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Abstract—The classical way to exchange digital assets is to
use a centralized exchange, which goes against one of the main
organizing principles of crypto currencies, namely the decentral-
ized property. There has been an increased interest in finding
alternative solutions to eliminate the need for these centralized
crypto currency exchanges. Atomic swaps enable digital asset
holders to exchange their tokens without intermediaries. Setting
aside the risk associated with the centralized exchange, converting
between digital assets on these platforms is very convenient and
attracts users in massive quantities. Once a sell (or buy) order
is placed and accepted by the platform and a matching buy (or
sell) order is found there is no way to waive the commitment and
the order is executed no matter what. The situation is altered
when one uses atomic swaps, due to the nature of the atomic
processes. If a party can abandon the deal at certain stages
the atomic swap becomes an option. These options have been
extensively studied in the past with various models to simulate
the changes in the underlying stock. In the current work, we
simulate strategic behaviors on historical market data, analyse
crypto currency atomic swaps using the Merton Jump Diffusion
model and propose a theoretical solution to increase the success
rates in atomic swaps. The aim of this analysis is not forecasting,
but rather a more accurate description of the optionality in
atomic swaps.

I. INTRODUCTION

With the advent of blockchain based technologies and
crypto currencies there is an increased interest in decentralized
systems. The developers of the first crypto currency, Bitcoin
[1] and many of their aftercomers tout the importance of
decentralization in crypto currency networks. Solid research
has indeed shown that many of these systems become unstable
once there is an entity that has control over the majority.
However, when users are trying to exchange their digital assets
with each other they usually perform this on a centralized
cryptocurrency exchange. The fact that the exchange itself
stores private keys and as a result operators can steal funds,1

whenever they wish to do so is very concerning. The storage
of private keys is not the only source of vulnerability when it
comes to centralized exchanges. Getting hold of a substantial
amount of cryptocurrency stake by operating a centralized
exchange is much easier compared to proof-of-work (PoW)
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mining or proof-of-spacetime [2] farming as hoarding and
operating a large number of PoW miners or farming HDDs
is not a straightforward thing to do. Consequently, these
exchanges pose risk to PoS currencies and from a user perspec-
tive, tedious KYC (know-your-customer) processes preclude a
wider adoption of blockchain technologies. Also, exchanging
digital assets on centralized exchanges incurs an exchange fee
which can be thought of as money that is paid in exchange for
a guarantee that the transaction takes place with a probability
equal to 1. Solutions that enable users to exchange digital
assets in a decentralized manner kill more birds with one
stone. In the early days, decentralized exchanges (DEx) were
developed to act as matchmakers between the parties rather
than actually registering private keys.

One step further, if one desires true decentralization, low
trading fees and peer-to-peer deals between inhomogeneous
blockchain networks without third-party arbitration the match-
maker based implementation can be replaced by atomic swaps.
The atomic property implies that none of the parties is worse
off in any of the stages of the exchange [3]. Atomic swaps
can be realized using Hash Time Locked Contracts (HTLCs)2

if the chain implements contract functionalities and adaptor
signatures can be used for the same purpose with group
homomorphism based signature schemes. The swap takes
place only if parties cooperate and there is no dishonest
party intentionally intercepting the process. Therefore, atomic
swaps are inherently accompanied by a tradeoff, namely that
while fees are lowered, there is a non-zero probability of
failure during the deal. In addition to intentional misbehavior
atomic swaps might fail to succeed if one of the parties goes
offline. There could be several reasons for a party to become
unresponsive and in such situations, the coins initially locked
into the swap get refunded to their original owners. Clearly,
this constitutes a call option for one party and a put option for
the other. An implementation in this primitive form without a
risk premium can become unstable as there is no incentive for
the parties to stay in the swap if the exchange rate moves in
an unfavourable direction.

Option pricing has extensive literature and foretelling stock
prices is one of the key areas of quantitative finance theo-
ries. The Black-Scholes (BS) formula for option pricing [4]

2https://en.bitcoin.it/wiki/Hash Time Locked Contracts
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assumes that stock prices are governed by a drift and a Geo-
metric Brownian Motion (GBM) component. The expectation
value of the stock price, the probability density function (PDF)
and the cumulative density function (CDF) can be expressed
in a relatively simple form and a game theoretical analysis
of atomic swaps was performed in [5] using these formulas.
Although the solution of the BS differential equation can be
used to describe the principal component of the movements
in the stock price it fails to describe the jumps that occur
on exchanges due to the arrival of information that triggers
crashes and rallies. These jumps are incorporated in the
Merton Jump Diffusion (MJD) [6] model by extending the
drift in the GBM with a jump term.

