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Abstract—Opportunistic data structures are used extensively
in big data practice to break down the massive storage space
requirements of processing large volumes of information. A data
structure is called (singly) opportunistic if it takes advantage of
the redundancy in the input in order to store it in information-
theoretically minimum space. Yet, efficient data processing re-
quires a separate index alongside the data, whose size often
substantially exceeds that of the compressed information. In this
paper, we introduce doubly opportunistic data structures to not
only attain best possible compression on the input data but also
on the index. We present R3D3 that encodes a bitvector of length
n and Shannon entropy Hy to nf bits and the accompanying
index to nHo(/2 + O(l°eC/c)) bits, thus attaining provably
minimum space (up to small error terms) on both the data and
the index, and supports a rich set of queries to arbitrary position
in the compressed bitvector in O(C) time when C' = o(logn).
Our R3D3 prototype attains several times space reduction beyond
known compression techniques on a wide range of synthetic and
real data sets, while it supports operations on the compressed
data at comparable speed.

Index Terms—succinct and compressed data structures, com-
pressed self-indexes, big data, packet forwarding

I. INTRODUCTION

Recently, the exponential growth of available electronic
information has created new challenges in data mining, ma-
chine learning, pattern analysis, and networking, as the sheer
volume of data to be stored, transferred, and processed online
has greatly surpassed the increase in memory, disk, and link
capacities of current computers and computer networks [1],
[2]. Space reduction for massive data processing applications
is an attractive choice to tackle these challenges, as storage
space is fundamentally related to the time it takes to process
data [3]. In fact, by making better use of cache and memory
levels closer to the processor, waiving the painful cost of disk
accesses, and utilizing processor-memory bandwidth more
efficiently, space reduction techniques can make processing
of unprecedentedly large quantities of data feasible even in
resource-constrained environments. Ultimately, the goal is to
store data in memory in a compact or compressed format and
still operate directly on it without any major performance hit
compared to a naive, uncompressed representation [4].

Succinct and compressed data structures are a relatively
new development in theoretical computer science that promise
with substantial decrease in the memory footprint of big data
operations, by storing sequential or structured static data in a
compressed but readily accessible, queryable, and manipula-

ble format [5]. Applications encompass essentially the entire
field of computer science, from space-efficient encodings of
ordered sets, sparse bitmaps, partial sums, binary relations,
range queries, and arbitrary sets supporting predecessor and
successor search [6]—[9], ordinal and labeled trees [6], [9]-[13]
and general graphs [6], [14], indexing massive textual data [5],
[12], [15]-[19], top-k document retrieval, suffix trees, arrays,
and inverted indexes in information retrieval systems [12],
[16], [19]-[22], point grid queries in computational geometry
[22] and genome compression in computational biology [23],
[24], all the way to key-value stores, log analytics, machine
learning, data mining, and big data applications [4], [25].

The cornerstone of these schemes is a compressed bitvector
representation that encodes an arbitrary bitmap in very small
space and, at the same time, implements some simple opera-
tions, namely access, rank, and select queries (see later), right
on this compactified format [6], [15], [17], [26]-[30]. Such
compressed bitvectors can then be used to build composite
data structures and construct complex queries on them [6].
As recently shown, for instance, such compressed bitvectors
can be used to construct a space-efficient representation for
Internet routers’ forwarding tables (FIBs) [31]. The resultant
compressed IP FIBs have been shown to squeeze the routing
table of a contemporary IPv4 router, counting beyond 500,000
prefixes, to a mere 70-200 kbytes of memory, while supporting
wire-speed longest-prefix matching right on the compressed
form.

Space usage of any queryable data structure boils down
to two elementary components: the space for storing the
data itself, plus some additional space for an index into the
data that guarantees fast access [25]. In this setting, the data
component constitutes the useful information and the index is
pure redundancy, whose size should be minimized as much
as possible. The first technique to attain worst-case-optimal
storage space on both the data and the index components was
the succinct bitvector and ordered-tree data structures due
to Jacobson [6] (but see also [15]). The memory footprint
was further reduced by Ferragina and Manzini, who intro-
duced opportunistic data structures that attain information-
theoretically minimal entropy-constrained storage space on
the data component [20]. Their data structures are called
(singly) opportunistic in that they can take advantage of the
compressibility of the input by decreasing the space occupancy
beyond the worst-case limit, at no significant slowdown in
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Figure 1: A sample bitvector.

query performance. A good example for such an opportunis-
tic compression approach is the RRR compressed bitvector
scheme due to Raman, Raman, and Rao [12], attaining nH
bits on the data and O(%) = o(n) bits on the index,
where n is the length of the input and Hj is the zero-order
empirical entropy [32], while supporting access, rank, and
select queries in optimal O(1) time. Today, the RRR scheme
serves as the major building block for space-efficient data
processing techniques, enjoying wide-scale use throughout the
entire spectrum of compressed information processing [12],
[16], [18], [19], [27], [29].

