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Abstract—For IP to evolve into a true carrier-grade transport
facility, it needs to support fast resilience out-of-the-box. IP-
level failure protection based on the IP Fast ReRoute/Loop-Free
Alternates (LFA) specification has become industrial requirement
recently. The success of LFA lies in its inherent simplicity, but
this comes at the expense of letting certain failure scenarios
go unprotected. Realizing full failure coverage with LFA so far
has only been possible through completely re-engineering the
network around LFA-compliant design patterns. In this paper,
we show that attaining high LFA coverage is possible without
any alteration to the installed IP infrastructure, by introducing
a carefully designed virtual overlay on top of the physical
network that provides LFAs to otherwise unprotected routers.
Our main contribution is formulating the corresponding Resilient
IP Overlay Design problem and providing constructions that can
achieve full failure coverage against single link failures by adding
at most 4 virtual nodes to each physical one. We also show that
the problem of finding the minimal number of virtual nodes
achieving full failure coverage is NP-hard, and thus propose
heuristic algorithms that are guaranteed to terminate with a
fully protected topology in polynomial time. According to the
numerical evaluations the performance of our algorithm is on
par with, or even better than, that of previous ones, lending
itself as the first practically viable option to build highly resilient
IP networks.

Index Terms—IP Fast ReRoute, Loop Free Alternates, re-
silience, network optimization

I. INTRODUCTION

The Internet is quickly becoming the main bearing platform
for converged telecom services. For the Internet Protocol (IP)
suite to become a real carrier-grade transport infrastructure,
however, it needs to deliver five-nines availability, the key
to which is fast convergence from link and device failures.
Historically, the IP control plane adopts a sluggish restoration
mechanism to handle outages, according to which the Interior
Gateway Protocol (IGP), upon detecting a topology change,
advertises the altered network state throughout the routing
domain, re-computes shortest paths at each router, and then
downloads the new forwarding state into the data plane. This
process, while robust and easy to configure, is lengthy.

Focusing on this problem IETF founded the IP Fast Re-
Route Framework (IPFRR) [1], which is based on two prin-
ciples, local re-routing and the use of pre-computed sec-
ondary next-hops. Unfortunately, IPFRR today does not come
equipped with a practical and deployable implementation that
would provide an all-out solution. What the basic IPFRR spec-
ification recommends instead, and what most router vendors
implement [2]–[6], is Loop-Free Alternates (LFA, [7], [8]),
whereby the IGP attempts to find a secondary next-hop that

protects against the failure of the default shortest path. The
main reason behind LFA’s popularity is it’s simplicity. First, it
does not require any protocol modification that makes it easier
to deploy. From the operator’s perspective the implementation
is rather easy too, and after upgrading all the routers the
network itself can remain intact. The price of this simplicity is,
however, moderate protection level; in general, LFA protects
only 50-80% of single link failures, and node protection is
poorer [9]–[11]. Alternatives to LFA that would provide 100%
failure protection [9]–[17], unfortunately, could not yet gain
sufficient adoption from standardization bodies, router ven-
dors, and network operators, due to the implied management
burden and the breaking of the incremental deployment path.

In order to realize high protection coverage with LFA,
currently operators need to change the very physical network
topology or straight out rebuild it from scratch [8], [18],
[19] or, alternatively, re-engineer the default forwarding paths
by re-computing the IGP link costs [20], [21]. Both of
these approaches, unfortunatley, require significant network
operations and managenment intervention and conflict with
long-term traffic engineering goals. Meanwhile the IETF has
published a tunnel-based extension of the basic LFA method,
called Remote LFA (rLFA) [22] that increases LFA efficiency
but still does not guarantee full protection. Consequently,
there is a compelling industrial motivation to find LFA-based
network optimization techniques, which promise with boosting
LFA failure case coverage with minimal or no alterations
to the installed IP infrastructure, until more efficient IPFRR
mechanisms eventually become commonly available.

In this paper, we show that improving LFA failure case
coverage is feasible without touching the physical topology
and the forwarding paths in any ways, or requiring any new
features from the IP data and the control planes that are
essentially fixed by what is available in commercial network
gear today. The idea is to intervene at the management plane
by taking advantage of router virtualization, a technique for
sharing a single IP routing device between multiple virtual
routing instances. Instead of altering the original network itself
the idea is to create virtual nodes over the physical substrate, a
so called resilient IP overlay, to provide “virtual LFAs” for the
physical nodes that would go unprotected otherwise. Thanks
to today’s router design, logical instances can easily share
the same physical hardware and can behave like completely
different devices. Adding virtual (also called “fake”) nodes
and links to an underlying link-state routing protocol is a well
recognized technique to implement new functionalities, such
as to enable better load balancing, traffic engineering, and
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backup routes [23]. Our resilient IP overlays also borrow from
the tunnel-based IPFRR mechanisms and LFA extensions [13],
but instead of defining a new control plane protocol we rather
only “emulate” tunnels, by a suitably provisioned overlay,
intervening solely at the management plane.

The significance of this delegation of the responsibility for
IP fast resilience optimization from the control plane to the
management plane is not to be dismissed; current IP devices
come with the control plane protocols deeply embedded into
the hardware and software and despite ongoing efforts to
separate the two, like in Software-defined Networking [24] or
the ForCES framework [25], this will continueue to be the case
for the coming years in many transport and service provider
networks. Therefore, most efforts to modify basic IP control
protocols have gone unsuccessful for years due to network
operators being reluctant to ditch expensive IP network gear
(the phenomenon often referred to as “the ossification of the
Internet” [26]).

The main question is now how to provision the virtual
overlay in a way as to maximize LFA coverage. Special
attention must be paid to leave the default forwarding paths,
often carefully engineered beforehand to reflect crucial oper-
ational concerns [27]–[29], intact. In addition, as a failure of
a physical link or node results the failure of its virtual links
or nodes we also need to account for local Shared Risk Link
Groups (SRLGs), collections of out-links at each node which
are likely to fail jointly, for which LFA currently has scarce
support for.

As the main contributions of the paper, we formulate the
resultant Resilient IP Overlay Design problem as a network
optimization problem in a concise mathematical framework
and we provide upper bounds on the amount of virtual devices
needed and close most of the related algorithmic questions.
• We show the problem is always feasible for 2-connected

topologies and full LFA coverage can always be achieved
by adding virtual nodes.

• We provide constructions to achieve full LFA coverage
in 4- (and 2)-connected graphs by adding 2 (or 4) virtual
nodes to each physical node.

• We show that even this sub-problem of adding a single
virtual router while maximazing LFA coverage is already
NP-complete.

• We propose a greedy optimization strategy that in each
step inserts a single, or a small set of, virtual routers into
the network that improves LFA protection the most.

• We propose several heuristic solutions as well, which,
depending on a configuration parameter, are either op-
timal in each greedy step or guaranteed to terminate
in polynomial time, and we show that it is possible
to efficiently balance between the two according to the
preferences of the operator.

• Furthermore, we present experimental evidence that the
proposed techniques are efficient in improving LFA cov-
erage in many common ISP topologies by adding a few
virtual routers only.

The rest of this paper is organized as follows. In Section
II we walk through existing IPFRR proposals and identify
the main barriers for deployment. After a brief introduction

to LFA in Sec. III we present the problem formulation in
Sec. IV. In Sec. V we show the corresponding network
design problem is NP-hard, and show feasibility conditions
and constructive bounds on the number of virtual nodes needed
for full coverage. In Sec. VI we provide heuristics solving
the problem by introducing a greedy optimization strategy.
Afterwards in Sec. VII we provide numerical results and
finally Sec. VIII concludes the paper.