Our paper is organized as follows. Firstly, we derive the
necessary formulas to express the expected value of the price,
the PDF and the CDF for the MJD model, then we give a short
recap on how signature schemes work. Then, we describe how
atomic swaps can be implemented and examine the behavior of
atomic crypto currency swaps using the MJD model. Finally,
we take historical exchange rates and simulate the actual
strategic games for each party and also provide numerical
results to shed light on the success rate of the swaps.

II. RELATED WORK

The feasibility of atomic swaps and their vulnerabilities
are being actively researched. Readers interested in a general
overview of decentralized exchanges, blockchain technologies
and atomic swap projects should refer to [7], [8] and [9].
The authors of [10] give a proposal for a protocol that
would incentivize miners to confiscate funds of misbehaving
participants to improve the security of HTLCs. In [11] the
authors go even further and they propose atomic crosschain
transactions for Ethereum private sidechains that can be imple-
mented without HTLCs. Packetized payments [12] provide a
promising solution for cross-ledger transactions in adversarial
environments. Atomic swaps can also be implemented using
homomorphic hashing [13]. Details on how to specify and
check smart contract models for on-chain and cross-chain
atomic swaps are given in [14]. Readers can find a detailed
analysis in [15] on the importance of strongly connected
directed graphs in cross-chain swap protocols.

Game theory has been applied several times to analyze
the utility of atomic swap participants. In [16] and [17]
for example, the authors present a complete framework to
analyze multiple asset exchanges between different chains as
strategic games. The essence of the problem is discussed in
detail in [18] where atomic swaps are treated as premium-free
American Call Options and simulated using the notorious Cox-
Ross-Rubinstein model [19]. [20] analyzes crypto currencies
from a financial point of view and propose inflation control
mechanisms which might have important implications in the
future as far as price dynamics are concerned. Mitigations
to a few existing problems in atomic swaps are given in
[21] to open up new means for derivative trading on existing
crypto currencies using atomic swaptions. Geometric Brown-
ian motion has been applied to simulate the behavior of atomic

swaps for real-world currency pairs [22]. The current work is
different from all of the above mentioned because we analyze
the swaps using the Merton Jump Diffusion model. To the best
of our knowledge, no such analysis has been carried out and
reported in the past.

III. PRICE DYNAMICS

The solution to the BS model describes the stochastic stock
price Pt at time t as follows:
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with µ denoting the drift and Wt the Wiener process com-
ponent. The expectation value, the PDF and the CDF of the
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The Merton Jump Diffusion model extends the BS model
with a compound Poisson process (

∑Nt

i=0 Qi) and the stochas-
tic price becomes:

PMJD
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2
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In the MJD model, the number of jumps Nt is a Poisson
process with rate λ, and the jump sizes Qi are i.i.d. random
variables (also independent from Nt) and described by a
common normal distribution with parameters µj and σj (the
index j stands for jumps). Along with equations (3) and (4),
the PDF of the asset price in the MJD model can be expressed
as a weighted sum of normal densities:
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and we derive the CDF of the MJD model as:

CMJD(x, Pt, τ) := PMJD[Pt+τ ≤ x|Pt] =
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And finally, using the generating function approach the ex-
pected value of the price in the MJD model can be expressed
as:

εMJD(Pt, τ) := EMJD(Pt+τ |Pt) = Pte
µτeλτ(e

µj+
σ2
j
2 −1)

(8)
These are the formulas that will be used in the following

game theoretical analysis, with the infinite summations above
truncated at kmax. As crashes and rallies are frequent on
crypto currency markets, presumably, the MJD model gives
a more accurate description of the underlying problem.



IV. ATOMIC SWAPS

The ownership of a digital asset in blockchain networks is
equivalent to knowing a solution to an NP-hard problem that is
computationally infeasible to break. In essence, a transaction is
nothing more than proving that the buyer possesses some kind
of secret (verification step) without divulging anything useful
about the secret (zero-knowledge). In atomic swaps, however,
in addition to these, the parties should also exchange these
secrets (exchange step). These two goals are a bit controversial
because the buyer has to prove and then reveal his secrets. The
fact that any NP statement can be proved in zero-knowledge
[23], and consequently that any NP-hard problem can be
used for this purpose further complicates the interpretation of
atomic swaps. The most widely adapted NP-hard problem is
the discrete logarithm problem in a prime field used to generate
public-private key pairs and prove that a certain user possesses
a digital proof of a claim that is hard to break as long as
the intractability of the discrete logarithm assumption holds.
Moreover, modular exponentiation, by the law of exponents is
a homomorphism. This favourable property makes the discrete
logarithm problem a convenient and ubiquitous tool both for
privacy conserving implementations [24] and blockchains.