A major shortcoming of compressed information processing
is, however, that the storage size of the index can signif-
icantly outweigh (up to and beyond 8 times, [4]) that of
the data, taking a huge toll on the storage efficiency of data
compression and hindering engineering applications [27]-[30].
To address this limitation, in this paper we introduce the
concept of doubly opportunistic data structures, which, as
opposed to conventional opportunistic schemes that compress
only the data component, achieve information-theoretically
minimal entropy-constrained space both on the data and the
index at the same time. We present R3D3 (“RRR-Developed
Data structure for big Data”), which combines the storage
scheme of RRR for encoding the index and the Elias-Fano
compression method [15] for block-encoding the data, to attain
nHy +nHo(3 + O(%)) bits of space and random access
and rank queries in O(C) time and select in O(logn) when
C = o(logn) constant. R3D3 thusly not only attains provably
maximum compression (up to small error terms) on both the
data and the index, and hence qualifies as the first doubly-
opportunistic bitvector compression scheme, but it also allows
to realize many interesting engineering trade-offs between
storage space and query time by fine-tuning the constant C.
By comprehensive evaluations on synthetic data sets and a
real data corpus we show that R3D3 achieves from 2 up to
10 times smaller space than RRR while supporting queries in
similar, or slightly worse, performance.

The rest of the paper is structured as follows. In Section II
we review bitvector compression, in Section III we introduce
R3D3 and give a detailed space—time analysis, in Section IV
we present the results of our benchmarks, and finally we
conclude our work in Section V.

II. COMPRESSED BITVECTOR INDEXING

In this section we give an overview on succinct and com-
pressed data structures and we describe the RRR and the Elias-
Fano coding schemes in some detail.

A. Notations and Definitions

Let t be a bitvector with length n. The number of bits set
to 1 in ¢ is called the population (or popcount) and the ratio
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Figure 2: Sketch of the RRR encoding scheme.

of the population and n is the empirical probability p of 1s
in £. Our aim is to build a compact representation for ¢ that
supports the following queries efficiently:

e access(t,): return the é-th bit of ¢;

o rank,(¢,): return the number of occurrences of symbol

q in t[1,i];
« selecty(t,): return the position of the i-th occurrence of
symbol ¢ in t.

Consider the example in Fig. 1. Here, n = 16, p = 3/16 and
popcount(t) = 3, the query access(t,5) = 1 tells that the
bit at position 5 is set, rank;(t,8) = 2 gives the number of
bits set to 1 up to and counting the 8-th position, and finally
select;(t,2) = 7 indicates that the second set bit occurs at
position 7. Notice that rank and select are “dual” in that if
selecty (t,7) = m then rank; (¢,m) = i. Further, ranko(¢,4) +
rank; (¢,7) = 4 but the same does not hold for select.

A succinct encoding of t will store ¢t on worst-case minimum
n—+o(n) bits of space (the uncompressed representation would
need n bits and the error term o(n) vanishes asymptotically)
and implement access, rank, and select “fast” (preferably in
O(1)). The naive “bitmap” representation is not succinct in this
sense since it fails the second requirement; rank and select
would need a linear sweep through the bitmap, taking O(n)
time. A compressed encoding of t, on the other hand, reduces
the memory footprint beyond the worst-case limit, if the input
is compressible, to n Hy+o(n) bits, where Hy is the zero-order
empirical entropy (or the Shannon entropy) of ¢:

<1,

1—-p—

without any performance penalty on the performance of
queries. Note that all our logarithms are base 2. For brevity’s
sake, we shall mostly omit rounding our logarithms to integers
in the forthcoming analyses wherever this does not affect the
validity of the results.

1
Hy =P10g]; + (1 — p)log

B. A Scheme due to Raman, Raman, and Rao

Raman, Raman, and Rao introduced the first compressed
data structure for bitmaps, usually referred to as RRR, that
solves access and rank queries in constant time [12]. In this
paper, we describe a modified encoding due to Navarro and
Providel [30], which, although needs slightly worse O(logn)
time for queries, proved much more space- and time-efficient
in practical implementations [33].

RRR comprises a block-coding component to encode the
useful data and an indexing scheme to support queries to
the blocks [27]-[30]. The structure partitions ¢ into blocks



b1,by,... of size b = 10% bits (see Fig. 2 for an illustra-

tion). Each block b; is encoded with a pair (¢;,0;), where
¢; = popcount(b;) is the class of b; and o; is the offset,
or the combinatorial rank, of b;, defined as the sequence
number of b; in some fixed enumeration (e.g., lexicographic
order) of all combinations of exactly ¢; occurrences of 1s on
b bit positions [34]. Storing ¢; needs log(c; + 1) bits and o;
needs log (fl), so the block codes (the data component) take
> log(c; + 1) +log (f) = nHo + O(1;5;) bits overall [35].

The indexing scheme in turn groups every consecutive log n
blocks into a superblock. Then, for each superblock the index
stores the starting positions for the block-codes inside it
and the cumulative rank up to the superblock’s beginning,
plus, for each block, the corresponding block-code’s starting
position and the rank at the block’s beginning, both relative
to the superblock that contains it. Cumulatively, this indexing
structure needs O(%) = o(n) bits of space.