II. RELATED WORK

One of the earliest proposals for immediate recovery tech-
niques use MPLS with the Resource Reservation Protocol-
Traffic Engineering (RSVP-TE) [30] extension to reroute the
traffic along a precomputed alternate path. Although this pro-
vides a standardized and broadly implemented fast protection
scheme, there are many operators that have not deployed
MPLS at all, or not using RSVP-TE for distributing label
information. The only viable option in such cases is IPFRR. A
similar approach uses stateful packet forwarding, meaning that
whenever a packet is received on an unusual incoming port the
node’s internal state and the outgoing link are changed [31].
This method offers high resiliency, at the price of modifying
packet headers and expecting operators to carry out a complete
software upgrade at the data plane level.

Instead, to be able to recover within hundreds of mil-
liseconds in native IP networks, the networking community
turned to the IPFRR framework. There is a colorful spectrum
of approaches that intend to give more and more efficient
propositions for achieving perfect protection, but the ma-
jority of them require non-standard IP level functionality
or additional management burden, which prevents them to
become a real offer for network operators. One example is
interface-based forwarding [12] that breaks the traditional
IP forwarding principle where the next-hop is solely defined
by the destination address. Instead, based on the interface on
which the packet arrives, the router can decide if there is
a fault in the network and it can find an alternate next-hop
to the destination. However, the proposed implementation of
FIFR requires an additional forwarding table, together with a
so-called backwarding table, for each router interface, which
poses a substantial resource burden on routers with many
interfaces per line card. This concept was further improved in
[32], which simplifies FIFR so that no additional forwarding
table is needed; in turn the router must tediously check if the
packet is arrived from a link opposite with the primary next
hop during forwarding. Unfortunately the current devices do
not support changing IP’s destination-based forwarding [33]–
[35] or introducing some forms of signaling to indicate that a
packet is on a detour. What is worse, they do not support out-
of-band failure signaling either [36], or use invaluable extra
bits in the IP header [37], or adding special information to it
for in-band signaling [15].

Other proposals use tunneling to route around the failed
component [11], [16], [17], [38]. However, these require the
ncapsulatation of the re-routed packets using an additional IP
header, which may lead to hard-to-debug MTU issues. The
Failure-carrying Packets (FCP [39]) method also uses the
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packet header to carry information about the failing links that
the packet has hit along it’s way to the router; correspond-
ingly, FCP can protect against multiple simultaneous failures.
Nevertheless, the computational overhead that is required to
process the incoming link set and the necessity of an update
protocol to maintain routers’ consistent view of the network
may become significant deployment narriers in the long term.

The Multiple Routing Configurations (MRC, [14]) approach
calculates a small set of backup network configurations offline
and, if a link or node fails in the network, the identifier of
the proper recovery configuration is marked in the packet
header. This marking enables the routers to switch the packet
to the overlay that is free from the failing component. O2
routing [40] keeps track of two alternate next-hops towards
each destination so that, in case of a link failure, traffic can
be immediately switched to the other one. Unfortunately this
concept breaks shortest-path-based routing. Fibbing [23] is a
concept very similar to ours, whereby routers are "tricked"
by using virtual routers into sending traffic into the desired
direction. However, Fibbing requires the presence of a central-
ized SDN controller, whereas our proposal reamins completely
within the conventional distributed IP routing model.

In conclusion, the aforementioned solutions are struggling
with complexity and management issues; unsurprisingly, LFA
has been the only IPFRR method that has been deployed and
gained widespread adoption amongst network operators.

III. ROUTER VIRTUALIZATION AND LOOP-FREE
ALTERNATES

Loop-Free Alternates is the barebones IP Fast ReRoute
specification. To understand LFA in operation, consider the
sample network in Fig. 1a and suppose that node a is willing to
send a packet to node d. Normally, this occurs via the shortest
a → d path a − f − d of cost 3. However, when a’s link to
its next-hop f fails, a looses connectivity to d intermittently.
In such cases, a is safe to send the packet to e as e still has
an intact path to d. In fact, any neighbor suits as long as it
does not loop the packets back to a, i.e., is not upstream of
a. Such neighbors are called Loop-Free Alternates (LFAs).

In general, for some source s, destination d, and next-hop
t, a neighbor n 6= t of s is a link-protecting LFA if [7]:

dist(n, d) < dist(n, s) + dist(s, d) , (1)

where dist(x, y) denotes the shortest path distance from node
x to node y.

When no ambiguity arises, we omit the default next-hop and
simply say “e is an a→ d LFA”. However, a is not a f → d
LFA, because if f passed packets to a when (f, d) had failed
then those packets would eventually loop back to it along the
a→ d shortest path (recall that a is not aware of the failure).
In fact, f does not have an LFA to d in this configuration at
all, leaving the network vulnerable to the failure of link (f, d).
Overall, there are 30 source destination pairs in this six-node
network, from which the followings are not protected by LFA:
d → f , d → e, c → e, f → d, c → b, a → b and c → a,
resulting a 77% coverage.

In summary, a node does not have an LFA if all its neighbors
except the next-hop are upstream. However, if we somehow
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(b) The virtual topology after
tadding the virtual router a1 to a.

Figure 1. Sample network and edge costs.

The network is undirected; however, on the figures we often direct
edges to highlight the shortest paths to one node drawn with grey
background.

provision a new neighbor that is not upstream to it, then this
neighbor will provide a suitable LFA. In this paper, we propose
to achieve this by adding a “virtual router” to the physical
router, duplicating some of its physical links as virtual links,
and assigning costs to these links in a way as to ensure that
the new neighbor is no longer upstream. Since a virtual router
has a separate routing table and it runs its own instance of the
IGP, it will show up as an individual entity in the routing state
of its neighbors and hence is eligible as an LFA. This makes
it possible to provide LFA to otherwise unprotected routers.

The virtual network obtained by adding a virtual router a1

to a is depicted in Fig. 1b. For instance setting the IGP costs
on the virtual links of b1 so that the shortest path to d traverses
e as next-hop, then a1 will provide an LFA to f → d. Such
an IGP cost setting is c(b, a1) = c(f, a1) = c(c, a1) = 10 and
c(a1, e) = 2, where c denotes edge cost. Not just that a1 is
now an LFA from f to d, but it also protects several more
node pairs too that were unprotected in the default topology.
In particular, a1 provides LFA for c → e as well, increasing
LFA failure coverage from 77% to 83%.

We emphasize that the same effect could not have been
achieved by layer-3 tunnels (as of [22]), because IP and
MPLS/LDP tunnels must follow shortest paths. In contrast,
router virtualization allows to establish essentially any tunnel
we want, by provisioning consecutive layer-2 virtual links
through a series of physically adjacent virtual routers.

There are many appealing aspects of leveraging router vir-
tualization to improve LFA coverage. The isolation of routing
contexts provided by virtual routers gives a flexible way to
fine-tune the virtual topology to arbitrary protection require-
ments. Major vendors all support virtualization in hardware
in off-the-shelf routers, capable to handle hundreds of virtual
contexts [41], [42]. Therefore, our proposal is deployable right
away with minimal management effort. Improved resilience,
however comes at a price, in the form of moderately larger IGP
signaling load, IP address management burden, and growing IP
forwarding tables at routers. Nevertheless, today’s IP routers
are powerful enough to let ISPs run hundreds of IGP instances
in a single area, and so this price seems negligible for better
network robustness and service availability.

The decision of how to provision the virtual overlay is by
far a non-trivial one. There are the natural requirements that
are already difficult enough to fulfill, like the need to minimize
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Suppose that a is about to send packets
to f . If, for some reason, link (a, f) goes
down, a may choose to redirect its traffic
to the LFA e1. However, said traffic will
never arrive to f as the e1 → f detour
degrades into the LFA loop a − e1 −
c1 − a1 − c− a. Here, a1 also switches
to its LFA c realizing that its link to f
has disappeared due the physical failure
which a1 is unaware of.