Using a more practical narrative, atomic swaps provide
means to exchange tokens between two independent chains
without going through a centralised crypto currency exchange.
In a blockchain network, users submit transactions to nodes
in the form of messages. These messages are signed and
the signatures serve as proofs to claims to show that a
user can invert the exponentiation in the chosen prime field.
Subsequently, nodes can check the validity of these messages
by validating the signature. Elliptic Curve Digital Signature
Algorithm (ECDSA) is among the most popular schemes to
augment messages with user signatures in crypto currency
networks, for example Bitcoin uses the secp256k13 curve
for signature generation and SHA256 hashes for authenticating
transactions. Signatures generated by multiple users (multisig)
are easy to implement if the signature scheme is additive, in
other words the sum of the public keys can be used to validate
a multisig. With this in perspective, the BIP-340 proposal in
the bitcoin network introduces Schnorr [25] signatures over
the secp256k1 elliptic curve. The additive property further
enables the signers to offset their signatures and an atomic
swap can be implemented using these partial signatures. In
order to ensure that none of the parties ends up worse off (due
to malicious behavior for example) the assets are transferred
to a multisig output address that can only be spent by a 2-to-2
multisignature. Once a party spends one of the outputs, the
offset gets revealed and the other party learns the secret that
is necessary to unlock the coins on the other chain.

Atomic swap implementations usually rely on complex
scripting logic or smart contract functionality [26]. While one
implementation can be used between two certain chains it
might not work between two other chains due to the nature of
the signature schemes and other chain specific peculiarities.

3https://en.bitcoin.it/wiki/secp256k1
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Figure 1: The timeline of an atomic swap

Details of an actual implementation to realize atomic swaps
between Monero and Bitcoin are given in [27] and the actual
software has gone live recently4. The subtlety of this proposal
lies in the fact that Monero uses edward25519 and Bitcoin
uses secp256k1 groups to generate public-private key pairs.
In order to find a common divisor between the two chains,
the parties have to exchange proofs to prove that they share
a common discrete logarithm across their respective groups.
During the execution of the protocol one-time Verifiably
Encrypted Signatures (VES) [28] are exchanged and in the
final stage, the secret decryption key that is required to sign
the last transaction is extracted from the decrypted signature
and the recovery key. For the sake of simplicity, we chose to
analyze atomic swaps implemented using adaptor signatures
where the final signature is obtained by simply subtracting the
published signature by the other party to obtain the signature
offset.

V. GAME THEORETICAL ANALYSIS OF ATOMIC SWAP

The atomic swap protocol to exchange digital assets be-
tween two independent blockchains based on Schnorr signa-
tures consists of the following steps (see also Figure 1):

• t0: the parties agree on the exchange rate P ∗ and other
conditions

• t1: A locks the agreed amount of tokena on chainA
• t2: when B learns that A has locked tokena on chainA

he locks the agreed amount of tokenb on chainB
• t3: A unlocks tokenb on chainB and reveals the signature

offset
• t4: with the signature offset B can now unlock tokena on

chainA and receives it at t5
From a game theoretical perspective, t3 is the first point

in time worth investigating as B does not alter the outcome
of the swap by not unlocking the tokens at t4. At t3 A will
choose between unlocking and aborting based on the expected
value of the tokens. Similarly, t2 and t1 are points in time in
which the parties can influence the outcome of the swap. At
each point, one can express the utility of each party based on
P ∗ and other conditions. For a detailed derivation of these
quantities, refer to [5]. Here we are interested in the success
rate of the swap when the BS model is replaced by the MJD
model. The cut-off price at t3 is expressed as:

Pt3(P
∗) =

P ∗eraτb

(1 + αa)era(εb+2τa)

1

eµτbeλτb(e
µj+

σ2
j
2 −1)

(9)

4https://www.getmonero.org/2021/08/20/atomic-swaps.html

https://en.bitcoin.it/wiki/secp256k1
https://www.getmonero.org/2021/08/20/atomic-swaps.html


0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

P (t2)

0.5

1.0

1.5

2.0

2.5

3.0

U
til

ity

U cont
B (t2)

λ = 0.05
λ = 0.1
λ = 0.3
Black-Scholes

Figure 2: Party B’s utility at time t2 with MJD and BS. The
following parameters were used for this calculation: P ∗ = 2.4,
σ = 0.1, µ = 0.002, τa = 3, τb = 4, αa = 0.3, εa = 1, εb = 1,
ra = 0.01, rb = 0.01, Pt0 = 2, µMJD = 0.01, σMJD = 0.1,
kmax = 20.