Answering access(t, i) works as follows. As superblocks
and blocks span constant number of bits in ¢, ¢ uniquely
determines the superblock and the block that contain position
i. We follow first the superblock pointer and then the block
pointer to reach the block-code for the corresponding position,
this can be done in O(1) time. From this point, decoding a
block (the so called combinatorial unranking operation) takes
O(b) = O(logn) time [30], [34], [36]. Solving rank goes
similarly, but this time we also add up the superblock’s and
block’s rank counters along the way, which, together with
the time to unrank the block, takes O(logn) time. Finally,
select binary-searches over superblock and block ranks, again
in O(logn) time.

Experimental studies show that the O(%) bits size
of the index, although asymptotically small, may outweigh
the data components’ size nH, substantially, especially for
low-entropy input [27]-[30]. Correspondingly, many schemes
eliminate block-code pointers and rank counters from inside
the superblocks, which tends to save a lot of space at the
cost of degrading block access and rank to a linear search
over the blocks of the superblock, making queries slow. This
scheme is usually referred to as, somewhat confusingly, the
unindexed version of RRR, to distinguish it from the above
described version (with explicit block pointers and ranks inside
superblocks) that is called indexed RRR.

Today, RRR is a popular tool amongst theoreticians and
practitioners and constitutes a fundamental building block for
compressed indexes of complex structured and unstructured
types of information, like trees [13], strings (wavelet trees,
[16]), or IP forwarding tables [31]. Practice has shown,
nevertheless, that RRR exhibits a brittle space—time trade-off:
meaningful storage space reduction can only be realized at the
price of sacrificing precious query performance, like adopting
larger block sizes [30] or swapping indexed-RRR to the much
slower unindexed version [33].

C. The Elias-Fano scheme

Elias-Fano coding has been proposed in [15] to store a
bitvector ¢ in nHy + o(n) space and answer select; queries
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Figure 3: Elias-Fano encoding scheme: (a) MSB bucketing on
the characteristic vector (5,7,13), and (b) EF encoding.

O(1) time, with no support for rank and access. Herein, we
describe an alternative scheme EF that attains nHy + o(m)
bits of space and needs O(m) for access, select, and rank,
where m = popcount(¢) (see also [12], [22], [25], [27], [37]).

The idea of EF is to encode the characteristic vector
{z1,22,...,2m} of t, where z; = select;(t,i) : i €
{1,...,m}, instead of ¢ itself. EF uses a technique called MSB
bucketing: group x;s according to the most significant logm
bits into buckets, store the | = logn — logm = log - lower-
order bits for each x; verbatim in an array (called the Lower-
bits Array, LBA), and store the significant bits as a sequence
of unary encoded gaps in another array (the Upper-bits Array,
UBA) as follows: for each bucket write down as many 1s as
there are x;s in the bucket followed by a 0.

Perhaps an example is in order here. In Fig. 3, z; = 5,
22 =7 and x3 =13, n =16 and m = 3, so | = [log16/3] =
2. This means that the LBA will contain the lower [ = 2 bits
of each x; verbatim. Further, the bucket size is 2! = 4, and
so the number of x;s in each bucket is 0, 2,0, 1, whose unary
encoding gives the UBA: 0110010 (the last O can be omitted).

Storing the m elements of the LBA takes m log - bits while
the UBA needs 2!°¢™ +m = O(m) bits, as there are as many
Os as there are buckets plus m bits set to 1 for each x; in
i € {1,...,m}. Finally, we need an additional logm bits to
store m, which we omit here for reasons that will be made
clear later. The overall size of EF is mlog - + 2logm 4 =
nHy 4+ O(m) bits, where the data component (the LBA) takes
nHy bits and the index (the UBA) takes another O(m).

Now, answering access(t,i) goes as follows. First, we find
the bucket ¢ that contains position i: ¢ = 2%, then we find
the run of 1s in the UBA that corresponds to the g-th bucket:
z = selecto(UBA, q); we observe that there were exactly z—gq
occurrences of 1s in the UBA before position z so we scan
the LBA leftward from position (z — ¢)I, decoding at most 2!
elements z; of the characteristic vector; if for some z; = ¢
then the result of the query is 1, otherwise 0. For instance,
access(t,6) = 0 in Fig. 3, as position 6 is in the second bucket
thus the MSB is 01, ¢ = selecto(UBA, 2) = 4 so up until the
end of the second bucket there were 4—2 = 2 bits set to 1, and
decoding the LBA from the second entry leftward, combined
with the MSB 01, yields first 7 and then 5, at which point



we know the answer is 0. This goes in O(m) time, as just
answering the first select query may require a linear search
on the UBA in the worst case. Note that adding another O(m)
bits would guarantee O(1) random access [22], [37], but we
disregard this option here as it would double the index size.
Solving rank goes similarly, while select is by binary search
over the UBA and the LBA, again in O(m) time.

When compared to RRR, EF usually yields larger encoded
size. At the extreme, for p = 0.5 EF uses 1.5n bits, a whopping
50% overhead. Furthermore, the somewhat rigid structure of
EF does not provide too much in the way of the space—time
trade-off like the one we have seen for RRR. Then again, EF
can be very fast depending on the input ¢, as queries take only
O(popcount(t)) steps; this can be a massive win, e.g., for
small-entropy input. Our compressed bitvector data structure,
R3D3 to be presented next, heavily builds on this property.