Figure 2. A sample network with a possible LFA loop.

the number of virtual instances executing on a router side by
side. But there are much more subtle issues to consider as
well, like the curious fact that a careless intervention might
very well decrease LFA coverage instead of increasing it. We
find that inadvertent virtualization decision might easily end
up corrupting existing LFAs and decreasing LFA-coverage,
instead of increasing it. To demonstrate how this can happen,
we give a virtual topology in Fig. 2 where the spurious LFA
provisioned at the virtual router e1 may replace the legitimate
LFA e. Naturally, such cases must be avoided at all costs.

IV. MODEL AND PROBLEM FORMULATION

Router virtualization opens up a broad range of new LFA-
optimization strategies. In this section, we narrow this wealth
of options to a well-defined, practically motivated subset.
The main goal is to minimize interference with the normal
operation of the network, and only involve virtual routers in
packet forwarding when absolutely necessary. This guarantees
that packets do not take excess detours, helps break down
management complexity, and eases debugging data plane
misconfigurations. The requirements are as follows.

A. Assumptions on Physical and Virtual Topology

Problem inputs. We are given the physical network, or
substrate, as an undirected graph GS = (VS , ES) and IGP link
costs cS : ES 7→ Z+. We assume that the substrate consists of
point-to-point links only (i.e., no LANs, NBMA media, etc.).
Our task is to construct a virtual topology GV = (VV , EV )
with link costs cV : EV 7→ Z+ in a way as to maximize
LFA coverage in GV . In fact, GS is a subgraph of GV in our
model.

There is a default routing and forwarding layer GS .
We assume that associated with each physical router there is
a default context, holding the interface and loopback IP ad-
dresses of the physical router, running the common control and
management protocols a router usually runs, and originating
and terminating all traffic entering or leaving the network at
that router. Nodes in GV \ GS are called virtual nodes or
contexts and links are called virtual links. Mark the default
context for a physical router v ∈ VS and denote its virtual
nodes by vi ∈ VV \ VS for i = 1, . . . , kv where kv denotes
the number of virtual instances running on the particular
physical router. Let kmax denote the maximal number of
virtual instances a router may have. In addition, denote the
set of neighbors of some node v ∈ VS in GS by NS(v).

Similarly, NV (v) denotes the neighbors of some v ∈ VV in
GV .

Traffic flows in the default layer along the default short-
est paths. Traffic only enters a virtual router when a failure
shows up, and so virtual routers serve exclusively as LFAs for
nodes not protected in the physical topology. This minimizes
the disruptions under error-free conditions and ensures that
in normal operations the virtual topology distributes load as
efficiently as the underlying physical network. To achieve this,
the cost of virtual links is set so that they never appear in any
u→ v shortest path in GV for any (u, v) ∈ VS × VS , u 6= v.

Virtual links connect physically connected nodes. Virtual
links are provisioned between nodes that are adjacent in the
substrate, or inside the same the physical router:

∀(vk, ul) ∈ EV \ ES : {(u, v) ∈ ES or u = v)} . (2)

The reasons for this assumption are manifold. First, as virtual
links never span multi-hop paths, they are easy to provision as
layer-2 virtual links (say, Ethernet VLANs). Such connections
often do not even require distinct IP addresses. This minimizes
impact on the IP layer and eliminates much of the configura-
tion overhead and MTU issues that plague tunnel-based IPFRR
mechanisms [11], [17]. Additionally, layer-2 connections are
free from the limitations of layer-3 tunnels, which are bound
to shortest paths. Finally, two virtual links now belong to the
same SRLG if and only if they share the same physical link,
which would not hold over multi-hop tunnels.

Single link failures in the physical network. As single
link failures have been shown to constitute the major portion
of unplanned outages in operational networks [43], we con-
centrate on this case and we also ignore node failures; these
cases can be incorporated into the model with little extra effort.
We observe, however, that even a single physical link failure
usually manifests itself as multiple simultaneous failures in
the virtual topology, because not just the default link but all
the virtual links provisioned on it also go down.

The LFA specification introduces local SRLGs as the mini-
mum requirement for conforming implementations [7]. A local
SRLG at node v is defined as a set of output ports, i.e. links
adjacent with the node, with the semantics that a conforming
IGP will never install an LFA through a link that shares a
local SRLG with the primary next-hop. Associated with each
link (u, v) ∈ ES we define local SRLGs at both end nodes
composed of all the links provisioned on the same physical
link as e, formally
• SRLG at v is S(v,u) = {(v, u), (v, u1), . . . , (v, uku)},
• SRLG at u is S(u,v) = {(v, u), (v1, u), . . . , (vkv , u)}.

Local SRLG support is easy to deploy as it does not
need network-wide configuration and dissemination mecha-
nisms [44], [45], but it is also quite limited in that routers will
only spot non-SRLG-disjoint paths at the first hop.

LFA is disabled for virtual nodes. Fig.2 shows an example
where, after a failure, a virtual node forwards the packet to its
LFA. Our experience suggests that such “cascade LFAs” are
the primary origin of LFA loops and can be omitted without
any perceptible degradation in the resultant LFA coverage.
Correspondoingly, we assume a packet can be deflected to
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an LFA only at most once during its journey from the source
to the destination.

B. Problem formulation

First, we present an augmented LFA definition that accounts
for local SRLGs and reules out LFA loops.

Definition 1: For source s, destination d, and s → d next-
hop t, node n is an s→ d LFA if

LFA-1 n ∈ NV (s) and n 6= t,
LFA-2 dist(n, d) < dist(n, s) + dist(s, d),
LFA-3 (s, n) /∈ Ss,t (local SRLG condition), and
LFA-4 dist(n, d) < dist(n, si)+dist(si, d) for i = 1, . . . , ks.

Here, LFA-4 requires that n is an LFA with respect to
all virtual neighbors1. Since current LFA implementations are
restricted to LFA-1, LFA-2, and LFA-3, our virtual overlay
construction algorithms need to be designed so that LFA-4
automatically fulfill.

Next, we define the following metric for LFA failure case
coverage in the virtual topology. Let IE(s, d) be an indicator
function, taking the value 1 if (s, d) is protected and zero
otherwise, where s, d ∈ GS . Using this definition, the LFA
coverage is defined as

η(GV , cV ) =

∑
(s,d)∈VS×VS

IE(s, d)

|VS |(|VS | − 1)
. (3)

With these notations in place, we can now pose the Resilient
IP Overlay Design (RIOD) problem. Here, the task is to
compute the overlay that maximizes LFA-coverage, using only
a given number of virtual routers. In addition, we also allow
to limit the set of routers that can host virtual instances.

Definition 2: RIOD(GS , c, U, k, l): given a graph GS =
(VS , ES), link costs c, node set U ⊆ V , and positive integer
k, design a graph GV = (VV , EV ) and link costs cV so that:

• VS ⊆ VV and virtual nodes provisioned only inside U ,
• ES ⊆ EV and virtual links are only between physically

connected routers, see Eq. (2),
• shortest paths between node pairs in VS do not change

(the substrate is unaltered),
• |VV \ VS | ≤ k (no more than k virtual instances), and
• η(GV , cV ) ≥ l (the LFA coverage is a least l).

One ultimate goal is to build an entire virtual topology
in one step so that each node-pair in the substrate becomes
LFA-protected. We also focus on a somewhat less ambitious
task RIOD(G, c, {v}, 1, l) to add a single virtual router to a
selected node v, and our objective is merely to maximize LFA
coverage along the way instead of aiming for full coverage.
We shall refer to this useful special case of RIOD as the LFA
Virtual Router Augmentation Problem LFAVirt(G, c, v).