The success rate of the atomic swap assuming that A has
made her initial move in t1 is expressed with the following
integral:

SR(P ∗) =∫ Pt2
(P∗)

Pt2
(P∗)

PMJD(x, Pt1 , τa)[1−CMJD(Pt3(P
∗), x, τb)]dx ,

(10)

where the lower and the upper limits of the integration are
numerically determined by finding a feasible range in which
the utility of party B is greater in value in case he chooses to
continue the deal. Now we are in a position to compare the
utility of each party at t1, t2 and t3 and to calculate SR(P ∗)
using the MJD model.

VI. NUMERICAL RESULTS

The cut-off price at t3 is a linear function of the agreed price
(P ∗) according to (9) and this formula is used to calculate the
utility of party B when he chooses to proceed at t2. Numerical
results for U cont

B (t2) are presented on Figure 2. for the BS
model and for the MJD model with different jump intensities
(λ). For low Pt2 values B’s utility increases with λ as the
probability of Pt3 < Pt2 decreases when there is more chance
for a positive price jump (note that µMJD is positive). The BS
curve was calculated with the MJD equations with µMJD →
0, σMJD → 0 and λ → 0. On Figure 3. we present SR(P ∗)
values calculated with different jump intensities and with the
BS model.

From Figure 3. we can conclude that higher jump intensity
in the MJD process decreases the rate of success. In order to
understand the connection between λ and SR(P∗) we found
it expedient to plot the integrand of the success rate in Figure
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Figure 3: Jump intensity vs. success rate of the atomic swap
with MJD and BS. σ = 0.1, µ = 0.002, τa = 3, τb = 4,
αa = 0.3, εa = 1, εb = 1, ra = 0.01, rb = 0.01, Pt0 = 2,
µMJD = 0.01, σMJD = 0.1, kmax = 20.
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Figure 4: The integrand of SR(P∗) vs. jump intensity for P∗
= 2.4. The line σ = 0.125 refers to a BS model with no jump
process.

4. Clearly as λ → 0 the MJD model approaches the BS model
and the success rate increases with the decreasing likelihood
of jumps. These unexpected jumps in the exchange rate can
render the atomic swap unsuccessful as the utility maximizing
parties choose to abort the deal once the exchange rate enters
a non-feasible range. We found that for intensities where
the MJD probability density is smaller than the BS density
the success rate decreases. The authors in [5] observed that
SR(P∗) decreases rapidly with increasing σ. Intuitively large
deviations in the price can be treated as jumps. Therefore we
conjectured that increasing σ in the BS model would lead to
the same effect as switching the jumps on. This assumption
has been numerically validated in Figure 4. from which we can
deduce that increasing σ from 0.1 to 0.125 produces a similar
effect in the success rate as incorporating an MJD process with
λ = 0.3.



Next, we turn our attention to real-world data. In order to
obtain approximate exchange rates, we subscribe to web socket
streams using an API provided by Binance5. Our goal was to
find a token listed on Binance with high expected volatility
(and jumps) so that we can simulate multiple atomic swap
events in a turbulent market environment. Initially, we looked
for a token that appreciated a lot in price for the last 24 hours.
We chose the BIFI6-USDT ticker to observe for a few hours as
it exhibited 28.84% growth in the past 24 hours. The changes
in the exchange rate are displayed in Figure 5. In line with
our expectations, the rate experiences a severe correction in the
first 5 hours, and then it recovers again back to the original
rate in the next 10 hours.