III. A DOUBLY OPPORTUNISTIC DATA STRUCTURE

In summary, both RRR and EF are opportunistic data struc-
tures that realize significant space savings in the data encoding,
with EF yielding potentially faster but larger encodings than
RRR. Could we somehow combine RRR and EF into a
compressed bitvector scheme that would somehow display the
advantages of both simultaneously?

In this section we answer this question in the affirmative. We
propose R3D3, a combination of RRR and EF that, in contrast
to conventional singly-opportunistic encodings that compress
only the data component, attains entropy-constrained size on
both the data and the index. Thus, we call R3D3 a doubly
opportunistic data structure.

A. R3D3

So how can we combine the advantages of RRR and EF?
First, RRR’s indexing scheme gives very fast O(1) access to
block-codes and block-ranks, so we definitely want to keep it.
It also offers an elegant way to tune the space—time trade-off:
The RRR index size is chiefly shaped by the block size b; the
larger the block size the fewer blocks we need, and hence the
fewer the costly block pointers and block-ranks. Since these
dominate the size (taking O("/logn) bits when b = logn),
increasing blocks will go to great lengths to save memory on
indexing. Unfortunately, this cannot be done with RRR for
free, as the access and rank execution times are dominated
by the block-coding component’s running time O(b).

But what if we substitute the block-coding component with
EF? After all, decoding a block b; requires only O(c;) steps
with EF where, recall, ¢; is the class of b;: ¢; = popcount(b;),
in contrast to the O(b) time complexity of combinatorial
unranking; in other words, EF’s efficiency depends funda-
mentally on the number of 1s in a block and not the block
size itself. Hence, we can safely increase the block size
b to save space on RRR’s indexing until we reach block-
coding execution-time parity with RRR, which occurs when
popcount(b;) = O(logn). At this point our larger blocks will
contain as many 1s as the default block size O(logn) of RRR
and so both will need O(logn) steps for block-decoding, but

RRR =
indexes & - -+ ¢ | EF-coded block| ---
ranks

UBA|0|1]|1|0]0]|1
LBA[O|1]|1]1]0]1

Figure 4: Sketch of the R3D3 encoding scheme, with a
single 16-bit block and the corresponding EF block-code. The
pointers and rank counters and the block classes are encoded
in the RRR index, while the blocks are encoded with EF.

we gain significant space on the indexing, thanks to the large
blocks. Then again, EF-coded blocks will be slightly larger
than in RRR, but the gross space reduction we earn on the
index will, hopefully, amply compensate for this loss.

This is the main idea of R3D3: we keep the indexing
structure of RRR but we swap the block-coding component
for the much more efficient EF. Then, we can increase blocks
way beyond what RRR would admit, without major penalty
on query times. The basic structure of R3D3 is given in Fig. 4.

Building the R3D3 encoding goes very similarly to how it
happens with RRR, just the block-coder is now EF instead of
combinatorial ranking/unranking. First, we divide the input ¢
into superblocks of size s and blocks of size b (we set these
parameters later), build the RRR index, encode the class c; for
each block b; directly and then invoke EF to encode b;. Note
that the input to EF is now the block b; and the length equals
b. Additionally, the number of 1s in b; (the input parameter
m) is exactly ¢;, so we do not need to store it separately in
EF. To control ¢; and get better compression we do the usual
trick that if popcount(n) > % then we encode the inverse of
t instead of ¢. In fact, in our implementation we do this trick
block-wise [33], which yields p < % and ¢; < %

In fact, R3D3 adopts a scheme we call duplicate indexing;
it first invokes the RRR indexes to find the starting position
for each block, then looks up the UBA to index the relevant
entries in the LBA, and finally only a few LBA entries need
to be directly decoded. As the analysis in next section reveals,
this duplicate indexing scheme yields a highly space- and time-
efficient compressed bitvector data structure.

B. Analysis

We fix the superblock size at s = blogn, like in RRR (see
the proofs in the Appendix for the reason); the block size b
will be determined later. With this parameter setting, the result
below gives the storage space and the query times for R3D3.

Theorem 1. Let t be a bitvector of length n, let p =
popcount(t)/n, let Hy be the zero-order empirical entropy of



t, and fix the block size at b. Then, encoding t with R3D3
needs at most

nHy + np + % (24 3logb + 2loglogn)

bits and supports access and rank queries in expected O(pb)
time and select queries in O(logn) if pb = o(logn).

We give the proof of Theorem 1 through a sequence of
technical Lemmas; for clarity the proofs of the Lemmas in
turn will be relegated to the Appendix.

The below Lemma characterizes the encoded size M; of
the RRR index structure that we embed into R3D3.

Lemma 1. The RRR index needs M; = %(2 + 3logb +
2loglogn) bits.

My is of course the redundancy in R3D3. Next, we give the
size of the EF-coded blocks, Mp.

Lemma 2. The EF-encoded data needs Mp = nHy+np bits.