1Note that in [18] instead of LFA-4 the following weaker condition was
given: LFA-4∗ each n→ d shortest path is SRLG-disjoint from e.
We chose this stricter version of the LFA condition, because in very rare
situations the original weaker condition caused LFA loops when many virtual
nodes are added (see Sec. III.A in [46] for an example and further discussion).
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Figure 3. A sample network with a “virtual tunnel” between nodes s and d.

V. COMPLEXITY AND UPPER BOUNDS

Next, we address the problem of building an LFA-optimized
overlay under the model assumptions introduced above. The
model basically asks for augmenting a physical topology with
virtual routers and set the cost on the resultant virtual links in
a way as to maximize LFA coverage.

First, we will show that full LFA coverage can always
be achieved but we show that finding the fewest virtual
nodes to achieve this is NP-hard; however, we will provide
constructions to achieve full LFA coverage in 4- and 2-
connected graphs by adding limited number of virtual nodes.

A. Conditions to Reach Full Failure Coverage

Theorem 1: For a given 2-connected graph G with positive
costs c there always exists an overlay GV and cost setting cV
that solves RIOD(G, c, V,∞) with η(GV , cV ) = 1.

Proof: We show that, given any unprotected node-pair
s → d, there is a proper set of virtual nodes whose addition
will create a link-protecting SRLG-disjoint s → d LFA. It
follows that if we apply this step to each unprotected node-
pair, then full LFA-coverage eventually reaches. We protect
the s → d pair by provisioning a “virtual tunnel” between s
and d that provides a detour for s bypassing its failed next-hop
(Fig. 3). Let s−q− . . .−r−d be an s→ d path disjoint from
the s→ d next-hop (such a path is guaranteed to exist as G is
2-connected). Create a virtual node for each node between q
and r and denote the new virtual router on q by q1 and the one
on r by r1. Connect s to q1 and r1 to d and set the link cost
on (s, q1) “high” (say, larger than the length of the longest
shortest path) and at the rest of the virtual links to the lowest
possible. As one easily checks, q1 is now an s− d LFA. We
still need to show that LFA-4 holds, but this is guaranteed as
there are only two entry points to the virtual tunnel, q1 and
r1, and q1 is protected by the local SRLG at s (as of LFA-3)
and r1 is never an LFA due to its low cost.

B. Complexity analysis

The first question we ask is whether the RIOD problem is
tractable. Consider the below characterization.

Theorem 2: LFAVirt(GS , c, v) is NP-complete.
Note that this implies that RIOD(GS , c, U, k, l) is NP-

complete. The main idea of the proof is constructing a special
substrate and designating a node in a way that virtualizing the
node opens up a plethora of LFA-options. Deciding on which
LFA to choose means fixing cV , which is then shown to solve
arbitrary instances of the minimum feedback arc set problem,
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a well-known NP-complete problem [47, GT8, pg.192.]. For
the complete proof, refer to the Appendix A.

C. Constructions to Achieve Full LFA Coverage by Adding
Limited Number of Virtual Nodes

Let us introduce some constructions.
Definition 3: Let G be a connected graph and T a spanning

tree, and K be a constant larger than the longest shortest path
between any two nodes in G. Adding a kth virtual layer with
distance K means we add a virtual node vk to each physical
node v, where virtual nodes uk and vk are connected if and
only if (u, v) ∈ T . The cost of c(uk, vk) = ε, where ε is a
small positive number (smaller then the smallest cost edge of
ES divided by |VS |). For each node v we also add virtual edge
(v, vk) with cost c(v, vk) = K.

Claim 1: Let G be a connected graph and T a spanning tree
which is added as a virtual layer with distance K. This cannot
decrease the LFA coverage, and the shortest path between
virtual node vk and physical node d is T (vk − d), where
T (x− y) denotes the path between x and y in tree T .

Proof: First we show that adding a new virtual layer with
distance K cannot decrease the LFA coverage. One can verify
that Claim 2 can be applied recursively: start with any node
and add its neighbors in the tree one by one.

Next we show that the shortest path between vk and d is
T (vk − d). Note that any path from vk to d is at least K
because it should traverse between the layers and thus through
a link (u, uk) at some node u. The path in tree T between vk

and dk is unique and, traversing along the virtual nodes, its
cost is h · ε where h is the number of hops. The total cost if
u = d is K + h · ε, while any other path would have larger
cost as it should traverse an edge with cost K and a physical
edge with cost larger than h · ε.

Theorem 3: For a given 4-connected graph G with positive
costs c there always exists an overlay GV and cost setting
cV that solves RIOD(G, c, V,∞) with η(GV , cV ) = 1 and
kmax = 2.

Proof: A corollary of Tutte-Nash-Williams Theorem [48,
Thm. 4.4.4] is that an undirected graph G = (V,E) contains 2
pairwise edge-disjoint spanning trees if it is 4-edge-connected.
Let T1 and T2 denote such pairwise edge-disjoint spanning
trees of the input topology G. Let us add T1 and T2 to G as
two virtual layers with distance K.

In this case, for any node pair n and d the short path from
n1 to d and from n2 to d are two disjoint paths, by using Claim
1 and that T1 and T2 are pairwise edge-disjoint spanning trees.
Therefore every node s has an LFA s1 or s2 having a shortest
path to d that is disjoint from the failed next hop.

Theorem 4: For a given 2-connected graph G with positive
costs c there always exists an overlay GV and cost setting
cV that solves RIOD(G, c, V,∞) with η(GV , cV ) = 1 and
kmax = 4.

See Appendix B for the proof, which is based on st-
numbering technique of the undirected graph topology intro-
duced by Itai and Rodeh [49].

a

b

dc

e

1
1

1

1 1

4

1

Figure 4. A graph where LFA coverage cannot be increase by adding a single
virtual node.

VI. HEURISTIC ALGORITHMS TO THE RESILIENT IP
OVERLAY DESIGN PROBLEM

The main idea in our heuristics is to iteratively add new
virtual nodes to the network until full LFA coverage is
achieved.

First, we focus on the special case LFAVirt(G, c, v) where
a single virtual node v1 is added to v and the task is to set
the link costs so that LFA coverage increases the most. We
will show a sufficient condition to ensure the LFA coverage is
never decreasing. Recall that in Section V-B we have shown
that even this simple variant is already NP-complete (which
immediately sets the complexity of the one-step optimization
problem as NP-hard), but it is still complex enough to build
efficient optimization strategies on top of it.

As the next step, we can use LFAVirt(G, c, v) as a build-
ing block for a greedy heuristic to solve the fully fledged
RIOD(G, c, U, 1,max), whereby iteratively a single virtual
node is added to the network to increase the LFA-coverage.
This approach would curtails the ensuing computational com-
plexity significantly; on the negative side, as we show below
this simple greedy approach may stuck in a local maximum
in certain cases. Therefore, we shall use a slightly extended
version of LFAVirt as the basic building block of our algo-
rithmsm whereby we may instantiate multiple virtual LFAs in
each step if the need arises.

Theorem 5: There are networks with η(GV , cV ) < 1 where
adding a single node cannot increase the LFA coverge.

Proof: We show a counter-example in Fig. 4. Here, η =
19
20 , as the only unprotected node-pair is c→ d. Additionally,
all the 2-hop neighbors of c are upstream for d, and because
Alg. 1 provisions only a single virtual router in each step the
furthest it can reach with a virtual tunnel is a, which is also
upstream. Hence, any greedy algorithm that adds only a single
node in each step terminates with η < 1.

It may be tempting to believe that our counter-example is
a pathologic case due to the large cost of the (a, d) link.
This, however, is not the case, as one can easily show unit-
cost counter-examples similar to the one in Fig. 4 (e.g., by
substituting the (a, d) link with a long chain of unit-cost links).