During our calculations we assume that the BIFI-USDT
ticker follows an MJD process in the observed time frame.
We iterate through the exchange rates and measure the relative
change between the natural logarithm of two adjacent data
points (log-return). If the change is larger than a predefined
threshold (ε) then we count the change as a stochastic jump
in the exchange rate. With these assumptions we can calculate
the necessary parameters (λ̂ (jump intensity), σ̂j (MJD std.
deviation), µ̂j (MJD mean), σ̂ (GBM std. deviation), µ̂ (GBM
mean)) of the processes to simulate SR(P ∗) when one is
trying to execute an atomic swap on the BIFI/USDT pair. The
success rate is then calculated using (10). The parameters for
the MJD model for the currrent simulation length (Tsim) are
estimated based on [29] and we use the following values in
the subsequent calculations:

Table I: Calculated MJD parameters from market data (hour
units).

λ̂ = 8.02 Tsim = 20.69 h σ̂j = 0.0082
µ̂j = -0.000267 σ̂ = 0.14 µ̂ = 0.0052

Then, in order to calculate simulated results we developed
an open-source tool7 using Python, which functions in the
following way. The ticker data is tabulated such that there is a
data point for every second. The script then chooses random
points on the exchange curve and initiates an atomic swap
process at each point by referencing the curve for price data
at the strategic points in time. We then calculate the exact
expected utility both for party A and party B using the ticker
data.

At every point, the expected utility depends on the exchange
rate (P ∗) A and B agree on in the initial stage and this will
define a price range tolerated by the users. We abort the swap
once a party anticipates more utility from abandoning the deal
(the observed price is out of the tolerated range) and continues
otherwise. An attempt is calculated as failed if at any stage
there is one party who chooses to abort the deal. The simulated
success rate is calculated as the ratio between the number of
successful swap attempts and the total number of attempts.

5https://github.com/binance/binance-spot-api-docs/blob/master/
web-socket-streams.md

6https://beefy.finance/
7https://github.com/mlvl36667/mjd atomic
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from Binance between 2022-06-05 23:28 and 2022-06-06
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on the BIFI-USDT ticker dataset. The parameters for the
stochastic estimation are taken from Table I and τa = 1,
τb = 1, αa = 0.2 and αb = 0.2.

Results using the BS model, the MJD model and an actual
simulation are presented on Figure 6. When ε = 0.006 we
observe 8.06 jumps per hour and the measured σ is 0.14. These
values are certainly attributable to a more hectic process than
the ones that were analyzed on Figure 3. Based on our results
we conclude that the BS model fails to properly describe this
behavior, on the contrary the MJD model gives a much more
realistic description of the success rate. Further improvements
in both in the stochastic model and the simulation are required
to present a more accurate interpretation of the process.

VII. OUTLOOK AND CONCLUSION

We understood that high price volatility and intensive jumps
decrease the success rate of an atomic swap. Once the like-
lihood of a party anticipating significantly less utility due to

https://github.com/binance/binance-spot-api-docs/blob/master/web-socket-streams.md
https://github.com/binance/binance-spot-api-docs/blob/master/web-socket-streams.md
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https://github.com/mlvl36667/mjd_atomic


an intensive downward price movement the incentive to stay
in the deal disappears. This issue can be mitigated greatly if
the parties exchange the ownership of an intermediary asset
whose value does not change over time rather than the volatile
assets. The success rate of exchanging the equivalent amount
of stablecoins [30] between the two parties is clearly 1. In
order to avoid the high volatility that is specific to crypto assets
one could devise a protocol that would convert the assets to be
exchanged into stablecoins on both chains and then perform
an atomic swap between these stable assets with a probability
equal to 1.

DAI8 is a stablecoin project, whose currency still maintains
its peg and users creating collateralized positions (CDP) can
get hold of DAIs by depositing ETH to a smart contract.
The amount of DAI issued in this process is determined by
an algorithm, therefore the exchange is not fully trustless.
Atomic swaps could be implemented by simply transferring
the ownership of the CDP at the final stage and this would
enable the receiving party to withdraw the requested amount
of ETH from the contract. Unfortunately, the ERC-20 standard
is specific to the Ethereum mainnet and there are not many
blockchains with such abundant functionalities to implement
stablecoins. Therefore our improvement proposal at this stage
is merely theoretical.

In this work we examined the effect of unexpected jumps
on the success rate of atomic swaps between two independent
blockchains. We found that jumps in the exchange rate can
significantly reduce the success rate of the atomic swaps and
this can happen when markets are falling or appreciating
rapidly. Additionally, we uncovered and interesting relation-
ship between the intensity of jumps and the volatility of the
price. Network delays, transaction confirmation times, and
network partitioning attacks can render the atomic swaps
vulnerable. The investigation of this issue shall also constitute
a new direction for our future research activities.
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