Finally, the query execution times stated below for R3D3 are
as follows: for access(t,4) locating the beginning of the EF-
coded block that contains position ¢ and identifying the class
take O(1) time, to which block-decoding adds another O(pb)
for the “average” block. The same holds for rank(¢,4), while
select(t, ) goes with binary-searching superblock and block
ranks in O(logn) time and then decoding the block, again
in expected O(pb) time. The total time O(logn) + O(pbd) is
dominated by the binary-search as long as pb = o(logn).

Lemma 3. Answering access and rank queries on the R3D3
representation needs expected O(pb) time and select goes in
O(logn) as long as pb = o(logn).

This completes the proof of Theorem 1. What remains to
be done is to fine-tune the block size b. This needs to be done
very carefully; increasing b makes for smaller index M; and
hence smaller overall size (the data part Mp is by and large
independent of b), but increasing b too much deteriorates query
time. We need to strike a fine balance between space and time
here, one that results in entropy-constrained size for both Mp
and M but still does not ruin query performance.

We introduce a new parameter C' = pb, which can be
broadly interpreted as the “average” popcount of blocks. Of
course, C' > 1 to ensure that there is at least one bit set
in each block. Thus, b = C/p and we immediately get the
execution times for access and rank as O(pb) = O(C). Then
again, C' must not be too large, that is, beyond O(logn),
otherwise select suffers. This gives the useful range C' > 1,
C = o(logn). The following result summarizes these findings.

Theorem 2. Let t be a bitvector of length n and entropy Hy,
and let C > 1, ¢ = o(logn). Then, encoding t with R3D3
needs at most

bits and supports access and rank in expected O(C') time and
select in O(logn).

Again, consult the Appendix for the proof.

C. Discussion

We close this Section with some remarks on R3D3.

First, R3D3 achieves entropy-constrained space on both
the data and the index (up to a small error term for the
index): the RRR index and the UBA components in the block-
codes, which, as per duplicate indexing, together make up
the R3D3 index, need nHy (1/2 + O (leeC/c)) bits of storage
space, while the data component (the LBAs) uses another nHy
bits. As far as we are aware of, R3D3 is the first such doubly
opportunistic compressed data structure.

Second, the above space bounds are strictly of worst-case
nature, in that there are much tighter upper bounds than what
we used in Theorem 2. Since nHy + np < %nHO when p
is sufficiently small, the space bounds can be improved to
nHy+nHyO (logC/c) bits if p < 0.169, a substantially tighter
space characterization for low-entropy input.

Third, tuning constant C' opens the door to a wide spectrum
of space-time trade-offs. At one extreme, when C' = 1, i.e.,
when there is only a single bit set per block on average, we
get very fast O(1) access and rank at the cost of a somewhat
largish nHy (3/2 4+ O(1)) bits memory footprint, an overhead
of ~ 50%. This is because EF-coded blocks are slightly
larger than RRR’s blocks. On the other hand, increasing C'
will result larger blocks and less overhead for indexing; when
C = O(logn) we get execution-time parity with RRR with
much smaller nHy(3 + O (leglogn/ogn) bits indexes.

Finally, we observe that our results are in line with the lower
bounds of [26], stating that we need Q(lolgol#) bits index to
implement rank in O(1). R3D3, however, gives O(1) index
size in this setting.

IV. NUMERICAL EVALUATIONS

Next, we turn to present a comprehensive set of experimen-
tal results to evaluate the space- and time-efficiency of R3D3.
For this purpose, we created a proof-of-concept prototype on
top of the Succinct Data Structure Library (SDSL, [33]), a
powerful C++ template toolkit with comprehensive support for
the state-of-the-art in compressed data structures. Stock SDSL
offers only the unindexed version of RRR, therefore we created
3 additional C++ template classes on top of SDSL: indexed
RRR plus indexed and unindexed versions of R3D3. In the
rest of this section RRR and R3D3 will refer to the indexed
versions. The R3D3 block-coding routines, furthermore, use
the EF optimizations as described in [37]. The code is available
at [38].

The two dimensions of interest are the compressed size
and performance of queries for RRR and R3D3. We used
the CPU’s RDTSC register, holding the actual snapshot of the
program counter, to measure execution times with (close-to)
cycle-level precision. The experiments were conducted on a
Linux PC, Intel Core i3 CPU @ 3.3GHz with 4Gbyte of RAM.
Block-coding. The goal of our first experiment is to validate
our choice for EF instead of RRR’s combinatorial rank-
ing/unranking scheme to encode blocks. Recall, this choice
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limit, as the function of p.

: : : 12 : :
500 | RRR —t— 500 | J o RRR —f—
g e b3 P oL BE
S 400 [ R3D3_256 —+ S 400 S 1100 R3D3_256 ———
© o ©
g 800y E %0 £ 1000 S
c c c
£ 200 g 200 g ] o
3 3 RRR —— 3 w
L 100 ] 100? R3D3_32 —<— 2 900 sy B *Eﬁ:’:}%
w L w
RR%D3_64 K-
3D3_256 ——
0 ‘ ‘ 0 ‘ e 800 ‘ ‘
0.001 0.01 01 05 0.001 0.01 01 05 0.001 0.01 01 05
p p p
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was made because EF supports all basic block-operations in
O(popcount(b)) time as opposed to O(b) for RRR, where b is
the block size, at the cost of slightly bigger block-codes. Note
that the population of the block does not alter the relation
between EF and combinatorial encodings.