A. Basic Heuristic

As it turns out, augmenting the graph with only a single
virtual node in each iteration might be too restrictive. Instead,
one might try to instantiate two virtual routers when adding
only a single one did not help, then try three virtual routers at
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once, etc. This observation is reflected in the below definition
of connected l-sets.

Definition 4: For a graph G, call a set of nodes in Ul ∈ V
a connected l-set if the induced subgraph of G spanned by Ul
is connected and |Ul| = l.

Claim 2: Adding a set of nodes Ul ∈ V the LFA coverage
cannot decrease, if node v′ ∈ Ul does not appear in any u→ w
shortest path in GV for any (u,w) ∈ VV × VV , u 6= w.

Proof: To decrease the LFA coverage there must be a
source s, destination d, and s− d next-hop t, which had LFA
through node n before v′ was added, however adding v′ this
LFA is not valid any more. This can only happen if the shortest
path from node v′ to d has changed, which is not possible
according to the condition in the claim.

Our heuristic is then based on simply trying increasingly
larger connected sets of virtual nodes until LFA-coverage
eventually improves. Note that, by Theorem V-A, there is a
sufficiently large connected l-set for which at least one node-
pair will gain a new LFA, and therefore this modification to the
algorithm implies optimal termination. The greedy algorithm
implements these ideas.

Algorithm 1: Greedy algorithm for RIOD(G, c, V,∞)

while 1 > η(G, c) do
foreach l = 1, . . . , k do

foreach connected l-set Ul ⊆ U do
(cUl , ηUl)← solve LFAVirt(G, c, Ul)

(U ′, η′)← choose UL ∈ U that maximizes ηUl

if η′ > η then
add U ′ to G and set costs to cU′

break

Note that the algorithm is parametrized on an integer k,
which allows to set an upper bound on the maximum size of
the connected l-sets examined, and hence on the running time.

There still remains the problem of how to solve the gen-
eral form of the LFA Virtual Router Augmentation problem
LFAVirt(G, c, Ul). Here, we need to assign an entire “island
of virtual nodes” on a connected set Ul. Let neigh(Ul) denote
the neighbors of nodes in Ul that are outside Ul. Suppose that
we are about to solve LFAVirt(G, c, Ul) by provisioning a set
of virtual routers U ′l on Ul, with each u ∈ Ul hosting a single
virtual instance u′.

The main idea of our heuristics is to set a single exit point
for the virtual nodes in U ′l , that is, to let all traffic that enters
U ′l through LFAs leave via a single exit link (v′, g). Thus, we
create a virtual router at each node of Ul and we connect these
to each other with small cost, plus we connect these nodes to
all nodes in neigh(Ul) with a large cost except for the virtual
link to the exit link (v′, g) which is again set to low cost, just
like in Fig. 1b. It is now trivial to check that this setting indeed
yields that U ′l has a single exit node: g′. In this way the LFA
coverage never decreases by Claim 2.

This is a simple yet efficient method, with the main draw-
back that for each g ∈ neigh(Ul) we need to evaluate the LFA
coverage. The LFA coverage is computed according to Eq.
(3) which needs evaluating every edge-node pair: (s, n) ∈ EV

and d ∈ VD. Recall, s ∈ VS , thus the number of possible
(s, n) LFA candidate links are at most kmax|VS |. This is
performed for each node g ∈ neigh(Ul); thus, the process
takes O(kmax|VS |2 · |neigh(Ul)|) steps in total each time
virtual nodes Ul are added.

B. Reducing the running time of the basic heuristic

Clearly evaluating Eq. (3) is the bottleneck in the running
time as it must be launched each time a virtual node is added.
To speed up the basic heuristic we will incrementally evaluate
Eq. (3). To do so, we keep track the set of eligible node-pairs
L that can gain an LFA. Clearly, a virtual router u′ can provide
LFA only if it is a neighbour of the source node. Let LUl

⊆ L
denote the set of eligible node-pairs with source node adjacent
with Ul, formally LUl

⊆ L|(s, d) ∈ L, s ∈ neigh(Ul). In other
words, the new virtual nodes Ul can provide LFA to node pairs
LUl

; thus |LUl
|

|VS |(|VS |−1) is the upper bound in the increase of
η(G) after adding Ul. This measure helps in selecting a proper
virtual nodes Ul to add.

s t

v

v1

g

d

Suppose that s is about to
send packets to d, and v =
U1. By setting the cost of
virtual link (v1, g) small,
and (s, v1) large, node s
will have an LFA through
node v′.

Figure 5. Illustration for escape nodes.

Let (s, d) ∈ LUl
be the set of source-destination pairs that

can gain an LFA when new virtual nodes Ul are added to the
physical node v. Note that node s has no LFA, thus it has
a single next hop t = nh(s, d) and all of its neighbours are
upstream to it or a virtual node corresponding to s. We seek
nodes g ∈ neigh(Ul) that can provide LFA to s− d by Ul.

The key idea is to pre-calculate the following set: for each
(s, d) ∈ LUl

a set of escape nodes Es→d consisting of the
nodes which, if chosen as the only exit link of Ul to d, would
render a virtual node v′ ∈ Ul an s→ d LFA. Computing Es→d
for all (s, d) ∈ LUl

takes O(|neigh(Ul)| · |LUl
| · kmax) steps

in total. Based on this, we can select optimal g as follows

g = argmax
g′∈neigh(Ul)

|(s, d) ∈ LUl
: g′ ∈ Esd| . (4)

The computational complexity of the improved Alg. 1 is
O(n3+nk+3). Here, O(n3) comes from the all-pairs shortest
path problem needed be solved to obtain dist(.) and O(nk)
is the number of connected l-sets Ul of size at most k. The
above heuristics solves LFAVirt(G, c, Ul) for each Ul also in
O(n3), as L and LUl

contain O(n2) elements and Esd contain
O(n) elements, and each can be calculated in O(n2) steps.

Correspondingly, Alg. 1 allows to trade-off optimality for
computational complexity through the parameter k. When run-
ning time is of no concern then k can be set to n, in which case
we are guaranteed to obtain a fully-protected overlay in a finite
number of steps. On the other hand, fixing k at a small constant
results strictly polynomial running time. For the rest of this
paper we set k = 3. In this case the theoretical worst-case
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complexity of Alg. 1 is O(n6) steps, however, in practice we
found the all-pairs-shortest path problem to dominate running
time and hence O(n3) to be a more reasonable complexity
characterization. Besides, using a reduced set of connected
l-sets for selecting Ul can also improve the performance of
Alg. 1. Such a modification is when we use shortest path slices
of rank l, meaning that only those set of nodes are examined
in each step that are part of an existing shortest path in G with
a length of l. Thus, O(nk) is reduced to O(n2). As we shall
see in the next section, this setting yields an overlay with close
to perfect LFA-coverage in most practical cases with very fast
running time.

C. Integer Linear Program for LFAVirt(G, c, v)

Since the LFAVirt(G, c, v) problem is NP-hard, we also
provide an Integer Linear Programming (ILP) that will serve
as the baseline when evaluating the heuristics. The formulation
is based on the definition of escape nodes discussed in the
previous subsection; however, instead of selecting one escape
node, the ILP computes the optimal virtual link costs so that
the most escape nodes become next-hops for the new virtual
node v′ and hence LFA-coverage is maximized when adding
v′.

The ILP is built around the following two constraints (see
Appendix C for details):

1) We want to assign at least one escape node as the next-
hop of v′ towards d, as then v′ will provide a new LFA
to s→ d. For this, we need to set link costs cV such that

dist(v′, d) = cV (v
′, g) + dist(g, d) for some g ∈ Esd .

(5)
2) Besides we need to ensure the LFA-4 condition holds

dist(v′, d) < cV (v
′, si)+dist(si, d) for all i = 1, . . . , ks.

(6)
We shall also evaluate a simple extrionsion of the ILP that

allows to add more than a single node in a each step.

