix-sized cycles and trees. Substrate resource
capacities and costs on both edges and nodes are set to 1.0.

Real-world substrate graph topology. In addition to ran-
dom graphs, we take the topology of three real-world networks
as host graphs to prove the generality and applicability of
our results. We use Geant2012, GtsHungary and SwitchL3
from the Internet Topology Zoo [10] which have 40, 30 and
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Fig. 1: Experimental results of the Cost VNEP (with and without flexibility) approximation on synthetic substrates.

42 nodes, representing a Europe-wide, Hungarian and Swiss
country-wide networks respectively. Capacity and cost settings
are set to 1.0 for all graph elements as in the synthetic case.

Request graph topology. We use series-parallel graphs
(SPGs, having treewidth at most two [5]) to mimic request
graph structures resulting from sense-process-actuate control
loops, map-reduce applications, and path-like service chains.
We generate SPG requests by randomly alternating between
the SPG generating operations until we reach the desired node
count. We remove any parallel or loop edges remaining in the
generated SPG to conform with our request graph definition.
Scenarios with |R| = 5 are considered, where the sum of the
request node numbers add up to twice the node count of the
substrate, i.e.: 2nS =∑

r∈R nr .

Resource demands are randomly generated for each request
node and edge, controlled by aggregate parameters as in
earlier evaluations of the profit variant [11]. The sum of the
generated node resource demands adds up to 40% of the
total resource capacities of the substrate network nodes. Link
resource scarcity is set to have 100% utilization on all substrate
links if all request links would be mapped to paths consisting
of exactly 10 substrate links. Location bound request nodes
play an important role in many application scenarios, as often
only certain substrate nodes offer a specific function due to
hardware, regulatory, or configuration constraints. Thus, we
randomly select 10% of all request nodes in R to bound
them to a randomly picked substrate node with sufficient
capacity. This request graph generation method is used for
both substrate graph scenarios.

Results. We executed experiments on various instance sizes
and topologies, varying the number of request nodes accord-
ingly to keep the 2nS =∑

r∈R nr ratio. The experiments were
executed on an OpenStack virtual machine with 32GB RAM
and 4 vCPU-s, using Gurobi 7.5.23 to solve the LPs.

Each scenario was executed 10 times for the synthetic sub-
strates and 20 times for the real-world topologies with different
randomization seeds. During the evaluations a scenario is
considered feasible if Algorithm 5 finds an (α= 2,β= 5,γ= 2)-
approximate integer solution. The generated scenarios are
predominantly feasible with few exceptions. Fig. 1 and Fig. 2
summarize our findings.

The synthetic cases are shown in Fig. 1. The integer solu-
tions generated by Algorithm 5 cost approximately the same
as the best solutions of the LP relaxation by Algorithm 3: the
relative cost of the integer solution, i.e. its cost divided by the
LP relaxation’s cost was between 0.95 and 1, indifferently of
the substrate network size (see Fig. 1a). This is possible since
while LP solutions are always feasible, outputs of Algorithm 5
are only (α,β,γ)-approximate, and violating resource con-
straints (in our experience, especially node constraints) allows
choosing more compact (thus cheaper) valid mappings of
requests. Note that the cheapest non-violating integer solution
would be more expensive than the LP bound, and thus more
expensive than our solution.

Fig. 1b-1c shows that while substrate edges are underused,
node resources are violated consistently. As we can see, the

3Commercial MILP solver, https://www.gurobi.com/
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Fig. 2: Experimental results of the Cost VNEP on Internet Topology Zoo instances as substrate topologies.

load ratios are growing with the size of the substrate network.
This is due to the experimental setting and the specialty of
DYNVMP: while DYNVMP tends to collocate the request
nodes, bigger substrate networks have to handle bigger request
graphs. Node capacity violations in Fig. 1c for lower instance
sizes are below the specified β= 5, while for higher instances,
the approximation gets tighter and the resource augmenting
integer feasibility slightly decreases.

Fig. 1d shows the total running time of our algorithm con-
taining all initialization steps, fractional solution calculation
and rounding time for solving the problem version without
routing flexibility. The running time is dominated by the
preprocessing steps required for building the data structures
of DYNVMP, secondly the execution of Algorithm 3, which
widely depends on the quality of the initializing mappings.