We made 1 million trials, each time with a new random
block generated by setting each bit to 1 independently with
probability p = 0.1. Fig. 5 gives the average time to make a
random access to the encoded blocks and Fig. 6 compares the
average size of block-codes, as the block size increases from
16 to 128.

We observe that EF block-coding is indeed much less
sensitive to the block size; while R3D3 needs only 3 times
as much time to access a 128-bit block as for a 16-bit block,
this factor is 25-fold with RRR. Furthermore, R3D3 produces
only slightly larger blocks than RRR and both are comfortably
close to the entropy bound (that RRR beats the entropy limit is
not surprising, as combinatorial ranks are a maximally space-
efficient universal code, plus our results do not account for the
storage size of the class bits c;). This seems a price it is well
worth paying for more efficient block-(de)coding at higher
block sizes as the reduced indexes will greatly compensate
for this loss, as revealed in our next experiments.

Random synthetic bitmaps. For this experiment we stay at
random bitmaps as input, but now we evaluate RRR and R3D3
en bloc, not just the block-coding components as previously.

Figure 9: Average time of a random
rank query on random bitmaps.

Figure 10: Average time of a random
select query on random bitmaps.

We generated 1 Mbit random bitmaps with increasing p from
0 to 1/2 and we evaluated space and time characteristics of our
compressed bitvectors; Fig. 7 gives the size and Fig. 8, Fig. 9,
and Fig. 10 give the execution time for access, rank, and
respectively select queries to random positions, averaged over
10 trials. We repeated the experiments for R3D3 at different
settings for the block size: b = 32, b = 64, and b = 256, while
for RRR we used the default setting b = 16.

On the storage size front, R3D3 exhibits huge gains over

RRR. Even at b = 32 we already see two-fold reduction, while
the setting b = 64 yields fourfold and b = 256 a whopping
4-10-fold improvement. At this point, R3D3 compresses very
close to the entropy limit. On the other hand, the performance
figures are slightly worse with R3D3; access is at most 20%
and rank is at most 23% faster with RRR than with R3D3
when the block size is 32, the figures are 30% for access and
35% for rank at b = 64, and 30-70% on access and 10-60%
on rank at b = 256. The performance difference manifests
itself only on a limited regime of inputs and in the majority
of the examined cases RRR and R3D3 produced remarkably
similar performance figures. Finally select times are slightly
better with R3D3, especially at larger block sizes.
Real data. We repeated the previous experiment, but this
time over real data taken from real-life applications. For the
first experiment we collected bitmaps from various sources of
everyday engineering practice:



Table I: Comparison of RRR or R3D3 on real bitmaps: sample name, size, and entropy bound (nHj); and compressed size and
average execution time of random access and rank queries. Sizes are in Mbytes (MiB) and times in number of CPU cycles.

RRR R3D3_32 R3D3_64 R3D3_256
Name Size | Entropy Size | Access | Rank Size | Access | Rank Size | Access | Rank Size | Access | Rank
fax 0.49 0.19 0.86 106 205 0.56 112 256 0.37 125 267 0.2 210 328
bmpl 4.15 1.16 7.1 90 142 4.40 96 160 2.68 97 176 1.23 149 238
bmp2 4.15 1.69 7.46 121 223 4.99 141 278 3.34 150 290 2.06 236 357
zip 0.011 0.011 | 0.025 223 300 | 0.023 240 336 | 0.019 265 348 | 0.017 365 456
caida_4 3.38 0.19 5.6 82 145 3.28 87 195 1.84 95 243 0.62 146 328
caida_8 1.08 0.14 1.81 89 176 1.08 97 238 0.63 102 279 0.25 172 345
caida_16 0.34 0.09 0.58 104 211 0.37 114 282 0.23 124 297 0.11 209 354

Table II: Comparison of RRR or R3D3 on real textual data: sample name, size, and entropy bound (nHj); and compressed
size and average execution time of random access and rank queries. Sizes are in Mbytes (MiB) and times in number of CPU

cycles.
RRR R3D3_32 R3D3_64 R3D3_256
Name Size | Entropy Size | Access | Rank | Size | Access | Rank | Size | Access | Rank Size | Access | Rank
shakes | 0.119 0.068 0.18 3860 | 1495 | 0.17 3402 | 1614 | 0.14 3473 | 1639 | 0.115 4477 | 1802
scifi 0.733 0.401 1.04 3619 | 1523 | 0.97 3219 | 1625 | 0.79 3280 | 1658 0.65 4201 1809
bible 3.86 2.06 5.26 3451 | 1504 | 4.83 3094 | 1632 | 3.99 3156 | 1655 3.26 4021 1806
chr7 10 25 6.61 1518 771 5.9 1427 825 | 4.79 1441 836 3.88 1840 915
chr22 3.73 0.92 2.45 1523 778 | 2.17 1427 829 | 1.77 1433 841 1.42 1825 913
coli 442 1.11 2.75 1482 769 | 2.57 1379 822 | 2.14 1403 839 1.77 1813 923
euler 1.91 0.79 2 2623 | 1146 | 1.83 2378 | 1210 | 1.51 2404 | 1238 1.23 3077 | 1368
pi_1M 0.95 0.39 1.02 2640 | 1159 | 0.93 2401 1208 | 0.76 2430 | 1241 0.62 3107 | 1360
pi_10M 9.54 396 | 10.23 2643 | 1161 | 9.28 2403 | 1229 | 7.62 2429 | 1242 6.19 3103 | 1357