VII. SIMULATION RESULTS

We evaluated the performance of different RIOD imple-
mentations in extensive numerical studies. In particular we
developed the ILP and heuristic of Alg. 1 and the 4-layered
construction of Theorem 4. The implementation was done in
C++ with the help of the LEMON graph library [50]. The
simulations were run on a Linux PC with an Intel 3.3GHz
CPU and 4G RAM. As an input for the measurements we
used numerous real-life ISP topologies; namely we used ISP
topologies [51] and the Rocketfuel data-set [52], where we set
costs randomly wher link costs were not available.

In the first run, we compared the performance of Alg. 1
when the embedded LFAVirt instances were solved with the
heuristic and ILP implementations, respectively. The parame-
ter k was set to 3 (i.e. |Ul| = 3) meaning that the algorithm
tries to provision node sets with size at most 3 in each
step. As we observed in our measurements that there is a
minimal difference in the attained LFA coverage in case of
using shortest path slices instead of all possible connected l-
sets, we settle for using the former one in order to improve
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Figure 7. Progression of LFA coverage in backbone topologies.

the execution time of our algorithm. The detailed results are
summarized in Table I. Here, the values refer to the LFA
coverage (η) attained by the heuristic as an increasing number
of virtual nodes are provisioned in the network. The deviation
compared to the ILP is shown in parenthesis.

The most important observations are as follows. First, the
initial LFA coverage is 70-90% and it can be easily boosted up
to 95%, just by introducing a single virtual instance for half
of the physical nodes. Second, the heuristic barely overshoots
the ILP in the cases when the number of virtual nodes is less
than, or equal to n. The last two columns show that if we
do not maximize the amount of virtual nodes the algorithm
terminates with η = 1 in most of the cases, and there are only
3(!) networks whereby it gets stuck with the setting k = 3. The
price that we pay for reaching this final state is given below
as v∞. As an average the heuristic shows some 19% overhead
compared to the the ILP when adding n virtual nodes, however
it executes 10 times faster. The reason is that the LFA coverage
improvement has a logarithmic trend, so if the goal is to
solely improve LFA protection to a certain level then a couple
of new nodes are usually enough. In contrast, to achieve
full protection, we need to provide alternate tunnels from all
sources to all destinations that can significantly increase the
size of the virtual layer.

This is clearly visible on Figs. 6-7 where we show the
progression of the algorithms. In the first phase there is a
steep increase in the LFA protection and the performance gap
between the algorithms is minimal. We also observe that in
most steps the algorithms prefer to add a single virtual node,
however there are cases (see e.g., Fig. 6c) when both methods
need a tunnel to overcome a certain complex scenario. We
also show a topology (Deltacom) where the ILP with k = 3
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Table I
RESULTS OF RIOD(G, c, v, 3) USING SHORTEST PATH SLICES: TOPOLOGY NAME, NUMBER OF NODES (n) AND EDGES (m); INITIAL LFA COVERAGE

(η0 ; [%]), ATTAINED LFA COVERAGE (ηn
4

, ηn
2

, ηn) AND RUNNING TIME (tn
4

, tn
2

, tn ; [sec]) WHEN PROVISIONING 25− 50 AND 100% OF THE

PHYSICAL NODES RESPECTIVELY, THE FINAL LFA COVERAGE (η∞) WITH THE REQUIRED EXECUTION TIME (t∞) AND THE RATIO OF VIRTUAL NODES IN
THE FINAL STATE (v∞ ; [%]). VALUES IN PARENTHESES REPRESENT THE DIFFERENCE COMPARED TO THE CORRESPONDING RESULT OF THE ILP. IN CASE

OF LFA COVERAGE AND RATIO THE VALUES ARE GIVEN IN PERCENTAGE (E.G. IF n VIRTUAL NODES ARE ALLOWED, THEN ILP OUTPERFORMS THE
HEURISTIC BY GAINING 4% BETTER LFA COVERAGE FOR THE ABILENE NETWORK, AND REACHES THE PERFECT COVERAGE BY USING 36% LESS

VIRTUAL NODES). THE ILP EXECUTION TIME IS GIVEN IN THE MULTIPLES OF RUNNING TIME NEEDED BY THE HEURISTIC (E.G. IN CASE OF ABILENE,
THE ILP RUNS 9 TIMES SLOWER THAN THE HEURISTIC, REQUIRING 135 SECS.)

Topology n m η0 ηn
4

tn
4

ηn
2

tn
2

ηn tn η∞ t∞ v∞

Abilene 11 14 0.61 0.70 (.00) 0.1 (>23) 0.80 (.01) 0.2 (>31) 0.92 (.04) 0.5 (>20) 1 (.00) 1.5 (>9) 1.72 (.36)
Germany 17 25 0.69 0.83 (.01) 0.7 (>42) 0.90 (.01) 1.6 (>25) 0.96 (.02) 4.8 (>16) 1 (.00) 12.1 (>6) 1.58 (.29)
BtEurope 17 30 0.96 0.98 (.00) 3.4 (<1) 0.99 (.00) 8.5 (<1) 1 (.00) 13.2 (<1) 1 (.00) 13.2 (<1) 0.70 (.12)
AS6461 17 37 0.93 0.99 (.00) 2.6 (>1) 1 (.00) 5.4 (>1) 1 (.00) 5.4 (>1) 1 (.00) 5.4 (>1) 0.35 (-.12)
Internet_MCI 18 32 0.95 0.98 (.00) 1.8 (>5) 0.99 (.00) 6.3 (>2) 1 (.00) 7.7 (>2) 1 (.00) 7.7 (>2) 0.55 (.00)
AS1755 18 33 0.87 0.96 (.00) 2.1 (>10) 0.98 (.01) 6.8 (>5) 1 (.00) 15.6 (>2) 1 (.00) 15.6 (>2) 0.88 (.27)
ChinaTelecom 20 44 0.95 0.98 (.01) 19.5 (>2) 0.99 (.01) 49.9 (<1) 1 (.00) 60.7 (<1) 1 (.00) 60.7 (<1) 0.65 (.20)
AS3967 21 36 0.78 0.95 (.00) 3.3 (>140) 0.99 (.00) 9.2 (>50) 1 (.00) 14.0 (>30) 1 (.00) 14.0 (>30) 0.61 (.00)
BellSouth 21 36 0.79 0.96 (.01) 12.4 (>90) 0.98 (.01) 44.9 (>25) 1 (.00) 149.9 (>7) 1 (.00) 149.9 (>7) 0.85 (.33)
ATnT 22 38 0.82 0.92 (.00) 6.2 (>230) 0.97 (.01) 19.1 (>95) 1 (.00) 63.3 (>30) 1 (.00) 63.3 (>30) 0.95 (.14)
NSF 26 43 0.86 0.93 (.00) 6.1 (>50) 0.97 (.01) 18.1 (>25) 1 (.00) 46.9 (>10) 1 (.00) 46.9 (>10) 0.88 (.08)
BICS 27 42 0.76 0.91 (.01) 3.8 (>25) 0.96 (.01) 11.6 (>10) 0.99 (.00) 42.1 (>3) 0.99 (.00) 52.1 (>3) 1.25 (.22)
AS3257 27 64 0.92 0.99 (.00) 50.7 (>9) 1 (.00) 160.8 (>3) 1 (.00) 160.8 (>3) 1 (.00) 160.8 (>3) 0.40 (-.04)
AS1239 30 69 0.87 0.98 (.00) 54.0 (>25) 0.99 (.01) 109.0 (>13) 1 (.00) 130.7 (>11) 1 (.00) 130.7 (>11) 0.60 (.14)
Arnes 31 47 0.83 0.97 (.00) 10.1 (>34) 0.98 (.01) 33.5 (>13) 0.99 (0.01) 134.2 (>4) 1 (.00) 143.4 (>3) 1.09 (.13)
Geant 31 49 0.83 0.96 (.00) 8.7 (>55) 0.98 (.01) 28.2 (>29) 0.99 (0.01) 79.6 (>7) 0.99 (.01) 86.1 (>7) 1.09 (.09)
Italy 33 56 0.78 0.89 (.00) 24.3 (>470) 0.94 (.02) 58.0 (>210) 0.99 (.00) 178.5 (>70) 1 (.00) 367.5 (>36) 1.57 (.24)
BtNorthAmerica 36 76 0.83 0.96 (.00) 65.6 (>95) 0.99 (.00) 211.0 (>31) 1 (.00) 407.1 (>16) 1 (.00) 407.1 (>16) 0.80 (.17)
BellCanada 39 55 0.61 0.80 (.00) 10.2 (>150) 0.90 (.01) 25.9 (>75) 0.98 (0.01) 73.9 (>29) 1 (.00) 169.6 (>13) 1.82 (.34)
Germany_50 50 88 0.90 0.96 (.01) 60.1 (>14) 0.99 (.00) 168.2 (>45) 0.99 (0.01) 412.8 (>19) 1 (.00) 430.0 (>18) 1.04 (.26)
Deltacom 103 151 0.63 0.85 (n/a) 476.4 (n/a) 0.96 (n/a) 950.1 (n/a) 0.99 (n/a) 2494 (n/a) 0.99 (n/a) 8323 (n/a) 2.04 (n/a)
Average 29.2 50.7 0.81 0.92 (.002) 39.1 (>73) 0.96 (.007) 92.2 (>34) 0.99 (.005) 214.0 (>14) 0.99 (.0005) 507.6 (>10) 1.02 (.19)
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Figure 6. Progression of LFA coverage in small and middle-sized networks.