We simulated each scenario for the case when routing paths
are given, i.e. solving the problem without flexibility, with
precomputed shortest paths, and when routing paths are left for
the optimizer to determine, i.e. solving the Cost VNEP. Fig. 1e
shows the ratio of the execution times of randomized rounding
in Algorithm 5 with arbitrary routing divided by the setting
when fixed routing paths are given. We see that rounding
solutions with routing flexibility takes 4-8% of the rounding
time of the fixed routing case. We observed that for the version
without flexibility the number of generated valid mappings (cf.
Algorithm 3) increased significantly. This may be explained
by the stringent routing restrictions requiring many more
additional mapping configurations to use the resources of least
cost homogeneously.

Concluding the analysis of the synthetic substrate experi-
ments, Fig. 1f compares the achieved integer costs in the two
routing settings. We observe that the total costs of the cases
barely differ (less than 1%), so the additional constraints of
routing restrictions do not incur significant changes in terms
of costs. In general, the restriction to shortest path routing
(precalculated for the version without flexibility) does not
come at a high price in terms of embedding: the solution is
close to optimal.

Results on the real-world network topologies are shown in
Fig. 2. Request graph parameters are identical to the previous
experiments to provide a reasonable comparison. As shown
by Fig. 2a, solution costs relative to the LP bound are lower
than in synthetic cases. Instead of at most 0.95, the solution
qualities are around 0.85-0.7, meaning even cheaper solutions.

Fig. 2b and 2c depict the edge and node capacity violation
ratios, showing very similar results to the synthetic cases.
At the node counts of Geant2012 and SwitchL3 (40 and 42
respectively) capacity violations are around 0.2 and 3.5 for
the edge and node load ratios respectivly, as observed in the
synthetic cases (cf. Fig. 1b and 1c). The same comparison
hold for the GtsHungary topology. In conclusion, solution
qualities are slightly better, but no significant difference can
be observed for the capacity violations on the real-world
topologies. Similar to the total runtimes of the version without
flexibility on the synthetic cases with instance sizes 30-40, the
total runtimes of the Cost VNEP on the topology zoo instances
are shown in Fig. 2d.

The simulation results demonstrate our cost approximation
algorithm’s practical applicability both with and without fixed
path routing constraints for the notoriously difficult VNEP.

VI. RELATED WORK

Different flavors of problems and solutions for the allocation
of computation and storage requests in cloud, fog, and edge
computing scenarios are emerging, taking different constraints
and objectives into account. In the last IEEE Infocom con-
ference alone, more than a dozen papers studied this topic,
e.g., [12]–[25]. In general, the VNEP and related problems
have been in the spotlight for more than 15 years now.

Most existing algorithmic contributions on the VNEP re-
volve around efficient heuristics which however do not provide
any formal approximation guarantees (cf. survey [26] for an
overview). Only recently first approximations for variants of
it were found [6], [7], [27]. Arguably, one reason for this
late discovery is its inherent hardness [1], [28]. Specifically,
it was recently shown that the VNEP is NP-complete and
inapproximable unless P = N P under any objective [1], i.e.,
including the above-formalized profit and cost cases. Further-
more, it was shown that this hardness is a structural one: even
when disregarding capacities altogether and only enforcing the
validity of mappings, the VNEP remains hard as long as the
structure of request graphs is not too limited. Specifically, it
was proven that the hardness even pertains for planar request
graphs of bounded degree [1].

Given the complexity results, approximations for general
request graph topologies are ruled out (unless P = N P) and
approximations for restricted classes of request graphs were
presented only recently [6], [7], [27]. Specifically, while Even



et al. proved approximations for embeddings of chains in [27]
and Rost and Schmid proved approximations for cactus request
graphs [6], in [7] the first approximations for arbitrary request
topologies were derived. This most recent approximation re-
sult, however, comes at the price of being polynomial-time
only for graphs of bounded treewidth, i.e., graphs which
exhibit a certain closeness to trees. All of the known ap-
proximations above share the following properties: (i) they
are based on the randomized rounding of linear programming
solutions, (ii) violate capacities by certain factors in the general
setting, and (iii) apply only to the profit variant of the VNEP.

To the best of our knowledge, the only cost approximation
result (cf. Definition 5) on VNEP is by Bansal et al. [29].
While the main objective and result of that paper is a very
different one, their solution includes a cost approximation
result. However, the results are limited to trees only.

VII. CONCLUSION

We revisited the general Virtual Network Embedding Prob-
lem and presented a first constant approximation algorithm for
the embedding cost, for a model with and for a model without
routing flexibilities. Our algorithm is not only interesting in
theory (the first approximation algorithm of its kind), but also
performs well in simulations.

We understand our work as a first step and believe that
it opens several interesting avenues for future research. In
particular, while it is known that the considered problems are
NP-hard, it will be interesting to further explore the optimality
of our analytic bounds.
Acknowledgments. Research supported by ERC Consolidator
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