Table III: Comparison of RRR or R3D3 on routing tables: sample name, number of prefixes, and entropy bound as of [31];
and compressed size and average execution time of random FIB lookups. Sizes are in Kbytes (KiB) and times in CPU cycles.

RRR R3D3_32 R3D3_64 R3D3_256
Name #Prefixes | Entropy Size | Lookup Size | Lookup Size | Lookup Size | Lookup
hbone-szeged 453,685 70.1 | 172.7 11468 | 145.8 9092 | 116.7 10444 93.2 14724
access_d 403,245 149.1 | 226.1 10828 | 193.7 9576 | 155.4 10268 | 123.8 13492
access_v 2,970 1.08 7.6 5672 74 5448 6.6 6772 6.4 7796
mobile 4,391 1.32 3.7 6760 3.8 6488 3.6 7260 35 7588
hbone-vhl 453,741 222.6 | 4185 9248 362 7600 | 293.7 7556 | 238.1 9264

fax: 1728x2376 bitmap image of text and diagrams from
the Calgary Corpus [39];

bmpl, bmp2: bilevel bitmap images scanned at 600dpi;
zip: US ZIP codes in bitmap format, 1 marks a valid
and 0 marks an invalid ZIP code;

caida_4, caida_8, caida_16: adjacency matrices
of the 4, 8, and 16-core of the Internet AS-level map in
bitmap format, as obtained from CAIDA on 2014-06-01.

The results are given in Table I. The first surprising observa-
tion is that not just that RRR does not reach the entropy limit
but it completely fails even the uncompressed size. This is due
to the excessive size of the index that we need to store to allow
queries into the compressed data. R3D3, on the other hand,
attains at least the uncompressed size at b = 32, improving on
RRR by a factor of 2 in most cases. Increasing the block size
to 64 then decreases the size by another factor of 2, while at
b = 256 R3D3 gets very close to the entropy limit, improving
over RRR by around a factor of 8. Meanwhile, the performance
of queries with R3D3 remains comfortably close to that for
RRR: at b = 32 the access execution times are on par and

rank is at most 30-40% slower, while at b = 256 we get
roughly half the performance of RRR. Recall, this is in return
to about 8 times smaller size.

We repeated the experiments with fextual data, this time
compressing the input using Huffman-shaped wavelet trees
[16]. Since a wavelet tree is essentially just a collection of
bitmaps organized into a tree structure and access and rank
queries translate to those on these bitmaps, wavelet trees nicely
exercise the underlying bitvector encoders. The inputs:

e shakes, scifi and bible: excerpts from Shake-
speare’s plays, a science-fiction novel, and the Bible, all
in English;

e chr7, chr22, and coli: genome sequences from the
human Chromosome 7 and 22, and E-coli bacteria, down-
loaded from the UCSC Genome Browser [40];

e culer, pi_1m, and pi_10m: first 2 million digits of
the Euler constant, and 1 and 10 million digits of .

The results are in Table II. It seems that on real text inputs
random access is consistently faster with R3D3 than with RRR
at moderate block sizes while rank performance is similar, and



even at b = 256 we see only a minor performance hit. This is
most probably due to the larger inputs and thereby CPU cache
performance dominating query times. Interestingly, access ran
slower than the more complex rank queries.

This experiment spectacularly highlights the benefits of
data compression for operating on large quantities of data:
it simultaneously delivers significant space savings over an
uncompressed representation and implements fast operations
on the content, permitting powerful queries of the type “How
many times digit 5 occurs in 7 until the 500, 000-th position?”
(ranks(m,500000)) or “Which is the 500-th valid ZIP code?”
(select (zip, 500)), which a naive uncompressed representa-
tion does not even support out of the box.

These observations are further confirmed by our experi-
ments on real Internet forwarding tables (see Table III). We
used the XBW scheme of [31], a pair of a bitvector and a
wavelet tree that together encode a prefix tree, to compress real
FIB instances taken from operational Internet routers. Again,
R3D3 approaches the entropy at larger block sizes and beats
RRR multiple times, and it supports longest-prefix matches
faster than the RRR-based encoding at roughly 5 times the
speed as reported in [31].