does not perform in acceptable running time; this validates the
need for efficient heuristics.

Finally, we evaluate the change in the length of the detours
in order to demonstrate that traffic entering the virtual layer
does not spend too much time there and hence it does not
utilize the physical resources extensively. The values provided
in Fig. 8 are the overhead compared to the default paths in
percentage. We observe that Alg. 1 results in a ~30% of
overhead, whereas using the 4-layer construction of Thm 4
the increase becomes roughly twofold.

In summary, we see very little performance lag with our
heuristics as compared to the ILP. Both algorithms can
bring small and middle-sized networks close to perfect LFA-
coverage by provisioning just a couple of virtual routers, and in
larger backbones we see similar improved protection coverage
just by provisioning roughly one virtual router per node on
average.
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Figure 8. Average path stretch for single link failres.
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VIII. CONCLUSIONS

With the advent of Seamless MPLS, Loop-Free Alternates
for fast IP-level failure protection has become an indispensable
tool in telecom networks. This is despite that LFA was
not designed with carrier-grade requirements in mind, and
therefore it does not provide out-of-the-box protection levels
acceptable to most profit-oriented businesses.

In this paper, we invoked router virtualization, a common-
place feature in contemporary IP devices, to improve the level
of protection provided by LFA. The motivation is to facil-
itate integrating existing operator infrastructure into modern
multiservice MPLS/LDP networks without interfering with the
normal operation of the network, or the network topology
itself, in any ways. Our solution is deployable immediately
with minimum management effort by establishing a Resilient
IP Overlay on top of the physical network, which supplies
“virtual LFAs” to unprotected node-pairs.

Even though the underlying optimization problem is NP-
complete, practice shows that LFA virtual router augmentation
can be efficiently solved by heuristics in polynomial time up to
even ll LFA coverage. In extensive numerical evaluations we
found that, depending on the extent to which SRLG support
is available, practically complete protection can be attained
against single link failures just by provisioning one or two
virtual contexts at each IP router.

We again emphasize that this can be realized with existing
IP hardware and software available in off-the-shelf routers
today, with a one time management intervention. We believe
that this finding opens the door for a wider adoption of
Resilient IP Overlays in operational IP networks.
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APPENDIX

A. Complexity Proofs

Definition 5: Minimum feedback arc set problem (minFAS,
A1.1: GT8, p.192., [47]): Given a digraph G = (V,A) and a
positive integer k ≤ |A|. Find a subset B ⊆ A with |B| ≤ k
such that B contains at least one arc from every directed cycle
in G.

Note that if B is removed from the graph, then all cycles are
broken. Thus, minFAS asks for a minimal set of arcs which,
when removed from the graph, leaves a DAG. The following
problem is therefore equivalent to minFAS:

Definition 6: Maximum spanning DAG (maxDAG): Given
a digraph G = (V,A) and a positive integer k ≤ |A|. Find a
subset B ⊆ A with |B| ≥ k such that the graph (V,B) is a
DAG.
As minFAS is NP-complete, maxDAG is also NP-complete.

Proof of Theorem 2: LFAVirt(GS , cS , v, k) is in NP,
since LFA coverage can be verified in polynomial time. To
prove it is NP-hard, we (Karp)-reduce it to the maxDAG prob-
lem. Given a maxDAG instance with digraph GD = (VD, A)
and an integer k, we construct a LFAVirt(GS , cS , v, k

′) prob-
lem and we show that if, after adding a virtual node v1 to v,
there are k′ LFA-protected (s, d) pairs, then the solution can
be transformed to a solution to the maxDAG instance with k
cardinality.

Next, we show how to construct GS from GD. GS consists
of 2n + |A| + 1 nodes, where n = |VD|. We add two nodes
to GS denoted by vi and wi for i = 1, . . . n, and for each
arc (i, j) ∈ A, we assign a node in GS , denoted by uij .
For simpler arguments v0 or w0 refers to node vn and wn,
respectively. Plus we have an additional node v. The edges of
GS are the followings.
• For each i = 1, . . . n add an edge (vi, wi) with cost 1

and (v, vi) with cost n. Node v is in fact the center of a
star and all its neighbors have degree two.

• For each i = 1, . . . n add an edge (wi, wi−1) of cost n2.
• For each l ∈ VD and (i, j) ∈ A, add an edge (wl, uij)

with cost cV (wj , uij) = n2, cV (wi, uij) = n1 = n2 + 1
2 ,

and otherwise cV (wl, uij) = n2 = n2 + 2n + 1 where
l 6= j and l 6= i.

Fig. 9 shows an example transformation with shortest paths.
To destination ui,j every node has LFA except node vj .

A node u becomes LFA protected after adding node v1

towards destination d, if the following conditions hold: (i) u
did not have LFA to d; (ii) u is adjacent to v, i.e. u ∈ NS(v);
(iii) the next-hop of v1 to d is a node vi which is not the
next-hop of v; and (iv) the next-hop of vi is node wi, and not
v.

v
v1

v2

w2

v3

w3

v1

w1

u2→3u1→3

n n

n

1 1

1

n2 n2

n2

n2
n1

n2 =
n2 + 2n+ 1

n2
n2

n1 = n2 + 1
2

(a) The transformed graph GS , The edges are directed towards the
shortest path to node u2→3.

source node distance next-hop LFA
wi n2 + 0.5 t ui,j wi−1
wj n2 ui,j wi−1

wl : l ∈ V, l 6= i, l 6= j n2 + 2n+ 1 ui,j wi−1
vi n2 + 1.5 wi v
vj n2 + 1 wj −

vl : l ∈ V, l 6= i, l 6= j n2 + 2n+ 1 v wl
v n2 + n+ 1 vj vi

(b) The shortest distance with next-hops to destination ui→j .

Figure 9. The transformed graph GS , if GD has 3 nodes a, s, and b, and
two arcs 1→ 3 and 2→ 3.