V. CONCLUSION

Throughout the recent years, compressed data structures
have gained wide-spread adoption in information retrieval,
computational geometry, bioinformatics, networking, and big
data. This is on the one hand due to their potential for making
it possible to operate on unprecedentedly huge instances of
data and, on the other hand, because they support much more
complex queries to the compressed data, like rank and select,
with zero performance impact. In many cases compression
creates a win-win situation, as the memory footprint of large
bodies of information can be freely decreased and meanwhile
processing may even get faster, thanks to the data drifting
closer to the CPU in the cache hierarchy.

In this paper, we have proposed R3D3 as a new tool for
compressing and indexing bitvectors. R3D3 is, in contrast
to previous work, doubly opportunistic, in that it realizes
substantial space savings on the compressed data and the
index alike. Furthermore, it allows to strike a fine space-
time balance as required by the application at hand, with
a smooth transition between the extremes. We have shown
that most benefits already manifest themselves at moderate
block sizes, realizing several times smaller encodings at only
a slight performance impact compared to the state-of-the-art
compressed bitvector scheme, RRR. At the extreme, for very
large blocks R3D3 may provide 10-fold space reduction over
uncompressed data and over RRR, in exchange of at most
50% performance penalty. Notably, on real data R3D3 proved
faster than RRR. And because underlying most data indexing
schemes, like compressed text indexes or compressed labeled
trees, there is a bitvector data structure behind the scenes,
the benefits of R3D3 also appear when compressing complex
information, like small entropy textual data or genomes.
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APPENDIX

Proof of Lemma 1: The following metadata are stored
in the RRR index for each superblock ¢ and each block j:

o P;: the address of the ith superblock;

e R;: cummulative rank up to the ¢th superblock;

e L;j;: relative address of block j inside superblock ¢;

e (Q;;: relative rank of block j inside superblock i;

o K;;: the block class ¢; = popcount(b;).
Both P and R require % log(n) bits, K needs 7 log(b) bits,
while L and @, both holding values relative to the containing
superblock, can use log(s) bits per block. In total

M1:2%logn+%logb+2%10gs )
b log b

=22 (Z1ogn + 222 L10gs) . 3)
b \'s 2

Now, (2) gives a useful hint on how to select the superblock
size: introducing the notation x = g we see that (2) is minimal
an

where 55 b
1

og7 and hence for the superblock size s = blogn. With this
setting, we get M1 = n/b(2+3log(b)+2loglogn) as required
by the claim of the Lemma. ]

Proof of Lemma 2: First, we observe that instead of
calculating the space occupancy of each block b; one by one,
it is enough to deal with the size of an “average” block with

(m logn + % + log g) = 0, which gives = =

¢ = pb (the proof is trivial using Jensen’s inequality, we omit
the details). The UBA stores a bit for each bucket plus another
bit for each bit set in the block, yielding 2!°8 ¢ 4 ¢ = 2log 0= 1.
c= 2% + ¢ bits overall, while the LBA consists of ¢ elements,
each of [ bits. Summed up for each of the 3 blocks:
n(b _
MDb(21+c+lc)n(2 +p+pl) . ()
Recall that the choice for parameter [ is elemental in EF;
usually [ = |log 2|. First, to demonstrate the main idea of the
proof we give the treatment for the simplified case when we
omit rounding to integers, then we discuss how to handle this
discrepancy. Letting [ = log b — log ¢ firstly yields

b 1
MD—n(Z+p+plogc>—n<p+p+plogp) (5)
1 1
gn(er(lp)logl_erplogp) =np+nHy , (6)

by that p < (1 —p)log(7%;) if p € (0, 3], as requested.
Secondly, taking care of integrality [ = |log 2] and using
that % = %, we write:

1
MDn<2_U°géJ+p+pbogJ) . 7
p

To prove the statement, it is now enough to show that (5) is
larger than, or equal to (7), or, equivalently, that the difference

277 +ap— (271 + [2]p)

is non-negative, where we used the shorthand z = log(ll)).
Clearly for 0 < z < 1 the difference equals 277 4+ zp — 1,
which is always positive as 277 > 1 in this range and = and
p are positive. Next, we will show that f(z) =2"F +zpis a

decreasing function of x for x > 1. Substitute p = 27" to get
fl@)=2""4227"=2""(1+x)

Finally, we need to show that the derivate is negative:

0

% — 27" — 2 (14 2)In(2) =27(1 — (1 + 2) In(2)).
T

Clearly, 2% is positive and 1 — (1 + x)In(2) is negative for

x> ﬁ — 1= 0.44. This completes the proof. [

Proof of Theorem 2: We only need to show that
M; + Mp is as required. Write M; = 2 + 3]ogh +
27” loglogn and substitute b = % to get 2%” + 3%” log% +
222 Joglog n. Using that p < 1
2p < Hy, we write for the first component 2%" < nHO%,
& (3plog% + 3plog C) <
&3Ho + &3plogC = nHOO(IO%C), and for the third
&2ploglogn = &2pO(log C) (by that C' = O(logn)) and
thus nHOO(%) using the same substitutions as before.
Thus, M; = nHoO(*%€) and Mp = nHy + np <
nHy + %nHO, yielding the overall size M; + Mp = nHy +

nHy (% + O(%)) bits, which completes the proof. [ |

and so plog% < Hy and

3np c
for the second “F-log > =