The new LFAs created through v1 are as follows. Node vj
becomes LFA protected to destination ui,j , if the next-hop
of v1 is exactly vi. This occurs if n2 + 1.5 + cV (vi, v

1) <
n2 + 1 + cV (vj , v

1), from which:

cV (vi, v
1) + 1

2 < cV (vj , v
1) , (7)

and for vl : l 6= i, j condition n2 + 1.5 + cV (vi, v
1) < n2 +

2n+ 1 + cV (vl, v
1) also holds, so:

cV (vi, v
1) + 1

2 < 2n+ cV (vl, v
1) . (8)

For destinations wj no new LFA is created, because the next-
hop for every vi : i 6= j is v. Similar is the case for vj : j ∈ V .
As a summary, new LFAs can only appear between node pairs
vj − ui,j : (i, j) ∈ A, and only if both (7) and (8) hold.

To conclude the proof we show that (i) if there is an
LFAVirt(GS , cS , v, kS +k) solution, where kS is the number
of protected node pairs in GS and k new LFAs are created
by adding v1, then there is a DAG of k links in G, and
(ii) if there is a DAG of k links in G then there is an
LFAVirt(GS , cS , v, kS + k) solution with k new LFAs.

For (i), suppose there is a cost assignment cV (vi, v1) : i ∈ V
so that k new LFAs are created. Add an arc (i, j) ∈ A to B if
cV (vi, v

1)+ 1
2 < cV (vj , v

1). By (7) and (8), there are exactly
k such arcs. Note that cV is a topological order of the nodes
in B. Thus, (V,B) is a DAG composed of k arcs.

For (ii), suppose there is a DAG of k arcs in G. Find a
topological order of its nodes with ids [1, n] and assign the
order id of node i as cV (vi, v1). Clearly, vj becomes LFA-
protected to destination ui,j if link (i, j) is part of the DAG
due to (7) and (8), so we have exactly k new LFAs.

http://lemon.cs.elte.hu/
http://www.topology-zoo.org
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t
t1
t2
t3
t4
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u
u1

u2

u3

u4

Figure 10. Construction for full coverage by adding 4|VS | virtual nodes.

• The binary variable xn : n ∈ NV (v) tells whether to

B. Constructions

Proof of Theorem 4: According to Itai and Rodeh
Theorem [49] an undirected graph G = (V,E) with any edge
(s, t) ∈ E has an st-numbering. In st-numbering the nodes
of the graph are assigned by distinct integers from 1 to n,
denoted by Nv for node v, such that Ns = 1, Nt = n, and
every other node v has a neighbor u ∈ NS(v) with smaller
number (Nu < Nv), and a neighbor w ∈ NS(v) with larger
number (Nw > Nv). With st-numbering we can define two
trees T1 and T2 with the following properties:
• the nodes along path T1(s−v) has decreasing st-numbers,
• the nodes along path T2(v−t) has increasing st-numbers,
• (s, t) /∈ T1, and (s, t) /∈ T2.

This ensures that for any node v the paths T1(v − s) and
T2(v − t) are edge disjoint.

In the construction, we add T1 and T2 to G as first and
second virtual layers with distance K, and also for third and
fourth virtual layers with distance 2K. We also add virtual
link (t4, s1) and (s3, t2) both with cost ε (see Fig. 10).

At node v let v → u be a next hop edge (u ∈ nh(v, d)), we
will use case-checking to show there is always an LFA.
If (v, u) = (s, t) we have an LFA through the virtual node v1

(and also v2) according to Claim 1.
If Nv < Nu ≤ Nd we have an LFA through v3, which first

traverses to node s3 along the path T1(v3− s3) and then
through link (s3, t2) will reach node d along T1(s2−d2).
Note that this path is disjoint with v → u, as the nodes in
T1(v

3 − s3) have numbers at most Nv , and T1(s2 − d2)
have numbers at least Nu because Nu ≤ Nd.

If Nv > Nu ≥ Nd for the above reason v4 is an LFA.
If Nv < Nu and Nu > Nd we have an LFA through v1, as

the path T2(s1 − d1) is disjoint with v → u because the
nodes along the path have numbers smaller than Nu.

If Nv > Nu and Nu < Nd for the above reason v2 is an
LFA.

C. ILP for LFAVirt(G, c, w)

The ILP is based on the idea that eligible node pairs and
the respective escape nodes can be pre-computed statically, so
L, Lv , and Esd can be generated offline. Hence, in the course
of the optimization we only need to take care of satisfying (5)
and (6).

The variables of the ILP are as follows:

provision the virtual link (vk, n): xn = 1 if (vk, n) is a
new virtual link, and zero otherwise.

• The binary variable ys,d : s, d ∈ L marks whether s→ d
has obtained an LFA: ys,d = 1 if s → d has LFA after
adding vk, and zero otherwise.

• The binary variable zg,s,d : s, d ∈ L, g ∈ Esd is set so
that zg,s,d = 1 if g is the next-hop of vk, zero otherwise.

• The non-negative real variable cn : n ∈ NS(v) represents
the cost cV (vk, n) of the virtual link (vk, n). We require
that cn ≥ cS(v, n)+C where C is a problem parameter,
to ensure that paths via vk are longer than the default
shortest paths. In the rest of this paper, we set C = 1.

• Finally, the non-negative real variable δu : u ∈ VS \
{v, vk} denotes the shortest path distance from vk to u.

Consider the ILP below (the role of parameters K and ε
will be made clear soon).

max
∑
s,d∈L

ys,d − ε
∑

n∈NS(v)

(cn + xn) (9)

ys,d ≤ xs, zg,s,d ≤ xg s, d ∈ Lv, g ∈ Esd(10)

ys,d ≤
∑
g∈Esd

zg,s,d s, d ∈ L (11)

δd ≤ dist(g, d) + cg +K(1− zg,s,d) s, d ∈ Lv, g ∈ Esd(12)
δd +K(1− xs) +K(1− xsi) ≥

dist(g, d) + csi + C s, d ∈ Lv, i = 1, . . . , sk (13)
cn ≥ cS(v, n) + C n ∈ NS(v) (14)
xn, ys,d, zg,s,d ∈ {0, 1}, cn ≥ 0 (15)

The objective function (9) maximizes the number of LFAs
the new virtual node v′ gives rise to. Parameter ε is a
small constant, which ensures that the optimization favors the
solution with the smallest link costs and the fewest virtual
links. The first constraint in (10) states that v′ can only become
an LFA for s if the virtual link (s, v′) is present. Similarly,
zg,s,d ≤ xg expresses that we can only set g as next-hop for
v′ if the virtual link (v′, g) is provisioned.

Constraints (11) and (12) correspond to the escape node
condition (5) for each s→ d pair in Lv . In particular, (12) will
set the shortest path distance from v′ to d according to whether
the escape node g ∈ Esd is chosen as the next-hop for v′ to d.
If zg,s,d = 0, i.e., if g is not the next-hop then the constraint
is inactive, while if zg,s,d = 1 then the constraint is active
and sets δd and cg according to (5). To switch between the
active and inactive states, we use the large constant K � C+
max(s,d)∈VS×VS

dist(s, d). Furthermore, (11) sets an s → d
pair protected, if at least one escape node has been selected
as the next-hop for v′ towards d.

Constraint (13) stands for the LFA-4 condition (6) for
eligible s→ d pairs. The constraint is only active when both
(s, v′) and (v′, g) virtual links are present, i.e., xs = 1 and
xg = 1. In this case, it sets cg to prevent si to become a
next-hop for v′ to d according to (6) for i = 1, . . . , sk.

Finally, the domain of the variables is set in (14)–(15).
After solving the ILP, the virtual topology is constructed

by augmenting the substrate with the virtual node v′ and the
virtual links (v′, n) : xn = 1 with cost cn for all n ∈ NS(v).
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